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Abstract

A theoretical investigation is carried out to study the 

interactions between waves and large offshore structures at small 

forward speed. First order added mass, radiation damping and 

exciting forces as well as dynamic responses of rigid structures at 

small forward speed are presented. Second order mean drift forces at 

forward speed and low frequency wave drift damping are also 

presented.

An asymptotic analysis of the mean drift force on a vertical 

cylinder at small forward speed in long waves is first carried out. 

The mean drift force is obtained analytically by using a far field 

method, and the wave drift damping is estimated and discussed.

For arbitrary bodies, a perturbation theory on the basis of a 

small forward speed parameter is proposed and developed. The fluid 

flow around the body is solved in terms of a zero forward speed 

problem and a forward speed correction problem. The latter is 

linearly proportional to the forward speed.

A novel multipole expansion is presented for the velocity 

potential of zero forward speed motion. The expressions are valid for 

both completely submerged bodies and surface piercing bodies.

A computer program is implemented, based on the small forward 

speed theory. Two coupled numerical methods are utilized. Solutions 

of the first order dynamic motions, second order mean drift forces 

and wave drift damping are presented for several floating and
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submerged horizontal cylinders.

It is observed that the influence of the small forward speed 

on the second order hydrodynamic forces is larger than that on the 

first order hydrodynamic forces; and that among the first order 

forces, the influence on the exciting forces is larger than that on 

the added mass and radiation damping.
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Chapter 1

INTRODUCTION

1.1 The potential theory

Waves, currents, wind and ice are the four major factors which 

individually and interactively contribute to the environmental 

loading and the motions of offshore structures. Each of the factors 

is of complex nature and is internally subdivided into various 

physical phenomena. The present work is undertaken to address some 

aspects of dynamic interactions among waves, currents and offshore 

structures.

An offshore structure may be fixed, moored, tethered, 

dynamically positioned, or free floating. In ambient ocean waves a 

fixed structure will experience continuous loading; a compliant 

structure will be set to oscillatory motions in addition to the 

loading. For design and operation an accurate knowledge of the wave 

forces and motions of the structure is required. To fulfil this 

requirement, the fluid-structure interaction problem must be solved.

The exact problem of fluid-structure interaction is governed 

by the Navier-Stokes equations, since the water can be regarded as a 

Newtonian fluid. This generally combines viscosity dominated boundary 

layer flow, which is localized to the body, and the non-viscous flow 

in the remaining fluid domain. Practical solutions of this problem in



-20-

surface waves problem are literally impossible, and this is likely to 

remain so for many years. Theoretical simplifications are 

inevitable.

According to the role played by viscosity, offshore structures 

may be classified into two groups in hydrodynamic analysis: small 

bodies and large bodies.

It has been observed and widely confirmed that when the body 

is small compared with the wavelength, the viscous force is

significant. In this case the wave field can be regarded as 

unmodified by the body and the force may be expressed by Morison's 

equation, attributed to Morison et al. (1950). The formula contains 

an inertial force and a drag force, and many uncertainties remain in 

determining the inertial coefficient and the drag coefficient.

When the dimension of the body is comparable with the

wavelength, the viscous effect is usually negligible. The

modification by the body of the fluid flow must be taken into 

account, and the flow can be accurately described by a velocity 

potential function governed by the Laplace equation. These

considerations give rise to wave diffraction and radiation.

The velocity potential is subject to some non-linear

conditions on the surrounding boundaries. For waves of moderate

amplitude a perturbation method is commonly applied, which expresses 

the velocity potential as a series containing the first order

potential, the second order potential, ..., etc. in the wave 

amplitude. Each potential is solved successively with the higher
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order potentials depending on the lower order potentials. Different 

orders of solution indicate different degree of accuracy. For steep

waves, other theories are more appropriate (Sarpkaya and Isaacson

1981, Mei 1982).

There are of course cases in which neither the potential

theory nor the Morison's equation alone can describe the situation 

accurately. This happens for bodies of intermediate size, or

arbitrary size, but in particular shape, orientation, surface 

roughness or mode of motion. A known example is the rolling motion of 

large volume ships, for example shown by Takagi (1974) and Brown et 

al. (1983). In such circumstances the theoretical results sometimes 

still give satisfactory results after some empirical adjustment 

(Takagi 1974).

The present work is concerned with the potential flow regime. 

It is aimed at predicting some second order phenomena, although the 

first order motion must be solved first.

1.2 Slow-drift motions

Many phenomena can be predicted by the linearized potential 

theory. For the zero Froude number problem, the theory has been well 

developed over the last few decades. General computer programs for 

three dimensional problems are available (for example, Eatock Taylor 

and Zietsman 1982, Faltinsen and Michelsen 1974, Garrison 1978), and 

many programs have been successfully used as a reliable tool in 

offshore design and operations .
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However, there are some important phenomena for which linear 

theory does not give even a first approximation for prediction.

In regular waves, a compliant structure is observed to take a 

particular offset equilibrium attitude, or a particular displacement, 

with respect to its pre-located position and the pre-located angle of 

the incident wave. A sea-going ship in waves experiences an added 

resistance above its resistance in otherwise calm water. These 

phenomena are of second order in wave amplitude and can be explained

by the theory of second order mean drift forces.

In bichromatic or random seas, the behaviour of a large

compliant structure is known to be characterised by large amplitude

horizontal motions of low frequency (Verhagen and Sluijs 1970). The 

significant response lies well below the primary frequency of waves. 

The phenomenon can be explained by the excitation of the second order 

slowly varying drift force originating from the difference frequency 

component of the second order force. Since the natural frequencies of 

the compliant structure are low, the small drift forces of low 

frequency can generate large amplitude motions due to resonance. 

Prediction of the magnitude of the slow drift motion is one of the 

most important topics in practice. To achieve this, both the low 

frequency drift force and the damping are required.

The slowly varying drift force has been extensively studied 

and progress has been made in numerical computations. Due to the 

difficulties imposed by the inhomogeneous free surface condition for 

the second order potential , earlier methods neglected or partially
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approximated the contribution of the second order potential, e.g. 

Hsu and Blenkarn (1970), Marthinsen (1983), Newman (1974), Pinkster 

(1980). A breakthrough is marked by the work of of Lighthill (1979) 

and Molin (1979). Following their idea, Eatock Taylor and Hung[ ] 

have shown that, by applying the Green's second identity and 

introducing an auxiliary first order potential, the second order time 

harmonic force due to the second order potential can be computed 

"exactly" without actually determining the second order potential. 

Hung (1988) has further extended the method to compute the difference 

frequency second order force as well as the sum frequency second 

order force for arbitrary bodies in bichromatic waves. Extension to 

random seas has been discussed by Matsui (1986).

Alternatively, based on a boundary integral formulation 

suggested by Wehausen and Laitone (1960) for the general 

inhomogeneous free surface condition problem, direct calculation of 

the second order potential has been reported by Kim and Yue (1989) 

for axisymmetrical bodies and by Chau (1988) for arbitrary bodies.

Since the slow drift motion is a resonant phenomenon, it can 

only be predicted if adequate knowledge is available concerning the 

damping. There are three main sources of damping: radiation damping, 

viscous damping and wave drift damping. The subject is less well 

understood than the slow drift force.

Wave radiation damping is due to the oscillation of the body 

in an idealized fluid. It is associated with the scattering of the 

wave energy generated by the body. From experience of the linearized 

potential theory it is known that this damping is negligible compared
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with viscous damping as the frequency approaches zero.

Viscous damping is due to the drag force arising from skin 

friction and vortex shedding. It may consist of a linear term and a 

quadratic term in the fluid velocity, corresponding to a laminar 

boundary layer and a turbulent boundary layer respectively. The 

quadratic term often predominates, because oscillatory flow tends to 

form turbulent boundary layers rather than laminar boundary layers, 

as pointed out by Faltinsen (1986), and also evident from the 

experiments of Wichers et al. (1984).

The concept of the wave drift damping, or wave damping as it 

is sometimes called, appears to have been initially introduced by 

Wichers and Sluijs (1979). From their free decaying tests of large 

amplitude low frequency motions, Wichers et al. (1979, 1984) found 

that the damping in waves differs significantly from the viscous 

damping measured in calm water. The difference can be of the same 

order of magnitude as the viscous damping and must be included in 

predicting the slow drift motion. Their experimental results have 

shown that this additional damping is independent of the frequency of 

the slowly varying oscillation, but dependent on the wave frequency; 

the magnitude is proportional to the square of the wave amplitude. 

This additional damping is attributed to the slow drift velocity 

dependent wave drift force and hence termed as "wave drift damping" 

or "wave damping" for short.

Wichers and Sluijs (1979) suggested that, for the surge 

motion, the wave drift damping may be predicted by the gradient of 

added resistance with respect to the forward speed, having
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interpreted the slow drift velocity as a "quasi-steady" forward 

speed. This method of gradient of added resistance is further 

discussed by Wichers and Huijsmans (1984) from a mathematical point 

of view and followed by other investigators, for example, by Hearn et 

al. (1987), Zhao and Faltinsen (1988). An asymptotic solution of the 

wave drift damping based on the principle of gradient of added 

resistance is presented by Eatock Taylor, Hu and Nielsen (1990) for a 

vertical cylinder. The principle may be expected also applicable for 

the sway motion. Predicting the wave drift damping is a major task of 

the present work.

An alternative way of describing the slow drift motion is to 

use multi-scale analysis. The fundamental idea of the multi-scale 

analysis is illustrated in the text book of Nayfeh(1973). An 

application is made by Triantafyllou (1982). Triantafyllou (1982) 

proposed using two time scales to describe the motion, arguing that 

the slow drift motion contains a component of high frequency and a 

component of low frequency. The motion is explicitly expressed as a 

long time scale component and a short time scale component. He 

further argued that the ratio of the two time scales may be assumed 

to be the same order of magnitude as the wave slope. It is finally 

concluded that the short time scale problem appears to be identical 

to the zero-speed first order motion, except that it is now 

parametrically dependent on the long time scale motion. The long 

time scale motion may be solved in time domain with each time step 

long enough such that the time average can be taken for the short 

time scale motion. A simple illustration for the rolling motion of a 

vessel is given, but no numerical implementation is made. Agnon and 

Mei (1985) further extended Triantafyllou's multi-scale analysis to
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both time and space, arguing that the slow modulation in time is 

usually accompanied by slow modulation in space. They attempted to 

solve the slow drift motion of a two dimensional block, but there 

seems to be an algebraic error in their analysis. Extension to three 

dimensions was attempted by Zhao and Liu (1987).

1.3 Present work

The subject of this thesis is prediction of wave drift damping 

from the gradient of added resistance. The major task is to solve a 

boundary value problem for the linearized diffraction and radiation 

potentials at forward speed, since the forward speed dependent mean 

drift forces can be determined from the first order potentials. As 

one part of the requirement for calculating the mean drift forces, 

the first order responses are also to be solved. Inclusion of a 

nonzero forward speed in the analysis effectively means that the 

interactions among waves, the structure and a uniform current are 

examined, because the effect of a forward speed is equivalent to the 

presence of a uniform current in the opposite direction. However, it 

must be emphasised that the potential assumption excludes the viscous 

effect, especially the skin friction and the vortex shedding 

associated with waves and the current. This sometimes is a severe 

restriction.

A small forward speed perturbation expansion is proposed and 

developed for solving the boundary value problem. The fundamental 

idea is to assume that the velocity potential can be expressed as a 

series of terms of different order in the forward speed. For small



-27-

forward speed, only the zero-speed solution and the first order 

speed correction term which is linearly proportional to the forward 

speed are retained and all higher order terms are neglected. 

Consequently, the boundary value problem is decomposed into two 

boundary value problems corresponding to the zero-speed potential and 

the forward speed correction potential with the latter depending on 

the former. After a careful analysis of the behaviour of the velocity 

potential at large distances, it is shown that the forward speed 

correction potential can be expressed as an integral over the body 

surface plus an integral over the free surface. The expression for 

the zero-speed potential is rather conventional, i.e. as an integral

over the body surface. An important feature of the theory is that the

pulsating source potential is used as the Green function for both the 

zero-speed problem and the forward speed correction problem. This is 

different to other theories which usually use a pulsating translating 

source potential as the Green function. The latter is known to be far 

more expensive to compute. The fact that the same Green function is

used for both problems also proves to be advantageous in numerical

discretization, since the final matrices only need to be evaluated 

once for both problems.

Although the integrand of the body surface condition contains 

the unknown potentials, the integrand of the free surface integral 

(which arises for the forward speed correction term only) is simply 

a functional of the zero-speed potential and the steady potential, 

which are known because the steady motion and the zero-speed motion 

will be solved prior to solving the forward speed correction term. 

The evaluation of the free surface integral is time consuming and is 

a major difficulty in the present theory. For the purpose of
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evaluating it efficiently, a fast converging multipole expansion is 

developed such that the zero-speed potential and the steady potential 

can be expressed analytically. Subsequently, the slowly converging 

oscillatory part in the free surface integral can be integrated 

explicitly, which improves the efficiency of the computation.

In numerical implementation a coupled technique is used. The 

fluid domain is divided into an inner domain and an outer domain by 

an artificial control surface. A boundary integral formulation is 

used in the inner domain with the simple Rankine source Green 

function. For the zero-speed potential, the inner domain expression 

may be either matched with a similar integral formulation (BIE-BIE) 

but with the pulsating source potential Green function; or matched 

with the multipole expansion (BIE-BMP) developed in the thesis. For 

the forward speed correction, only the integral-integral coupling 

exists (BIE-BIE). The BIE-BMP coupling is very efficient and no 

irregular frequencies are encountered in the computation. The BIE-BIE 

coupling is superior to a uncoupled boundary integral formulation, 

because it can locate the irregular frequencies.

The thesis is organized as follows. After this introduction a 

brief literature review is presented in Chapter 2. In Chapter 3, 

after a general discussion about the boundary value problem, an 

asymptotic solution of the mean drift force is presented for a

vertical cylinder at small forward speed. This asymptotic analysis is

carried out to enhance the understanding of the wave drift damping

phenomenon, and the analytical result obtained may be used for 

checking more general numerical solutions. Chapter 4 is the core of 

the thesis, in which a small forward speed perturbation theory is
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presented, together with a novel multipole expansion for the

zero-speed potential. Also presented in Chapter 4 are the details of

numerical implementation, particularly concerning the second 

derivatives and evaluation of the free surface integrals. In Chapter 

5, formulations for forces and rigid body motions are re-examined 

with the presence of small forward speed. Numerical results are 

presented and discussed in Chapter 6. The last chapter lists 

conclusions. Although numerical implementation is mainly in two

dimensions, theoretical analyses are carried out for both two

dimensional and three dimensional motions.
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Chanter 1

LITERATURE SURVEY

2.1 Overview

Solving the velocity potential at forward speed is not a new 

subject for naval architects. The history may be traced back about a 

century ago. However, the problem has not yet been solved for blunt 

bodies. Certain difficulties can be identified.

Firstly, a steady potential usually needs to be solved prior 

to solving the unsteady potential. This steady potential is the 

solution for bodies moving in steady translation through otherwise 

calm water. In general, the problem is nonlinear and not easy to 

solve.

Secondly, the free surface condition for the unsteady 

potential contains the disturbance of the steady potential. This 

violates the most commonly used boundary integral method, since the 

free surface condition can no longer be taken into account by a 

properly chosen Green function.

Thirdly, the body surface condition for the unsteady potential 

contains the second derivatives of the steady potential, which 

demands excessive accuracy in numerical computation.
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Most investigations circumvented these difficulties by 

imposing some genuine approximations. Noticeably, the steady 

potential is frequently neglected completely or partially. A study of 

the literature reveals that theories may be loosely classified into 

two categories: (i) those developed for bodies of particular

geometries, such as thin, slender ship theories and strip theories; 

and (ii) those aimed at arbitrary bodies. The words "aimed at" are 

used for the reason that although there are some three dimensional 

methods existing, most of them can not properly deal with one or more 

of the aforementioned difficulties; therefore they can not really be 

applied for arbitrary bodies, unless the difficulty is overcome.

2.2 Development of the steady motion theory

The development of the steady motion theory has been slow and 

unsatisfactory.

Following the pioneering work of Michell (1898) for the wave 

resistance on a thin ship, the progress in this area has been more or 

less restricted to the refinement of the thin ship theory for a long 

period thereafter. Notable are a series of papers by Havelock, who 

studied various effects of systematic variations. Those works are 

summarized in Havelock (1926). Even long after appearance of more 

practical methods, the thin ship approximation still attracts certain 

attention, for example by Keller and Ahluwalia (1976), because of 

its simplicity in mathematics, particularly, the explicit expression 

for the wave resistance. About fifty years after Michell's work, a 

generation of slender ship theories appeared, taking advantage of
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the fact that ships are usually enlongated, with the beam and draft 

of the same small order of magnitude compared with the length. The 

slender ship theory was firstly introduced by Cummins (1965) and also 

investigated by other authors. The linearized Neumann-Kelvin free 

surface condition is used. For broader applications, a more general 

solution is required. This is usually based on numerical methods.

For deeply submerged bodies, the linearized Neumann-Kelvin 

problem can be solved without geometrical approximation (although the 

linearization itself is a significant approximation) at present. In 

1967, Giesing and Smith (1967) reported successful numerical 

solutions for deeply submerged hydrofoils. The results are obtained 

from a distribution of Kelvin source over the contours of the 

cylinder. A similar method was used by Chang and Pien (1975), but a 

dipole distribution was used instead, which was found more efficient. 

Bai (1975) solved the problem again, using a coupled method with a 

finite element fomulation imposed in an inner domain and an eigen 

series expansion in the outer domain. There are also many other 

coupled methods successfully applied for this problem, for example, 

by Mei and Chen (1976) also using a localized finite element method, 

by Yeung and Bouger (1977) using a simple logarithmic Rankine source 

coupled with an eigen series expansion, and by Eatock Taylor and Wu 

(1986) using a finite element formulation coupled with a boundary 

integral formulation. Extension to three dimensional submerged bodies 

has been successfully made by Bai (1977). However, it can not be 

certain how deep the submergency should be, unless the nonlinear 

effects are examined.

For surface-piercing bodies, the progress is less advanced.
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A1though the linearized Neumann-Kelvin problem may be solved, the 

physical meaning is questionable. It has been shown that for 

surface-piercing bodies, nonlinear effects should be considered. 

Nevertheless, it is worth mentioning the analytical work by Brard 

(1972) for the linearized Neumann-Kelvin problem. Brard pointed out 

that if a singularity distribution method is used, a line 

distribution along the intersection of the body with the mean free 

surface must be included in addition to the distribution over the 

body surface. He also showed that, for a vertical elliptical 

cylinder of infinite draft at low Froude number, a significant 

contribution of the line integral was found, when a dipole 

distribution was used.

One approach for nonlinear analysis is a perturbation theory 

about a thin ship. The zeroth solution is taken as zero. This method 

has been pursued by Wehausen (1973), Guilloton(1964). Some 

improvements are found but not in a consistent manner, as shown by 

Gadd (1976).

Another approach is to perturb about the "double body" flow, 

as shown by Baba and Hara (1977). The theory is actually a slow-ship 

theory. The zeroth solution is taken to be the flow of the double 

body consisting of the immersed hull and its image above the mean 

free surface in an unbounded fluid. This is equivalent to imposing a 

"rigid wall" condition on the free surface. The first order solution 

is a surface wave potential, subjected to the free surface condition 

imposed on the sum of the potential and the double body flow.

Noblesse (1983) examined both approaches from a slightly
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different point of view. He first imposed the nonlinear free surface 

condition on the undisturbed free surface and derived an integral 

expression for the velocity potential. Then an iterative procedure 

was applied to solve the integral equation. He showed that if the 

initial guess is taken as zero, the procedure is essentially 

equivalent to the perturbation about a thin ship; otherwise if the 

initial solution is taken to be the double body solution, the 

procedure is equivalent to the slow-ship perturbation. Chen and 

Noblesse (1983) compared different methods with experiments and 

showed that large discrepancies exist not only between theories and 

experiments, but also among theories themselves, particularly at 

small Froude number.

The nonlinear problem can also be approached from a free 

surface source distribution. Gadd (1976) presented some successful 

results by distributing the Rankine source over the body surface and 

surrounding mean free surface. However, the success can not be 

guaranteed due to the undesirable termination of the region of free 

surface panels. A similar procedure is also applied by Musker (1988), 

who reported that some meshes are not convergent. There are also many 

other methods, such as the ray theory (Keller 1979) and methods 

developed to investigate the bow or stern flows (Faltinsen 1983). 

Most of them are developed for specific problems and are not 

discussed here.

To summarize, theoretical predictions are still at a primitive 

stage for surface-piercing or shallowly submerged bodies, and 

further investigation is required to solve the nonlinear free surface 

problem. The present work, however, is not aimed at that goal.
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Ins tead, the author is content with the double body flow 

approximation, because the Froude number concerned here is small and 

only first order terms in Froude number are required. Corrections to 

the double body flow approximation would consist of higher order 

quantities, and can be neglected for the purpose of the present work.

2.3 Development of the unsteady motion theory

The progress of the unsteady motion theory kept about the same 

pace as that of the steady motion theory. It is universally accepted 

that the beginning of the study of ship motions is marked by the work 

of William Froude (1861) for the rolling motion of a ship and by the 

work of Krylov (Kriloff) (1896) for the pitching and heaving 

motions. Both works neglected the disturbance due to the presence of 

the ship. The subsequently predicted force is known as the 

Froude-Krylov force nowadays. Consideration of the disturbance of 

body was firstly made by Michell (1898) for wave resistance of a thin 

ship. After that a generation of thin ship theories appeared (see

Peters and Stoker 1957, Newman 1961), and followed by a more

applicable generation of slender ship theories (see Ursell 1962, 

Newman and Tuck 1964). Some details may be found in the review of 

Ogilvie (1977). A restriction of those theories is that the

wavelength must be long compared with the beam and draft, which

proves to be a severe restriction for ships in head seas.

The difficulty due to the forward speed forced many 

investigators to circumvent the problem. As a result, many studies 

are devoted to the zero-speed motions. An important family is the
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study of two dimensional flow past horizontal cylinders in beam seas, 

which forms a fundamental part of the strip theory developed later. 

This type of problem was first solved by Ursell (1949) for the 

heaving motion of a circular cylinder floating on the free surface. 

The multipole expansion method was used, which may be extended for 

arbitrary cross sections by combining the conformal mapping technique 

(Lewis 1929) or some localized numerical method (Nestegard and 

Sclavounos 1984). Vugts (1968) and Frank (1967) presented many 

results for several floating cylinders and some submerged cylinders.

In two famous papers, Haskind (1953) examined the theoretical 

aspects of motions at forward speed in great detail. He pointed out 

how the linearized ship motion can be solved by decomposing the 

velocity potential into a canonical form consisting of a diffraction 

potential and six radiation potentials for the six modes of 

oscillation. He also derived the fundamental solution of a pulsating 

translating source potential, and studied its asymptotic behaviour. A 

source distribution formulation for the velocity potential is 

presented, but the numerical implementation utilized the thin ship 

approximation. Another remarkable theoretical achievement is the 

Haskind-Hanaoka theorem, discovered by Haskind (1957) and Hanaoka

(1959) independently. This theorem gives the relation between the 

ith component of the generalized force and the ith radiation 

potential. Extension to forward speed case is made by Newman (1965).

One of the most significant advances for realistic ship 

motions was the development of the strip theory. The fundamental 

idea is to assume that the fluid flow corresponding to each section 

of the ship is two dimensional and the interaction among different
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sections is negligible. Consequently the added mass, radiation 

damping and the exciting forces can be expressed in terms of the two 

dimensional solutions. The first strip theory appears to have been 

presented by Korvin-Kroukovsky and Jacobs (1957). After that, there 

were extensive modifications and the strip theory dominated ship 

hydrodynamics for many years. Even today the strip theory is still a 

very useful tool for analysis of ship motions at forward speed.

The strip theory presented by Korvin-Kroukovsky and Jacobs is 

based on intuitive analysis rather than on a rigorous mathematical 

derivation, but surprisingly satisfactory agreement with experiments 

was found in many cases. A noticeable feature of this strip theory 

is the inconsistent way the forward speed is dealt with. This 

inconsistence remains in most modified ship theories, such as in some 

of the popular ones by Grim (1960), Gerritsma (1976) and Salvesen, et 

al. (1970). To overcome this inconsistence, Ogilvie and Tuck (1969)

proposed a "rational strip theory" for the heave and pitch motion.
1/2They retained terms of order c ' , where e is the slenderness of the

ship. Thus they managed to formulate the theory consistently. 

Although the rational theory is rigorous, it is difficult to use.

Salvesen et al. (1970) reported a very popular strip theory, 

known as STF theory later. It is a modified version of the strip 

theory of Korvin- Kroukovsky and Jacobs (1957). One obvious 

improvement is that the STF theory satisfies the Timman-Newman (1962) 

relation for the cross coupling added mass and damping terms, whereas 

the strip theory of Korvin-Kroukovsky and Jacobs does not. Added 

mass, radiation damping and exciting forces are presented for all 

modes of motion except surge. Although STF theory is less rigorous
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than the rational theory, it has become a most popular strip theory, 

because it is simple and gives satisfactory results.

A common feature of strip theories is that they are not valid 

for low frequency or for high speed. The condition w » U d / d x  is often 

required. This is why most strip theories fail to give satisfactory 

results in following seas and quartering seas. To remove the low 

frequency limitation, Newman (1978) developed a unified strip theory, 

which is claimed valid for all frequencies. The method of matched 

asymptotic expansions is used. In an inner domain close to the body, 

the flow is described by a localized two dimensional sectional 

potential with an undetermined "constant", which is a function of the 

longitudinal coordinate. The diffraction potential in the inner 

domain is governed by a Helmholtz equation resulting from the 

factorization of the space periodicity in the longitudinal direction 

of the slender ship. Radiation potentials are governed by the two 

dimensional Laplace equation. In the outer domain the flow is 

described by a three dimensional potential obtained from a 

singularity distribution along the axis of the ship with unknown 

strength. The strength and the "constant" are determined by matching 

the two expressions in an overlap domain. The theory is applied to 

the radiation problem by Newman and Sclavounos (1980), and 

application to the diffraction problem is made by Sclavounos 

(1981)(1984) for zero forward speed and small forward speed. 

Improvement is found for the heave and pitch added mass and damping 

at zero forward speed, but the results at forward speed are less 

convincing. Further evaluation of the unified theory is necessary. It 

should be noted that Newman and Sclavounos (1980) assumed that the 

steady potential satisfies the "rigid wall" condition on the free
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surface. This implies that the theory shares the common deficiency of 

other strip theories for high Froude number. For ship motions at 

high Froude number, a complementary approach is proposed by Chapman 

(1975) and also discussed by Ogilvie (1977).

Because the strip theory has its inherent deficiencies, above 

all the slender geometrical restriction, a three dimensional analysis 

must be persued for motions of platforms or the surge motion of 

conventional ships.

Chang (1977) is the first person who obtained successful 

numerical solutions from a three dimensional analysis. Both the 

steady problem and the unsteady problem are linearized. She used a 

source distribution which contains a body surface integral and a 

water line integral. The latter was recognized by Brard (1972). The 

disturbance of the steady potential is neglected completely in the 

procedure for solving the unsteady motion, but retained in the 

pressure force. Results of added mass and damping are presented for a 

Series 60 ship in all modes of motion except surge. Agreement with 

experiments is improved over the strip theory, but still remains 

unsatisfactory for pitch and roll damping coefficients. Chang 

suspected that the omission of steady flow in the free surface 

condition is responsible for the discrepancies. A similar method is 

also applied by Guevel and Bougis (1982).They used a source 

distribution and a combination of source and dipole distribution. 

Satisfactory results are obtained using a small number of panels. 

They identified irregular frequencies in the mixed distribution, but 

rather surprisingly no irregular frequencies are encountered in the 

source distribution. Bougis and Vallier (1981) also reported
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satisfactory results for a tug-barge system, using a source 

distribution method.

A similar method is also applied by Inglis and Price (1982), 

who also examined the effect of the steady potential disturbance in 

the body surface condition, and the effect of the forward speed 

introduced convective term Ud/dx in the free surface condition. As 

expected, computations for a Series 60 ship showed that the influence 

of the steady potential disturbance in the body surface condition is 

insignificant, since the hull is slender. Also in agreement with 

expectation, the influence of the longitudinal convective term is 

significant at higher forward speed and lower frequencies. The 

influence is mostly pronounced in the heave and pitch damping 

coefficients. These results confirm the limitations of the strip 

theory that neglects the convective term under the assumption 

w»U3/8x.

Hearn et al. (1987) also examined the simplified three 

dimensional method that neglects the longitudinal convective term. 

Computations for a similar tanker to that studied by Inglis and Price 

showed good agreement with the experiments of Pinkster (1980) over 

the intermediate frequency range and at small Froude number. This is 

consistent with the conclusions of Inglis and Price. Hearn et al. 

also computed the wave drift damping and obtained a good agreement 

with the experiments of Wichers (1982) for the same tanker. The 

validity of the simplified three dimensional method, however, can not 

be generalized to blunt bodies. Computations for a semisubmersible by 

Hearn and Tong (1987) showed that only a qualitative agreement with 

experiments is obtained for the wave drift damping. It should be
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pointed out that this simplified three dimensional theory is 

inconsistent and therefore should not be expected to do too much.

For deeply submerged bodies, like the steady motion case, the 

theory enjoys a better success than its counterpart for surface- 

piercing bodies. For such circumstances, the free surface condition 

for both the steady flow and unsteady flow may be linearized. It is 

commonly argued that the disturbance of the steady potential in the 

free surface condition may be neglected as well. Under such 

simplifications, Grue and Palm (1985) examined the two dimensional 

radiation and diffraction problems for a submerged circular cylinder. 

A source distribution method was used. The integral equation was 

solved by expanding the source strength into a Fourier series and 

then truncating the series after a finite number of terms. Ten terms 

were found sufficient, if the axis of the cylinder is two or more 

times the radius below the free surface. Mo and Palm (1987) studied 

similar problems for an elliptic cylinder. The source distribution 

method was also used, but the integral equation was solved directly 

by a numerical method. For arbitrary cross-sections, Wu and Eatock 

Taylor (1987) presented an efficient method by coupling the finite 

element formulation with a boundary integral formulation, which can 

be regarded as a straightforward extension of the earlier work of 

Eatock Taylor and Zietsman (1981) for the zero speed problem. They 

also showed how the second derivatives of the steady potential in the 

body surface condition can be reduced to the first derivatives by 

applying an integral theorem derived by Ogilvie and Tuck (1969). 

Their results for a submerged circular cylinder compared very well 

with the semi-analytical solutions obtained by Grue and Palm (1985). 

Extension to deeply submerged three dimensional bodies is made by Wu
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(1986). Wu and Eatock Taylor (1988) also obtained a semi-analytical 

solution for a deeply submerged sphere. A similar procedure to that 

of Grue and Palm (1985) is used, but the source strength is expanded 

as a series of Legendre functions instead of Fourier series, since 

the problem is three dimensional.

The three dimensional analyses discussed so far are for finite 

Froude numbers. Those analyses are very time consuming. Besides, 

numerical calculations for small forward speed are not well behaved, 

because the Green function becomes highly oscillatory as the speed 

approaches zero. In offshore applications, the forward speed (or 

current speed) is usually small. Therefore, it seems desirable to 

develop an efficient method under a small forward speed condition.

Huijsmans and Hermans (1985) made such an attempt. They 

proposed a perturbation method for small forward speed problems. A 

conventional source distribution formulation is used to start with. 

They then assumed the solution can be expanded into a series 

according to the forward speed. After neglecting higher order terms, 

they expanded the Green function as the sum of a zero-speed term and 

a forward speed correction term, linearly proportional to the forward 

speed. The expansion procedure is also applied to the source 

strength, the velocity potential etc. The boundary integral equation 

is then decomposed into a zero-speed equation and a forward speed 

correction equation, and solved successively. Computations were 

carried out for a Series 60 ship. The presented results of the heave 

and pitch cross coupling added mass and damping showed reasonable 

agreement with the results obtained from another method by Grekas 

(1983). More computation and comparison are necessary to evaluate the
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accuracy of the theory. One point which should be mentioned here is 

that the expansion of the Green function is not uniformly convergent, 

since it is not appropriate in the far field. It therefore requires 

considerable care in application. In another paper, Huijsmans (1986) 

applied the theory to a tanker and computed the wave drift damping. 

Satisfactory agreement with the experiments of Wichers (1986) is 

found only over an intermediate frequency range. Surprisingly, at 

higher frequencies, the theoretical results showed different trends 

from the experiments. The discrepancies may be due to some 

manipulation error rather than the theory itself, since it appears 

that the mean drift force expression in Huijsmans (1986) is 

incomplete. The complete neglect of the steady potential should also 

be suspected.

A common drawback of most theories is the neglect of the 

disturbance of the steady potential in the free surface condition. 

This severely limits the their application to surface-piercing blunt 

bodies and also leaves many uncertainties in the predicted ship 

motions.

Taking into account the disturbance in the free surface 

condition is by no means a simple modification over the existing 

theories. As a matter of fact, it is the most difficult task in this 

area. An immediate consequence of introducing the steady potential in 

the free surface condition is that the most commonly used boundary 

integral method can no longer be applied straightforwardly, since it 

is impractical, if not impossible, to derive an appropriate Green 

function which takes into account the full free surface condition 

such that the integral over the free surface can be eliminated. Zhao
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and Faltinsen (1988) and Zhao et al. (1988) are perhaps the only 

people who have taken up this challenge. In two successive papers 

they attacked the two dimensional and three dimensional problems 

separately. The forward speed (or the current speed as they referred 

to it) is assumed small and a double body flow approximation is made 

about the steady potential. A coupled numerical method is developed, 

as described below. The fluid domain is divided into an inner domain 

and an outer domain, with the inner domain being bounded by the body 

surface the free surface and a cylindrical control surface (or two 

vertical lines in two dimensions). The steady potential is included 

in all boundary conditions in the inner domain, but neglected in the 

outer domain on the free surface. In the inner domain a Rankine 

source distribution is used, which is then matched with a multipole 

expansion in the outer domain. The multipole functions used are the 

family of the pulsating translating source potential and its 

derivatives, which can be found in the review of Wehausen and Laitone

(1960). The coupling procedure in their two dimensional analysis is 

slightly different from that in their three dimensional analysis, but 

the fundamental idea is the same. Both first order and second order 

computed results are presented for a semicircle and a hemisphere 

floating on the free surface. Comparison with experiments for the 

hemisphere is made and satisfactory agreement is found. They found 

that the influence of the forward speed is more important for the 

mean drift force than for the first order quantities. One weak point 

of the method is that the disturbance of the steady potential is not 

taken into account over the complete free surface; instead it is only 

included in a portion of the free surface localized to the body. The 

outer bound of this portion can only be determined by trial and error 

in practice. This implies that the boundary value problem must be
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solved several times before a sensible decision is made, which 

inevitably increases the computing effort. Despite this shortcoming 

the work of Zhao and Faltinsen is still very challenging and 

initiated a practical approach.

Hu and Eatock Taylor (1989) proposed a small forward speed 

perturbation theory and presented some succesful results. With the 

multipole expansion developed by them, their theory has the potential 

to incorporate the steady flow disturbance effectively. This is 

discussed in this thesis.

To summarize, an accurate and efficient method for predicting 

motions of arbitrary bodies at forward speed in waves is not yet 

available. Particularly, it has not become clear how the disturbance 

of the steady potential in the free surface condition should be dealt 

with. The present work is an attempt to challenge that problem under 

the small forward speed condition.
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Chapter 3

AN ASYMPTOTIC SOLUTION FOR A VERTICAL CYLINDER

As an introductory investigation towards the understanding of 

wave drift damping, an isolated vertical circular cylinder moving in 

long waves is considered in this chapter. Studying a vertical 

cylinder is not only simple, but also rewarding because it is a 

common member of offshore structures. Although the draft will be 

assumed to be infinite, the solution sheds some light on realistic 

cylinders of large draft, because the lower part of a cylinder does 

not affect the solution much due to the exponential decaying of 

waves.

Without losing generality, the formulation of the boundary 

value problem is discussed first for arbitrary bodies. This serves 

the purpose of the present chapter and at the same time lays a solid 

foundation for the whole thesis. Special attention is given to the 

interactions between the steady potential and the unsteady potential, 

particularly on the free surface. The far field formulation for the 

mean drift forces on arbitrary bodies at forward speed is also 

examined. The geometrical simplicity of the vertical cylinder is 

exploited only in Section 3.3.

3.1 The boundary value problem

A large body moving at a constant forward speed in waves is 

considered. There are some basic assumptions as listed below. The 

viscous effect is assumed negligible. The fluid is assumed ideal and
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the flow irrotational. The body surface and the sea bed are assumed 

rigid and impermeable. The surface tension on the free surface is 

also assumed negligible. The motion of the fluid can be accurately 

described by a velocity potential. It is further assumed that the 

amplitude of motion is moderate such that a perturbation analysis is 

permissible. The assumptions are generally justifiable in practice 

for large bodies.

The mathematical formulation for the boundary value problem

has been widely discussed, and can be found in the text books of

Newman (1977) and Mei (1982). A perturbation analysis is applied here 

and a linearized boundary value problem will be ultimately derived. 

Strictly speaking, a non-dimensional analysis is required, but since 

the perturbation method is well understood in water waves, we shall 

generally omit the procedure of non-dimensionalization, unless where 

necessary. The derivation follows closely that of Newman (1978).

3.1.1 Exact formulation

Three Cartesian coordinate systems are defined:

Oq X qY q Zq : fixed in space,

Oxyz: moving in steady translation at the forward speed of

the body

O'x'y'z': fixed with respect to the body.

The axes are chosen such that Zq and z measure vertically upwards

from the undisturbed free surface, whereas Xq and x point in the 

direction of advance. The origin of the Oxyz coordinate system is in 

the body and the two coordinate systems coincide at time t-0. The
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transformation between the two coordinate systems is then given by 

(x,y,z) — (xQ-Ut,yQ,Zq ) , with with U the forward speed of the body. 

The body-fixed coordinate system is defined such that (x,y,z) 

=(x',y',z') in steady state equilibrium. The relation between the 

body-fixed coordinate system and the steady translation coordinate 

system will be discussed in Section 3.3. We shall also denote

position vectors by x^, x , x ' respectively, in the three coordinate 

systems.

The space-fixed coordinate is the simplest in which to start 

physical reasoning, while the steadily moving coordinate system is 

the most convenient in which to solve the boundary value problem. The 

body-fixed coordinate system is undoubtably the best in which to 

describe the geometry configuration and to describe the body surface 

condition.

Let $ denote a velocity potential. The fluid velocity is given 

by V - V$, where V - i|^ + The fluid pressure in a

potential flow field is given by Bernoulli's equation. In the 

space-fixed coordinate system this is

P - Pa - -p( 5t + ^ V$.v£ + gzQ ), (in (xQ ,t) space)
(3.1)

which is valid in the whole fluid domain. Here p is the fluid 

density, g is the gravitational acceleration, and P is the
8i

atmospheric pressure which is assumed constant. P^ will be taken as 

zero without loosing generality. From the Lorentz transformation

$(xA ,t) - (f- - u|— )$(x,t), the expression for Bernoulli's 
o t 0 ot ox

equation in the moving coordinate system is
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~ ~ x ->■— ->•p - p - -p( $ - U$ + -z V$.V$ + gz ) . (in (x,t) space)£L U X Z
(3.2)

In the whole fluid domain the velocity potential is required 

to satisfy the Laplace equation

2~V $ - 0 (3.3)

There is an infinite number of solutions for this governing equation. 

Since for an occurring physical problem there is only one solution, 

appropriate boundary conditions must be imposed.

The free surface can be defined by its elevation t)

and on this surface there are two conditions to be satisfied

0 " §t(z0 ' on Z 0 ~  1 (3.4)

o - -p( 5 + i vi.vi + gz0 ), on z - ri
C Z U U (3.5)

where — ■ is the substantial derivative: + V.V. The firstDt Dt ot
condition is the kinematic condition which requires that the fluid 

particles on the free surface always stay on the surface. The second 

is the dynamic condition which follows from the Bernoulli's equation

(3 .1 ) by taking the fluid pressure equal to the atmospheric pressure 

on the free surface. This implies that the viscosity and surface 

tension are neglected. The second condition is necessary because the 

free surface elevation is unknown. These two conditions can be 

combined into a single one
*

5 + 2V$.V$ + ^V$.V(V$.V$) + g$ - 0, on z “ rj.tt t 2. Zn U
U (3.6)

This is obtained by carrying out the substantial differentiation and 

eliminating the explicit appearance of r\. The penalty for eliminating
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one variable is the increase of the order of the differentiation by

one

The boundary condition on the submerged portion of an 

impermeable body surface is

3$ -f ->
^  “ V n- °n V

(3.7)

Here Sq is the instantaneous body surface; is the local velocity 

of Sq and n is the unit normal vector, pointing out of the fluid. The 

direction of the normal vector is a matter of choice. It is always

defined out of the fluid domain throughout this thesis unless

otherwise redefined. The condition is not as simple as it appears. 

For bodies which are allowed to respond to fluid loading, the surface 

Sq usually changes with time and is unknown before the fluid flow and 

the body motion are solved.

The boundary condition on the sea bed follows the same 

principle for the body surface, but is much simpler. Because the sea

bed is fixed, the impermeable condition is

d$
-r- = 0 , on z ----h,
an (3.8)

for finite water depth, where h is the water depth; or 

V$ -► 0, on z -«. (3.9)

for infinite water depth. To complete the formulation an appropriate 

condition must be imposed at large distances, which will be discussed 

later.
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The formulations are exact within the framework of potential 

flow and neglect of surface tension. The exact formulation is 

hardly solvable because of the non-linearity. Simplification must be 

made in practice. Linearized formulations of the steady and unsteady 

problems are given below.

3.1.2 Steady potential

To describe the motion of a body at forward speed in waves,

the waves generated by the motion of the body in otherwise calm water

should be understood first. In the simplest case of steady

translation, the fluid motion would be of steady state with respect 

to an observer on the body. The steady motion alone is also of great 

interest to classical ship hydrodynamics, since it is associated with 

the wave resistance and lift of ships.

Let denote the steady velocity potential due to the

disturbance of the body, and let the relative velocity of the

—► “► —fluid be denoted by W - UV(^-x). Then the pressure in the steady flow 

field is given by

P - P - -p [ |( W.w - u2 ) + gz ] .
(3.10)

The steady free surface elevation is obtained in an implicit form of

'r, - - A  W.W - U2 )| - .
2g lZ n (3.11)

The boundary condition imposed on the free surface is
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^W.V(W.W) + glty = 0, Z z on z=»7.
(3.12)

This condition is fully nonlinear and imposed on a unknown surface. 

The difficulty of dealing with this condition is so enormous that 

almost all investigators took a simplified condition

Equation (3.13) is obtained from the linearization of the exact 

condition, based on the assumption that the steady potential and its 

derivatives are small. It is usually argued that this assumption 

holds for slender bodies in longitudinal translation, and for deeply 

submerged bodies of arbitrary configurations. Since little is known 

about the consequences of neglecting the nonlinear terms, the 

question regarding how slender, or how deeply submerged, a body 

should be still remains to be answered. Besides, even for a slender 

surface piercing body, if the body has an appreciable forward speed, 

the validity of the linearized condition is doubtable at the bow and 

stern.

At small forward speed a different simplification may be made. 

It is known that the wavelength is inversely proportional to the 

forward speed. As the forward speed tends to zero, the wavelength 

becomes infinitesimally small. Because the surface elevation is 

proportional to the square of the forward speed, the amplitude of 

the steady waves also becomes very small. The free surface profile

on z-0 ,
(3.13)

with

(3.14)
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can be approximated by the undisturbed free surface. Therefore, the 

free surface condition can be replaced by the "rigid wall" condition.

Taking into account the body surface condition, it can be 

shown that at small forward speed, the steady potential satisfies the 

following linear boundary conditions up to the order 0 (Fn)

2 -V <f> — 0, in fluid domain, ^  ^5 ^

^ - 0 , on z-0 ,
Z (3.16)

W.n - 0, on S ,
(3.17)

Here, F^ is the Froude number, defined by Fn=U//gL with L the 

characteristic length of the body. is the mean body surface.

At the sea bed, an impermeable condition is imposed. To 

complete the formulation, it is also necessary to impose an 

appropriate condition at infinity. Otherwise, there would be more 

than one possible solution. For the small forward speed 

approximation, where the "rigid wall" condition is used, it is 

sufficient to specify that the disturbance due to the body is zero at 

infinity. For finite values of Froude number, the condition at 

infinity may be stated in terms of the velocity being zero far ahead 

of the body, and bounded far behind.

The potential subject to the "rigid wall" free surface 

condition is called the "double-body potential", because the 

solution actually represents the motion of a double-body that 

consists of the submerged portion of the prototype and its image 

above the mean free surface in an unbounded fluid. This double-body
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solution will be used in our small forward speed theory.

3.1.3 Unsteady potential

Consider a body moving in ambient waves at a constant average 

forward speed, while oscillating about its mean position. The 

total velocity potential may be decomposed into two parts

$(xn ,t) - lty(x) + $(x,t),
(3.18)

where the first term is the steady disturbance potential as defined 

before; the second term is the unsteady potential which includes the 

interaction between the body and the ambient waves, and also includes 

the interaction between the steady potential and ambient waves in 

general. This decomposition is customary. The pressure is given by

P - -p [ W.W -U2 ) + $ + W.V$ + + gz ] .
C 1 (3.19)

The perturbation analysis for the unsteady motion can be 

carried out on the basis of a small parameter e . This parameter may 

be interpreted as the wave slope, i.e the ratio of the wave amplitude 

to the wavelength. However, its precise definition is not crucial 

because e will be absorbed into the physical quantities in the final 

formulations. The basic assumptions are that the unsteady potential 

and its derivatives are small; and that the displacement and the 

rotation angle of the body are also small. The magnitudes of these 

quantities are assumed of order 0(c). Accordingly, the unsteady

potential is of order 0 (1 ) as can be seen from the body surface 

condition.
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From a Stokes' expansion, all quantities can be expressed in 

the following form

S -  + <V2>+ . . . .

P - P (°^ + c P ^  + e2P (2) + ...,

-(1 ) A 2-*(2 ) A a = ea + e a + . . . ,

2 ^ (0) + ^ (1) + ,2^ (2) + n — n + cn + € n + ..., etc.

(3.20)

Substituting these equations into the governing equations and 

boundary conditions, and ordering with respect to e , we obtain a 

series of boundary value formulations for the first order potential 

second order potential $^2^ , etc. Quantities at the 

instantaneous position will also be expanded to their mean position. 

For example, the potential on the free surface rj is expressed in the 

following Taylor series

$ - $ - d$ +
z-ri z=T7 z=rf

+ ....

The leading term of those omitted is of order 0(e ).

Because for the purposes of the present work the first order 

solution is sufficient, we shall generally neglect higher order 

potentials and the superscript "(1 )" for the first order potential 

will also be omitted.
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3.1.3.1 Free surface condition

The exact free surface condition (3.6) is now written in the

form of

|w.V(W.W) + gu^z

+ $tt + 2W.V$t + g$z + W.V(W.V$) + |v$.V(W.W)

+ 2V$.V$t + V$.V(W.V$) + |w.V(V$.V$) + |v$.V(V$.V$) = 0 ,  on z=r;.
(3.21)

After linearization with respect to e the free surface condition for 

the unsteady potential is

$tt + 2W.V$t + g$z + W.V(W.V$) + |v$.V(W.W)

- |($t+W.V$)[| |^(W.V(W.W))+gU^zz]/[l+ f^(W.W)] - 0, on z-i),

(3.22)

where $ - , and the superscript has been omitted for convenience.

The steady flow condition (3.12) has been subtracted in the above 

equation. Up to first order of e, the free surface elevation is given 

by

z~v (3.23)

The unsteady quantities are of order 0(e) and it is understood that

the subscript referring the order of magnitude is omitted for
2simplicity. The errors due to this approximation are of order 0(e ). 

Equation (3.22) agrees with the equation (3.23) of Newman (1978). 

The boundary condition now is imposed on the mean free surface.

A major difficulty is caused by the steady flow in the free
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surface condition. Further simplifications lead to diverse theories 

of marine hydrodynamics, based on different assumptions and 

arguments. However, despite the efforts of scientists and engineers 

for decades, the problem still remains unsolved for blunt surface 

piercing bodies.

For slender bodies or deeply submerged bodies, it is commonly

argued that the steady disturbance potential ^ and its derivatives 

are small. The steady flow is therefore negligible in the free 

surface condition. Equation (3.22) reduces to

2$ - 2U$ + g$ + U $ " 0 ,  on z=0.tt xt 6 z XX (3 24)

This condition is almost exclusively used in marine hydrodynamics. It 

is clear that the omission of the steady flow is often 

inconsistent from a mathematical point of view; and numerical 

results are not completely satisfactory, as can be noted from the 

literature. A glance at sea-going ships suggests that at an 

appreciable forward speed the steady flow at the bow and stern are by 

no means negligible, even for slender bodies. However, because 

including the steady potential in the free surface condition 

complicates the problem to a formidable extent, the condition (3.24) 

is usually used regardless.

The linearized condition (3.24) is sometimes used in the far 

field, based on the argument that the steady waves will become 

negligible. This is not a strong argument, because it is not clear 

whether the steady waves decay faster than the unsteady waves in the 

far field. In particular, in two dimensional problems neither wave 

would decay at all.
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At small forward speed, a sensible simplification can be

2pursued by neglecting terms of order 0(^n ) and higher. Up to order

0(F ), we obtain n

$ + 2W.V$ + g$ - U$ i ” 0, on z=0,tt t ° z trzz
(3.25)

with
„ « --($ + W.V$)Ig t |z-0

(3.26)

We may recall that up to this degree of accuracy, the counterpart of 

the free surface condition for the steady waves degenerates to the 

"rigid wall" condition. The steady potential is replaced by a 

solution in an unbounded fluid. In this case, we are sure that the 

steady flow is negligible in equation (3.25) in the far field due to 

the rapid decay of the steady disturbance in an unbounded fluid. 

Hence, in the far field

- 2U$ + g$ - 0, on z-0.tt xt z (3.27)

The small forward speed approximations will be used in the present 

study.

3.1.3.2 Body surface condition

-*• TLet a vector be denoted by a column matrix a — (a^,a2 ,ag) , 

where T denotes the transpose of a matrix, and make the following 

definitions:

-*• Tx - (x, y, z) : the position vector in Oxyz system;
Tx'- (x',y',z') : the position vector in O'x'y'z' system;
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-* T£ — (£^,£2 >£3) ’ t îe displacement between O' and 0;

a  - (o1 ,o2 ,n3)T 
T“ (£^»£5 >£g) • the rotation angles of the body in Oxyz;

-*• Tn = (n^,^,!^) : the unit normal vector, pointing out of the

fluid;
■+ *► ^xxn — (n^,n<-,ng) : the generalised unit normal vector for

rotations;

It can be shown that for small amplitude motion, the coordinate 

transformation is given by

x - x' + ? + 0 x 5 ' ,  (3 28)

n - n '  +0x5', (3 29)
- +  - +  - +  - +  - *  -*■ - + - + - > •xxn =» x'xn' + £xn' + flx(x'xn'), ^  3 0)

up to the first order. Since the primed column vectors are time 

dependent, and in magnitude equal their corresponding counterparts at 

the mean position, we may omit the prime and reinterpret these 

vectors as evaluated on the mean body surface. In deriving the body 

surface conditions, some vector identies in Appendix A are found to 

be useful.

Let a denote the displacement of the body surface Sn from the
. . .  2mean body surface SR , then: a — (£+fixx) + 0(c ). The velocity of the

B

0 
2, ■+■ Ci( e V  T h p  v e l n rB ’ ----  'S

body is decomposed into V — Ui + a, where an overdot denotes time 

differentiation in the steadily moving coordinate system. The body 

surface condition is given by

V($ + U^).n — a.n + U.n, on Sn ,
U (3.31)
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or

$ = a.n - W.n, on Sft
" ° ’ (3.32)

The last term is not zero, since it is evaluated on the instantaneous 

body surface.

From a Taylor series expansion, together with equation (3.29), 

it follows that

(W.n)_ - (W + a.VW)_ .(n + 3xn)c + 0(c2)
b0 B B

- ?.(n.VW) + 3 . [n.V(xxW)] + 0(e2).
B B (3.33)

Some vector identities have been used, including: nx(VxW)- VW.n-n.VW, 

and VxW - 0. The body surface condition is obtained as

? -*■ -A- -► -*• -*• -»—► -►.n + Q.(xxn) - |.(n.VW) - O.[n.V(xxW)], on S .11 D
(3.34)

This is identical to the expression obtained by Newman (1978). In

obtaining equation (3.34), it has been assumed that W and its 

first derivatives are bounded, which implies that the body surface is 

smooth.

3.1.3.3 Decomposition of the unsteady potential

Within the linearized framework, the motions of the body 

excited by a regular (sinusoidal) wave train will be sinusoidal too. 

Due to the steady translating motion, the incident wave arrives at
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the body at a frequency of encounter. As a result, the body will 

oscillate at the frequency of encounter rather than at the wave 

frequency. The relation between the frequency of encounter co and the 

wave frequency g)q is given by

co =* - Ukncos^| .
(3.35)

where is the angle of attack, i.e. the angle between the direction 

of incidence and the direction of the x-axis; k^ is the wave number. 

cOq and k^ satisfy the dispersive relation, i.e.

for infinite water, or 

2
con - gkntanh(knh) ,

(3.37)

for finite water, where h is the water depth. The frequency of 

encounter is reduced in following seas (/3-0), whereas it is increased 

in head seas (£-tt) .

Let the translations and the rotations of the body be denoted

by

? - Re[(|1 ,C,,?,)ei“t], 0 - Re[(£.,«s,f,)ei"t],1 2 3 4 5 6 (3.38)

where (i-lf2 f..,6 ) are the complex amplitudes of the motions of 

the body. Then, the unsteady velocity potential can be decomposed 

into

6
$ - Re{ [A(^q + <j>7 ) + iw 2 U  ]e1W ),

j”1 (3.39)

where



kgZ - ikQ(xcos£+ysiiv9)

(3.40)

A is the amplitude of the incident wave. is the complex incident 

potential of unit amplitude; is the diffraction potential due to

the incidence of <f>̂\ and <f>̂ (j-1 ,2 , . . . , 6 ) are radiation potentials 

due to the forced oscillation of the body in the six modes of 

motion, corresponding to unit amplitude in the velocity.

From equations (3.34) and (3.39), the body surface condition 

can be written as follows

These equations are essentially identical to those given by Newman 

(1978), except that the radiation potentials now are defined 

corresponding to unit velocity rather than unit displacement. The 

free surface condition (3.25) becomes

Each of the six radiation potentials satisfies this free surface 

condition, whereas the diffraction potential does not. Instead, the

on V3n dn (3.41)

°n Sfi, (j-1 , 2 ..... 6)
(3.42)

where

U(m^, m2 , m 3) --- (n.V)W,
(3.43)

U(m4 , m5 , mfi) - -(n.V)(xxW).
(3.44)

co <f> + 2 iwW. V<f> + g<f> - i.cS[J<f)<j> on z-0 .
(3.45)

sum satisfies this condition, because the incident potential
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satisfies condition (3.24). All potentials satisfy the impermeable 

condition (3.8) at the sea bed or its asymptote (3.9) at great depth.

3.1.3.4 Discussion of uniqueness

The solution will not be unique if a proper condition is not 

imposed at infinity.

An unbounded ocean in the horizontal directions is an 

idealization of the real ocean. It is based on the argument that for 

a ship or a structure far away from the shore the effect of the coast 

is negligible. Mathematically, this simplifies a boundary value 

problem over a very large multi-connected domain into an exterior 

boundary value problem.

There are some mathematical ambiguities about what condition 

should be imposed at infinity. Obviously, the disturbance must be 

bounded (in a two dimensional problem) or tend to zero (in a three 

dimensional problem) at infinity. For initial value problems of 

transient waves, this condition appears to be sufficient. However, 

for steady-state oscillations this condition is not sufficient. A 

stronger condition is necessary. It is widely accepted that this 

condition may be generally stated as: at infinity the scattered waves 

due to disturbance by a body must propagate away from the body. 

This condition is called the radiation condition.

To find out the mathematical expressions for the radiation 

potential, it is usual to study the far field behaviour of a
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fundamental solution first. A fundamental solution is often defined 

as the potential of a source, which may be pulsating, translating or 

both. Two approaches may be used. First, the steady-state oscillation 

problem may be taken as the limit of an initial value problem at t -+ 

+«>. The second approach is to consider the steady-state oscillation 

directly by introducing a small artificial viscosity in the momentum 

equation. Then, in the final expression the viscosity, often called

Rayleigh viscosity, is made zero. Because the far field flow is not

sensitive to the geometrical details, the behaviour of the 

disturbance potential of a body must be similar to that of a source 

in a similar motion.

For zero forward speed problems, it is widely accepted that a 

Sommerfeld type radiation condition is appropriate, which may be 

written as follows

7 -̂ + i k ^  -*■ 0 as x -* -H=o,3x 0

§£ - ikQ* -*■ 0 as x -

for two dimensional problems; and

Tk^R ( || + ikQ^ ) -*■ 0 as R - +«,

for three dimensional problems.

For non-zero forward speed problems, however, the flow pattern 

is very complicated. Explicit expressions for the radiation condition 

can not be given in general. Due to the effect of the forward speed 

there is more than one scattered wave. Each of them travels at a 

different speed and direction. The value of the parameter r-Uco/g is

(3.46)

(3.47)

( R — yx 2+y2 )
(3.48)
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crucial in determining the wave patterns. In more detail, for

supercritical motions, that is r>1/4, there are two waves. Both are

located downstream. For subcritical waves, that is r<l/4, there are 

four waves, one being upstream and three downstream. One of these 

downstream waves has a phase velocity larger than the forward speed 

of the body, but its group velocity is smaller than the forward 

speed. Therefore, this wave is also located downstream.

At very low speed, as shown in Appendix B, the wavelengths of 

the two short waves downstream tend to be infinitesimal. Because 

their amplitudes depend on exponential decaying factors of the wave 

numbers, these two waves can be neglected. Following the asymptotic 

expressions given by Haskind (1953, 1954) in two separate papers for 

two dimensional problems and three dimensional problems respectively 

(N.B. Haskind's three dimensional asymptotic expression has an error, 

as shown in Appendix B ) , it can be derived in a straightforward way 

that, up to order of 0 (r), the radiation condition can be written as 

follows

+ ik(l+2r)<0 -> 0 as x -*• +«,

- ik(l-2r)^ -*■ 0 as x

for two dimensional problems; and

M  + ik(l+2rcos0)<£] -»• 0 as R -» +®, oK

2for three dimensional problems; where k-w /g.

The radiation condition is often not used explicitly in 

boundary integral methods. It is automatically satisfied due to the

(3.49)

(3.50)

(R-/x2+y2)
(3.51)
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properly chosen Green function. Other methods may require the 

explicit expressions of the radiation condition.

Because the radiation condition at infinity is somewhat 

artificial, a strict mathematical proof for the uniqueness of the 

prescribed boundary value problem should be provided. Apparently, 

this is not an easy task, and for a general problem a proof is not 

yet available. For the zero-speed problem, some special cases have 

been considered by John (1949, 1950) and Simons and Ursell (1984).

3.2 Far field formulation of mean drift forces

The time average component of the second order force and 

moment, or the mean drift force as commonly called, can be computed 

from the first order potential only. Some far field methods have been 

developed for computing at least some components of the mean drift 

force without necessarily integrating the pressure over the body 

surface.

In 1959, Newman (1959) derived expressions for the two 

horizontal components of the mean drift force from the energy 

conservation. At about the same time, Maruo (1960) derived the same 

expressions from a consideration of conservation of momentum. Later, 

Newman (1967) extended Maruo's procedure to include the vertical 

component of the mean drift moment, i.e. yaw moment. These 

expressions are given in terms of integrals over a control surface 

at infinity, thus called far field formulations. These far field 

formulations are tremendous simplifications, since both the behaviour
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of the potential and the integration domain are much simpler than 

their counterparts in the near field. Ogilvie (1983) has given 

further consideration to this approach and expressed the formulae in 

a convenient way for computation.

The works described above are developed for zero forward

speed motion. In extending this approach to the forward speed

problem, care should be given to the disturbance of the steady

potential. It is necessary to re-examine the formulae in a systematic

manner.

3.2.1 Momentum conservation

In the space-fixed coordinate system, let us define a large

fluid volume ft enclosed by a surface S which consists of

Sq I the instantaneous wetted body surface,

S * a vertical cylindrical surface of large distances;u
S^: a horizontal closure surface at great depth,

S : the part of the free surface bounded by Sn and S .r U L»
The surface S is chosen in such a way that it encloses the body and 

moves with the same steady velocity of the moving coordinate system. 

The normal velocity of the surface S is denoted by U , with the 

positive direction defined out of the fluid.

We consider the linear and angular momentum of the fluid with 

respect to an observer in the space-fixed coordinate system. (The 

alternative is to consider the momentum relative to an observer in 

the steadily moving coordinate system.) Let the fluid velocity be



denoted by V. Then V = UV^ + V$. Furthermore, the angular momentum is 

taken with respect to the origin of the Oxyz coordinate system. Such 

defined linear and momentum can be written in the form of

p J v d S ,  L — p J xxV dS 
ft ft (3.52)

As derived in Appendix C the rate of change of the linear and 

angular momentum can be expressed in the form of

g  - -P <f [V(Vn - Un) + (| + gz)n] dS,
(3.53)

^ - -pUx J V dS - p | [<3xV)(Vn- Un) + (xx£)(5 + gz)] dS,

° S (3.54)

where the time derivatives are taken with respect to an observer in 

the fixed coordinate system O^x^y^z^. For convenience let us define 

the generalized velocity and the generalized momentum:

(V ,V V )-V, (V V V )-xxV;
1 2 3 4 5 6 (3 55)

(v ,v v )-V$, (v ,v,,vj —xxV$;
1 2 3 4 5 6 (3 56)

(v v v )-UV^, (v v v A)-xxUV^;1 2 3  4 5 6 (3 57)

( I . ( I . , I . , I , ) - L .1 2 3 4 5 6 (3 5g)

From these definitions together with the generalized normal defined 

in Section 3.1.3.2, we may write the the horizontal components for 

the linear momentum and the vertical component for the angular 

momentum in the form of
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dl. 
dt- - - f [ pV.(V -U ) + Pn. ] dS + J 1 1 n n l J

S

0, (i-1,2)

. -puJ V 2 dfl. (1-6)

n (3.59)

The pgz dependent terms disappear because they do not contribute to

the components concerned. The expressions can be simplified by

utilizing the boundary conditions. On the horizontal closure S^:

U =0, n--n0—n--0. For bodies localized to the free surface, the n 1 2 6
fluid velocity is also zero on S^. If the body is an infinitely long

vertical cylinder, the fluid motion at great depth reduces to a two

dimensional flow in horizontal planes. The vertical component of the

velocity is therefore also zero. Hence, there is no contribution from

Sp. On the free surface S^, since the normal velocity of the fluid

is equal to that of the surface, i.e. V - U , and the fluidn n
pressure on the free surface is zero, the integral on S_ does notF
contribute. Only the integral over the body surface and that on the

control surface contribute. Further, noticing that V =U on S„ andn n B
the integration of the fluid pressure over the body surface is just 

the desired force or moment, we finally obtain,

F. - - f [ pV.(V -U ) + Pn. ] l J L ' i v n n  i J
dl.

ds ‘ dH1
sc

0 , (i-1 ,2)

- p u f  v 2 a n . ( i - 6 )

° (3.60)

The mean drift force and mean drift moment in a regular wave 

system can be obtained from the time average of the expressions. 

Since the whole motion is composed of a periodical oscillation 

superimposed on a steady motion, the momentum is also periodical. 

Thus their time derivatives are zero-mean periodical. Denote the time 

average by a superbar, then
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F. - - [ [ pV.(V -U ) + Pn.1 J l A i n n  1

0 , (1-1 ,2 )

-pu2j I dfl. (i-6 )

° (3.61)
Here ft denotes the time average of the volume ft. The time average of 

the part of the volume integral associated with the oscillatory 

motion becomes zero due to periodicity.

To proceed further, it is convenient to separate the

contributions due to the steady flow alone from the these associated 

with the oscillatory motion. Two adjustments are necessary. Firstly, 

the integrands should be separated into the part due to the steady 

flow alone and the remaining part. Secondly, the integration surface

S should be divided into a mean surface S and a supplementary u c

surface AŜ , with z bounded between rj and rj . Then the integration is 

performed over each surface separately. Otherwise, it would be 

incorrect to simply take the time average over the integrands.

From a Taylor series, the integration of a function f over AS _ 

is approximated by

| f dS - | d! | [ f
AS. z~r?

] dz + 0 (c )
z-r\

z-ij
m  1 r -\2dt+ 2 <n-n) ai ] dl + 0 (« ).

Z-T)
(3.62)

Here f is assumed of order 0(1). In applying this approximation to 

the pressure integration in equation (3.61), only the first order 

relative free surface elevation is required; but for the integration
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of the momentum flux term V.(V -U ) the second order relative freei n n
surface elevation must be taken into account because the leading term 

of the momentum flux is of order 0(1). The free surface elevation up 

to the second order of e can be derived from the Bernoulli's equation

Here we have temporarily revived the superscripts (1) and (2) to 

denote the first order potential and the second order potential. The 

second order potential is included in the above expression because it 

is necessary to approximate the relative surface elevation up to the 

second order. These superscripts will be omitted again in the final 

expressions with the unsuperscribed variables representing their 

first order counterparts.

Following the approximation (3.62) together with the derived 

free surface elevation, it can be shown after some lengthy but 

straightforward algebra that the horizontal components of the mean 

force and the vertical component of the mean moment can be expressed 

as follows

f-(w.w)

-* -*■ (1 )+ W.V$V ;)

z=r;

( s ^ + w . v s ^t o z

+ €2

+ 0(e3).
(3.63)

s
c

I
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- P | l \ ( n - n ) 2 l (g + \  f^if.w))^ + IjCvjW.S) ]

+ (*7~»7) ( W.nv. + v v.)l n l

n ($ + W.V$) + W.V$)3 t dz—V $ .V$ - — 1 3
2 fe<W -W > + S v.W.n } dll

(3.64)

where

FSi ■p f [v.(v -U ) - i (W.W-U2 )n. ] dS _J i n n  2 iJ

. (1)

0 , (i-1 ,2 )

PU2J  J d fl, ( i - 6 )

° (3.65)
Here the potential $ and rj-rj takes the first term in equation

(3.63) etc. For simplicity the superscripts are omitted. The last 

term in the line integral comes from the contribution associated with 

the second order relative elevation of the free surface. The second 

order potential does not contribute to the mean force because of 

periodicity.

Fg^ is the steady force on the body moving in otherwise calm

water. The gz term in the pressure does not contribute to Fg^ because

its integration on the mean control surface is zero. The component of

F„. in the direction of advance is called "wave resistance", which is Si
a primary concern in naval architecture. It is noted in equation

(3.65) that the formula for the yaw moment is not feasible because of 

the volume integral. However, if the body is symmetrical about its 

middle plane y=0 , then the the volume integral is zero and the 

formula for yaw moment also becomes easy for computation.
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The remaining integral terms in equation (3.64) form the 

increased time average force, i.e. mean drift force, compared with 

the force on bodies moving in otherwise calm water. This mean drift 

force is proportional to the square of the incident waves. The 

corresponding component in the direction of advance is called "added 

resistance", which is the major concern here.

3.2.2 Small forward speed approximation

If the forward speed is small such that - U//gL « 1 ,  then 

terms quadratic in are negligible. Up to order 0(Fn) the steady 

free surface elevation is zero

i - 0
(3.66)

and the steady force and moment are also negligible: Fg^-0 (i-1 ,2 ,6).

The horizontal components of the mean drift force and the 

vertical component of the mean drift moment are simplified to

^  - -/.J ( v.vn - fv2n. ) dS 
SC

- P | [ \n2 giu + rf( W . i ^  + vnv\ ) ] dl + 0(F^, c3), (i-1,2,6 )
C

(3.67)

To further simplify these expressions we shall study the 

asymptotic behaviour of the steady flow at far field. Up to order 

0 (Fn ) the steady potential satisfies the "rigid wall" condition on 

the mean free surface z-0. Thus the steady flow can be approximated 

by the solution of the double-body moving in an unbounded fluid. The 

far field behaviour of a rigid body moving in an unbounded fluid is
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similar to that of a dipole or a combination of dipoles (Newman 1977)

1 a 3 1 * A  s
* “ A 1 tol.r ~ <— 2 ’ asi rJ (3.68)

Therefore, the steady flow is negligible in the line integral. It 

follows that

v f , 1 2  .F “ -p ( v.v ■ tv n. ) i i n  2 i dSI i n z i '
sc

’ P | |»72gni dl + 0(F^, €3),
C (3.69)

with

n _ -i( ® . u® ).
6 C X (3.70)

Equation (3.69) is formally identical to that given by Ogilvie (1983) 

for zero forward speed case, but it should be emphasized that the 

velocity potential here depends on the forward speed and the 

similarity is restricted to the case of small forward speed.

3.3 The mean drift force on a vertical cylinder

Up to this point, the discussion has been quite general as far 

as the wavelength is concerned. The boundary value problems discussed 

in Section 3.1 is not easy to solve. Indeed, very little solutions 

are available. It is therefore useful to obtain solutions even under 

rather limiting conditions, if these may be used to validate more 

comprehensive numerical analyses for arbitrary bodies. The aim of the 

analysis in this section is to provide an asymptotic solution for a
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vertical cylinder in regular waves at small forward speed.

As illustrated in Figure 3.1, the problem considered here is a

vertical circular cylinder of infinite draft moving at a small

forward speed U against incident waves of amplitude A. The cylinder 

is restrained from oscillations, so that only the diffraction problem 

is considered here. It is assumed that the water depth is infinite; 

the radius of the cylinder is small compared with the wavelength; 

and the Froude number is even smaller such that F^-U/VCga) « / ( k g a ) «  

1. The last assumption is equivalent to w »  Ud/3x, which is 

necessary in simplifying the free surface condition.

The velocity potential is solved by the approach of matched 

asymptotic expansions. The mean drift force is calculated from the 

far field formulation derived in Section 3.2.

3.3.1 The use of matched asymptotic expansions for the cylinder

The basic ideas of the approach of matched asymptotic 

expansions are that first to divide the fluid domain into an inner 

domain close to the body and an outer domain outside; then to derive

different expressions of the velocity potential in the two domains;

and finally to match the two expressions over an overlap domain.

According to the approach of matched asymptotic expansions, it 

is necessary to consider the boundary conditions in more detail.

The steady potential in the present problem is quite simple.
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Because of the infinite draft of the cylinder, the double-body steady 

flow field reduces to a two dimensional motion in the horizontal 

plane. Such a velocity potential can be obtained by distributing 

dipoles inside the body. The behaviour of the steady potential for 

the cylinder is therefore

2

R
2 2where R~7 (x +y ).

The unsteady potential satisfies the free surface condition

(3.25), which may be further simplified under the present conditions. 

It is noted that the variation of the diffraction potential along the 

vertical direction is characterised by variation of the incident 

potential, since the cylinder is infinitely long. Therefore the 

characteristic length in the z direction can be chosen as \  

which implies that d/dz - ^ ^ q )  * a horizontal direction the

characteristic length is not so obvious because there are two 

lengths existing: the radius a and the wavelength 27r/kQ. Arguably, 

the variation of the fluid flow in the domain within a wavelength 

around the body is characterised by the radius of the cylinder, and 

outside this domain the fluid flow is characterised by the 

wavelength. Therefore we may define the inner domain more clearly as 

the domain close to the cylinder, of which the distance from the 

outermost bound to the origin is no larger than a wavelength, and 

define the outer domain as the remaining fluid. Following these 

arguments and our present assumptions (i.e. Fn« 7 (kQa)«l) equation

(3.25) can be simplified to

$ + g$ = o on z=0
tz z (3.71)
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in the inner domain, where the omitted terms are of order 

0($Fn/7(kQa)). In the outer domain the steady potential decays 

rapidly and equation (3.25) reduces to

$ - 2U$ + g$ = 0 on z=0.tt xt z (3.72)

The presence of the second term in equation (3.72) implies that terms 

of order 0($Fn7(kQa)) have been retained. In the matching procedure 

presented below, the free surface conditions (3.71) and (3.72) are 

applied in the inner and outer domains respectively. The consistency 

of this procedure, in relation to the different free surface 

conditions, is discussed after the completion of the matching 

process.

3.3.2 Asymptotic expression of the diffraction potential

For the small cylinder the variation of the incident velocity

over the cross section of the cylinder can be neglected. The

diffraction potential may be approximated by distributing

singularities along the axis of the cylinder. The three dimensional

Laplace equation and the linearized free surface equation (3.72) are

applied in the outer domain, together with a radiation condition and

the requirement that the solution vanishes for z-*». The inner domain

solution, however, is found to be governed by the two dimensional
k zLaplace equation (after extracting a slowly varying factor e 0 ). The 

outer solution is expressed in terms of a distribution of 

singularities, whose strengths are at first undetermined, and the 

inner solution includes an unknown additive constant. These two 

solutions are matched in an overlap domain such that the solution is
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unique ly determined.

Because the present asymptotic analysis for the vertical 

cylinder is fairly independent from the rest of the thesis, use has 

been made here of (ft̂ and <f> to represent the complex incident

potential and the diffraction potential respectively. These

correspond to A<ft̂ and k<j>̂  defined before. In the present problem, 

the incident wave potential is given by

« - Re [ <f> elwt ] , with (ft e ]I I I
(3.73)

where as before Wq is the wave frequency, is the wave number given 
2by kg-Wg /g, and w is the encounter frequency given by w ■=

3.3.2.1 The inner solution

Let the diffraction be expressed in the form of $^=Re[<^e1Wt] 

Then the body surface condition is written as

d<f>~ d(f>

” " ~a7T on R”a -
8 (3.74)

Expanding the incident potential into a Taylor series in the polar 

coordinates x=Rcos0 and y=*Rsin0 yields

d(ft1 ikQa kQz kQz
aR a i r  "  " o A1 —  e + “ oA e c o s *

ik0a k0z 2
+u>nA—«—  e cos20 + 0[(kna) ] on R=a,

U 1 U (3.75)

It can be seen that at a given depth z each term on the right
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hand side in equation (3.75) corresponds to the velocity generated by

a two dimensional singularity located at the axis of the cylinder.

More specifically, the first term corresponds to a source, the second

to a dipole, the third to a second derivative of the source etc.

Guided by this condition, we may represent the diffraction potential

by a superposition of multipoles with the strengths varying 
lc zaccording to e 0 along the axis, i.e. 

k z
^ - e °( xj> + xf> + xj> + ... ) .

(3.76)

Here xj> represents the inner solution of the diffraction potential and

xj) , xj> and xj> are the first three terms in the multipole expansion, o D 11
corresponding to source, dipole and higher order singularity 

potentials. Substituting xj) into the Laplace equation and following 

the argument prior to equation (3.71), i.e. (3/3x, d/dy, d/dz) - 

(0 (l/a), 0 (l/a), 0 (kg)), we deduce that xjx̂ , xf>̂ t ^  etc. are governed 

by a two dimensional Laplace equation

xf>. + xf>. - 0 [ (kna)2] , jxx jyy 0 (3 .7 7 )

where xj>. represents xf> , xj> , xf) etc. Substituting equation (3.76) J S D H
into the free surface condition (3.71) and taking the leading order 

terms, we obtain a "rigid wall" condition on the xj>̂ on the free 

surface

xb. — 0 on z—0 .
jz (3.78)

These equations indicate that the ^  are two dimensional; they can 

be readily written as follows
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2-D source

2-D dipole

V  2^ (lnko V  ic) '

2-D higher order multipole tj).

D

dij)D

q^cosa
2ttR.

qucos2an
227rRr

(3.79)

(3.80)

(3.81)

2 2where a-arctg[ (y-»7)/(x-£) ] and R^-7 [(x-£) +(y-r/) ], evaluated here 

at ^-T7-0 . The strengths are found by applying the boundary condition 

(3.75) with <f>p replaced by ij). Substituting equation (3.76) with 

equations (3.79) to (3.81) into equation (3.75), we obtain

,7TgA .2
qs“ oa •

a _ a )2qD k X  0 ; ’ 0 0
. TTgA <

V  12^ g (V )

(3.82)

(3.83)

(3.84)

In summary, the inner solution of the diffraction potential is 

written as follows

~ (k a)2e ^( ilnk R - ^cos^2w C 0 ; Q linK0 k„R
(k^a) cos26 

2(kQR )2
+ C ),

(3.85)

where the value of 0 has been substituted and R, $ are the same 

as used in equation (3.75).

3.3.2.2 The outer solution

The outer solution for the diffraction potential may be
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represented by a superposition of three dimensional multipoles 

distributed along the axis of the cylinder. In this way the 

diffraction solution can be expressed as the following summation

" ^DS + ^DD+ ^DH+ '‘* (3.86)

with the first three terms written as

4  ̂J ffS(r> «■&*> d?’
(3.87)

0

^DD= " 4tt { aD ^  GD X̂ ’̂  d^ ’
(3.88)

0

* D H -  4 w  J  G h (x ’^
(3.89)

Here Gg is a pulsating translating source potential which satisfies

the three dimensional Laplace equation, the free surface condition

(3.72) and the condition at the infinity; is a corresponding

dipole potential; and G„ is a higher order multipole potential. a„,n S
cr_ and a are the corresponding strengths. It is also assumed that D rl
equations (3.87) to (3.89) are evaluated at £“77-0 .

G can be derived either directly from equation (3.72) or fromb)
the conventional pulsating translating source potential which 

satisfies the more complex free surface condition (3.24). Here we 

take the second method. As derived by Haskind (1954) such a 

conventional potential which satisfies the unsteady Neumann-Kelvin 

free surface condition is
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+7T <»AeA [ z+S+i (x-O cos/9+i (y-rj) s in0 ]
r r ' 7T (rAcos£-k(l-i/z) )2 -kA

d0dA,
-7T 0 (3.90)

where r - J [(x-£)2+ (y-»?)2+ (z-C)2] , 

and r' = J [(x-£)2+ (y-»7)2+ (z+f )2 ] .

The "artificial viscosity" /z is made to approach zero to ensure that 

G represents an outgoing wave at infinity. This is equivalent to 

defining the integration path to be an upper semicircle around the 

pole in equation (3.90). Haskind has also given the asymptotic 

expression at large distances from the body for small forward speed. 

However, it seems there is an error in his expression. As shown in 

Appendix B, we find the asymptotic term of G for small r is

a has been defined after equation (3.81), i.e. a-arctg[(y-r/)/(x-£)]. 

In Haskind's expression a is taken as 9. Although one can usually 

replace a by 6, this is not true for the term Rcosa, since

Equation (3.91) satisfies the free surface condition (3.72) and 

therefore G may be replaced by G . The expression (3.91) is 

consistent with the asymptotic expression given by Newman (1959) if 

the small speed limit is taken there, as is shown in Appendix B.

Gg - 2(l+2rcosa) ,/27rk/R

* iexp (k(l+2rcosa) [z+$“ - i(R-£cosfl-rjsinfl ) ]-i^) + 0(r t >
(3.91)

where r - ^ , x - Rcosfl, y - Rsin0, k * w 2/g - kg(l+2r) + 0 (r2) .

Rcosa - Rcos0 - £sin 6 + rjsin0cos0 + 0(— )

The asymptotic expressions for the higher order singularities 

can be obtained from the derivatives of Gg as follows
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G = 77“ - k(l+2rcos0) icostf G - i2krR“ “°^a G_ u b at; S

— ik(cos0+2r)Gg

2- 2ik[cos0+2r(1+cos 0)] cos0 J2n\z/R

exp {k(l+2rcosa) [z+J'-^R-^costf-t/sinfl) ]-i^} + 0 (r? j~~) >
(3.92)

aGD 2Gr“ --- [ik(cos0+2r)] Gg

2 2 3--2k [cos 0+r(4cos0+2cos 6) JlitV. /R

exp {k(l+2rcos5) [z+$*-i(R-^cos0 -r7sin5) ]-i^} + 0 (r2 i” “) •
(3.93)

These singularities GS »GD and GR are Green functions. From 

these and equations (3.87) to (3.89) we can obtain the outer solution

in terms of the unknown strengths a , a and ou .S D H

3.3.2.3 Matching

To determine the strengths of the singularities in equations

(3.87) to (3.89) it is necessary to examine the outer limit of the 

inner solution and the inner limit of the outer solution, and to 

match these two limits. For this reason let us first study the 

behaviour of equation (3.90) as kR-+0 at small forward speed.

Huijsmans and Hermans (1985) have shown that the conventional 

pulsating translating source potential (3.90) can be expanded into a 

Taylor series in terms of the small parameter r . In our present 

notation this expansion is written as
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(3.94)

with the first two terms given by

GO

A-k(l-i/i) J0JQ (AR1 )dA,
0 (3.95)

-4icosa a e_____
J0 (A-k(l- i
f A2eA ( z + 0 2 J1 (AR1 )dA.

(A-k(l- i/i) )
(3.96)

R^ and a are the same as used in equations (3.79) to (3.81); J^(AR^)

and J^(AR^) are the zeroth and first order Bessel functions of the 

first kind. Equation (3.96) differs from that derived by Huijsmans

and Hermans by a sign: this is merely the result of the different

time factors used, which also affects the integration paths.

Although the expansion in equation (3.94) is not uniformly

convergent, it is valid in the matching domain. Since the summation

of the first two terms satisfies the free surface condition (3.72), 

this is the Green function to be used in equation (3.87), that is

which can be expressed in an alternative form by using the following 

identity

Gs- GQ+ rG^ + 0 (r2).
(3.97)

We recognise that Gq is the conventional pulsating source potential,

00
a (z+o

o

Substitution into equation (3.95) yields



1 1  f k eA^Z+^Gn- -  + 2 * . . Jn (AR- )dA.0 r r' J A-k(l- i/i) O v r

0 (3.98)

To develop an inner expansion of the outer solution <f> w e  expand the 

Bessel functions Jq(AR^) and J^(AR^) into ascending series and then 

integrate equations (3.96) and (3.98) term by term. Introducing a new 

variable Ysk|z+£|, we obtain

1 1  V . <kR>2n 2rV m 111 YGn- $  +  $,- 2irike" J-(kR) + 2k S.  ------------------- e E (Y)),U r r U n=U, . .n, m=l _jn 1(-4) (n!) i
(3.99)

, _ (kR)2n
G, — 2>ricos0k R S.-------------- [-l+(2n+3-Y)e E, (-Y)

/ / \ ̂  | / I 1 \ I(-4) n!(n+1)!

2n+2 , -.,
+ S (2n+3-m)- 1

m-1 Y111 (3.100)

where £-T7“ 0 has been substituted. E^(Y) is the exponential integral

function as defined in Abramowitz and Stegun (1965), and E^(-Y) -

-(E^(Y)+?ri). The first term of the summation over n in equation
_Y(3.99) is defined as -e E^(Y). Details of the derivation can be 

found in Appendix D.

Substitution of equation (3.97) together with equations (3.99) 

and (3.100) into equation (3.87) leads to
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where M (z,R,0) is defined as n

0 2n
Mn (z,R,«) - kj ag(f) . e 'YE4 (Y)

Y"

i?rcos0kR 2n+2 . ..
+ r n+1 [ ( ) ( Y) ^2^ (2n+3 m) ’] } df,

(3.102)

with

MQ (z,R,0) -

0 2 
k |ao(O{-e'YE.(Y)+ri7rcos0k R[l-(3-Y)e'Y E1 (-Y) - 2 ., (3-m) (-m “1) ! ] )dr .J l 1 m=*l

(3.103)

The first two terms in equation (3.101) can be folded into one

term by taking account of the symmetry about the Oxy plane:

\ j  w

(3.104)

where we define ^gC’C) " ag(D* To derive the expression for small R 

the following relation is used

1 - ]2 2 dC 1 R R
J (z-r) +R (3 .105)

which can be justified directly by differentiation. Substituting 

equation (3.105) into equation (3.104) and integrating by parts, we 

obtain

0 oo
f V D ( i  + |,)df - 5i J * ’( o in[£g£ + y (£ ^ ) 2+i ]dr

-OO — GO (3.106)

where the contribution from the infinite limits has been deleted on
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the assumption that <7g(01n|f| 0 as From a Taylor series

expansion of the square-root function we can show that the limiting 

value of the argument of the logarithm is

S r + J(£t )2+1 “ <f‘z) > 0> (3.107)

as R-+0, or

Sr + “ 2Tc^zT’ < °*z l (3.108)

Substituting equations (3.107) and (3.108) into equation (3.106), it 

follows that

- 5 ?  J  +  “  a M  +  J

- ^ s(z)lnkR - ^ [ J  <7g(r)ln2k(z-f)dr - [ <7g(r)ln2k(r-z)df].

■°° Z (3.109)

Substituting equation (3.109) into equation (3.101), the inner 

expansion of the outer solution < f > is finally obtained as follows

^nc“  o~ac (z ) ln k nR + s ( z >» R-"0 .DS 2* S 0 (3.110)

where

w
s(z) - "4^[J ^s(r)ln2k(z-f)df - J os (C)ln2k(f-z)dr]

z
2n

P v 1|j0 (kR) „ (f).- k df - s  nl0 Mn (z.R.«) + ^ s (z);
(-4) (n!)

(kR)
 ^ M(z,R,0) + 7-
. , sz n 71(n!)

(3.111)

or, approximately
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S(z) - -^[j <7g(r)ln2k(z-r) dr - J <7g(r)ln2k(r-z) dr]
-00

0
+ -M <7s(r)(E1(Y)+llr)e'Yk dr + ^ s(z) + 0((kR)2 .rkR)<7s.

(3.112)

Now let us develop the inner expansions of the outer solutions 

and Principle this can be done by deriving the Green

functions and G^ first, and then following the procedures from

equation (3.101) to equation (3.112). However there is a simpler way.

We note that the derivatives of the Green functions G and G inD H
equations (3.92) and (3.93) only involve differentiations with 

respect £. In view of this fact we may interchange the order of the £ 

differentiations with the f integration in equations (3.88) and

(3.89). Following this idea we can write

* D D (* } "  [ J  V C ) G s ( x , ? ) d r ]
2 0

"  ^ T 2 ^ " 4 7 r  J  a H ( D G s ( x , O d f ] 
-00

£-77-0*

(3.113)

(3.114)

For convenience we define the functions in the square brackets in 

equations (3.113) and (3.114) as t ̂ :

0

V J  V r ) G s (* ' ? ) d r ’ j " 1 , 2

with <^(0 = ^ ( 0  and ^ ( S * ) - ^ ^ )  • As is anal°g°us to ^Ds we can 
obtain its expression by substituting equation (3.109) into equation



(3.101), interpreting R as R. , and 6 as a, and replacing a by a.
1 ^ J

hence

x ^ (kRx)2n
2ir n-0 . .,n, .2(-4) (n!) J

(3.115)

where has the same definition as M^equations (3.102) and

(3.103)) with the extra subscript j indicating that ag should be 

replaced by a . . Differentiating equation (3.115) requires the 

derivatives of the logarithm function; evaluation of these at £=»7=0 

leads to

3 t rT-z. /,r-zN2 i11 (£-x)(C-z) cos$ x R x
a?ln[V 7( V  1 " " ^ 2 -------R-sgn(r-z) + 0(— ).X J. r

1 (3.116)
a2 c 7 m   «-x)[R2r2-(?-x)2R2-2(£-x)2r2]
^ l n [ ^ W ( ^ ) 2+l ] ----------- i---- ^ --- *------------
d t  R1 R1 Rxr3

- H2S|«sgn(r.z) + + 0[ (-B-)2].
R 2<f'z) f' (3.117)

where the last approximations hold as R-+0. The sgn(f-z) is the sign 

function. Differentiating the remaining terms of (3.115) is a 

straightforward matter with the Bessel function being expanded into 

an ascending series
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Finally, we 

and ^DH in

^d d“

<k =*DH

where

h(z)

Equations (3.118), (3.119) and (3.110) complete the inner

expansion of the outer solution. As mentioned at the beginning of 

this section we now match the outer solution with the inner solution 

by requiring

*D " *

in an overlap domain. Comparing equations (3.118), (3.119) and

(3.110) with equation (3.85), we obtain the strengths of the outer 

solution as

obtain the inner expansions of the outer solutions 

the following form

a (z)cos0
2^R + O(k0R,r)k0£7D ’

a„(z)cos20
— --- 5----  + h(z) ,

2ttR

K> "

- s  J ■ ‘S2 J
-oo  ̂ -oo

(3.118)

(3.119)

p 2
+  4 ?  J  +  ° < k OR - r k OR>k o V

-0° (7.

lc Z TTgA k z
CTs - V  - ^  < V >  • ■

(3.121)
k z ffgA k«z

%  “ qDe " 2t y ^ (kOa) 6 1
(3.122)
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V  "gA 4 k0Z
ffH - qHe “ i2w7k? (kOa> 6 ’

(3.123)

and the "constant" in the inner solution as

eA 2 V  -1
C " [H ' (k0a) 6 1 (Mz)+s(z)).

° (3.124)

The matched asymptotic solution is thereby completed and the 

asymptotic solution of the diffraction potential is determined from 

equations (3.86) together with equations (3.87) to (3.89) and (3.121) 

to (3.123).

Substituting equations (3.90), (3.92) and (3.93), and

equations (3.121) to (3.123) into equations (3.87) to (3.89), and
2neglecting terms of order r and higher, we obtain at large distances

^Ds~ "^f^(k0a)2y ^ R ( 1+rc°s^)exp{k(l+2rcos^)(z-iR)-i|} ,
° ° (3.125)

*DD“ ■ ^ (k0a)2y^ R [cOs5+T<2+2cOsS+COs2^) 1

exp{k(l+27cos0)(z-iR)-i^}
(3.126)

^DH“ ^fw^k0a 4̂ ?̂ri"l̂  cos20+t (4cos0+4cos20+cos30 ) ] 

exp{k(l+2rcos0)( z - i R ) •
(3.127)

The potential is of higher order in kna compared with <f>_ and Dri U U j

<̂D D , and is therefore neglected hereafter.

The asymptotic expression for the diffraction potential can be 

finally written as follows



2^7r^~R (^s+^D )exP(k (1+ 2rcos^)(z -iR)-if} .
° ° (3.128)

A
where <j> - l+rcos0 ,D

A o0^= 2 [cosfl+r(2+2cos0+cos 0)].

It is appropriate to consider why ^ is of higher order thanDri
<f>^g in equations (3.125) to (3.127), despite the fact that their

normal gradients (cos20 and 6 independent terms) in equation (3 .75)

are of the same order. This can be explained by considering the

strengths of the singularities. From equations (3.87) to (3.89) and

the Green functions Gg>GD and G^ in equations (3.90) to (3.93), we

see that each potential <f> (L=S,D,H) consists of two parts: the

first part is due to the singular term of the corresponding Green

function and the second part is due to the harmonic term in that

Green function. On the body surface the first part is dominant. The

singularity (0„) that generates the first part of is muchn Dn
stronger than that (^g) f°r '̂ 1US same order conditions for

and < f > in equation (3.75) require the strengths of the

corresponding singularities to be of different order, that is, the

singularity strength for <f>-„ is required to be much smaller than theDn
strength for ^ g *  At large distances the first parts of both

potentials decay rapidly, and there remains a spatially oscillating 

term from the second part of each Green function. These two 

oscillating terms decay at the same speed. The far field magnitude of 

each potential is therefore proportional to the singularity strength. 

This provides the necessary explanation, and a similar argument 

explains why <f> and <f> are of the same order of magnitude.DD UD
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3.3.2.4 Discussion

At this stage it is appropriate to discuss the consistence of 

the procedure adopted. The outer solution has been required to 

satisfy the free surface condition (3.72), the second term of which 

is 0 (r) smaller that the other two terms. This is consistent with 

equation (3.97). In the inner domain, the corresponding term has not 

been retained in the free surface condition (3.71), although this 

term is O(kga) larger than the corresponding term which has been 

retained in equation (3.72).1 The consequences due to this 

inconsistence is discussed here.

Let ^ denote the complete solution of the diffraction

potential and <f> denote the difference between <f>- and our approximate L 1
solution (3.128), i.e.

^T " + ^L ’1 L (3.129)

d dAlso define a differential operator r = -k + —  - 2ir— . Then up to 

the order proportional to the forward speed, the consistent free 

surface condition can be written in the form of

T(<f> +<f> ) + 2irVj.V(^ +<f> ) — 0 on z=0 .
1 1  1 1  (3.130)

1. I am grateful to one of the referees for pointing this out during 

the preparation of the paper by Eatock Taylor, Hu and Neilsen (1990).



Since on the free surface (cf. equation (3.72))

r < * D) -  r c r f j )  -  o ,

we have

) + 2irV0. -  -2irV^.V(0_+^_)Li Li D I
■ /c(R,0), say, on z=0 

The body surface condition is

aS aH  on R-a-

or

d<f> l
■5—  “ 0 on R-a,on

(3.131)

(3.132)

(3.133)

(3.134)

oThe error in equation (3.134) is proportional to order 0((kga) , 
2r(k^a) ). Although the verification is fairly straightforward, it is

2helpful to note a few points. These are: Og~a^~0((k^a) ),
4oH~0 ((k0a) ), and in the inner domain the radial derivative is 

normally an order of l/(kga) larger than the original quantity. 

However, the last statement does not hold for the leading term 

proportional to r in equation (3.118). A careful analysis reveals 

that in equation (3.118) the r-dependent leading term is, in fact, 

independent of R (cf. equations (3.113) and (3.115) together with 

equations (3.102) and (3.103)) and therefore does not contribute to 

the body surface condition (3.134) up to the order retained. Apart 

from that, the verification of equation (3.134) is trivial. At 

large distances <f> and its derivatives are required to vanish.Li



Since all boundary conditions for <f> are homogeneous, exceptL
on the free surface, the problem corresponding to the homogeneous 

part of equation (3.132) does not have a non-trivial solution. The 

solution for ^ is analogous to a forced oscillation, which is 

determined by the forcing term /c(R,0).

We can investigate the far field behaviour of <f> as follows.L
As R-*=o we have

,, *0('> , , „ ik^Rcosfl
<t> r— . <t>1 ~ «1 (5,0)e 0

««(0,0) -i(l+2rcos0)kR

D T k R

Hence

/t> o\ *3 ^  ik-Rcosfl . 1 N/c(R,0) -----------e 0 + 0(------).
R2 r5/2 (3.135)

Equation (3.132) then suggests that

/c^(0 ,z) DCOS0 1
V - T 2—  e 0 + 0 <T572>-

(3.136)

But this term is negligible in the far field compared with <f>̂. Thus 

<f>_ is only a local disturbance, and the validity of the far fieldLi
solution is justified.

As far as the purpose of this anlysis is concerned, the 

essential requirement is an asymptotic expression for the diffraction
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potential (e.g. equation (3.128)), since this forms the basis for our 

evaluation of drift force. Therefore, the above discussion implies 

that any apparent inconsistence is not in fact significant in 

relation to the results obtained here.

3.3.3 Approximation of the mean drift force

The geometrical symmetry of the cylinder implies that the sway

and yaw components of the mean drift force are zero: E^—Fg—O. From 

the far field expression (3.69), the component in surge is written as

F. = -p ( $ $ - n- ) dS - <1 ** n. dl.1 x n 2 1 2g J t 1
SC C (3.137)

At this point the control surface S_ is further defined as ac

rectangular cylinder with two surfaces S^, S ^ at x -*■ ±« and ^2’ ^ 2 

parallel to the x-axis at large distances ±yc - Since the fluid flow 

is symmetrical about y-0 and n^ is anti-symmetrical about y-0 , it 

immediately follows that the line integral is zero and that the 

surface integral of the second order mean pressure is also zero. 

Hence,

v  - d l  as -  - 4  ds-
S0+S n S9
z 'z z (3.138)

From the relation

Re[Aeiwt] Re[Be"C ] - |(A*B + B*A) - ^Re[AB*] - |Re[A*B] 

equation (3.138) can be rewritten as



where an over bar denotes the time average and * denotes complex 

conjugate. We can therefore use the following results

h  x- 1 V i  ■ V  °-

^Dx- - ik(cos0+2r)^D , *Dy" iksin^ D ’

(3.139)

to obtain the far field expression

R e[p ik(cos^+2r)^D)^DydS]

(3.140)

Further simplification is possible by using an identity based 

on energy conservation. Maruo (1960) has shown that in the absence of 

current or forward speed the periodic potential satisfies

If
(3.141)

where S is the outer cylindrical surface defined after equation

(3.137). Newman (1959) had previously shown in a similar way that the 

average work done by the vertical force on a ship in waves combined 

with a current -Ux is

V  J ] w s -
(3.142)

where the total velocity potential $ is decomposed as
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$(xn ,t) - * (x,t)+Ui (x)-Ux,
C (3.143)

<̂c is the steady disturbance potential due to the existence of the 

body in the current, and is the unsteady potential due to the

incident and diffracted waves. It can be shown that 6 and $ satisfyc c J

the same boundary conditions as the corresponding potentials for the

body at forward speed. In other words: ^ — 4> and - $.

From equation (3.142) we can derive a relation analogous to

equation (3.141) for the unsteady potential. For the diffraction 

problem of the present cylinder the vertical work is zero; i.e. W^=0 . 

Substituting equation (3.143) into equation (3.142) and omitting the 

subscript, we obtain

J K (v un1>ds - °
sc

where <f>̂ has been neglected because ^ is of order

field. In a similar manner to equation (3.137), the
2equation may be approximated up to 0 (r$ ) by

J J  v n  d S  +  | f  * t n i d l  ■  ° -
sc c

Again, the line integral vanishes due to symmetry. The 

equation can be further simplified to

J J  W s  -  ° -  
S2

or

in the far 

preceding



Eliminating <f>̂  from equation (3.140) and equation (3.144) we have

Fx“ - Re[pJJ(-ikQ -ik(cos0+2r))^D^*ydS

S2

+00 0

- - Re[/>J*(kQ+k(cos0+2r))ksin0dxJVj^*dz]

+ooI-kQ+k(cos0+2r) ^
"P ' 2 (l+2rcos0) Sln5 ^ d I z - O ^ *

Rd#On y=yc“Constant, and dx» ~gj_ng • Substitution of equation (3.128) 

yields

2
h “ ' ££lt"S (k0a)3 f(l+cos»+’-(l-':os2«))(is4 D)2<l«.

0

In order to distinguish the contributions from the source, the 

dipole and from their cross product the following variables are 

defined:

It

fgS J (l+cos0+r(l-cos20)) ^gd0 ” 7r(l+2r),
0
it
p  A  A

fg^s2|(l+cos^+r(l-cos25)) ^g0^d0 — ?r(2+l6r),
0 

it

f^s j*(l+cos0+r (l-cos20)) * 7r(2+20r) .

0 (3.147)

We thus finally obtain the mean drift force in the x-direction as

(3.145)

(3.146)



-101-

P* gA. a + f }
16 ''O'  ̂ S DS D ’

or

Fr  " p* v t a < V )3 (5 + 380 • (3.148)

This result can be easily verified under the condition r=0. 

From the well-known solution of the diffraction problem given by 

Havelock (1940) we integrate the pressure on the cylinder surface. 

After some algebra, the mean drift force can be written as

(3.149)

= 2pgA a ® m(m+l) f ,, >
o------------ n£o(: r ~ 2  'X) fm (k0a) 'ir(kQa) (kQa)

where fm (k0a)-Inl [ "72V-----  * (2V 1 '
° <«<2)< V » O koa>

(2)and H (kAa) is the mth order second kind of Hankel function; the ' m 0
denotes its derivative.

3 5In the long wave limit k^a ->• 0; we obtain /® and
3 7f^=7r (k^a) /64. The mean drift force is then given by

V  - < k o a > 3 ’1 (3.150)

and equation (3.148) is therefore confirmed for the special case of 

r=0 .

It can be seen from equations (3.145) to (3.147) that the 

contribution to the mean drift force from the source-dipole product 

term is of similar magnitude to the contribution from the dipole 

alone; indeed at zero forward speed these contributions are equal.
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The contribution from the source alone is also significant. This 

behaviour may be contrasted with that of an infinitely long rigid 

circular cylinder moving perpendicular to its axis in an unbounded 

fluid, which may be modelled by a uniform axial distribution of 

dipoles. Furthermore, for such a cylinder arranged horizontally

below a free surface, only dipoles and higher order singularities are 

required to model completely the diffraction problem. In the case of 

diffraction by a vertical surface piercing cylinder however, the 

source term is required to model the volume flow rate, associated 

with the rise and fall of the free surface at the waterline of the 

cylinder. It is not surprising, therefore, that this term has a

significant influence on the mean drift force.

Expressions (3.148) to (3.150) are plotted in Figure 3.2. From 

a comparison with the exact solution it is found that the relative 

error of the long wave approximation at zero forward speed is less 

than 8.5% for ka<0.3. Results for the long wave asymptotic analysis 

are also given for forward speeds corresponding to r-±0 .1 .

3.3.4 Approximation of wave drift damning

Weakly moored floating bodies in deep water have low natural 

frequencies in their horizontal modes, therefore slowly varying 

resonant responses can be excited. In such motions there are two main 

damping forces, ie. wave drift damping and viscous damping. As 

discussed by Wichers (1982), Wichers and Huijsmans(1984) the wave 

drift damping may be approximated from the gradient of the mean drift 

force with respect to the forward speed, evaluated at U-0. For the
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circular cylinder in long waves we differentiate equation (3.148) 

with respect to U and obtain the wave drift damping as

3F
BW D -  W -  -  2 -375* ‘ < V > : »A‘ « V  (3.151)

To assess the significance of the wave drift damping we 

compare with the viscous damping. The viscous damping force may 

be approximated by

Fv " l  CDp l * l *  2ad’

where d is the draft of the cylinder and is the drag coefficient. 

We linearize by equalizing the energy consumption during one 

cycle, and obtain the equivalent viscous damping coefficient as

8 _CApadw x ,V 3»r D n a

where x is the amplitude of the low frequency oscillation at the
Si

natural frequency The ratio of the wave drift damping to the

viscous damping is then given by

^WD tt̂ w0 a0.8906^  U, .    - ,B-t C_ knd 0) xV D O  n a

According to the assumptions it is required that k^a and k^A

are small, and WQ/Wn large. The wave drift damping in equation

(3.151) has been obtained for the infinite draft cylinder. For a

finite draft cylinder the error of using equation (3.148) is roughly
-2k dproportional to 2e 0 . Thus kd is required to be sufficiently 

large.

As an example we let the parameters be kQd=2, Wq/w ^—10 and

x /a=4, and take the drag coefficient C — 0.7. Table 3.1 shows the 
a! D
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ratio of the wave drift damping to the viscous damping, for different

wave steepnesses and different radii of the cylinder. It is seen from

Table 3.1 that the importance of wave drift damping increases rapidly

with k^a or When kQa=kQA=0.3 the wave drift damping is about one

third of the viscous damping. The value of r in the table is defined

as krtx co /w * it is included as a guide to ensure that our discussion 0 a n 0 °
concerns the behaviour at small speeds.

simplified 3-D method investigated by Hearn et al. (1987), which 

neglects the forward speed dependent terms in the free surface 

condition. In that method the diffraction problem for an advancing 

body is taken to be identical to the diffraction problem for a body 

at zero forward speed, except that the wave frequency is replaced by 

the encounter frequency. The wave drift damping is simply obtained 

from the gradient of the mean drift force with respect to frequency, 

evaluated at zero forward speed. From our result for the cylinder we 

can examine the error introduced by the omission of the forward speed 

dependent terms in the free surface condition, over the low frequency 

range.

To conclude this investigation, we discuss briefly the

By differentiating equation (3.149) and noticing that

we obtain the approximation to the wave drift damping as

d (kQa)

15 2 /. ,3 .2-g* (kQa) pA au>Q as kga-K),
(3.152)



-105-

This is plotted in Figure 3.3 alongside the result given by equation

(3.151) using our more complete analysis. Comparison of with

shows that B ^ q is about 20% underestimated. This suggests that the 

simplified method is not particularly a good approximation in the 

long wave limit for the cylinder.

3.4 Concluding remarks

In this chapter we have discussed the general boundary value 

formulation and the far field formulation of the mean drift force. As 

an example of application, a vertical cylinder moving in long waves 

is examined and the asymptotic solution for the mean drift force has 

been obtained from a matched asymptotic expansion method. From the 

analysis, it is found that when the wavelength is long the mean drift 

force is proportional to the sixth power of the wave frequency; and 

the wave drift damping coefficient is proportional to the seventh 

power of the wave frequency. In the low frequency range the viscous 

damping may be dominant, but the wave drift damping may be 

significant too. It is also found that a source distribution must be 

included as well as a dipole distribution on the axis of the cylinder 

in order to obtain the diffraction potential. The next task is to 

develop a numerical method applicable for arbitrary geometries.
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Chanter 4

ANALYSIS FOR ARBITRARY BODIES

A new theory for unsteady motions of arbitrary bodies at small 

forward speed in waves is presented in this chapter.

The conventional approach to tackling the forward speed 

problem is to use a source distribution method. The approach has not 

become generally applicable because of some inherent limitations. A 

fundamental feature of the conventional approach is that the steady 

potential disturbance is negligible in the free surface condition for 

the unsteady potential. This is not normally acceptable, except, 

perhaps, for a few special cases such as a deeply submerged body. 

This inappropriate simplification is the major limitation in 

application. Besides, even where the steady potential disturbance is 

negligible on the free surface, the computing required by this 

approach is very time consuming. Futhermore, if the steady potential 

is neglected, the theory is inconsistent and the consequences of the 

inconsistence should be estimated, which can not be normally done. 

These limitations may explain why most publications concerned with 

forward speed problems are restricted to slender ships. Zhao and 

Faltinsen (1988) and Zhao et al. (1988) may be the only people who 

have tackled the disturbance of the steady potential on the free 

surface. However, as discussed in Chapter 2, their consideration of 

the steady potential disturbance is not performed in a rigorous 

manner.

The work presented in this chapter is an attempt to solve the 

unsteady forward speed problem, while at the same time taking into
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account the steady potential disturbance in a consisten manner. A 

forward speed perturbation is proposed and examined. According to the 

present theory, the boundary value problem is expanded into a 

zero-speed problem and a forward speed correction problem, and then 

solved successively. Two possibilities of expansion are identified 

and both are investigated. The content is organized as follows. After 

a presentation of the proposed forward speed perturbation theory, a 

new multipole expansion for the zero-speed potential is given. This 

is followed by the details of numerical implementation for both zero 

and nonzero speed problems; the Chapter ends with a discussion of 

the convergence of the theory.

4.1 A small forward speed perturbation theory

The formulation of the boundary value problem has been 

discussed in detail in the previous chapter. Up to first order in

forward speed, the linearized formulations may be summarized as 

follows.

The total velocity potential is expressed in the form

(4.1)
The steady potential is governed by

V2* - 0 , in fl, (4.2)

on z-0 ,
(4.3)

d<f>

(4.4)
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V(f> -+ 0 , as r -*■ oo. (4.5)

Let <f> denote any of the seven unsteady disturbance potentials or 

their combination. The unsteady potential <f> is governed by

V ^ = 0, in fl,

■k^ + 2irV(^-x) . V<j> + <f>z ~ i-r0^zz "

d<f> i 3<I>q

3n 3n ’

— 5 + Si­an ■ "j + iwmj ’

-► 0 ,

f| + ik(l+2r)<f> - 0

§| - ik(l-2r - 0

on SB ,

on SB ,

as x -+ -H»,

on z=0 ,
(4.6)

(4.7)

(4.8)

(j-1,2.....6)
(4.9)

(4.10) 
(two dimensions)

(4.11)

(two dimensions)
(4.12)

t  o A
M  + ik(l+2rcos0)01 -♦ 0 as R -*• -H», (three dimensions)oK

(4.13)

2 2 2 2 where R-./x +y , u> - WQ-Uk^cos^ - ^(l-r^cos^) , k-a> /g-kg^-r^cos/S) ,
2and r=Uw/g“TQ(l-rQCOs/3) , with and u>Q=gkQ. It should be

emphasized that the free surface condition and radiation conditions 

are only valid for small forward speed.

At small forward speed, the solution may be expanded into a 

series according to the forward speed. Each term is then solved 

subsequently. Because the forward speed not only affects the 

magnitude of the unsteady motion , but also affects its periodicity, 

two possibilities of expansion exist: expansion at wave frequency and 

expansion at encounter frequency. Both possibilities are investigated
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below.

4.1.1 Expansion at wave frequency

4.1.1.1 The boundary value problem

Suppose the velocity potential <f>̂ can be expanded into a 

series of the form

*j " *j0 + r0*jl + ••••

where Uwg/g, and the second subscript denotes the order of 

dependence on the forward speed. According to this expansion (cf. 

equation (3.40)), th incident potential is of the form

*00 "  * 0 ’ *01 "  °-

The free surface condition (4.7) is expanded into 

a^j0
' V j O  + d T ~  " ° ’ on Z“° ’

(4.14)

(4.15)

5^il 3^i0-k^.. + - 2i_ J - - 2kncos0<f>.n + 2iQ. , on z-0,0 jl dz dx 0 j0 j (4.16)

where

Qj
-**-?*j0 - K x +v * j0- j-1 -2  6-

■^*^(*j0+*00) • l(*xx+*yyH *j0+*00)' j“7’
(4.17)

Here for numerical reasons the Laplace equation has been used to 

replace the second derivatives in the vertical direction by 

derivatives in the horizontal direction, since the latter are easier
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to calculate. For incident waves, there is no steady flow 

disturbance. Hence, Qq“0- Besides, it can be easily verified that the 

right hand side of equation (4.16) is zero for incident waves. That 

would confirm that For the disturbance potentials

(j-1, 2 , . . . , 7) , Qj tends to zero at infinity. The rate of decaying of 

is much faster than that of the other terms on the right hand side 

of equation (4.16) in three dimensions, whereas these other terms do 

not decay to zero in two dimensions in the direction where the 

incident waves come from.

The body surface condition is expanded into

8<f>70 d<f>00
dn

dn

dn

nr

d<t>71 0 ,an
d<f>.~ m.

_ -i-j. an \

on SB ,
(4.18)

on Sfi. (j-1,2 .....6 )
(4.19)

At infinity the disturbance potential satisfies

a*j0
aR " -lko V as R-*»,

d<f>ii^  iko^jl " 2iko (cos0-cosj8)0jO , as R-*o,

(4.20)

(4.21)

for three dimensional problems, where x-Rcos0 y-Rsin0; or

a*i0 a* 1l
a ^ ----- ik0*j0 ’ d x -------ik0*j 1 - 2ik0 (l-cos^)^J 0 , as

(4.22)
a^i0 a^11

"  i k o *jo ’ a ^ ~  “ lk0*ji -21k0 (1+cosa)*j0 ' as x"-“ '
(4.23)

3x

for two dimensional problems, fi takes two values only: /J-tt for head 

seas and /3=0 for following seas for two dimensional problems.
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Three dimensions

Applying Green's second identity over a fluid domain ft

enclosed by a surface S, where S is defined by S=*S +S +S_+S_, withd R D r

(j-1,2 .....7), where the constant 2n is valid over smooth surface

only, and the Green function is chosen in the form of G - 1/r + H 

with H a harmonic function in the entire fluid. Instead of taking G 

as a translating pulsating source potential which is the conventional 

case, here a simpler Green function, i.e. a pulsating source 

potential, is used

S : the wetted body surface,D
S : a vertical circular cylindrical surface of large radius,R
S^: a horizontal closure surface at great depth,

S : the part of the free surface bounded by Sn and S_; r U R
we obtain

-4t (x ) , for x in fl, 

for x on S , 

for x out of ft,S 0 ,
(4.24)

\ ( z + o

A(z+0
(4.25)

where the path of the integration is above the pole, and
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r - [(x-C)2 + (y-r/)2 + (z-f)2 ]1/ 2

r'- [(x-«)2 + (y-r,)2 + (z+f)2 ]1/2

After utilizing the boundary conditions, we obtain

V  5 J (Ga ^  ’ *ja5> ds + « J dS
s„ s„B F
- ^ J 2rQikQ(cos^-cos/9)G^ dS,

SR (4.26)

where a takes the value 2n if the field point is on the boundary 

surface and the surface is smooth. Ordering according to Tq yields

’dn ^jOdn'*j0 J < 0 = ^  - os.
SB

(4.27)
d<f>.

j « •

S
■  s  J  (g3̂  ■ d S  +  5  J -

B (4.28)

where J is defined by

J - 2iJ G(^ ^ — i-ikQCOs^jQ+Qj) dS - J 2ikg(cos0 -cos/8) G ^ q  dS.

SF SRF R (4.29)
k zFrom the asymptotic expressions (i.e. (<f>y G)~e 0 as R-*»), the last 

integral can be integrated explicitly with respect to the

z-coordinate. After integration the function J becomes

J - 2ij* G(^^+ikQCos)3^Q+Qj) dS - j) i(cos0-cos/OG^q dl.

SF CRF K (4.30)

where C is the intersection line (a circle) of the cylindrical R
surface S_ with the mean free surface.R
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Two dimensions

Similar to the three dimensional analysis, we apply Green's 

second identity and utilize the boundary conditions to obtain

an i r d<f>il f m  nr 1 T
V  a J (Ga ^  - dS + Z \  ds

SB SF
- i J 2r0 ik0 (l-cos^)G^ dS + i J 2roiko (l+cos0 ) G ^  dS,

SR SR (4.31)

where a takes the value tt if the field point is on a smooth boundary

surface; S + and S_ are two vertical lines at x-*» and x-+-« K K
respectively. Ordering according to yields

d<f>;

+i0 - z  f • ^ o i > ds-
SB

^•1 " “ f (Ga”^  ■ dS + - J,rjl a J dn *jl3ny a

SB

(4.32)

(4.33)

where J is defined by

f a*ioJ - I G ( 2 i ^ d - 2 k 0c o s ^ j0+2iQ ) dS 

SF

- j 2 ikg(l-cos/9)G^jQ dS + J 2ikQ(l+cos/3)G^jQ dS.
S+ s"
R R (4.34)

Again, the last two integrals can be integrated explicitly by using
k zthe asymptotic expressions (i.e. (^ , G)~e 0 )



- i [ (l-cos/3) (G^j q ) ^  - (I+c o s ^ X G ^ q ) ^] .
(4.35)

The last two free terms are evaluated at x-H-® and x-*--® respectively.

However, since neither G nor S.* tends to a definite value atjO
infinity, the above expression must be interpreted in a limit sense.

Recall that only takes the value 0 or jt. For head seas (/Mr, 

that is, the incident waves come towards the body in the opposite

direction of the forward speed.), the free term at x-*’-® in the above

expression vanishes and

J  -  2 i [ J  d s ' < G V + ~ ] •
SF (4.36)

The expression for the following sea (£-0) is similar, but different 

in some signs.

4.1.2 Expansion at encounter frequency

Alternatively, we may carry out the small forward speed

perturbation analysis at the encounter frequency for the diffraction

problem. Accordingly, for forced oscillations in otherwise calm 

water, we may expand the total solution at the frequency of 

oscillation.

Using the other small parameter r—Uw/g, we suppose that the



-116-

velocity potential can be expanded as the series

™ <£jq + * <f> + ..., (j-1,2,...,7)

with the solution at zero forward speed and <f>^ the correction 

term proportional to the forward speed. For the diffraction problem 

we also need to expand the incident wave potential of frequency 

into the incident potential of frequency a> plus a correction term

. ig kz-ik(xcos/?+y sin/3)
* ° ° ' “ 6 ’ (4.37)

- cos/3 [2k(z-ixcos/3-iysin/3)-1 ] ^  e^Z ^(xcosfl+ysinfl)
01 w (4.38)

The free surface condition (4.7) is expanded into

_k^ n  + T T  °» on z”°»J° dz (4.39)
d* n  8*10+ ~£T--- 2i^ T “  + 2 iQ4» on z~ ° »J1 dz ax J (4.40)

where has the same definition as in the wave frequency expansion.

At infinity, tends to zero. The rate of decay of is much 

faster than that of the other term on the right hand side of 

equation (4.40) in three dimensions, whereas the other terms do not 

decay to zero in two dimensions.

The body surface condition is expanded into

^ 7 0  _ ^ 0 0  ^ 7 1  _ a*01
3n 3n ’ 3n 3n ’ ^
d<f> iQ i
t-*1 n ,  r- m on S (j-1 ,2 , . . . ,6 )
dn j dn k j B (4.42)

At infinity the disturbance potentials satisfy
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3*j0
m  ik^jo’ as

(4.43)
a^ji
^ ------ik^il ‘ 2ikcos^ 10> as R'>co,

(4.44)

for three dimensional problems, where x=Rcos0 y—Rsin0; or 

a*i0 3^jl
a T  jo* a T  lk^ji - 2ik^ o '  as x~°-

a*jo a ^ n
a T ~  ~ 1 jo’ a T “ “ lk*ji -21k*j0 ’ as

(4.46)

for two dimensional problems.

Following similar procedures to those used in the wave 

frequency expansion, i.e., applying Green's second identity, 

utilizing the boundary conditions, and then ordering according to r, 

we obtain the zeroth order and the first order potentials as follows

a _ I f J * i° A ds^jO a J ( 3n " ^joan^ ’s B
(4.47)

^*1 " ” f dS + - J^jl a J 3n jl3n a
S
B (4.48)

For three dimensional problems, J is found to have the form

J - 2iJ G ( g ^  + Q.) dS - <f icosdG<f>.0 dl,

SF CRF (4.49)

where a takes the value 27r if the field point is on a smooth boundary

surface; the surfaces S_, S , S and the line C are defined as inU K r K
Section 4.1.1; and the line integral is obtained from the itegration
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over S with respect to the z-coordinate.K.

For two dimensional problems, J is found to have the form

j  -  2 i J  +  v d s  - i <g * j o ) -h . +
SF (4.50)

where a takes the value ir, if the field point is on a smooth boundary 

surface; the last two terms are evaluated at x-H-w and x-+-<» 

respectively; and the whole expression must be interpreted in a limit 

sense.

4.1.3 Discussion

The above perturbation formulations have been derived formally 

without discussing their convergence. In fact, some subtle 

considerations may be required to justify the perturbation procedure. 

For the moment, we shall ignore that point. Instead, let us focus our 

attention on the numerical implementation. The theoretical 

considerations concerning the convergence of the perturbation 

procedure will be discussed in the last section of the present 

chapter.

The boundary integral expression obtained may be solved by a 

standard boundary element technique. It can be expected that the 

computation will be dominated by the evaluation of the free surface 

integral J, because the integrand is an oscillatory function. In 

principle, once the boundary value problem is solved, <f>Q, and hence 

the integrand, can be computed numerically from the boundary integral
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expression. Clearly, this can not be expected to be satisfactory for 

evaluation of J. Therefore, it is desirable to find some analytical 

expressions for the velocity potential.

4.2 Multipole expansion solution at zero forward speed

4.2.1 Introduction

In finite depth water, eigenfunction expansions can be applied 

to construct an analytical expression for the velocity potential, 

valid in a domain exterior to the body. However, as the water depth 

increases, the eigenvalues tend to pack together, and the 

eigenfunctions become undistinguishable from one to another. 

Consequently, an unrealistic number of eigenfunctions is required in 

the series expression. In such circumstances, it is appropriate to 

find alternative expressions.

In infinite depth water, multipole expansions may be utilized 

to describe the velocity potential. For two dimensional motions, 

Ursell (1949) has constructed a set of multipoles placed on the mean 

free surface. These multipole potentials are simple elementary 

functions, and easy to evaluate. Two wave potentials are added to the 

set to satisfy the radiation condition. He has shown the existence of 

the expansion of the velocity potential in terms of these multipoles. 

Using these multipoles, Ursell solved the heaving motion of a 

semi-immersed circle. His method was extended to three dimensions by 

Havelock (1955) for the heaving motion of a semi-immersed sphere.
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For completely submerged bodies, Ursell (1950) constructed 

another set of multipoles in two dimensions. These multipole 

potentials are more complicated, since they are in integral forms. 

The multipole potentials are derived from the derivatives of the 

pulsating-source potential with respect to appropriate parameters. 

All terms contribute to the velocity potential at infinity. That 

is, unlike the multipoles for the floating bodies, the wave terms and 

local disturbance terms are not separated. These multipoles are not 

easy to use, particularly in calculation of a free surface integral 

involving the velocity potential. Both two dimensional and three 

dimensional multipole expansions are reviewed by Thorne (1953), who 

has also given forms in finite depth water.

In the following a new multipole expansion is presented. Both 

submerged bodies and floating bodies are treated in the same manner. 

Local disturbances and far field expressions are noticeably separated 

in the multipole expansions. These new multipoles can be regarded as 

generalizations of Ursell's (1949) multipoles for floating bodies. 

In fact, Ursell's multipoles can be recovered from the present 

multipoles by allowing the multipoles being placed on the mean free 

surface.

4.2.2 Two dimensional multipoles

Let a Cartesian coordinate system be defined such that the 

z-axis is pointing upwards with the origin on the mean free surface 

and the x-axis is lying horizontally. We seek the velocity potential



outside a circle of radius a with the centre at (0 ,f) (f<0)

satisfying

V = 0 in fl,

<f>z - k<£ = 0 on z=0 ,

4* = v ( ^ )n n

~ ±ikrf

on r=a, (r=./x^+(z-f)^)

respectively,

(4.51)

(4.52)

(4.53)

(4.54)

where subscripts on <f> denote derivatives; Q denotes the fluid

domain; vn (^) t îe prescribed normal velocity with the direction

of the normal defined out of the fluid; and k is the wavenumber, 
2given by k-w /g. The last condition (radiation condition) is 

necessary to ensure that <f» so defined represents the wave potential 

due to the motion of the body or due to the modification by the body 

of an incident wave train. (Note that we are here using <f> to

represent the zero-speed potentials ^j q )

First we shall find the velocity potentials of some

singularities, placed at point (0,f), satisfying the Laplace equation 

and the free surface condition (4.52). These can be constructed 

from the simple singular solutions of the Laplace equation. By 

separation of variables in a polar coordinate system, the simplest 

singular solutions of the two dimensional Laplace equation are found 

to be

, 1 cosm0 sinm0In-, ------ , -----r m m (x=rsin0 , z-f=-rcos$)

and their images above the mean free surface
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i 1 cosm0 ' sinm0 ' , , . ., _ .,.In— ,  ,  , (x=r'sin0 ', z+f-r'cos0 ')r .m ,mr # r »

where the polar coordinates (r,9) and (r',0') are defined in Figure 

4.1.

We note that the sum of a singular solution and its image 

satisfies the "rigid wall" condition d<f>/dz=0 on z=0 , whereas the 

difference satisfies condition <f>—0 on z-0. This suggests that it is 

possible to construct a linear combination of such sums and 

differences to satisfy the free surface condition (4.52). For 

symmetrical flow the solution may be written in the form of

_mr cosmfl cosm0 ' ^cosCm-l)# cos(m-l) 0 ' NC ™ E I + t  AC . - . ) I ,m m ,m m -1 ,m-lr r' r r'

for m>l. Substitution of c into the free surface condition (4.52)m v
yields the constant as A-k/(m-l). A similar procedure can be followed 

for the anti-symmetrical flow. We find

cos0 . cos0 ' . . - r '.c_ — a[  + -----  + kin— 1 ,1 1 r r r 1

m rcosm0 cosm0 ' k ,cos(m-l)0 cos(m-l)0 \.c — a [-----  +   + — r(----i - ------- =-*— ) J ,m m ,m m -1 m -1 .m-1r r ' r r'

m.sinmfl sinm0 1 k .sin(m-l)0 sin(m-l)g1..
Sm a m ,m m -1 m -1 ,m-lr r' r r'

(4.55)

(4.56)

(4.57)

for m-2,3,.... These singular solutions are wave-free potentials. 

They decay to zero at large distances as |x|-»«°. In other words they 

correspond to a local disturbance only.

A potential representing outgoing waves at infinity is

required. For symmetrical motion, such a potential is found to be the
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familiar pulsating source potential

°° A(z+f)

j- ° (4.58)
where (k denotes that the path of the contour integral is above the

pole. For anti-symmetrical motion, the wave potential is found to be
3Cq

the dipole potential, derived from -a^ — »

fc~ = In—  + 2 $ .---- cosAx dA,0 r T A-k

fsin0 . sin0 ' . 01 X e^ Z+^  . x ,s1 - a{— —  + — —  + 2k & — --- s m A x  dA }

° (4.59)

These two wave potentials (4.58) and (4.59) can be 

equivalently expressed in terms of the exponential integral E^(Z') as 

defined in Abramowitz and Stegun[l]

n r' r Z'_ /r,,N1 . k(f+z)-iklxl .cn - In—  + 2{Re[e E-(Z') ]-Trie ),
(4.60)

,sin0 sin0 ' ± rT r z 'i? / s k(f+z)-ik|x|.s- - a{— —  + — + 2k[Im[e E- (Z' ) ]+sgn(x)7re ']},
L r r 1 (4.61)

i Q t
where Z'=4c(z+f+ix)-kr' e ; sgn(x)-l for x>0, and sgn(x)--l for x<0. 

It can be verified that the radiation condition (4.54) is satisfied, 

since

eZ *E- (Z') - 0(i~t) , In—  ~ 0 (7^ 7 ), as |x|-®.1 x r x 1 1

For bodies floating on the free surface, we simply let f be 

zero. The multipoles are simplified to

r Z'_ / r . , v ,  . kz-iklxlcn - 2Re[e E1 (Zr)]-7rie ,
u 1 (4.62)

« 2m,cos2m 0 , k cos(2m-l)0 . , * 0 \
c2m ” [ _ 2 ^ ~  + 2 ^ 1   2m-l ]’ (m-X,2 ,...)

r r (4.63)

s- = 2a(siT ~̂ + 2k[Im[eZ E-(Z') ]+sgn(x)Trekz 
1 r 1 (4.64)
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n 2m+lrsin(2m+l)0 k sin2m0 , ,
s2m+l- I 2m+l + 2^----- 5 ^ -

r r (4.65)

The other terms become zero. Now the multipoles degenerate to those 

obtained by Ursell (1949).

We may express the velocity potential in terms of a series of

functions cn , c and s (m-1 ,2 ,...)U m m

* ~ a0C0 + [V m +V m ] •
m_1 (4.66)

The series satisfies the governing equation and all boundary

conditions except the condition on the body surface. The unknown

coefficients a and b are then determined from the body surface m m  J

condition.

A general justification of the existence of expansion (4.66)

is difficult to obtain. In principle, one needs to prove that for any

given function v ($) there exists a set of coefficients aA , a and b n U m m
such that the series is convergent and its radial derivative contains 

the component vn (^) on r=a. For the case f-0 (floating bodies), 

Ursell (1949) has shown that such an expansion is possible, at least 

for ka<1.5. For completely submerged bodies, Ursell (1950) has proven 

the existence of a different raultipole expansion. For the present 

multipole expansion, we shall assume the velocity potential can be 

uniquely expressed by equation (4.66) without giving proof.

It is interesting to see the limit case at zero frequency. As
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ka-*-0 and | f | -*»,

m r m
m  cr»e9mfl cinfl 2m+l s in(2m+l)9 

2m+lr

The series (4.66) becomes a Fourier series expansion over (0 ,7r/2 ), 

and the multipole expansion certainly exists.

4.2.3 Three dimensional multipoles

Three dimensional multipoles can be derived by following the 

same procedure.

As shown in Figure 4.2, a Cartesian coordinate system is 

defined with the Oxy plane at the mean free surface and the z-axis 

pointing upwards. The cylindrical polar coordinates (R,a,z) and 

spherical polar coordinates (r,a,6) are defined by x-Rcosa, y-Rsina; 

cos0— -(z-f)/r, sin0-R/r. Also defined are the polar coordinates 

(r',a,0') by cos0'-(z+f)/r', sin0'-R/r'. We seek the velocity

potential $=Re[^e^wt] outside a sphere of radius a with the centre

at (0 ,0 ,f) (f<0 ) satisfying

2i 4> =  o in 0 ,
(4.67)

<f>z - \a<f> - 0 on z=0 ,
(4.68)

on r=a, (r=,/R^+(z-f )^)
(4.69)

M  ( | |  +  ik #  ) -  o as R -> .
(4.70)

Here again we are dealing with the zero-speed potentials 

represented by <f> for simplicity.
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The simplest solutions of the Laplace equation obtained from 

separation of variables are

p “ o o  p“ (/i)u _    n . t n z — r x ~r* cosma,  —r sinma, (u—cos#—  )n+1 n+1 rr r

and their images above the mean free surface 

p^Oi') p“ (/i')
 -r- cosma,  -zr sinma, (u'=cos0 — -),n+l ,n+l r'r • r »

where n>m—0,1,2,...; is the associated Legendre function as

defined in Abramowitz and Stegun[l]: Pm (/x) - (-l)m (l-/i^)m^  —— P (/i) ,
n d/xm n

with Pn (p) Legendre function.

From the facts that the sum of a singularity and its image

satisfies d<f>/dz - 0 on z=0 and the difference satisfies <f>-*0 on z-0 , 

we find the following linear combinations of the sums and differences 

satisfy the free surface condition (4.70)

. , P> ' >  , k rPn - l W  Pn-1 ^ >\ .
nm a n+1 ,n+l n-m n »nr r r r (4.71)

for n>m=0,1,2,.. . . These terms vanish at large distances: $ ~0(l/rn )

as r-*». They are wave-free potentials. To find the wave terms, we 

make use of the solution obtained from separation of variables in

cylindrical polar coordinates: e^ Z+^ J m (AR) {cosma, sinma), with

J (AR) the first kind of Bessel function of mth order. Since in the m
wave-free terms n is required to be larger than m, the wave terms 

must be associated with terms at n=m. We seek the wave potential in 

the form of



£ o o
<f> - am+1{-?- + f A(A)eA(z+f)J (AR) dA }.mm m+1 J mr i0

a pn (#') a O'*')
From (az 'k ) _ w T  " - ( a i  +k)~ ^ T  on 2-0 andr r'

Pm (-/i') °°
-a ^ S T  “ J AneA(2+f)Jm (AR) dA, (for z+f<0)

r 0 (4.72)
(Gray et al. (1966) p.100) and also ™ P (-/j') — P (/*')> we can

deduce A(A) by substituting into the free surface condition

(4.68). We obtain

PnVii'> 00 m
♦ _  - •“ 1 '-TSr * < - » "  f ^  ■ " ' . ( »  "  '■

r 0

m+i fp> )  , p> ' )  , A(z+n n  ,
"  a  lS I  +  — +  W-U  j  X H c  e  m  d X  > •

° (4.73)

The path of the contour integral is defined above the pole.

In particularly, from Pq-1, we find that is the familiar

pulsating source potential

^00 ~ a {r + b ’ + 2k f F k  eA(Z+f)J0 (AR ) dA }.
0

At large distances
(4.74)

, /2  k(z+f)-ikR 1
mm ~ jrkR 8 + 0 (R> • R~ ° ’

represents outgoing waves, and the radiation condition is satisfied.

For bodies floating on the free surface, we let f be made 

zero. Then and r'=r. The multipoles have simpler forms,
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, „ n+l(P> >  , k C l « ,0 m - 2a {— — 7  + ------------- }, (for n-m even)ran n+1 n-m n
r r (4.75)

“ -m+1 ((l+ ( - D n ) ^ -  + 2k(-l)m f  ^  eAzJm (AR) dA).

° (4.76)

The other terms (i.e. n-m odd) become zero.

The zero-speed velocity potential 0 may be expressed in a 

series in terms of these singular solutions

00 n
0 = 2  2 (a cosma + b sinma) 0A a ran nm rnmn=0 m=0 (4.77)00 00

= 2 [( 2 a 0 )cosma + ( 2 b 0 )sinmalA nm nm N nm ranm=u n=m n=m (4.78)

For given prescribed motion V (a,0), the unknown coefficients a andn m
b^ can be determined from the body surface condition (4.69).

For the special case of the axisymmetrical motion about the 

z-axis (m=0 ), the three dimensional multipoles have been pointed 

out by Havelock (1955), also discussed by MacCamy (1954). The 

general expressions derived here agree with those in Wehausen and 

Laitone (1960) (equations (13.20) and (13.21)). In the present 

context, the multipoles are constructed in a manner which shows 

clearly the physical implication. The two dimensional multipoles 

derived here seem to be original.
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4.3 Numerical implementation

Although the integral formulation obtained in Section 4.1 can 

be solved by standard numerical discretization on the body surface, 

it may not be appropriate to apply the multipole expansion directly 

on the body surface, if the body is not a sphere or a circular 

cylinder. Therefore, it was decided to use a coupled numerical 

technique.

The fundamental idea of a coupled numerical technique is to 

divide the fluid domain into two or more domains by some artificial 

control surfaces, and apply different numerical formulations on each 

domain. These formulations are matched over the joint surfaces.

In the present numerical implementation, two dimensional 

motions are considered. This problem may be related to a horizontal 

cylindrical offshore structure, or an elongated ship in beam waves 

together with a lateral forward speed (or current). The fluid domain 

is divided into an inner domain close to the body and an outer domain 

outside an artificial circle Sj, which encloses the body, as shown by 

Figure 4.3. For a deeply submerged body, S T is taken as a full circlesJ
and completely submerged. For floating bodies, S_ is taken as aJ
semicircle with the centre on the free surface. In the inner domain a 

closed boundary integral expression with the simple Rankine source is 

used, whereas in the outer domain the integral expressions derived in 

Section 3.1 may be used. For the zero-speed problem another 

possibility, which we have deliberately developed, is to apply the 

multipole expansion. The matching procedure for the zero-speed 

problem is discussed first.



4.3.1 The zero-speed potential

In the inner domain, a similar boundary integral expression to 

those obtained in Section 4.1 is applied, but with a simpler Rankine 

source Green function.

- s f  (g!£ • dS-

7T, for x on smooth S ,
2tt, for x in S, )
0, for x outside S.

(4.79)
where x denotes the field point (x,z); S consists of S_, S_ and theD J
portion of free surface between these two surfaces, if any; the 

direction of the normal is defined to be out of the fluid enclosed by 

S. Here, we are dealing with the zero-speed potentials 0jq» but for 

simplicity these are represented by <f>.

The Rankine source Green function is defined as 

G(x,f) - ln̂ , r-7(x-02+(z-r?.
(4.80)

This function is in fact a sink potential, but we refer it as source 

in the sense that the strength is interpreted to be negative. By 

taking the field point (x,z) on the boundary S, the velocity 

potential on the boundary can be solved. The boundary surface is 

discretized into elements and over each element the variations of the 

velocity potential and of its derivatives are approximated by shape 

functions ^ ( 7 )
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to
W  (4.82)

where <f>̂  and are values at the node L with L locally labelled.

In the implementation developed here isoparametric quadratic elements 

were used. The three shape functions are therefore given by

N., (7) - iy(7 -l). N9(7> - l-72 > N»(7) - ^7(7+1) (-1<7<1).
(4.83)

The discretized form of the integral expression (4.79) can be written 

in matrix form as

IH]£ -
(4.84)

where £ - . . . )T , (|^) - * ’ ’ ’ ' ̂  are column vectors
of nodal values, with T denoting the transpose. The elements in the 

matrices [H] and [G] are given by

i j * i + I JN1 8G
h ij " a 5i j ^ i + = J nl(J)<*> ^ T ds’

ASV (4.85)

g. . - S [ NT ... (7 ) G. dS,tJ v  J L(J) 1
ASV (4.86)

where 6 is the Kroneker delta function, and AS. is the "area" of ank
element. L(j) designates the transformation between the global nodal

dG.
number i and the local nodal number L. G. and -r— stand for theJ 1 5n
values at (x^,£), with £ the variable of integration. The summation

is over those elements that share the node j .

The value of the normal derivative on S is known and that onD
S_ can be eliminated from the boundary condition. To solve equation F
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(4.84) it is also necessary to eliminate the unknown normal 

derivative on the joint surface Sj. This can be achieved by matching 

the solution with the outer domain expression as shown below. Two 

possibilities exist and both are investigated.

4.3.1.1 BIE-BMP matching

First, the multipole expansion may be utilized to represent 

the velocity potential in the outer domain. Let the number of nodes 

on the joint surface be denoted by N^. Then truncating the multipole 

expansion (4.66) after N terms yieldsJ

where

<f> “ W A,

aw
W *® (s^,c^,S2 ,C2 »S2 >c^,...,Cq), V ■

(4.87)

(4.88)

(4.89)

(4.90)

wher T denotes transpose. Here, we take the normal derivative as the 

radial derivative d/du-d/dr, Applying this equation over the nodal 

points on the joint surface gives Nj equations for the potential and 

its derivative. In matrix form, these are

± - [W]A,
(4.91)

(§£) - [VIA,
(4.92)



where [W] and [V] are Nj by Nj. square matrices. Eliminating A from 

equations (4.91) and (4.92), we obtain

<§£> - [V][W]’V
(4.93)

Now we impose matching conditions over the joint surface S_ byJ
requiring the continuity of the pressure (i.e. <f>) and the normal 

velocity of the fluid,

4>. =* dt on Sinner domain outer domain J ’

(— ) . - (— ) on Sdn inner domain 3n outer domain J ’

(4.94)

(4.95)

From equations (4.93) (4.94) and (4.95), the normal derivative over 

Sj in equation (4.84) can be eliminated, and therefore the equation

(4.84) can be solved. We refer to this coupling method as the BIE-BMP 

method. Up to this point the boundary value problem is solved in 

principle.

Having obtained on Sj , we can recover the coefficients in 

the multipole expansion from equation (4.91), if necessary.

4.3.1.2 BIE-BIE matching

Alternatively, we can apply the integral expression derived in 

Section 3.1 in the outer domain and match it with the inner domain 

integral expression (4.79). The only change for the outer domain 

expression is that the integral now is over the joint surface Sj, 

rather than over the body surface Sg which is the case in Section
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3.1. That is,

■-SI  <  - dS-
sj (4.96)

Here, the Green function is the pulsating source potential. The 

normal is taken as the positive normal concerning the inner domain 

flow, i.e. 3/3n-3/3r. As a result, a negative sign appears in front 

of the integral. After a similar numerical discretization to that of 

the inner domain, the discretized form of equation (4.96) is written 

as

(4.97)
Hence,

<§£> - tF l£.
(4.98)

where

[F] - [G ]_1[H1].
(4.99)

The coefficients in the matrices are defined similarly to those in 

the inner domain, except that the Green function is changed and the 

integration surface is only on S . Quadratic isoparametric elements
sj

are used in the implementation.

The matching can be completed by eliminating the unknown

normal derivative on S_ in the inner domain formulation from theJ
above expression. We refer to this coupling method as the BIE-BIE 

method. The BIE-BIE method may not necessarily be very efficient
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compared with the BIE-BMP method, but it provides us with an 

independent check for our multipole expansion solution.

The pulsating source Green function used in the numerical 

implementation can be expressed in terms of the exponential integral

CM z + f  )
—  cosA(x-£)dA,

- In—  + 2Re [e 2E (Z ) ] - 27riek(z+r)'lk|x'^ 1 ,
r (4.100)

where )+ik(x-£), and the path of integration is taken above

the pole. The Green function can be evaluated from a combination of 

ascending series, a continued fraction, etc. to achieve optimum 

efficiency, as described by Newman (1985).

4.3.2 The forward speed correction

4.3.2.1 BIE-BIE matching

The numerical discretization for the forward speed correction 

is identical to that for the zero-speed problem, but there is only 

one possible matching, i.e. BIE-BIE. Applying the formulation derived 

in Section 3.1 on the joint surface S^, it follows that

*  - I  j (gM  - ds + J -
sjJ (4.101)

where the free surface integral J is defined by equation (4.36) or 

(4.50) as appropriate, over the free surface bounded by S , and only
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involves the zero-speed potentials and the steady potential. 

Following the same procedure in the zero-speed problems, the 

discretized form of the integral expression is expressed as

' Hi ^ -  i Gi i < g )  - * •
(4.102)

where J is the column vector of values of the free surface integral; 

[H^] and [G^] are identical to these given in equation (4.97).

Rearranging equation (4.102), it follows that

<§£) - [F]£ + [D],
~  (4.103)

where

[D] - [G-]*1J,
(4.104)

and [F] is given by equation (4.99). By eliminating the normal 

derivative form the above equation in the inner domain expression, 

the matching is thereby completed.

In the numerical calculation, when the forward speed

correction was required, the BIE-BIE matching was always used for

both the zero-speed solution and the forwad speed correction. One

advantage is that all the matrices involved only need to be evaluated 

once for both zero-speed problem and forward speed correction problem 

because they are identical in the two problems. Once the zero-speed 

potential is solved, the multipole expansion expression is used and 

the coefficients are determined from the values of the zero-speed 

potential on the joint surface Sj. In this way the zero-speed 

potential in the outer domain was calculated analytically and the
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free surface integral was computed efficiently.

It is noted that the steady potential is also required. This 

was first solved by the boundary integral method, using the Rakine 

source and its image above the free surface as the Green function; 

and then the steady potential in the outer domain was expressed 

analytically by the zero frequency asymptote of the multipole 

expansion derived in Section 4.2.

Evaluation of the free surface integral is the major

difficulty in solving the forward speed correction potential. 

Another difficulty in the forward speed correction problem is the 

second derivatives associated with nu for the radiation problem. Both 

difficulties are dealt with in the following two sections.

4.3.2.2 Avoiding the second derivatives 

Three dimensions

In the boundary integral formulation the following integral 

needs to be calculated

| nuG dS (i=l,. . . ,6)
s B
a (4.105)

This integral contains second derivatives of the steady potential 

associated with nu . Because it is the potential itself that is 

usually available in the first place, calculation of m. is very 

difficult. Excessive errors can be introduced, if direct numerical
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methods are applied. It is shown below that this difficult may be 

circumvented by using an integral relation obtained from Stokes 

theorem.

As derived in Appendix E, for a differentiable function f, 

there exists the following identity

By utilizing this integral identity, the necessity of evaluating m̂ . 

can be avoided. The integrand now only contains first derivatives, 

which can be evaluated from shape functions. This integral identity 

was first derived by Ogilvie and Tuck (1969). However, their 

expression has an error in the sign of the line integral. It seems 

that this error has not been recognized publicly.

Special attention is required in applying the integral 

identity to the boundary integral equation for the velocity 

potential, because of the singularity of the Green function. It is 

necessary to discuss the procedure in detail.

In fact, the integral (4.105) exists only in a Cauchy 

principal value sense. It is perhaps more appropriate to rewrite it 

explicitly as the Cauchy principal value integral, that is as the 

integral over the submerged body surface but excluding a small circle 

(3D) S^ about the pole, as shown in Figure 4.4

Jc yi-nf
WSB (4.106)



If the pole happens to be on the free surface, may be defined as

a semi-circle, shown in Figure 4.4. Over the surface S -S the GreenB e
function is differentiable and therefore the integral identity can 

be applied for f=G. Because now the surface is not only bounded

by C , but also by the boundary of S , say C , a more generalW € €
integral identity may be employed. From Appendix E, it can be 

deduced that the following relation exists

J nijG dS = -J n^(W.VG) dS + j) nJS(txn.W) dl + j) n^G(txn.W) dl, 
V s s_-s cT7 cB e B e W e

(4.108)
where t is defined as the direction vector of the curve, satisfying 

the right hand screw rule with the normal on the surface. It can be 

shown that the integral over vanishes as €->0. In fact, (see

Figure 4.4)

j) n^G(txn.W) dl = - ^ dl
C Ce <

2tt
|W|cos(0-0o) edd = 0 (e -*• 0, G “ ^) ,

0 (4.109)

where 0^ is the angle of the steady velocity measured in the local 

polar coordinate system, as shown in Figure 4.4. The second 

expression is derived by approximating the steady velocity and the 

component of the normal at the centre of the circle.

If the pole is on the free surface, the bounds of the above
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integral will be (7r,27r). Similarly,

2 tt

^ n^G(txn.W) dl - - n^|W| J cos(6-0q) “ -2n.JW|sin0Q
C IT

€

“ 2n (txn.W)l (e -► 0, G = j) .
(4.110)

Here Q is used to denote the position of the pole. It should be noted 

that by assuming G “ 1/e as e-*0, it is implied that G is a Rankine

source; if a wave source potential G = 1/r+H is used, the coefficient 

should be doubled because G « 2/e at the pole on the free surface.

Substituting equations (4.109) and (4.110) intp equations

(4.108), it follows that

J nuG dS - -J n^W.VG) dS +

j) n^G(txn.W) dl, (Q below Ŝ ,)

SB SB

C0

PV j- n^G(txn.W) dl + 2n^(txn.W) 

C0 (Q on SF )

Q*

(4.111)
On the mean free surface,

(n^n-k) .W t*-> -> r+ 3 k.Wtxn.W =
7 l-n§

(4.112)

At small forward speed, the steady potential satisfies the "rigid

wall" condition: lc.W - 0. The line integral vanishes, and a much 

simpler identity is obtained
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J  m i G  d s  “  j ru(W.VG) dS

(4.113)

Two dimensions

A similar procedure can be applied to two dimensions, but some 

particular features should be noted. In two dimensions, the 

counterpart to the line integral is now a pair of functions evaluated 

at isolated points. The analysis for three dimensions can be best 

followed by interpreting the two dimensional problem as a piece of 

"chip" of a three dimensional problem in which all variables are 

constant along one axis (see Figure 4.4).

If the pole is located below the free surface, the generalized 

integral identity is obtained in the form of

J nuG dS - -J n^W.VG) dS + n ^ C r . W ) ^  - n.G(r.W) Q
V s, v sc

+ n.G(r.W) „ - n.G(r.W) _ l E l F (4.114)

where P, Q are the upstream and downstream intersection points of the 

body within the free surface; E, F are the end points of the small 

segment whose middle point coincides with the pole, as shown in 

Figure 4.5. In the limit e -*■ 0, the terms at E and F cancel each 

other. Hence

| m ±G dS - -J n^W.VG) dS + n.G(r.W)|p - n.G(r .W) |Q 

SR SRB B (4.115)
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If the pole is on the free surface, say on P, the small 

segment is defined by Figure 4.5. These terms corresponding to

the line integrals in three dimensional problems become

n^G(r.W)

It is observed that as e->0 the term at E may be singular, if the 

steady velocity does not approach zero rapidly. This may occur if the 

forward speed is not small. Although further consideration is 

necessary in general, this does not affect the present study, as 

explained below.

At small forward speed, due to the "rigid wall" condition, it 

is clear in equation (4.115) that there is no contribution from the 

"line integral", if the source point is below the free surface. The 

same is also true for the source point on the free surface, but needs 

to be justified because the Green function is singular in this case. 

Under the "rigid wall" free surface condition and the impermeable 

body surface condition, the steady flow resembles a corner flow 

around the upstream and downstream points P and Q. The complex 

velocity potential of a corner flow is familiar to us, given by (e.g. 

Newman 1977),

F(Z) - Zn (Z-x+iy),

where x y are local coordinates, defined such that the Ox axis is 

parallel to one side of "wall", and the origin is at the corner; 

n=7r/a. with a the interior angle. The velocity is then obtained as

- n.G(r.W) L.
(4.116)



Therefore, the steady velocity is proportional to r11 \  i.e.

|W| - A(«)r11'1 (r-0),

where A(0) is a function of 0. Because for interior corner flow 

(a<n), n-l>0 , it follows that

|G(?.W)n i | ~ A(0)n r11"1!!^ -+ 0 (r->0).

The conclusion is justified. It finally follows that

| nuG dS - -J n^W.VG) dS.

SB SB (4.117)

4.3.2.3 Evaluating the free surface integral in the wave frequency 

expansion

The free surface integral to be calculated is as follows

J - 2ij G(*x + Q) dS - 21(0^)^,

(4.118)

where <j> denotes any of the zero-speed potentials <£.q for j=l,2,...,7;

Q denotes any of the Qj*s defined in equation (4.17); and k is the
2zero-speed wave number, i.e. k=kQ=a>Q /g. Because, as in Section 4.2, 

all variables concerned are zero-speed variables in this sub-section, 

the subscript "0 " is neglected completely for convenience.

For deeply submerged bodies, Sj. is taken to be completely
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submerged. The integration surface S_ is the whole free surface, and 

the integrand is always bounded. For surface piercing bodies, S is
s)

defined as a semi-circle. The integration surface S_ is anr
incomplete free surface bounded by S_. For convenience inJ
computation, the integration domain S_ is subdivided into two 

domains, as shown by Figure 4.3. The partition is made in such a way 

that if we draw two vertical lines across the outer bounds of , 

then the surface Sj will be located within the two lines. Following 

the subdivision, the free surface integral is rewritten in the form 

of

J - 2ij G(*x - iktf + Q) dS + 2i[j G(^x - ik* + Q) dS - ( G ^ ) ^ ] .
SF1 SF2 (4.119)

In the inner surface S ^, the integral is computed numerically, using 

the Gaussian quadrature formula. When the source point is located at 

the intersection of Sj with S ^ ,  the integrand is a logarithmic 

singularity (2D) and the integral is computed from a 

logarithmic-Gaussian quadrature formula. The procedure is similar to 

that used in formating the BIE matrices. On the outer surface f 

the integral is treated analytically in combination with numerical 

integration.

At positive infinity on the free surface, the integrand 

G(<̂ x -ik<£) in the second integral becomes an oscillatory function with 

a constant amplitude. Direct numerical integration is out of 

question. In fact, the terms in the square brackets are defined in a 

limit sense as pointed out in Section 4.1. In the implementation, the 

asymptote of the integrand is separated from the remaining terms of 

the integrand and integrated explicitly. After the extraction of the
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asymptotic solution the integral becomes convergent, but contains a 

slowly decaying and oscillatory term in the integrand. This term is 

evaluated by means of some recurrence relations. The other terms of 

the integral are evaluated numerically. Details are shown below.

The behaviour of the integrand is examined first. From the 

multipole expansion in Section 4.2, the velocity potential on the 

free surface is written as follows

^ - anc_(x) + 2 - [a c (x)+b s (x)],0 0 m-lL m m m m J (4.120)

where a b are complex coefficients and c (x) s (x) are given in m m  m m
the form of

cQ (x) - 2^°^ c o s A x d A  - 2 {Re [ e ^ ^ Z )  ] - *riekf "ik|x| },
(4.121)

c (x) - 2a ^  - 2R e [ f ^ ] .
r'1X (4.122)

/ \ o ® cosmfl a p  ̂ d. * inm / t \
cm (x) " 2a — m 2Re[(F n ) (m-2,3,4...)

r (4.123)

s^(x) - 2aS^n  ̂ + 2ka inAxdx

- 2{Im(^r-) - ka[Im[eZE- (Z) ] - sgn(x)?rekf ik*X *]}»
1X 1 (4.124)

s (x) = 2am = 2Im[(?^ - ) m ], (m-2,3,4...)m m L f-ix
r (4.125)

(f<0, Z-k(f-ix))

The derivative may be obtained by differentiating the series term by 

term. Derivatives of Cq and s^ can be obtained by interchanging the 

order of integration and differentiation. The derivatives of the
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remaining terms can be obtained in a straightforward way. It follows 

that

f!° _ X3x a Sl ’

3cm m / i o o \ta------a m+l’ (*-1.2.3...).

3sl 1 23^ " -[c2-kac1+(ka) c0^

& “ ICm+r  (m-2,3,4...).

(4.126)

(4.127)

(4.128)

(4.129)

The derivative of the potential is then obtained as follows

*x"»[ ' V l + V k“ lt(h)2cO)tj ! ("-1)<- V l SA . l t,)
(4.130)

For numerical purposes, it is necessary to separate "local” terms and 

the "far" field terms of the Green function and of the potential. 

Denoting the "local" terms by the subscript "L" and the "far" field 

terms by the subscript "W", we obtain that

c - gl+ gw , <jS - th+ V  *Wx,
(4.131)

where

zv■E1(Z9)],
(4.132)

Gl= 2Re[e 2E1 (Z2)],

G—  27riekr - ik I x “ , (Z =kr+ik(x-£ ) ) ,
1 L (4.133)

0 - 2aQ Re[eZE1 (Z)] -Zb^a I m ^ E ^ Z ) ]



^ W~"2 ^a0+ b i ikasSn (x ) ] i7rek f _ l k lx ',

^Lx= '2a0 {Im(f ^ ) -kI® [®Ze!(Z) ] )

-2kab.. {Re(^r-)-kRe[eZE1 (Z) ] ) 1 f-ix 1 1 J

« m -1 m -1
+2 2 (m-1) {-a ..Im[— ---- ]+b ,Re[— ---- ]},0 m -1 L/_ . Nm J m -1 L/r. . Nm Jm=2 (f-ix) (f-ix)

^Wx--- 2 (aQsgn(x)+ikab1) k7rekf " ik *x

Let us define

--2ka(b^+ia^),

(Z-k(f-ix))

Am “ 2 [(m-l)bm l -ika a^ ) , (m>l)

Bx — 2 (aQ+ikab1) ,

B — 2[(m-l)a -+ika b ]. (m>l)m m -1 m J v '

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

(4.140)

(4.141)

and introduce the notations f_, fTT to denote the local term and theL W
far field term of ^-ik^, such that 

fL+ fW " *x ' ik^ ‘ (4.142)
Then,

A  A  „ A  A
f = A-C-(x) + B [sn(x) + ikae E-(Z)] + !L [ A c (x)+B s (x) ] ,L I 1 1 1  1 m— Z m m  m m

(4.143)
0 , for x<0 ,

fW
27rkaB-ek^ for x>0 ,

(4.144)
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where

a m -1
c (x) s Re[ am . xm(f-ix)

a m -1
s (x) - Im[—  ----] .

(f-ix)

(4.145)

(4.146)

Introducing the notations JQf J^, ..., we may separate the

oscillatory terms such that

J - 2i(|  G ( ^  - ik0 + Q ) dS + 2i(J0+Jx+J2+J3),

(4.147)FI

where

V  | G Q dS, 
SF2J ,

Jx- J  G,f, dS.
S L LF2

J2- L  V l ds-
F2

J3" J  GLfW dS + J  V w  dS - ^
SF2 SF2

(4.148)

(4.149)

(4.150)

(4.151)
and where h = (G<f>) “ (G <f> ) . S* is the positive half of S* .+<» ' x—+°° W W x— H® F2 r F2

Next, each term is treated in turn in the order of J^, J2 , 

and Jq. It is found that the oscillatory terms J2 and can be

integrated explicitly.

From the expressions for G^ and f^ (both proportional to
- ikxe ) and the fact that the positive half plane of is defined by
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p'< x < ®, it immediately follows that (note: f^=-2ik^2 for x>0)

J  + G w f w  *  - h-H» -  - ( V w V  •
Sf2 (4.152)

To calculate the other integral in J^, let us write the Green

function GT in its integral form

P+«> at(-|x-£|+iD ^t (- | x-^ | - ir)

(4.153)

f+c° t(-|x-£|+iO t(-|x-e|-ir)
°L" 2Re[e *E»<Z*>1 - J0 ( ETIk +  E ^ k  )dt'

Substitution of G^ into the first integral of and interchanging 

the order of integration yields

SF2 0 P'

rtif -tif -t|p'-£|
v (?TIk + Irik >[-2ikV P ' ) iiTIk 1 dt

(p')a(|p'-£|),
(4.154)

where cr(|p'-£|) is defined as

r-K» ^tif ^-tif _-t | p ' |
dt

(4.155)

P+« ti$* -ti$* -11p ' -^ |
«(|p'-€|) - 2ik[ + ) f ^ -----  dt

From contour integration (see Appendix F), a(|p'-£|) can be expressed 

in terms of the exponential integral functions

Z Z -Z *
a(|p'-f|) - 2 - 2Z2e 2E1 (Z2) + [ e ^ ( Z ^  - e ^ ( - Z j )  ] .

(4.156)

where Z^^f+ik|p' -£ | ) ; and * denotes the complex conjugate. If Z^ -+0,



-150-

then a “ 2+iri, since E^(Z£) “ -E^(0+)-7ri - -E^(0+)-wi

To summarize, the explicit form of the integral is obtained

as follows

(4.157)

Substitution of the series form of f^ into and integration

term by term yields the following series expression

B-g0 + E-{A Re.[g ] + B Im.[g ]},2 1°0 m-1 m j m m j °m (4.158)
where

g0-ikj GweZE1 (Z)dS, (Z-k(f-ix)),
SF2 (4.159)

(4.160)

where j is a novel imaginary unit, which satisfies the same algebraic 

rules as the familiar imaginary unit i. The complex function 

remains as a complex function associated with the conventional 

imaginary unit i. gm is defined as a generalised complex function 

associated with the two independent imaginary units i and j . The 

operators Re^ and Inu are defined as taking the real part or 

imaginary part of the following variable with respect to the 

imaginary unit j only. That is to say the imaginary unit i is ignored 

in performing these operators. For example, Rej[l+i-2ij] - 1+i, 

Im.[l+i-2ij] --2i. Similar rules apply for Re^ and Inu.

We further denote the integration of gm on the negative half



surface as and that on the positive half surface as g*. Thus

g +g+ • Recurrence relations can be derived for g and g T From m m m m m

GWx""ikSgn(X'?)GW

and integration by parts, it follows that

(4.161)

r q ' am_1
l - G ------- dxm J W . xm(f-jx)

— L {m -1 f-jx W

f+oo m -1
g - [ G —  ---- dxm J . W , _ . . m Jp' (f-jx)

- j \( am-1 f-jx W

, pq' m -2
H  Gw ,m-ldx) >00 (f-jx)

P+«o m -2
, + ika G —  ----- =-dx},P J ,W . .m-1

v Jp' (f-jx)

That is, two recurrence relations are obtained

(4.162)

(4.163)

To utilize the recurrence relations, it is necessary to evaluate the 

values of g^ and g*, defined by

1 L  f-Jx 4« f-Jx

r+°0 G._ . #.+<o -ikx
g*= [ T-?-dx = -2?rie f f-r- dx.

(4.164)

(4.165)

To calculate these two integrals, the real and imaginary parts of 

(f-jx) ^ are separated and each is expressed in terms of complex
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fractions (f-ix) ^ and (f+ix)

J _  « Ir _ ! _  + J _  + i (_l I  n
f-jx 2 f-ix f-ix i f-ix f+ix

From Appendix F, we have

[
q'eikx kfjT^dx - -ie E^{k(f-iq')),

rq'eikx -kf
J f + I x ^  " ie E1 (-k(f+iq')) ,
GO

P+« -ikx ,
J ^  -  i e  E 1 ^ k ( f ■ i p ' ) ) •
r+<» -ikx
J , f ^ d x "  - l e

It follows that

g“ - |[i(A‘+B^)-j(A^-B‘)] Gw (|q'-e|)

g+ - |[i(A++B+ )+j(A+ -B+ )] Gw (|p'-£|)

(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

(4.171)

where A^- e'k(f+lq')E1 (-k(f+iq')),

Bj[— ek(f'iq')E1 (k(f-iq')),

A+= e “k(f_ip,)E1 (-k(f-ip'))>

B*=-ek(f+ip,)E1 (k(f+ip')).

Particularly, if p' —  q' , then A^*=A*, B^=B*. It is noted that an 

important feature in the coefficients is the linear dependence on G^. 

It is found that the recurrence relations can be simplified into a
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form which is source point (£,rj) independent! Factorizing G^, it 

follows that

5 =  — ‘V t  ) m  ^ " - i k a g9m m -1 f-jq &m-l

for m>l, where

sm EmGW ^ q " ^ ’

h r  sityip'-fi).

and

g“ = |[i(A'+B^)-j (a '-B")

- f[i(A^)+j(A^-B|)]

R e . [g ] - -^-{Im. [ )m ^ ] - ikalm. [ g -]},j m m-1 j f-jq J m-lJ

Im.[g“] --- ^-{Re. [ O2—r— , )m l] -ikaRe. [g" - ] } ,j °mJ m-1 J f-jq J m-1

R e . [ g+ ] = — ^-{Im. [ (-=-4-, )m -ikalm. [g+ -]},J &m J m-1 J f-JP J m-lJ

Im.[g+ ] - —^y(Re.[(- f ,)m -ikaRe.[g+ -]}. j &m J m-1 J f-JP J m-lJ

The evaluation of g for m-1,2,3... is completed.m

(4.172)

(4.173)

(4.174)

(4.175)

(4.176)

For numerical purposes, it is necessary to separate the real 

imaginary part with respect to j . It follows that

(4.177) 

and

(4.178)

(4.179)

(4.180)

(4.181)

The remaining gn term can be evaluated by expressing the
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exponential integral function in an integral form and changing the 

order of integration. From

eZE1 (Z)

i»+<® t(x+if)
6 dt, (x<0 ) ,JJ 0

rJo
t+ik

r-h» -t(x+if)
■ ^ i k — dCi (x>0)’

(4.182) 

it follows that

gp-ik|q GweZE1 (Z)dx - 2*k ek!"|”f ^ d t | qetX elk<X' ° d x

fJ 0
Gw (|q'-«|) [1 - k(f-iq') ek(f'iq')E1 (k(f-iq'))],

t(q'+if) 
'ikGW ( 1q ''*1)Jn (f+ik)(f+ik)dt

(4.183)

>+°0 „ , _ r® -tif <.+«

P ‘

-t(p'+if)

g0"ikJ (V Z£i(z)dx " 2*k ekr£^ik dtJ ?e’^ . e - i k ^ - ^ d x
f» -t(p +i£;

'ikGw(lP,-*l)Jo (f-ik)(f+lk)dt

- k„(|p'-«|) [ek(f'ip,)E (k(f-ip')) - e‘k(f'ip,)E (-k(f-ip'))].
(4.184)

Here again, g^ and g* are proportional to G^. Hence, we extend the 

definition (4.174) and (4.175) to m=-0 too, i.e.

s ' -  l-k(f-iq')ek(f'iq,)E (k(f-iq')), 
u (4.185)

> -  i[ek(f-lp,)E (Mf-dp')) - e'k(f'ip,)E (-k(f-ip'))]. 
u z 1 (4.186)

To summarize, it has been shown that, apart from a localized 

domain, the oscillatory non-decaying term (J^) and the oscillatory
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slowly decaying (J2 ) term of the free surface integral can be 

extracted out and integrated explicitly. The remaining term is 

quite smooth and is decaying fast. Numerical integration is 

satisfactory. The other term Jq is oscillatory, but decaying very 

rapidly under the double-body approximation for the steady potential. 

Therefore, numerical integration is also found to be satisfactory, 

although some analytical integration is possible.

4.3.2.4 Evaluating the free surface integral in the encounter 

frequency expansion

The evaluation of the free surface integral in the expansion 

at encounter frequency follows closely that of the expansion at wave 

frequency. The integral to be calculated is

J - 2if G U  + Q) dS - i[(G*) -(G*) 1,J X -H° -00
Fr (4.187)

As before, we may split the integral into following components

x + Q ) dS + 2i(jQ-hJ^+J2+J.j) ,

(4.188) 

where

2 i I G(<f> 

SF1

J - [ G Q dS, 
SF2 (4.189)
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Jr  J  V L x dS'
F2 (4.190)

j2- L  v ^ ds-
F2 (4.191)

J3- L  V w x dS + L  V w x dS - >
F2 F2 (4.19

and where h ^ -  W ) x_^=- h..- W )  - < V h V - « -

Following a similar analysis to the wave frequency expansion, we 

obtain

J3" f ( V q,)[Q<i<i'-«i>-'Vlq'-£i)] - Vp')[a(iP'-?i)+ViP'-£i>]>.
(4.193)

where a(X) (X>0) is defined as before; and

J0- A-Re.[g.] + B-Im.[gn ] + S.(A Re.[g ] + B Im.[g ]},2 1 j L&0 J 1 j L&0 J m-1 m j L&m J m j l&m J ^  19b)

where

A^ - -2ka b - , A - 2(m-1) b -,1 1 m m -1

Bi  2 an ’ B_n — 2 (m-l)a1 U m m -1

(4.195)

(4.196)

and g^ are defined as before except g^, which is now redefined as

g0—  kf GHeZEx(Z)dS. (Z-k(f-jx)).
BF2 (4.197)

2In this sub-section k is defined as k-w /g, with co the frequency of 

encounter or the frequency of forced oscillation. g^ can be 

integrated in a similar way to the g^ in the wave frequency
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expansion. Utilizing the integral expression (4.182) and interchanging 

the order of integration, we obtain

gp—  k|q GweZE1(Z)dx - 2?rlkek!’|” elk(x‘^ d x

f" t(q’+jf)
- k G w (|q'-a)J (f+jk)(f+lk)dt,

(4.198)

gt_.k r*"G eZE (Z)dx - 2,rikekrr ^ fdtf+I-tX.e-ik(x-0 dx
0 Jp - w 1 Jo6- ^  Jp-

f00 p-t(P '+jf)
~ ‘kGW (|P '-f I)j (f-jk )(f+ik)dt’

(4.199)

Here again, g^ and g* are proportional to G^. Hence, we apply the 

definition (4.174) and (4.175) here too. The remaining integrals are 

familiar. After separating the real and imaginary part with respect 

to j each term can be integrated explicitly

g0 “ 2 ^ A0+B(P ' ^ A 0 "B0 ^  ’

S0 " 2 ti(A0+B0 )+^ (A0 'B0 ^  ’

where

Aq- |[ek(f+lq,)E1 (k(f+iq')) - e‘k(f+lq')E1(-k(f+iq'))] .

B'= l-k(f-iq')ek(f'iq')E1 (k(f-iq')).

Aq- i (ek(f'ip')E1 (k(f-ip')) - e'k(f'lp')E1 (-k(f-ip'))],

Bq= l-k(f+ip')ek(f+lp')E1 (k(f+ip-)).

(4.200)

(4.201)
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If p'=-q', then A q=Aq , Bq=Bq . Again, the remaining terms J q , can 

be integrated satisfactorily by numerical integration.

4.4 Discussion

The procedure presented in Section 4.1 is not very rigorous 

from a mathematical point of view. The expansion for the velocity 

potential into a zero-speed solution and a forward speed correction 

term is not appropriate at infinity, because the forward speed not 

only modifies the magnitude of the velocity potential, but also 

modifies the period in space. This can be clearly shown by 

considering the simple example of expanding sin(l+e)x at e=0. From a 

Taylor expansion,

2sin(l+c)x “ sinx + cx cosx + 0 (e ).

The expansion is not uniformly convergent, because it is not valid at 

x-*». The velocity potential for the forward speed problem is of the 

same nature as the above simple example. Therefore, strictly 

speaking, a matched expansion may be necessary in the small forward 

speed theory. However, it can be shown that although the intermediate 

procedures in Section 4.1 may not appear to be very rigorous, the 

final expressions for the velocity potential are precise, provided 

the formulation is not intended to apply in the far field.

Let us consider the two dimensional, encounter frequency 

expansion as an example. In this section, the notations of <f>y 

and b y  are used in the same meaning as in Section 4.1. From Green's
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second identity and the boundary conditions, it follows that

SB (4.202)
where

J (^) - J G(2i— ^+2iQ ) dS - J 2 ik G ^ d S  + J 2ik G^dS.

Sf sr  ' sr (4.203)

G is the pulsating source potential. Q is defined similarly to

equation (4.17), except 4 there being replaced by <f>y In

particular, for radiation potentials

Q - + h  i .
3 (4.204)

The expressions (4.202) and (4.203) are valid in the entire

fluid domain. Let us now carry out a perturbation analysis. In the

fluid domain around the body, <f> can be expanded into a series

according the the small parameter r, such that +
20(r ). Because

_ i* d<f>.« 3G
* j 0 “  a  J ^  d S '

SB
(4.205)

application of the expansion to equation (4.202) leads to

SB
a (4.206)

The question now is whether the potential <f>̂ in the functional J(^j) 

can be replaced by It Is shown below that the answer is
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positive .

Let the local disturbance be denoted by the subscript "L" and 

the far field expression by the subscript "W", i.e.

<f>4y+ G - G_ + G ;J JL JW L W (4 207)

and define ^jOW’ ^jlL an(* ^jlW *"n t*ie s^m ^̂ -ar way* According to
this definition, and G^ are given by equation (4.132) and

(4.133); and and ^jOW are identical to <j>^ and <j>̂ which are

defined by equations (4.134) and (4.135) in Section 4.3.2.3.

The exact forms of 6.- and d>.„ are not known, but from theJL *jW
asymptotic analysis (see Appendix B) , it is known that behaves as 

follows

+ k2 (z-ix)
A e as x>0,

k4 (z+ix)
- A e , as x<0,

J" (4.208)

where k2 =» k(l+2r), k^ — k(l-2r); A- are the wave amplitudes at x-*±«,

which can be regarded as the two dimensional Kochin functions. In the

far field, because • t îe vertical integration over S

can be performed explicitly. It follows that

J - 21 J G(*jx4Q) dS - + 1<VjW>- + 0(0 •
SF
* (4.209)

For convenience, we subdivide the free surface into Sp^ and

S n in the same manner described in Section 4.3, and focus our F2

+1 
Di
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attention on the contribution from Sp^ is defined slightly

different here from the S_. defined in Section 4.3 in that theFI
present inner side is bounded by S_, whereas that in Section 4.3 isD
bounded by S ; but S 0 may be regarded just the same here and in J r z
Section 4.3. Separating the local terms and far field terms, it 

follows that

J - 21 j G(tfjx+<!) dS + 21 J  G(*jLx+Q) dS+ 21 J  G ^ jWx dS

SF1 SF2 SF2
(IQ) (Ix) <I2)

+ 2i[ J dS - ( G , , ^ , , ) + (Gt> 4„) _ ].jWx W jW +00 v W jW -oo
s.F2

(I3)
(4.210)

We may group these terms and denote each group as Iq , 1^, I2 , 

respectively, as highlighted in the brackets above.

Because Sp^ is localized to the body, the expansion is

applicable and the <j>̂ in the Iq term can be simply approximated by

<b.~. For the I, term, because the function d>.T +Q is a local jO 1 jLx
disturbance function, the expansion is also applicable. Therefore, we 

may write the following equations

I0- 2i J  G ( ^ 0x+Qq) dS + 0 (r),

SF1 (4.211)V  21 J cwjOL«4V  dS + 0(r)-
Sf2 (4.212)

where Qq denotes Q(^j q ) which is identical to defined in equation 

(4.17).
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The other two terms, i.e. I2 and 1^ can be integrated 

explicitly. The term I2 can be evaluated in a similar way to 

evaluating in Section 4.3.2.3. Utilizing the integral form of G^ 

in equation (4.153) and interchanging the order of integration in I2 , 

we obtain

0 sF2
p+® ti$* -tie -t:|q'-£l -t|p'-£l

2 1  J Q  (t+ik + t-ik )[lk4^jW(q>) t+ik4 ik2^jW(p,) t+ik2  ̂ dt 

i[^jw(q')a4 (|q»-e|) - *jw(p')a£(|p'-*|)],
(4.213)

where a.(X) is defined by

P+<o tie -tie -tx
“j (X) “ 2ikj J 0  +  t d k  > Irik, < * * »  •

(4.214)

a.(X) can be expressed in terms of exponential integrals as follows

2k, r+<» e-t(x-ir) e-t(x-iofv . pi

“j (X) “ kT-k J ( t+ik t+IE * dtJ 0 j
2k f+>» -t(X+if) -t(X+if)

+ k.+k L  ( t d k  t+ilT J dt

1+9 r ^.s(r*t^O
“ [ ® E!(k (r+iX)) - e J E1 (kj (e+iX)) ]

l+9r k (r iXI -k (e-iX)
+ T ^ r  [ e E1 (k(f-iX)) - e J E (-k (f-iX)) ],

1±r 1 1 J (4.215)

where the "+" sign is for j-2 and the sign is for j-4. Since we 

are only intending to apply the expansion in the fluid domain around
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the body, that is , , X are finite values, the exponential integral

of the kj terms may be expanded into a Taylor series at k. From

y E , ( Z )  - eZE (Z) - i
(4.216)

it immediately follows that with Z2 =k((*+iX)

Z9 Z9 "Z9 *Oj(X) - 2 - 2Z2e E1 (Z2) + [ e E ^ )  - e ^ ( - Z ^  ] + 0 (r),
(4.217)

which is actually identical to the a(X) defined by equation (4.156). 

Furthermore, because p' and q' are finite values, there exist

V p , ) " V (p,)+ 0 ( 0 • V q , ) " V (q,) + 0(r)-

Hence,

Z2 "  i [ 4 W q ' ) ° ( | q ' - £ l )  - *10W<P')«(|P'-*I)] + 0(r) .
Z JUW JUW (4.218)

Following the procedures from equation (4.213) to equation (4.218) in 

the reverse order, we conclude that I2 can be expressed as follows

r2 - 2 1 J V 30 W x dS + O <T)

F2 (4.219)

which is equivalent to the simple replacement of by

equation (4.210).

The I^ term can be integrated explicitly as well. From the 

expressions (4.132) and (4.208) for and respectively, it

follows that



Although the forward speed expansion is not applicable to the content 

in the first pair of square brackets in the second equation, it can, 

however, be simply omitted because it is of order 0 (r) . The final

expression is, again, a local function and the forward speed 

expansion can be applied. It follows that

(4.221)X3 " ^  j O w V  ‘ (GW ^ j O w V ^  + ° (r)*

By reversing the procedures for I^, it follows that

I3 - 2i[ J Gw^j0Wx dS - (Gy^jQy)^ + Ĝw^jOW^-oo

F2 (4.222)

which again is equivalent to replacing <f>^ by equation

(4.210).

Finally, from equations (4.210) to (4.212), (4.219) and

(4.222), it can be concluded that

J  -  2 1  J  G « J o.'tV  d s  - +  +  0 ( 0 ’
r (4.223)

which justifies the small forward speed perturbation formulation in 

Section 4.1. The same procedures can be directly applied to the two
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dimensional wave frequency expansion, and the same conclusion can be 

achieved. From the above analysis, it is seen that although the small 

forward speed perturbation analysis may not be appropriate in the far 

field, the integral expression can be perturbed as a whole. The final 

perturbation formulations presented in Section 4.1 are precise, 

although a simplified but less rigorous approach is taken for the 

intermediate procedures becuase the approach is straightforward. The 

same conclusion is also expected to hold for three dimensional 

motions.
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Chap ter 5

DYNAMICS OF RIGID BODIES

In this chapter, the formulations of forces of the zeroth 

order, first order and second order; and the equations of motions are 

examined at small forward speed.

5.1 Forces

For a body moving through waves at forward speed, there are 

several components of forces: the buoyancy force and hydro-restoring 

forces due to the hydro-static pressure; the steady resistance and 

lift force associated with a body moving steadily in otherwise calm 

water; and the hydrodynamic forces associated with waves incident 

upon the body and the oscillatory motion of the body. Other forces, 

such as the viscous force and the wind force, are not considered 

here.

The buoyancy and the hydro-restoring forces are the most 

elementary topics. They are fully understood and the formulations 

will be recovered in the process of deriving hydrodynamic forces. The 

resistance and the lift force are of great concern in classical ship 

hydrodynamics. For small forward speed motions where the 

"double-body" flow approximation is acceptable, there will be no 

resistance.

The hydrodynamic forces due to unsteady motions are the major 

concern here. For samll amplitude waves, the hydrodynamic forces can 

be expressed in terms of the first order forces, the second order
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forces, and so on. The formulations of the first order forces are 

well established under either zero or non-zero forward speed 

conditions. The second order forces have been extensively studied 

at zero forward speed, but formulations are frequently different from 

one to another, as pointed out by Hung and Eatock Taylor (1988). The 

major source of errors is due to the complexity of the problem, 

particularly the multiple choice of the reference point for the 

moment. Second order forces at non-zero forward speed have benn far 

less extensively studied. It will not be surprising if more 

diversity appears in the future.

The present study is restricted to small forward speed. The 

presentation follows closely the procedures outlined by Ogilvie 

(1983) for zero forward speed problems.

5.1.1 General

To derive the force up to the second order, it is necessary 

first to find the coordinate transformation between Oxyz and O'x'y'z' 

up to the second order. Following the conventions of equation (3.20), 

we make some additional definitions to represent the components of 

the first order and second order responses:

the first order displacement;

the second order displacement;

the first order displacement;

the second order displacement;



where as before T denotes the transpose.

r m _  • — ►The two position vectors x and x' are related by a linear 

transformation

x'= D(x-|),
(5.1)

-* -> T-+x = J + D x' .
(5.2)

Twhere D is a 3x3 coordinate transformation matrix and D is its

transpose. For such matrices, the transpose is identical to the 
T -1inverse, i.e. D =D . In principle, D could be defined by a single

rotation of a coordinate system about a certain axis. However, that

axis is constantly changing in time so we must use a known reference 

frame. In most textbooks, Euler angles are usually used to define the 

orientation of a body; but in ship hydrodynamics it is conventional 

to use three angles with respect to the three Cartesian axes, i.e

roll, pitch and yaw respectively.

There is insufficient data to determine the transformation 

matrix if only the magnitudes of the three rotations are given. In 

such circumstances, more than one answer is possible because of the 

lack of commutativity in rotations. For example, if A, B denote two 

rotational transformation matrices, then AB does not equal BA. 

Therefore, orders of rotations must be defined as well as magnitudes. 

Here, following Ogilvie (1983), we take roll, pitch and yaw in turn. 

Let A, B and C denote the coordinate transformation matrices of roll, 

pitch and yaw respectively, then
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1
0
0

cos£,
0

sin£,

cos^4 sin^4 
-sin^4 cos£4

0 -sin£,
1 0
0 cos£

(5.3)

5 J (5.4)
cos^ 6 sin£( 
-sin£, cos£

The new position vector is obtained form x'— CBAx. Hence, D
(5.5) 
CBA, or

cos^cos^.J o

-cos^5sin^ 6

cos^sin^g sin£4 sin£ 6 
+sin£4sin£,.cos£g -cos£4sin£,.cos£g

cos£.cos£, 4 6 sin^4cos^g

sin£,

- s in^4s in£ s in£ ̂ + cos ^ s  in£ s in£ ̂

cos|4c o s ^-sin^4cos| 5
(5.6)

For small rotations, this can be approximated by

D

1 -
1 2  2 
* « 5 * 6 > «6 + V 5

1 2  2 
1 ■ I < V V «4 + «5«6

1 2  2 
1 • i < V V

+ 0 (c)

(5.7)

Recall that e is the small perturbation parameter defined in Section 

3.1.3. From equations (5.2) and (5.7), it follows that

+ | + Oxx' + e Hx' + 0(c ),
(5.8)

where



(5.9)
The translational displacement £ is irrelevant in the transformation

of the normal vectors. Hence
-► -► -> 2 3n — n ' + Qxn' + e Hn' + 0 ( e ).

(5.10)

From equations (5.8) and (5.10), it can be shown that

xxn - x'xn' + £xn' + fix(xxn') + £x(ftxn') + c^H(xxn') + O(e^).
(5.11)

Details may be found in Appendix G.

Having found the relations for coordinate transformation, we are 

now ready to derive expressions of the force and moment. Up to order 

O(F^) the total fluid pressure is given by

P - -p( gz + $ + W.V$ + ) + 0(F2).
Z 1 n (5.12)

The fluid force F and the moment M upon the body can be found from

integration of pressure over the instantaneous body surface Sq

IF - | Pn dS, 
S
° (5.13)

a - J P(xxn) dS.

Sq° (5.14)

To carry out computation it is desirable to transfer the integrals 

over Sq to integrals over the mean wetted body surface at
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equilibrium. To ensure there is no loss of consistence, approximation 

will be pursued to the same degree as those already made. The same 

assumptions will be utilized: the steady velocity of the fluid and 

its derivatives are of order 0 (1 ); and the unsteady oscillatory 

motions of the fluid and the body are small, i.e. of order 0 (e).

If only the first order hydrodynamic force and moment are to 

be calculated, equations (5.13) and (5.14) can be evaluated directly 

over S , which is defined before as the mean body surface confinedD

below z=ij. The difference arising from the transformation would be a 

higher order quantity.

The difference must be taken into account where the second 

order force and moment are concerned. The same is also necessary if 

the first order hydro-restoring force and moment are to be 

calculated. Two adjustments are required: (a) the area of the mean 

body surface is amended to be equal to the area of the wetted Sq ; 

(b) the pressure and the normal vector on Sq are expressed by

values on the mean body surface from a Taylor expansion. For 

convenience, a point on the instantaneous body surface Sq at time t 

is called the mapping of the same point when the body is at its 

equilibrium position. Similarly, the mapping of a line is referred to 

accordingly. With reference to Figure 5.1, the following surfaces are 

defined:

S^: the surface on the instantaneous body surface below the

mapping of z=»/ at equilibrium,

ASq: the surface on the instantaneous body surface between z=rj 

and the mapping of z—rj at equilibrium, i.e. Sq-Sq,



ASg*. the surface on the body at equilibrium between z = t] and 

the mapping of z=ij on the instantaneous body surface.

Relations between areas of these surfaces are S =S' , AS “AS,..B U B (J

Without approximation the force can be re-written in the form

of

J Pn dS.

so+ASo (5.15)

The displacement of a point on S_ from its mapping point on S +AS isU B B
given by (cf. Ogilvie 1983)

a - x S ' X | S +AS ~ (£ + ^ x  + c 3x ) |s +ASr + 0(e U B B B B
(5.16)

and the normal vector is expressed as

-+1 2 -► i 3n - (n + Oxn + e Hn) + 0(e ).
I 0 “ I B B

From a Taylor series, the pressure is expanded to

(5.17)

P =- P + a VP
ls0 Isb+asb sb+asb

(5.18)

For small forward speed the leading order of the total pressure is

the hydrostatic pressure. This term does not have any effect after

the second term in the Taylor series. Thus the third term is of
3order 0(e ) for small forward speed and is to be omitted. (If the 

forward speed is not small but the steady body potential is small,

e.g. a slender ship in longitudinal motion, the same conclusion may
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1 —► —► 2also hold.) In general, a third term yj-(a.V) P should be included, 

should be included.

The integral over Sq '+ASq can be transferred to an integral 

over SB+ASfi,

F - (P + a. VP) (n + Qxn + e2Hn ) dS + 0(e3)

sb+asb

—► -► —► 9 3F + flxF + e HF + 0(e ) , a a — a
(5.19)

with

Fa - J (P + a.VP)n dS.
SR+ASR (5.20)

The second equation of (5.19) is obtained by taking constants out of 

the integrals.

The integral over AS_ can be simplified to a line integral.D
Over the supplementary surface the hydrostatic pressure degenerates 

to a first order quantity. Hence, for small forward speed the total 

pressure is of first order. By definition the lower bound of this

supplementary surface is z-r;. The upper bound is the mapping of z=~r}
so

on S , which can be found from reverse rotations and translations. B
From

- (x + ? + Sxx) I + 0 (e ),
b0 1 B B

2 ,
),

(5.21)

(cf. equation (5.8)) taking the z-axis component on the free surface 

yields
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»7(x,y,t)| - z|s s + €(£3]+ ^41y - £51x )|s +AS + 0 (e )
U D D D D

(5.22)

Strictly speaking, the coordinates x and y appearing on the left hand

side denote different values from those appearing on the right hand

side, and the relations can be found from the x-axis and y-axis

components of equation (5.21). However, since 17 = er^ + ... is of

order 0 (e) the resulting difference on r} is of higher order

magnitude. The left hand side can be evaluated on S +AS just as
a u

well. The upper bound of ASn is found asJ5

Z - € [*?i_ (f + £4]y - + °(c2)-
(5.23)

Over ASg an elementary surface is dS“dldz//l-n§ with dl taken on z*~rj. 

The denominator is used to account for the angle of the body as it 

penetrates the free surface. In Ogilvie's (1983) derivation the body 

is assumed perpendicular to the mean free surface. In that case, n^ — 

0 and the denominator becomes one.

From (5.23), the integration over the supplementary surface 

can be reduced to a line integral

J
B

c [*?!" (£31 + ^41^ ‘ ^51X ^

(P + a.VP)n dS
AS

-/> { = =  f Igz + ‘[®lt+ W.V* + g<£ + « y - «51x)]) dz
, Vl-n2 J

2 1 X 2 n ... ^ 3.
« F g } ^ 1 / = dl + 0(£ >•

rJ yl-nl 
W

(5.24)
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where is the mean water line z=»;«0 ; rj ^ is the first order

relative surface elevation, given by 

"HI" ”r (l3i + h i ?  - «51X) -
(5.25)

In the derivation of equation (5.24) the condition that the steady

surface elevation in the steady flow field is negligible, i.e. rj=0, 

is utilized. In general if the body has a significant forward speed, 

the free surface elevation can not be neglected and equation (5.24) 

will appear in a far more complicated form. For example, the steady 

1 -► -+ 2pressure ) must be included and the second order terms in

the upper bound of the integral must be found.

To evaluate the integrals over S_ a systematic approach isD
required. Following the convention of perturbation theory, we shall

express all quantities in the form of ? - .... Of

course, for some quantities such as the unsteady response of the 

body, the zeroth order quantities are zero. After ordering, we have

F(1) = F (̂  + F (J \  F (2) - F (2) + F (2) + F(2) + F (2),a aD aS a aD aE aS aT
(5.26)

where the notations are defined by

J  ' < 0 ) ”| P xw/n dS;

SB (5.27)

?<£>- | P (1)Z dS, ?<J>- | ( l ^ + O ^ x x ) . ^ 0^  dS;
SD S
B B (5.28)

F<2) = J P(2)n dS, F^2)- J (f(2)+Q(2)xx).VP(0)n dS,
SR SBB 15 (5.29)
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aE ‘

?<2>aT

I (1) -*(1) -+■ -*■ (1 )-+
( C  +0 'xx).VPv ;n dS + F s f

2 n
"r i  " ■

Jw
7l-n§

| (Hx).VP(0)n dS;

and where

(5.30)

(5.31)

P (0) -

,(D
P " -P^it + W -W lt>

, (2 )P x“' - -p(®2t + W-V$2t + i v ^ . V ^ ) ,

(5.32)

(5.33)

(5.34)

f u + «51Z • ^61y
-*(1) -*(1) “►(l)+ n< ^ xx . ^21 + «61X - f41Z

. ^31
+ ?41y • f51X .

-*■(2 ) -+(2) ->(2 ) -► -►'xx + Hx

(5.35)

^12 + ?52z ^62y ’

r 1 2  2 -i
-t(4 +4 > x

^22 + (62X «42Z + •I(f41+«61)y + *51f41X
^32 + ?42y - ?52x '2(̂ 41+^51)Z + ?61?51y + ?61^41X

The hydrostatic pressure dependent terms can be integrated 

explicitly. For this purpose some hydrostatic identities are found 

useful:

J n ds - £ , J ikjdS - etV ,
SB SB

with the CENTRE OF FLOTATION defined by

Xf - J L  J x dxdy, yf ^  

sw
- k  1

y dxdy,

W

(i-1,2,3)

(5.36)

zf - 0 ,

(5.37)
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where is the water plane of the body and is the area of the 

water plane; V is the volume of the submerged portion of the body. 

These identities can be verified from certain Gaussian theorems.

Utilizing these identities, we obtain 

F<0) - pgVk,
(5.38)

?is) - - «  J «3r+ - ?5rx)" dS
SB

" ~^®^W^3r + ^4r^f ~ ^5rxf ^  " ' £4rJ)> (r=l>2)
(5.39) 

2 2
-*•(2 ) f ^41+^51 -*•
FaT J < - - 2 + *61*51? + *61*U1̂  dS

S,B
2 2 

r ^ 4 1 +^51.
/>g[-i!41£61V " ^51^61V + k( 2 V+^61^5l ^ f ^ 6 1 ^ 4 1 ^ ^

(5.40)

Ordering equation (5.19) yields

(5.41)

(5.42)
^ x F ^  +HF<°>.

a ~ a (5.43)

Substituting equations (5.38) to (5.40), we obtain

5 (0)
a >

F(1) -F<X> + 5<1>x f <°> ,a a

/̂NCM

-  ?<2) a + n(2>xF<°> + a

F(0) - pgv£,
(5.44)



2 ) -► 

+ Fs - ' « \ * 6 1 (*41xf + *51yf)k’ (5.46)

where is defined as the first order hydrodynamic force, given by

the integral in equation (5.45); and rj _ is given by equation (5.25).K 1
The first order and the second order hydro-restoring forces are given

Comparison with Hung's (1988) zero-speed formulation shows that the 

last two terms in (5.46) are missing in his formulation. One of these 

two terms is due to the second order response, which is assumed 

eliminated by some external force in Hung's analysis. The other term, 

i.e. the interaction among the first order rotations, comes from the

by

S aS
(r) _ J(r)

(5.47)
or

FS " _pgAW ( ^3r + ^4ryf ' ^5rXf )k* (r-1 ,2 )

(5.48)
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(0)integration of (Hx).VP . The present fomula agrees with that of 

Ogilvie (1983). In comparison with Ogilvie's formula, it should be 

noted

that a cancellation between the term and the part of thel)
I f  2 -*water line integral -^pg (I) n ^1 *-s utilized in

CW
Ogilvie's formula, where the body is assumed "wall-sided” (n^=0).

Let us now turn our attention to the moment. Similarly to the 

force, the moment (5.14) can be equivalently written as follows

M -  | P(xxn) dS.

S0+AS0 (5.49)

This is can be transferred into an integral over S_+AS_ from theB B
Taylor series (5.11) and (5.18) of the integrand,

M - J (P + a.VP)[xxn + Ox(xxn) + ^x(n+Oxn) + e^H(xxn)] dS

sb+asb

M + OxM + e HM + ?xF + 0(e), 
a a ~ a (5.50)

with

(P + a.VP)(xxn) dS.

s r+a s r (5.51)

The second equation of (5.50) is obtained by taking constants out of 

the integrals. The force F is given by equations (5.44) to (5.46) and 

it only needs to be evaluated up to first order because £ is also 

small.
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The integral for the moment now reduces to an integral of M .cL
Over the supplementary surface the hydrostatic pressure degenerates 

to a first order quantity, and so does the total pressure for small 

forward speed. Similarly to equation (5.24), we obtain

J (P + a.VP)(xxn) dS - e‘
AS,

£  S S _ d l  + 0 ( € 3 ) .
yi-n§

W
(5.52)

Ordering the moment expression (5.50) yields

-3<i> + 0 W ,a aD aS

with the notations defined by

a aD aE aS aT ’
(5.53)

| P (0 )(xxn) dS;

B

J P(1) (xxn) dS,
B

(5.54)

((Vi/+fiVi/xx).VP'v/(xxn) dS;^ ( 0 )

(5.55)

J P v w  (xxn) dS, I (£v‘''+Ox w xx) .VPv%'/(xxn) dS,;(2)_ r »(2)
aD

S,

;(2 )_ T ,t(2 ) ^ ( 2 ).-N -,(0 ) 
aS J

B (5.56)

| (?(1 )+Q(1)xx) .VP(1 )(xxn) dS + 2 xxn ,, 
"R1 ----  d1'J  l-n§

B W

M(2)aT VP(0)(xxn) dS

B

(5.57)

(5.58)

Again, hydrostatic pressure dependent terms can be integrated 

explicitly. We obtain

M<0) - pgV
yb
■*b

(5.59)
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where

M (r)
aS Pg | (l3r+yC4r-x^5r)(xxn) dS

B

-pg Jvx[J(|3r+y|4r -x|5r)]dV + pg |(C3r+y^4r-x|5r) 

v sw

dS

^4rZb "yf^3rAW‘^4rS22+^5rS21
PgV *5rZb + Pg Xf^3rAW+^4rS2l‘^5rSll

/*4rV*5ryb 0
, (r=l,2 )

(5.60)

*s>- J
m

•f(*41+*51)z + *61?51y + «61?41x] <XX"} dS

-PS J  Vx{x[ "2 ^ 4 i+^5i)z + ^61^51y + ^61^41X ^  dV
V

I+ pg I ^ 61^51y + ^61^41x>(xxn) ds
W

^61^51Zb + 2yb (̂ 41+^51) ‘^51S22 " ^41S12
PgV '2Xb (̂ 41+^51) " Zb^61^41 + '«*61 ^51S21 + ^41S11

yb^61^41 ' *^61^51 0

(5.61)

(xb ,yb ,zb ) is the CENTRE OF BUOYANCY, defined by

Xh - | | x dV, yb - i | y dV, zb - | j z dV, 
V V V (5.62)

and s.. are the SECOND MOMENT of the water plane area, defined by
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- J x iXj ds. (1 ,j— 1 ,2 )

(5.63)

These are conventional definitions as frequently used in naval 

architecture. In deriving equation (5.61), some Gaussian theorems 

have been used to transform integrals over the surface S into volumeD
integrals plus integrals over the water plane area.

Ordering equation (5.50) leads

-►(0 ) “*(0 ) 
a (5.64)

(5.65)

m<2> - M<2> ♦ n (2)xM<0) + ?<2 >XF(0>

“*■(1 ) -*(1) "►(1 ) "*(1 ) “*■ + 'x*r ' + c xf^ ' + hma a - a
(0)

(5.66)

Substitution of equations (5.59), (5.60) and (5.61) yields

M (0) - pgV
yb

*b
0

(5.67)

M (1) -p | ($lt + W.V$1 )(xxn) dS + M 

SB

(1)
S

(5.68)

M (2) \ 2 xxn ...
»R1 = =  dl

J l-n§
W
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JP | ($2t + + 2V$l ,V$l ^ xxn  ̂ dS
'B

j <?<'> ;(1).p | U ’ '+A xx) .V($lt+W.V$1) (xxn) dS

+ Q ^ x M ^  + ? (1 )xf£ 

;(2 )

(1 )

+ M

+ P gv
r 2 (^41+^61)yb'^51^41Xb 

'l(?51+f61)xb

f* V

'^61^31Xf"^21^31+^41yf‘̂ 51Xf)
'^61^31yf"^11^31+^41yf-̂ 51Xf)

+ Pg

f(D

^61(^51Sll“2^41S12"^51S22)

^61(^41S11"2^51S21'^41S22)

^41^51(S22"Sll)+(^4l‘^51)
(5.69)

where is defined as the first order hydrodynamic moment, given

by the integral in equation (5.68); the first order and the second 

order hydro-restoring moments are given by

or
M <r> -M<r> + n<r>xM<°> + ?<r>xF<0\  (r-1,2)aS a a (5.70)

^2r+Xb^6r"Zb^4r ‘yf^3rAW'^4rS22+^5rS21
■♦(r)Mg = pgV ”^lr+yb^6r"Zb^5r + Pg xf^3rAW+^4rS2l'^5rSll

0 0
(5.71)
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The terms proportional to pgV are due to buoyancy. For freely

floating bodies, these terms cancel with the body weight moment,

except the terms associated with z, . The last four terms in equationb
(5.69) are not given in Ogilvie (1983). Otherwise, the present 

formula is identical to that of Ogilvie (1983), under the condition 

U«0.

5.1.2 Added mass and radiation damping

For simple harmonic motion, the time dependence of the first

order hydrodynamic force (5.45) and the first order hydrodynamic

moment (5.68) can be factorised. The components of the force that are 

associated with the radiation potentials can be more convenientely 

described in terms of added mass and radiation damping, defined by 

(Newman 1978)

r .. — w^a.. - iwb..i-j ij ij

PU)1\ (^j'w5 ' ^ j )ni dS’s B
a (5.72)

for i,j—1,2,...,6 . The added mass coefficients a^. and the radiation 

damping coefficients b ^  correspond to the force components in phase 

with the acceleration and with the velocity respectively. These 

coefficients are real numbers, and are frequency dependent. If we 

let be defined as the complex amplitude of the first order motion 

of the body: ^=-Re[£je1Wt], together with equation (5.72), the six

components of the first order hydrodynamic force in radiation
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problems then take the form

F^ (t) - R e [ 2 £.r . . e ] .
1 4.1 J (5.73)

In accordance with the small forward speed perturbation 

analysis, the hydrodynamic transfer function r^. is further expressed 

as

.Iii_ _ t i l .
pu2v ^  ^

- 1 J  *J0» i ds + r  J t v l 7 (*'x)-’V ni
SB SR (5.74)

This expression is appropriate for both the wave frequency expansion 

and the encounter frequency expansion. For the latter, and

should be interpreted as r and k.

dS

5.1.3 Exciting forces

The first order exciting forces are due to the components of 

the first order hydrodynamic force (5.45) and the first order 

hydrodynamic moment (5.68) that are associated with the diffraction 

potential. The complex amplitude of the exciting force or moment is 

defined by (Newman 1978)

f. - -pA | (iu> + W.V)(^Q + <f>7)n. dS.

SBB (5.75)

The six components of the exciting force are then written as
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F<X)(t) - Re[fie1"t]
(5.76)

None of the boundary conditions governing the first order incident 

potential or the diffraction potential is affected by the body 

motion. Therefore, the first order exciting force is independent of 

the body motion, just as the added mass and the radiation damping are 

independent of the amplitude of the incident waves.

In accordance with the wave frequency expansion in the small 

forward speed perturbation analysis, the exciting force can be 

further expressed in the form of

^i iw0 f
IgAS gS~ *J (*00+^70)nidS

SB

+ rQ J[-cos0 (<*oo+«S7o) + <671 - i ^ - x ) . V ( (J00+f67 0))n1dS).

Sfi (5.77)

Note that for the wave frequency expansion S has the dimension

of area, used for non-dimensionalization. For floating bodies, S is 

usually taken as the water plane area A^, whereas for submerged 

bodies, the vertically projected area of the body is taken. At zero 

forward speed, the magnitude of the non-dimensionalized heave

exciting force tends to one in the long wave limit for

surface-piercing bodies, i.e. | f^|/pgAA^-*-l, as This is because

when the wavelength is long compared with the body dimensions, the

modification of the body to the flow is negligible. The Froude-Krylov

force is the leading order term, and furthermore the incident 

potential can be taken out of the integral in equation (5.77) and 

evaluated at a suitable point on or inside the body. The remaining



surface integral of the normal component would be zero, except the 

components of the vertical force and the horizontal moment. 

Similarly, for submerged bodies, all components of the exciting force 

and moment are zero in the long wave limit. It is noted that the 

denominator pgAA^ is, in fact, the hydrostatic force, which implies 

that in the long wave limit, the leading order of the exciting force 

is the variation of the buoyancy, associated with rise and fall of 

the free surface elevation; the inertial force is negligible in the 

long wave limit.

5.1.4 Mean drift forces

In regular waves, the first order force or moment is 

sinusoidal in time, oscillating at the frequency of the incident 

waves. The second order force or moment, however, contains a double 

frequency oscillatory component and a time independent component due 

to the quadratic cross-product terms in the pressure integration. 

Taking the time average of equations (5.46) yields

5 (2 ) 1 f ~2 n .
- 2P& f " R i y r ^ f dl (Fi>

CTT
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* 5 1 ^ 3 1 +^41yf"*51Xf*

"^41(̂ 31+^41yf'^51Xf)
^61(^41Xf+^51yf)

<FIV>

(5.78)
For convenience, the formula is divided into four groups: F^, F^^, 

F^jj and F ^  as shown above. Components in each direction will be 

denoted by F^. From

Re[Ae1Wt]Re[Beiwt] - ^Re[AB*] — ^Re[A*B],
(5.79)

it follows that

| Re[ v R i - —  dlyi-nf
W

- | j Re[V^*.^]ni dS <FH )

| J Re[o* dS

2Re[ ?5fD3'?6fD2 * 

2R e  ̂ ^6fDl‘^4fD3 ' 

2R e  ̂ ^4fD2‘^5fDl '

ipgA^jReJ 3+f4yf-?5xf) 1> for 1-1 

ipgAuR e [-f*(f3+?4yf-?5Xf) ], for i-2

F 8V e [ «6(«4Xf+?5y f) 1 for i-3

(FIV>
(5.80)

where the velocity potential <f>, and the displacements of the body 

are understood as first order complex amplitudes; and a^, f ^  are 

the first order complex amplitudes of the total displacement and 

hydrodynamic forces respectively, defined by
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“l W ' V  "

a2
- W C4Z

a 3
- e3+?4y 'f5X

(5.81)

f^. = f. + S £.r.. . 
Dl 1 j=i J

(5.82)

An expression for the moment may be obtained similarly,

5.2 Equations of motion

Having obtained the force and moment, we are now in a position 

to derive the equation of motion of the body. The motion of a freely 

floating or restrained offshore structure is analogous to a 

mechanical oscillator. The first order equations of motion have 

been described in detail in many basic text books. The forward speed 

does not influence the principles used in deriving the equations, 

although it may influence certain features of the final equations. 

The second order motion is less widely described. Ogilvie (1983) has 

derived the second order equations of motion for zero-forard speed 

motion. Since the equation for the rotational motion can be written 

with respect to the origin, the centre of gravity, or any other 

point, even the first order equations can appear to be very 

different. For this reason, it is necessary to derive the equations 

of motion in this section to avoid misquoting other authors. The 

rotational motion below is described with respect to the origin. For 

the sake of completeness the second order equations of motion are 

also given.



5.2.1 The first order equations of motion

The equations of motion of a rigid body can be derived from

the conservation of momentum. Generally, the motion is in six degrees 

of freedom.

Apart from the wave forces, the environmental loading upon the 

body also contains restraining forces (from the mooring lines, for 

example), gravity, etc. Let F , T denote the restraining force and

moment; p denote the density of the body mass; x the centre of the D G
body mass. From the conservation of linear and angular momentum, the 

equations of motion are expressed in the form of

Here F, M are given by equations (5.13) and (5.14); x is the position 

vector to the origin; and an overdot denotes the differentiation with 

respect to time, i.e. d/dt. Similarly, double overdots will be used 

to denote the second derivative in time.

the value of the angular momentum and the moment depend on the 

reference point. In equation (5.84), the angular momentum and the 

moment are taken with respect to the origin. It is sometimes more

V (5.83)

V (5.84)

The angular momentum equation can take different forms, since
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convenient to form the equation with respect to other points, for 

example, to the hinged point of an articulated column or to the 

centre of rotation of a moored or freely floating body. Suppose the

centre of rotation is at position x . Then, the equation with respectK
to the centre of rotation can be derived in a similar form to 

equation (5.84), from the basic relation for moments

- *  - *  - >  -+■^  - M - x r x F

^ “► —► -► ^ —►and with xxx replaced by (x-x^)xx, where is the moment to the

centre of rotation. The relation also applies to the gravity and

restraining moments. More information about first order equations of

motion with respect to the centre of rotation may be found in the

book of Mei (1982) .

The left hand side terms of equations (5.83) and (5.84) can be 

regarded as body inertial force and moment. For small amplitude 

motion these two terms can be simplified to

-  fdt J
V

PBx dV - J pfix dV - M(f+Sxx'), 
V (5.85)

d r -*• -+ r -► -+ -*-+ -*■—  PgXXX dV — PgXXX dV — Mx^xf + 1 . 0  ,
V V (5.86)

up to the order 0(e). The tensor I is defined by

1
w (—* I-* I12 I13

I - T—1CM
W CMCM
W COCM
W

I31 X32 I33
(5.87)

with
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rii “  J  dV: *ij " ‘J  pBXiXj dV
V V (5.88)

From the zeroth order quantities of equations (5.83) and

(5.84), we obtain the static equilibrium equations

pgV - Mg + F<G) = 0,
(5.89)

pgVy - Mgy' + T (0) - 0 ,
b G 1 (5.90)

"PgVx, + Mgx' + T ^  = 0.
^  G 2 (5.91)

Other components are zero, i.e., F^G  ̂ ”^ 3 ^  "G * ^or ^ree -̂y

floating bodies, the vertical component of the restraining force and 

the horizontal components of the restraining moment all become zero. 

Hence, Mg-pgV. That is to say, the buoyancy force is equal to the 

gravity but in the opposite direction, in accordance with 

Archimedes' principle. For freely floating bodies, one also obtains 

x^-xG ', yb-yG '. This suggests that the centre of the buoyancy is on 

the same vertical line as the centre of gravity. The vertical 

position of the centre of buoyancy is associated with the stability 

of the body.

From equations (5.83) and (5.84), the first order equations of 

motion are obtained as

M(£ (!) + _ f ^1) + f (1),
m (5.92)

M x ' x f ^  + I.O(1) - M ^  + T ^  + (?(1)+ 3 (1 )xx' )x(-Mgk) .
G (5.93)

These contain six simultaneous linear equations. By substituting
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equations (5.48) and (5.71) and moving the hydro-restoring force and 

moment on to the right hand side, the equations of motion can be 

re-written in the form of

m. + c. - F $ ^  +ij jl ij jl i mi (5.94)

Here is the component of the first order generalized

hydrodynamic force and F ^ ^  is the component of the generalized 

restraining force. The mass matrix [nu,. ] is given by

M 0 0 0 Mz' -My'

0 M 0 -Mz' 0 Mx'

0 0 M My' -Mx' 0

0 -Mz' My' X11 I 1 2 I13
Mz' 0 -Mx' I 21

CMCM
M

I23
-My' Mx' 0 X31 I32 I33

(5.95)

The hydro-restoring coefficients matrix tcjj] gi-ven by

0

0

f

PgS,0 - (pgV-Mg) pgAuyf ''°w22
+pgVzb -MgzG

pgV-Mg 0 P g V f  - ^ S12 

0 0

PgAWXf

- p g s 2 i
pgsll

+pgVzb -MgzG

0

0

0

0

(pgVxb -Mgx(;)

(pgVyb -MgyG)

0

(5.96)

The coordinates hear are coordinates at the equilibrium position, 

independent of time. For convenience, the prime is omitted. The mass
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matrix is symmetrical, but not the hydro-restoring coefficients 

matrix. The asymmetry of the hydro-restoring coefficients matrix is 

caused by the effect of the restraints. For unrestrained bodies, i.e. 

freely floating bodies, some terms in the matrix (5.96) vanish due 

to the requirements of the hydro-static equilibrium. The 

hydro-restoring coefficients matrix also becomes symmetrical.

For simple harmonic motion (in regular waves), following the 

decomposition of the first order hydrodynamic force in the previous 

sections, we can write the equations of motion in the form of

[-w2 (mij+aij) + iwb^ + c ^  ] ^  - f± + f ^ .  (if j-1 , 2 , . . . ,6 )
(5.97)

These are six simultaneous linear equations. is the complex

amplitude of the six components of the motion. The ratio of £j/A is 

known as the transfer function of the response to the incident waves.

5.2.2 The second order equations of motion

For the sake of completeness of formulation, the second order 

equations of motion are given in this section.

The principle used for the first order analysis can be 

extended. For this purpose, it is necessary to retain the second 

order terms in the procedure. From the coordinate transformation

2 -+ , 3.x - x' + £ + flxx' + c Hx' + 0 ( e  )
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where x' denotes the mean position vector which is independent of 
time, we obtain

► 2 -+ 3x - £ + flxx' 4- e Hx' + 0(c ).

Similarly, for the rotation motion,

(5.98)

XXX - x'x£ + fi(x'.x') - x'(x'.S) + X 'x (c 2Hx ') + ?x(? + 3xx') 

+(0xx')x£ - x'(x'.OxS).
(5.99)

Substituting equations (5.98) and (5.99) into equations (5.83) and

(5.84) and taking the second order terms lead to

M ( f ^  + fl^xx') - + F^2\G ***m (5.100)

Mx 'x?(2) + I.n(2) - M(2) + T(2) + (?(2)+ 0(2)xx' + Hx')x(-Mgk) v G ~ G

- E - |(1)x(F(1)+F^1)) - M(S(1)xx^)xi(1) - Ia.(5(1)xO(1))
(5.101)

3.where the tensor I is defined in a similar way to the tensor I, 

with

I* — I />Dx'.x'. dV;J B l j
V

and the vector E is defined by

r - -E - pfix'xHx' dV 
V

(5.102)

Ta u Vi
13jn2j ’ 12jn3j 

if .h,. - if.h-.3j lj

if.h-. - lf.h0 .2j lj lj 2j J
(5.103)

where h . . is the second time derivative of the elements of the matrix 
ij

H. For freely floating bodies many terms in the second order moment
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of the body weight cancel buoyancy terms, i.e. terms proportional to

V, in the second order fluid pressure moment, except those associated

with z, , z . There are also certain cancellations among terms b G
associated with the interactions between the first order response and 

the first order force or moment.

5.3 Numerical considerations

Once the boundary value problem is solved, the computation for 

the linearized forces and motions of the body is straightforward, but 

care should be taken concerning the second order mean drift forces at 

forward speed. As can be seen from equation (5.78), the mean drift 

force contains second derivatives of the velocity potentials, which 

are very demanding for numerical accuracy. In particular, the normal 

component of the second derivative is more difficult to compute than 

the tangential component.

As in the technique used for solving the boundary value 

problem, calculation of the normal component of the second derivative 

can be circumvented by applying the integral theorem derived in 

Appendix E. We rewrite the terms to be evaluated as

a.V(W.VS) - a. [VW.V3> + VVS.W]

- a. [V$.VW + W.W$]

-f “► —►because VxW=0, VxV$—0. Hence,
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a.V(W.V$) - $ (wn-0)

- * — - l.ai. i 
j j

aw.i $ a.m..n i l1.31) x /  i 
J J 1

(j-1,2, i-1,2,3) (5.104)

where 3/31^, 3/312 denote derivatives in the two tangential

directions. In the first two terms, the derivatives can be computed

normal and tangential components of W and V$. The normal component of 

W known from the boundary condition and its tangential components 

can be computed from shape functions. While the tangential components

of V$ can also be computed from the shape functions, the normal 

components may be computed from the indirect boundary integral 

formulation. The last term in equation (5.104) may be circumvented by 

applying the integral theorem derived in Appendix E:

from the shape functions, while W ^ , $x i can be computed from the

$ a.nm. dS —n l l ■ J 3.«(l . i). dS - f w fj (Vi")"! dS- 
si si j j

(5.105)

The line integral is neglected for small forward speed.
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Chapter 6

RESULTS AND DISCUSSION

Results obtained from the theory described in Chapter 4 and 

Chapter 5 are presented for two dimensional cylinders floating on the 

free surface or completely submerged. The results include added 

mass, radiation damping, exciting forces, dynamic responses of rigid 

bodies, second order mean drift forces and wave drift damping. The 

three modes of motion are referred to as sway, heave and roll, and 

are denoted by the subscripts ”2", "3” and "4".

6.1 Semi-analytical solutions for a circular cylinder

The sway and heave radiation problems for a circular cylinder 

at zero-speed are firstly solved by the multipole expansion method 

presented in Section 4.2. Accounting the symmetry of the flow, the 

symmetrical multipoles are dropped in expression (4.66) for sway, and 

the anti-symmetrical multipoles are dropped for heave. The series

(4.66) are then truncated after N terms, and the unkown coefficients 

are obtained from the body surface condition. For the complex 

radiation potential defined corresponding to unit amplitude of the 

velocity of forced oscillation, i.e. $j“Re[iw^^^e1Wt:] , the body 

surface condition (4.53) becomes

N 3s
S b -r—^ - sin0, on r=a,- m or
m_1 (6.1)

for sway, or
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3c_ N-l 3c 0 _ m
a0 3 F " + d T  “ COS* ’ °n r“a ’

m“ 1 ( 6 . 2 )

for heave. The point collocation method is used to determine the 

coefficients with equally spaced points over half of the circular 

profile. Results are presented for submerged cylinders as well as for 

floating cylinders, with the depths of submergence ranging from 

h/a=0.25 to 3.0, where a is the radius and h is the distance of the 

axis to the mean free surface (as shown in Figure 6.1). In all the 

results, multipoles are placed on the axis of the cylinder (f=-h).

6.1.1 Convergence

The multipole expansion expression (4.66) converges very 

rapidly. The convergence is firstly shown in detail for a submergence 

h/a-2.0 in Tables 6.1 to 6.4; then illustrated briefly for other 

depths of submergence in Figure 6.2.

Tables 6.1 and 6.2 give the complex coefficients (in brackets)

in the series expression of the velocity potential. Each column

represents one set of coefficients with the mth row denoting bm/a in

Table 6.1 and a ./a in Table 6.2. It is seen that for each set of m-1'
coefficients, only the first two or three terms have significant 

values, and the results have little change for different N. That 

implies that the series converges rapidly and the solution is very 

stable. It may be interesting to notice that in Table 6.2 a^-'kaa^.

That is a plain consequence of the fact that the net mass flux across 

the body surface is zero.
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Tables 6.3 and 6.4 represent the nondimensionalized added

mass and damping, which further corroborate the rapid convergence.

For example, over the whole frequency range presented an absolute 
.3accuracy of 4x10 can be achieved by using 3 terms only! If more

terms are used, the accuracy is improved dramatically. In particular,

the solution of N=10 is identical to that of N=20 up to the fifth
-  6decimal place, which implies an error less than 5x10

For other depths of submergence, the solution also converges

fairly rapidly, provided that the cylinder is not too close to the

free surface. It is observed numerically that for submerged

cylinders, more terms are required if the cylinder is closer to the
-3free surface. For example, if an accuracy of 4x10 is to be 

achieved, it requires that N-2 for h/a-3.0 or larger, N-3 for 

h/a—2.0, and N-7 for h/a-1.25. For floating cylinders, more terms of 

multipoles are necessary. The most demanding case is when the 

cylinder is just below or piercing the surface. This is not 

surprising, because in that case the body intersects the free surface 

at an angle of zero degree, which makes the linearized boundary value 

problem mathematically unstable and physically meaningless. A group 

of N-h/a curves is plotted in Figure 6.2, which estimates the 

approximate number of terms required to achieve a given accuracy for 

the added mass and damping.

What is surprising is that for a floating cylinder although 

the solution of the added mass and damping based on the multipoles 

(4 .5 5) to (4 .99) converges to definite values, the coefficients in 

the multipole expansion are not unique. The number of multipoles
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required to achieve convergent results for a given accuarcy may be 

found in Figure 6.2. The phenomenon of non-unique multipole expansion 

coefficients is not fully understood yet. A possible explanation is 

that in that case the multipoles become linearly dependent on each 

other. Besides that, the fact that the body does not intersect the 

free surface at a right angle is also a source of suspicion.

6.1.2 Validation

To validate these results, comparisons are shown in Figure 6.3 

for a submerged cylinder at several submergencies. Excellent 

agreement is found with values measured from the curves of 

Ogilvie's (1963) analytical solutions. Two sets of results for 

depths of submergence of h/a-2.0, and 0.5 are also presented in 

Tables 6.5 and 6.6 respectively, alongside solutions obtained by the 

numerical methods. Again, solutions from different methods are 

coherent.

An interesting alternative for computing the radiation damping 

is to use a relation derived from consideration of the energy flux 

and the work done by the damping force (Newman 1977, Chapter 6 ). This 

provides a means of self-checking. From this consideration, it can be 

shown that the diagonal damping coefficient is related to the far 

field wave amplitude by

b
2

pira w (6.3)

where k<£._ represents the complex amplitude of the surface elevation w
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at infinity, corresponding to unit amplitude of forced oscillation; 

and the far field expression of the velocity potential ^ is given by

4>„ - 2wb1ka sgn(x)e^^+Z  ̂ >
(6.4)

for sway, or

, . 0 k(f+z)-ik|x|
4 — i2*a e ' 1 ,

(6.5)

for heave. Computation from this wave amplitude relation is found to 

give precisely the same answer as that from pressure integration. For 

example, from the coefficient b^/a obtained at N-10 given in Table

6.1 (the first row in each block) at ka-0.1 and 1 .0 , together with 

equations (6.3) to (6.5), the damping coefficients 0.10721 and 

0.15771 for ka-0.1 and 1.0 respectively are recovered.

6.1.3 Some physical effects

From the results presented in Tables 6.5 to 6.8 and in Figure

6.3 to 6.5, some physical behaviour associated with the forced 

oscillation can be summarized. First, for the submerged cylinder, the 

diagonal added mass and damping in sway motion are identical to those 

in heave motion. These are achieved to a very high accuracy. 

Secondly, while the damping is always non-negative, the added masss 

can be negative. This occurs for a submerged cylinder, when it is 

very close to the free surface; about h/a<1.125. Negative added mass 

is also found for surface-piercing cylinders in sway motion, but not 

for heave motion. This happens when the cylinder is more than three 

quarters immersed, i.e. h/a>0.5. Thirdly, at certain frequencies, the 

heave damping for a surface-piercing cylinder is zero, which implies
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that at these frequencies the forced heave oscillation does not 

transfer energy to the fluid and hence does not generate waves. The 

same does not appear to have happened for the sway over the computed 

frequency range. Lastly, as the cylinder emerges from below the free 

surface, the heave added mass and damping have a dramatic change, 

whereas those for sway change rather smoothly. In particular, the low 

frequency heave damping changes from zero to finite values, and the 

added mass jumps from finite to infinitive values.

6.1.4 Surface elevation

The free surface elevation has also been computed and results

for a submerged cylinder at h/a-2.0 in forced sway oscillation are

plotted in Figure 6 .6a-h for ka-0.5, 1.0, 2.0 and 4.0 respectively.

The real part and the imaginary part of k^ , k^, and k^ are plotted1̂ w
for sway motion of a cylinder submerged at h/a-2 .0 , where <f> denotes 

the sway radiation potential (i.e. <f>̂ with the subscript "2 " dropped 

for simplicity) , is the far field expression defined by equation

(6.4) and <f>̂  is the remaining local disturbance defined such that <f> = 

From the expression for the free surface elevation

_ R e [ k ^  eiwt], 
s Z Z (6.6)

it is known that k^ represents the complex amplitude due to unit 

forced oscillation. The real part of k^ can be regarded as the free 

surface elevation at the moment when the cylinder is at its positive 

maximum position, whereas the imaginary part as that when the 

cylinder returns to its centre of oscillation from the positive 

displacement.



From Figure 6 .6a-h, it is seen that the local disturbance 

decays to zero rapidly and steadily. Usually after 4-5 times the 

radius away from the origin, and k ^  become undistinguishable in

the curves, which suggests that the local disturbance is then

negligible.

6.2 Zero-speed solutions

Motions of cylinders are solved by both the BIE-BMP and

BIE-BIE methods for several cross-sections, including a circle, an

ellipse, a triangle and a rectangle.

6.2.1 Comparison of theories

In Tables 6.5 to 6 .8 , numerical results of added mass and

damping are presented for a submerged circular cylinder of a

submergence h/a-2 .0 , and a floating circular cylinder of a

submergence h/a«0.5 respectively. The agreement among the BIE-BMP,

the BIE-BIE and the analytical solutions is up to four digital

places. The same meshes are used for the BIE-BMP and BIE-BIE methods.

For the submerged cylinder, 32 elements are used with 16 on and 16

on Sj. For the floating cylinder, 20 elements are used with 8 on S^,

8 on S. and 4 on S_,. For practical application, coarser meshes may J r
be used. For example, using 16 elements (with 8 on and 8 on Sj) 

gives an accuracy of no fewer than three significant digital places 

for the cylinder submerged at h/a-2 .0 , which is usually sufficient in



-206-

application. In Tables 6.7 and 6.8 for the floating cylinder, the 

multipoles in the BIE-BMP method are placed on the mean free surface, 

whereas the analytical solutions are obtained by placing the 

multipoles at the axis of the cylinder.

In Figures 6 .7 and 6 .8 , two meshes are presented for a 

submerged circle and a submerged rectangle. The rectangle has a beam 

B equal to the draft D. The added mass and damping for these 

cross-sections are plotted in Figures 6.9 to 6.12. Excellent 

agreement is achieved among results from the BIE-BIE method, the 

BIE-BMP method and results of other authors, such as the analytical 

solution of Ogilvie (1963) for the circle, and the boundary element 

solution of Maeda (1974) for the rectangle. It is seen that although 

the hydrodynamic coefficients in sway equal those in heave for a 

submerged circle, this is not the case for other geometries. For the 

rectangle, the sway damping is consistently larger than the heave 

damping, but the added mass follows no such pattern. As the 

submergence increases, the sway coefficients become closer to the 

heave coefficients.

In Figures 6.13 to 6.16, fine meshes are presented for a 

floating semicircle, an ellipse, a rectangle and a triangle. The 

major axis of the ellipse lies horizontally on the mean free surface 

and the ratio of the minor axis b to the major axis a is 0.5. The

rectangle has a beam B of twice the draft D/2 (i.e. B-D). The added

mass and damping obtained from these meshes are presented in Figures 

6.17 to 6.20. The agreement between the BIE-BMP method and the

BIE-BIE method is consistently good. Good agreement is also found

compared with results of Nestegard and Sclavounos (1984), and Vugts
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(1968). All coefficients are nondimensionalized based on the 

submerged volumes (areas) of the cylinders. It may be noted that the 

curves of nondimensional hydrodynamic coefficients for different 

cylinders are alike, but the sway coefficients for the triangle and 

the heave coefficients for the ellipse have pronounced large values.

More extensive results concerning the first order exciting 

forces, responses and second order mean drift forces are presented in 

Figures 6.23 to 6.56. These will be discussed latter in Section 6.3, 

together with the forward speed solutions.

6.2.2 Factors affecting accuracy

Extensive numerical studies showed that both the BIE-BMP 

method and the BIE-BIE method gave very accurate results, but the 

BIE-BMP method is far efficient if only the zero-speed solution is 

required. Because the numerical discretization in the inner domain is 

the same for both methods, the accuarcy of the two methods is largely 

affected by some common factors.

The number of elements is the foremost factor that affects the 

accuracy for both the BIE-BIE and BIE-BMP methods. The more elements 

are used, the more accurate are the results, but at the same time the 

more computing time is required. Therefore, for a given number of 

elements, the arrangement of meshes affects the accuracy to a certain 

extent. It is observed numerically that using more or less equally 

spaced elements is close to the optimum. This frequently suggests 

that the number of elements on S is about one and half times thoseJ
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on the body surface S^. Some local adjustment, such as using 

concentrated elements near sharp corners, may be helpful in improving 

the accuracy, but it is unecessary for the present computation.

The distance from the matching boundary S_ to the body isJ
another factor that affects the accuracy (or efficiency). It is found 

that the accuracy is not sensitive to the radius of the matching 

surface S^, if Sj is not too close to the body; but there is a range 

of Rj over which optimum efficiency may be achieved. This is because 

on the one hand keeping Sj closer to the body reduces the size of the 

matching boundary, and on the other hand finer meshes are required 

because the flow varies more strongly near the body. If we let R_ 

denote the radius of the circle circumscribing the body, it is 

observed that Rj-1.5R^, is about the optimum value. This corresponds 

to R y 1 . 5  a for the circle, Rj—2.2(B/2) for the rectangle (B-beam, 

D-draft and B/D—1), and Rj—2.5(B/2) for the triangle (B-beam, 5—60°). 

It may be expected that this 1.5 times rule also holds for other 

simple geometries.

Apart from the similarities in which the the accuracy of the 

two methods are affected, the accuracy of the BIE-BIE method is also 

affected by the irregular frequency. Irregular frequencies are the 

frequencies which coinside with the eigenvalues of an associated 

interior Dirichlet problem subjecting to a similar homogeneous free 

surface condition. These exist for floating bodies only. At irregular 

frequencies, the solution is not unique. The occurence of the 

irregular frequencies is a common drawback in most boundary integral 

formulations and the origin is purely due to mathematical treatment, 

not the physical performance. In the present BIE-BMP method, no
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irregular frequencies are encountered over the whole frequency range 

and for any geometry computed; but in the present BIE-BIE method the 

irregular frequencies are observed, as shown in Figure 6.21. The 

irregular frequencies are usually not easy to predict, but in the 

present BIE-BIE method the prediction is a simple matter. This is 

because the outer boundary is constrained to be a semicircle for 

floating bodies. In fact, the first three irregular frequencies are 

known approximately (Sayer and Ursell 1977)

1.822, k2Rj- 3.289, ^Ry- 4.891.

In Figure 6.21, these correspond to ka at 1.21, 2.19 and 3.26 because 

Rj=1.5a is used in generating the figure. Higher irregular 

frequencies are not usually of practical interest.

Although it is possible to develop some sophysticated methods 

to remove the irregular frequencies, this is not necessary in the 

present method. This is because the irregular frequencies are known, 

and their pollution is narrow restricted to narrow bands, as can be 

seen in Figure 6.21. In computation, these frequencies can be simply 

skipped. Should the values at these frequencies be required, they may 

be interpolated from the values at neighbouring frequencies. Because 

of the existence of the irregular frequencies, it is advisable not to 

take large values of R in the BIE-BIE method.vl
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6.3 Forward speed solutions

Results at forward speed are presented in Figures 6.22 to 

6.58. All results, except some presented in Figure 6.22, are obtained 

from the wave frequency expansion. In all the results presented, a " 

free cylinder" is defined as a freely floating cylinder, but 

restrained from roll motion; and a "restrained cylinder" is a 

cylinder retrained from all modes of motions. In all the results 

presented, the Froude number is defined as Fn=U//gL, where L is the 

half breadth of the cross-section. For the circular and the elliptic 

cylinders L=a, and for the rectangular cylinder L=B/2.

6.3.1 Comparison of the two expansions

In the present study two ways of perturbation have been 

developed, i.e. the wave frequency expansion and the encounter 

frequency expansion. Both have been implemented, and it is found that 

they agree very well.

To illustrate the agreement, the results of the cross coupling

added mass and damping are compared in Figure 6.22. Those are
2 2 nondimensionalized by pita, r for added mass and pit a wr for damping.

2They are plotted against ka (k=w /g). For the wave frequency 

expansion, r may be interpreted as being r^. In general, the forward 

speed correction results from the two expansions are not comparable 

without specifying the value of the forward speed, because the 

results from the wave frequency expansion include the correction due 

to apparent appearance of the forward speed in the boundary
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conditions as well as the effect due to the shift in frequency. The 

latter is affacted by the forward speed and the wavelength. However, 

for the particular case of the cross coupling coefficients, the 

effect due to frequency shift is zero. This is because r^j==0 (for i 

not equal j ) at zero speed for symmetrical bodies. Thus 3r_/3a>=0. 

Therefore, the cross coupling results are comparable in the form 

given in Figure 6.22.

It is seen that the agreement between the two methods is 

excellent. Results are also compared with those obtained by Wu using 

a formulation described in Wu and Eatock Taylor (1987). The results 

of Wu are obtained at Fn-0.032 (then divided by r). The agreement is 

good.

6.3.2 Validation

The comparison in Figure 6.22 has already indicated some 

evidence to support the present small forward speed theory. To 

further validate the theory, more comparisons are made for the 

floating circular cylinder and the submerged circular cylinder.

In Figures 6.25 and 6.26, results of exciting forces and sway 

and heave responses for a floating circular cylinder with the axis on 

the mean free surface are compared with these of Zhao and Faltinsen 

(1988). Their formulation is also a small forward speed theory (or 

small current velocity as they referred to), but the method they used 

is quite different from the present method. In the present study the 

problem is solved by perturbating the solution in terms of the



-212-

zero-speed solution and the forward speed correction term, whereas in 

the paper of Zhao and Faltinsen (1988) the problem is solved 

directly. In their method, the fluid domain is also divided into an 

inner domain and an outer domain, and the problem is solved by 

coupling an integral formulation in the inner domain with a 

multipole expansion expression in the outer domain. The multipoles 

they used are derived from the translating pulsating source 

potential, which implies that the steady flow disturbance on the free 

surface in the outer domain is neglected. Therefore, the inner 

domain in their method must be taken sufficiently large, whereas the 

present partition of the inner and outer domain is free from this 

restriction.

From Figures 6.25 and 6.26, it is seen that the agreement is 

good. Further comparisons of the mean drift force and wave drift 

damping with those of Zhao and Faltinse (1988) have also made. These 

are shown in Figure 6.46 and 6.57. The agreement is again very good.

In Tables 6.9 to 6.11, results of added mass, radiation 

damping and exciting forces for a circular cylinder submerged at h=2a 

are compared with those of Wu, whose results are obtained from a 

fully linearized theory described in Wu and Eatock Taylor (1987). 

Their formulation does not require the forward speed being small, but 

the theory is based on the free surface condition (3.13) for the 

steady potential and (3.24) for the unsteady potential. Neither 

author's results in Tables 6.9 to 6.11 included the steady flow 

disturbance on the free surface. From these results, it is seen that 

for small forward speed such as Fn—0.032, the present small forward 

speed theory agrees well with their more conventional theory. For
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higher forward speed, the two theories are less close, but the 

agreement is still satisfactory for Fn up to 0.128, which corresponds 

to a practical forward speed (or current velocity) U-1.28MS ^ for a 

cylinder of radius 10m. In Table 6.11, very good agreement is found 

for the exciting forces for Fn up to 0.128.

To conclude, the good agreement indicates that the present 

small forward speed theory is successful.

6.3.3 First order motions

Having confirmed the validity of the present theory, we now 

turn our attention to the dynamic behaviour at forward speed. Four 

cylinders have been studied.

Firstly, a circular cylinder floating on the surface with its 

axis on the mean free surface has been studied. In Figures 6.23 and 

6.24, results of added mass and damping are presented at Fn=-0.064,

0.0 and 0.064. An interesting discovery is that a small forward 

speed virtually has no influence on the diagonal added mass and 

damping coefficients. That is, the diagonal hydrodynamic coefficients 

at forward speed approximately equal these at zero speed. On the 

cross-coupling hydrodynamic coefficients, the forward speed has 

certain influences. Due to symmetry of the body the cross-coupling 

coefficients are identically zero at zero speed, but at forward 

speed, the cross-coupling coefficients are no longer zero, which 

implies that the sway and heave motions are coupled at forward speed.
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It is interesting to examine the results in more detail. 

Figure 6.23 and 6.24 show that, for the cylinder moving against the 

incident waves (U>0), apart from a low frequency range the forced 

heave motion will cause an increase in sway added mass (a23  ̂ an(* a 

decrease in sway radiation damping; whereas the forced sway motion 

will cause a decrease in heave added mass and an increase in heave 

radiation damping. If the cylinder moves with the waves (U<0), all 

conclusions reverse.

A significant relation revealed in these figures is that the 

r2 3 ^ ^ =er32^ ^  ’ which satisfies the well known Timman-Newman (1962) 

relation for symmetrical body. The general Timman-Newman relation 

states that ffor i not equal j, (u )“rj £< "U) except and

r24~r42*

Figure 6.25 represents the exciting forces on the floating 

cylinder. It is seen that the forward speed has an appreciable 

influence. For example, at a Froude number of 0.064, the magnitude of 

the sway exciting force increases by about 10-15% over a broad 

frequency range; the increase in heave force is about half of that in 

sway force and only occurs at higher frequencies. The magnitude of 

the sway exciting force always increases for the cylinder moving 

against incoming waves, and always decreases for the cylinder moving 

with incoming waves. The magnitude of the heave exciting force does 

not show this definite tendency. For positive forward speed, it first 

decreases in the low frequency range, then increases in the higher 

frequency range.

In Figure 6.26, it is shown that the forward speed also has an
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appreciable influence on the responses: for Fn=±0.064, the responses

can well be increased or decreased about 10%. Strikingly, the 

variation of the responses with respect to the forward speed does not 

follow the same tendency as the exciting forces. As shown in Figure 

6.26, the heave response shows a definite tendency with respect to 

the forward speed, i.e. always increases for positive forward speed 

and always decreases for negative forward speed. The sway response 

shows an indefinite tendency similar to that of the heave exciting 

force. The difference tendencies in the variation of the forces and 

responses are due to the coupling effect. This can be clearly seen 

from Figure 6.27, where the variation of the responses in the single 

degree of freedom system follows exactly that of the exciting force. 

Due to the coupling effect the sway response becomes more close to 

its zero speed value than it otherwise would be in the single degree 

of freedom motion; the heave response becomes further apart from its 

zero speed value. An important situation is that the peak value of 

the heave resonance is considerable increased, when the cylinder is 

moving against the incident waves.

Secondly, a floating rectangular cylinder has been studied. 

From a mathematical point of view, the linearized formulation is not 

exactly appropriate for bodies with sharp corners such as the 

rectangular cylinder. This is because the Taylor series expansion 

performed in deriving the body surface condition (3.34) is not valid 

at sharp coners. However, extensive numerical studies performed here 

have shown that convergent results are possible in practice. This may 

suggest that the inappropriate treatment in deriving the body surface 

condition may only has a local effect. As a whole, the linearized
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theory is still acceptable.

In Figures 6.28 and 6.29, results of the exciting forces and 

the responses are presented. It can be seen that the variations are 

similar to the circular cylinder. Notably is that the heave 

resonance of the floating rectangular cylinder is far more 

significant than that of the floating circular cylinder. The added 

mass and radiation damping coefficients are calculated but not 

presented because they are qualitatively very similar to those of the 

floating circular cylinder.

Thirdly, a submerged circular cylinder has been studied at two 

depths of submergencies, namely h/a-2.0 and h/a-1.5. The first order 

results are presented in Figures 6.30 to 6.34 for the cylinder 

neutrally submerged at h-2a. Most discoveries found in the results 

for the floating cylinders are confirmed: the forward speed has no

influence on the diagonal hydrodynamic coefficients; the sway and 

heave motions at forward speed are coupled.

It is noted that all the damping coefficients are consistently 

smaller than those for floating bodies. The variation of the exciting 

forces due to the forward speed effect is of about the same order of 

magnitude as for the floating circular cylinder, but the variation of 

the dynamic responses is smaller than for the floating cylinder. 

Neither the forces nor the responses show a consistent increase or 

decrease for a give direction of advance; but at higher frequency, 

like the case for floating cylinders, the forces or responses always 

increase for the cylinder moving against incoming waves and decrease 

for the cylinder moving with the waves.
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The influence of the forward speed on the sway motion is very 

similar to the influence on the heave motion. The same is also true 

for the exciting forces. It is known that at zero speed, the 

magnitude of the sway exciting force or the response is equal to that 

of the heave exciting force or the response. From the present results 

it is found that at small forward the two responses are nearly the 

same; but the forward speed has a slightly stronger influence on the 

peak values of the heave exciting force, which may not be clear from 

the figures because of the scaling. This finding is consistent with 

the finding of Grue (1986) for large forward speed. Unlike the 

floating cylinder case, the coupling effect for the submerged 

cylinder is not significant. In fact, in Figure 6.33 the coupling is 

rarely visible except in the very low frequency range.

As one of the advantages of the present small forward speed 

theory, the effect of the steady flow in the free surface condition

for the unsteady flow can be examined. In Figure 6.34, the complete

results are represented by lines, and the results from neglecting the 

steady potential disturbance (Q^ terms) on the free surface are shown

by markers. The figure shows that indeed the steady potential

disturbance is negligible at h/a-2.0.

In Figures 6.35 to 6.39, a complete set of the first order 

results for the circular cylinder submerged at h/a—1.5 is shown. In 

these results, the solution obtained from the simplified method which 

neglects the steady flow disturbance on the free surface (Q^ terms) 

is compared with the complete solution. Throughout these results, it 

is clear that apart from diagonal added mass and radiation damping
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coefficients, the steady flow disturbance on the free surface has an 

appreciable influence. The steady flow disturbance in fact increases 

the variation of the all the other quantities with respect to the 

forward speed. Therefore, it is important to take into account the 

steady flow disturbance in the free surface condition for the 

unsteady potential, when the depth of submergency is smaller than 

2.0.

Finally, a submerged elliptic cylinder has been studied. The 

cross section of cylinder has a minor axis b equal to half of the 

major axis a, and the major axis is lying horizontally. The cylinder 

is submerged at h/a—2.0.

The reason for studying the elliptic cylinder is due to the 

fact the solution for a submerged circular cylinder may not be 

typical. This is because a submerged circular cylinder has some 

unique characteristics, which other geometries do not have. For 

example, at zero speed, a restrained or neutrally buoyant circular 

cylinder free to respond does not reflect an incoming wave train 

(Ogilvie 1963). At forward speed, a submerged circular cylinder in 

waves only generates two new waves in the subcritical flow, instead 

of typically four new waves (Grue and Palm 1985) .

In Figures 6.40 to 6.44, a complete set of the first results 

are presented for the cylinder submerged at h/a-2.0. Results show 

very similar behaviour to that of the submerged circular cylinder. 

Added mass, radiation damping and the exciting forces in sway are 

considerably smaller than those in heave, whereas, strikingly, the 

magnitudes of the sway response and the heave response are quite
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close. The steady flow disturbance again appears insignificant at 

this depth of submegence, as shown in Figure 6.44.

6.3.4 Second order mean drift forces

Figure 6.45 shows the horizontal mean drift forces for a 

floating circular cylinder restrained from time periodic motions, and 

Figure 6.46 showed that for the cylinder free to respond in sway and 

heave. For k^a <0.5, the force on the free cylinder is virtually 

zero, whereas the force on the restrained cylinder has an appreciable 

value in the same frequency range. At higher frequency, the forces on 

the two cylinders are not much different because the responses are 

small. In both cases, the force consistently increases for the 

cylinder moving against incoming waves and consistently decreases for 

the cylinder moving with incoming waves. As expected the influence of 

the forward speed is stronger than that on the first order 

quantities. For example, a 15-20% increase (or decrease) may be 

observed at Fn~0.032 (-0.032). It may be observed that the influence 

of the forward speed does not appear to be exactly linear, which 

implies that nonlinear effects of using equation (5.80) becomes 

gradually significant at higher frequencies. The comparison with that 

of Zhao and Faltinsen (1988) shows excellent agreement.

Figure 6.47 and 6.48 represents the vertical mean drift force 

for the same restrained and free cylinder. While the force on the 

restrained cylinder is always downwards, the force on the free 

cylinder is firstly upwards at small frequencies and then changes 

back to downwards at higher frequencies. A positive forward speed
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reduces the upwards force and increases the downwards force.

Figure 6.49 and 6.50 shows the horizontal and vertical forces 

for a floating rectangular cylinder of the same dimensions studied 

before. These results are seen similar to those of the floating 

circular cylinder.

Figure 6.51 shows the horizontal force for a submerged 

circular at h-2a. At zero speed the force is known to be identically 

zero for both restrained cylinder and free cylinder (Ogilvie 1963). 

At forward speed, the figure shows that the force is practically zero 

as well. The tiny curves presented in the figure may be regarded as 

numerical errors rather than any meaningful results, since it is seen 

that the positive and negative forward speed give more or less the 

same numbers, which must be due to the quadratic quantities in the 

forward speed. According to the restrictions of the present theory, 

these quadratic terms are considered as errors.

Figure 6.52 shows the vertical mean drift force for the 

submerged circular cylinder. For the free cylinder, the force is 

considerably smaller than the force for the restrained cylinder. A 

positive forward speed slightly increases the force on the free 

cylinder, whereas the forward speed has no practical influence on the 

force on the restrained cylinder.

Since the submerged circular cylinder may not represent a 

typical geometry, the mean drift forces on the elliptic cylinder 

studied before are presented in Figure 6.53 and 6.54. While the 

vertical mean drift force leads to the same conclusions as for the
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circular cylinder, the horizontal mean drift force is not the same. 

The horizontal force for the free cylinder is identically zero, but 

this may not be the case for the restrained cylinder. The curves in 

Figure 6.53 may have a certain physical meaning, although similar to 

those for the circular cylinder their magnitudes are also quite small 

(about 1% of the vertical mean drift force). For kQa<0.6, the 

horizontal mean drift force increases for increasing forward speed.

To summarize the results for the mean drift forces, it is 

concluded that for submerged cylinders, the horizontal mean drift 

force is either zero or very small, and the vertical mean drift force 

is not much influenced by the forward speed; for the floating 

cylinder, the forward speed has a strong influence on both vertical 

and horizontal mean drift forces. Therefore, it may be worthwhile to 

study the horizontal mean drift force for the floating cylinders in 

more detail.

In Figure 6.55, different components contributing to the 

horizontal force are presented for the restrained floating circular 

cylinder at Fn-0.0 and Fn=0.032. These contributions are defined in 

equation (5.80). It is seen that the water line integral (F^) and the 

quadratic pressure integral are two maJor dominating

components. The water line component is in the direction of the total 

horizontal mean drift force and the quadratic pressure component is 

in the opposite direction. A stiking feature is that the water line 

component is just about twice the total horizontal mean drift force 

while the quadratic pressure component is about the same as the total 

horizontal mean drift force but in the opposite direction. This 

indicates that the sectional force close to the free surface is more
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predominant, which partially explains the insignificance of the

horizontal mean drift force on submerged cylinders.

Figure 6.56 is similar to Figure 6.55, but the cylinder is 

free to response in sway and heave. In this case, the water line

component is slightly more than twice the total horizontal mean 

drift force; the quadratic pressure component is larger than the 

magnitude of the total mean drift force; and the total mean drift 

force is considerably smaller than that for the restrained cylinder 

in the low frequency range and slightly smaller in the higher 

frequency range.

Finally, from the result for the horizontal mean drift force, 

we may estimate the wave drift damping from the principle of gradient 

of added resistance.

Figure 6.57 represents the predicted wave drift damping for 

the floating circular cylinder. The solid line represents the result 

for free cylinder and the chain line represent the result for

restrained cylinder. It may be seen that for kga>1.5 the predicted 

wave drift damping is almost linearly proportional to k^a. The 

present prediction shows good agreement with that of Zhao and 

Faltinsen (1988).

Figure 6.58 represents the predicted wave drift damping for 

the floating rectangular cylinder. It shows a sharper peak near the 

resonance frequency than for the circular cylinder.



-223-

Chapter 7

CONCLUSIONS

A theoretical analysis has been carried out for the first 

order hydrodynamic forces and motions, as well as second order mean 

drift forces for large bodies at forward speed. A small forward speed 

perturbation theory has been presented. Succeful numerical 

implementations for two dimensional cylinders corroborate the 

correctness and effectiveness of the theory. Through the extensive 

numerical studies for several floating and submerged cyliners, some

major conclusions may be listed below.

1. At forward speed, the time periodic motions of a rigid body 

in waves are coupled. At small forward speed, the coupling effect is

usually small for submerged bodies, but significant for floating

bodies.

2. The forward speed does not affect the diagonal added mass 

and radiation damping coefficients. For symmetrical bodies, the 

cross-coupling added mass and radiation damping coefficients are no 

longer zero at forward speed, but the magnitude is much smaller than 

the diagonal coefficients.

3. The forward speed has an appreciable influence on the 

exciting forces on both floating bodies and submerged bodies. The 

forces in the high frequency range usually increase for bodies moving 

against the waves, and decrease for bodies moving with the waves, but 

the conclusion can not be generalized in the low frequency range.



-224-

4. The forward speed has a significant influence on the time 

periodic responses of floating bodies, but has a small influence for 

deeply submerged bodies. The responses are usully increased in the 

high frequency range for bodies moving against waves.

5. For floating bodies, the mean drift forces are strongly 

affected by the forward speed. The horizontal mean drift force for a 

circular cylinder increases for the cylinder moving against waves and 

decreases for the cylinder moving with waves. For submerged bodies, 

the forward speed has little influence on the mean drift forces up to 

the first order in forward speed. In particular, the horizontal mean 

drift force usually remains zero or very small.

6. For floating bodies, the principle of gradient of added 

resistance may be applied to predict the wave drift damping. Because 

it is found that the horizontal mean drift force has an appreciable 

component linearly proportional to the forward speed. For submerged 

bodies, however, further consideration appears to be necessary, 

because the horizontal mean drift force usually does not have, or has 

only very small component linearly proportional to the forward speed.
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Appendix A SOME VECTOR IDENTITIES

A.(BxC) - (AxB).C - B.(CxA) (A. 1)

AX(BXC) =■ B(A.C) - C(A.B) (A.2)

Bx(VxA) - VA.B B.VA (A.3)

VXVa - 0 (A.4)

Vx(BxC) - (V.C)B - (V.B)C + C.VB - B.VC (A.5)

-*• -* -► -+ -+■ -► -+ -+-► A.V(xxB) - AxB + xx(A.VB) (x — xi + yjf + zk) (A.6)

Stokes theorem:

For a differentiable vector function A defined over a smooth surface 

S which is bounded by the curve C, if the unit normal vector n of the 

surface and the direction of the the curve C are defined to satisfy 

the right hand screw law, then

Gauss theorems:

For a differentiable vector function A or scalar function A defined 

over a volume domain V which is enclosed by a smooth surface S, let n 

denote the unit normal vector directed out of the volume; then

{ A . d l
cs



Generally, let denote a generalized operater (e.g. a b = axb,

aAb = ab) and A denote a generalized function (e.g a scalar function 

A = a, a tensor A - ab), then
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Appendix B GREEN FUNCTIONS AND ASYMPTOTIC EXPRESSIONS

For unsteady motions at forward speed, the Green function is 

defined as the velocity potential of a pulsating translating source, 

which satisfies the Laplace equation in the whole fluid domain, 

except at the source point Let the Green function be

expressed as Gelwt, then G satisfies the following free surface 

condition

-tc)̂ G - 2iwUG + gG + U^G “ 0, on z=*0.
X Z XX (B. 1)

It also satisfies an appropriate radiation condition.

Three dimensions

Haskind (1946) derived the Green function as follows

k A[z+f+i(x-£)cosj0+i(y-»7)sin/9]i i _  r r Ae 1
r r ^ a (rAcos/8-k (l-i/i))“-k A

° (B.2)
g - e - z,- —  i i — -------------------- 2----------- d/3dx'

where r - [ (x-^)2+(y-»7)2 +(z-T)2] , r'- [ (x-^)2+(y-r;)2+(z+$')2] ;
2/x is the Rayleigh viscosity; and k*w /g, r=wU/g. The same function is 

aslo derived by several other authors as described by Wehausen and 

Laitone (1960). Taking /x-*0, the Green function can be alternatively 

expressed in the form of (Wehausen and Laitone 1960)
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G — — r ' r' + \ | dl,J F<*-A> dA + \ J d4  F(*.A) dA
0 0 
7T

+ | j d«J F(0,A) dA,
7T

7 L 1

where

(B.3)

F(*,A)
x A[z+f-i(x-£)cos0 ] r,/ v . a-,Ae ______ cos [ A(y-ry)smg ]

A - ^(w+AUcos0)2
(B.4)

0 ,

-1 / Ucos ( ^ ) ,

for t

for r

Uw 1
g 4 1

Uw 1
g _ 4* (B. 5)

The contours are defined by

and the four wavenumbers are given by

kx - l-2reo.^l-4rco5» k _ fQr , £ ^
2r COS * (B.6 )

, l-2rcos0+/l-4rcos0 - _ . ,jr x
3 , 4 ----- 7 2 --- 2.------  k - f°r * e ^2’ '

C0S * (B.7)

2The four wavenumbers are roots of the equation gA-(w+UAcos0) =0;

among which k^.k^ are the two roots over the range of 0e(O,7r/2 ),

whereas k^, k^ are the two roots over 0c(7r/2 ,7r). In the range of
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(0 ,7 ), there is no real root. Therefore, the first integral over A is 

simply written as an integral over (0 ,«°).

The asymptotic behaviour of the Green function has been

studied by many authors. It is found that r—1/4 is a critical value

for the wave patterns in the far field. For the supercritical motion

(r>l/4), there are two waves (k^, k^ waves) and both are located

downstream. For the subcritical motion (r<l/4), there are four waves.

One of them is located upstream (k^ wave). The other three (k^, k^

and k^ waves) are located downstream. For finite values of r, the

asymptotic expression is very complicated and the contributions from

the wave numbers have to be determined numerically by solving a

stationary phase equation. However, for r-*0 with a given frequency,
2two wavenumbers become infintely large, that Is, k^=k^“g/U » 1 . 

Because of the exponential decay, the two short crest waves are 

negligible. Only two waves survive and the behaviour in the far field 

is simpler. It can be shown that for very small r, the asymptotic 

expression of the Green function can be expressed as follows

G = 2(l+2rcosa) J l n V . /R
7T 1exp {k (l+2rcosa) [z+f-i(R-£cos0-»7sin0) ]-ir) + 0(— )

(B. 8)

where the polar coordinates are defined as follows

x-£ — R^cosa, y-rf — Resina;

x — Rcos0, y — Rsintf.

The expression was first given by Haskind (1946), but the paper 

contained an error. In his expression a is incorrectly taken as 9. 

Although this is valid for the first a in equation (B.8 ), it is not
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correct for the term Rcosa. In fact, from

R^ = yR^-2R(fcosfl+»7sin0) + (£^+t?^) “ R - (£cos0+f;sin0) + °(^) »

it follows that

Rcosa — (x-£) — (Rcos0-£)(1 +
R 1

gcosfl+r/sinfl
R + 0<h )>R‘

2 1 - Rcos0 - £sin 6 + »7sin0cos0 + 0(— ) .K (B.9)

It is possible to derive the expression (B.8 ) from the 

original Green function, but it is more convenient to start from the 

asymptotic expression for finite value of r given by Newman (1959). 

As shown by Newman, the asymptotic expression for the Green function 

can be expressed in the form of

(B.10)

where (±) signs after the summation correspond to the signs in 

equation (62) in Newman (1959). The sign of i7r/4 is the same as the

G - M  2 2  (±) (
A.(u ) sin^0 i n

1
2

i-1 n * 2 id* / O\Isin u —  cos(u -6) n 1 du N n 1n

exp{ A.(u ) [z+5*+iRcos(u -0)-£cosu -ir/sinu ] + i-r- ± ij } + 0(— )

second derivative of g. at u , and g. is defined as&i n &i

gi S ^i(u)cos(u-5).

u are the roots of n - 0. The second summation in equation (B.10)

is over all u . The two wave numbers are defined asn



. l+2rcosu±/l+4rcosu ,
1,2 0 2 2

2t COS U (B.12)

For t-+0,

1 2  2 r cos u

“ k(l-2cosu).

Because A^-n», the A^ terms in equation (B.10) can be neglected. 

Hence,

2 13- (u ) sin 9 j

G - J r  * <*>< . 2 ,S# . ... >n sin u —  costu -0)n 1 du n 1n

exp{ A^Cu^) [z+5“+iRcos(un -(9)-^cosun -ir/sinu^] + i^ ± î r } + O(^) •
(B.13)

From equations (B.ll) and (B.12), it follows that un is determined

from the following equation

_ „ _ (l+4rcosu)ctg0 - -tgu + -— :--------
° sinu cosu

For r-*0, it follows that

(B.14)

sin(u-0) - 2rsin0 .

From equation (62) in Newman (1959), it is known that u^ is defined 

in the domain

f - v <  < r-

Therefore, only single root is found, given by
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— d + 7T - 2rsin0 .
(B.16)

We have

A2 - k(l+2rcos0) ,

2
^2^U1^ S^n ^

1
}^ - 7k (l+2rcos0).

Finally,

G - 7 | ^  7k(l+2rcos0) exp{ A^Cz+f-iR+fcos0+i#;sin0) + }

2 1 exp{2ri(£sin 0 -r;sin0cos0)} + 0 (— )K. (B.17)

From equation (B.9), it immediately follows that equation (B.17) is 

identical to equation (B.8). The proof is completed.

Two dimensions

For two dimensional motions, a translating pulsating source 

potential can be written as follows (Haskind 1954)

r'G - In—  + r du ]

Z eik4 (Z-u)
+ du ] .

(B.18)
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where Z=x+iz, Z ^ + i f ;  r = [ (x-^)2+(z-f)2 ] r ' -  [ (x-^)2+(z+f)2]1/2 ; 

an overbar denotes complex conjugate; and the four wavenumbers are 

defined by

l-2r±/l-4r , , l+2r±/l+4r ,
kl 2 ------- 2----  k ’ 3 4 ---------2----  k ’’ 2r ’ 2r (B.19)
<o2 Uwwith k=—  and r=— . The four wavenumbers are roots of the following 
S 6

two equations (i) w-UA+/gA (A-k^.k^) and (ii ) w=7gA±UA (A—klfk2) , 

where u> is positive and known.

The wave patterns in the far field is very similar to the 

three dimensional motions. That is, for the supercritical motion 

(r>1/4), there are two waves (k^, k^ waves) and both are located 

downstream. For the subcritical motion (r<1/4), there are four waves. 

One of them is located upstream wave). The other three (k^, k^ 

and k^ waves) are located downstream. However, unlike its three 

dimensional counterpart, the asymptotic expression for the two 

dimensional Green function can be expressed in a very simple for 

arbitrary value of r. Particularly, for r<1/4, Haskind (1954) has 

shown that the asymptotic expression is

2?ri k,y■■■ ' e 2 , X-H-co,
yi-4r

2*1 k,y , 2?ri , k3x k4xN   e 1A +   (e 3 - e 4 ) , x-+-«,
7T-4r yi+4r (B.20)

where xsz+f+i(x-£)• It may be noted that k^ wave has a positive 

celerity. That is, it travells towards the source. Its group velocity 

(c^=dc«j/dk^) is, however, negative. Therefore, the k^ wave is located 

downstream.
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For T-*0,

k2 “ k(l+2r), k^ “ k(l-2r), ^  - k3 - —
r (B.21)

Because of the exponential decaying, k^, k^ waves can be neglected, 

and only two waves survive. The asymptotic expression is simplified 

into

_ 2?ri k9yG - -  ̂ e 2 , x-H-co,
yi-4r 

. 2iri  x-*-«>,
yi+4r (B.22)



Appendix C RATE OF CHANGE OF MOMENTUM

Consider an incompressible fluid in a volume Cl enclosed by a 

surface S. Let V denote the fluid velocity. Then the linear momentum 

is given by

J
(C.l)

and the angular momentum with respect to the origin is given by

I = p j V dS, 
Q

L — p J xxV dS. 
Q
J

(C.2)

The rate of change of the linear momentum is

dl 
dt

Q S (C.3)

where is the normal component of the velocity of the surface S and 

the direction of the normal is defined out of 0. The volume integral 

can be transformed in another form by using the differential momentum 

equation

av -+ p|_ + V . w -  -V(- + gz).
(C.4)

Since V . W  - V.(W) (This can be proved conveniently in a Cartesian

coordinate system: V . W  — V^J^ - ^  (V^V) - ( ^  V^)V - V.(W)-(V.V)V
X i Xi X i

and V.V = 0 for incompressible fluids.), it follows that

3V -*• -*-► -> p-V.(W) - V ( - +  gz).
(C.5)

Thus



From the Gauss theorem, it follows that

| V.(VV) dfl - j) n.VV dS - J> V^V dS,
Q (C.7)

J  + gz) dO - j> n ( ^  + gz) dS
Q S (C.8 )

Hence

£  -  -p  J> [V (vn - un ) + (5  + g z )S] dS

(C.9)

The rate of change of the angular momentum is

dL f a  r _► _>
tt " p J §t(xxV) dS + p J <xxV>Un dS‘

Q S

Substitution of the differential momentum equation yields

(C.10)

^ = p |  ||xV dS - p J [xx(V.VV) + xxV(^ + gz)] dS + p j) (xxV)Un dS . 
0 0  S (C.ll)

However, since

x x V + gz) - - V x [ + gz)x],
p p (C.12)

and
■f-> -► , ,3xxxV(V.W) - -V. [V(xxV) ] , - e ± used)
1 (C.13)

the volume integrals can be reduced to surface integrals from the 

Gauss theorem



If the coordinate system is moving at a translation velocity U,

Hence
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Appendix D SERIES EXPANSION OF THE THREE DIMENSIONAL GREEN FUNCTION

The zero-speed Green function Gq and the forward speed 

correction Green function G^ defined in equations (3.95) and (3.96) 

can be expressed in ascending series. For small kR^, from Abramowitz 

and Stegun (1965)

« (-l)n (XR )2n
J (AR ) — E -----  V ,0 1 n-0 22n(nj)2

» <-l)n (AR )2n+1 
•MAR,) - 21 1 n-0 22n+1n!(n+1)!

equations (3.95) and (3.96) can be written as follows

i i - M > n Rin _ Y

G0- ^  + 7'+ 2kt = - 3 T — 2I2n • 'lB n-0 2 (n!)
, ivn „2n+l 00 (-1)

G-— -4icosat 2 — -=---------  k 0 l01 n 02n+l ,, - v * 2n+2n-0 2 n!(n+1 )!

where Ysk|z+$*|, and

_ A(z+f).2n 
A

0
fI2n " t A-k A dA’

00

eA(z+r) ,2n+3k2n+2 " J  ’ w . . „2 dA’ (̂ °>J0 (A-k(l-i/i))

(D.l)

(D.2)

(D.3)

(D.4)

where a bar indicates that the principal value is taken. Integration 

of Ig yields
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‘2n f 2n-l A(z+$*) dA + k f A(z+f) 9 ,© 12n -1 j x
— x  "

k2n 2“ (m-1)!
m»=1 Y111 (D.5)

with

:0 “ f kM z + 0  

A-k dA

(D.6)

where E^(Y) is the exponential integral function.

Integration by part for ^ n + l  yields 

, 2n+2 f e'tY t2n+3
2n+2 ” J . 2

q (t-(l-iM))

o ,o r°° -tY j.*0. 2n+3 -tY
k [ f ---  5- dt + [   )e, dt]

Q (t-(l-iA)) ^ (t-(l-i^))Z

o . o  r°° -tY 2n+2 p°° m -tY
k2n+2 [-l-Y * - - dt + 2 f I * . . dt ]J t-(l-i/i) m _ Q J t-(l-i^)

0 0
From

m-1 -tY t e dt +
- s

m-1 -tY e dt

it follows that

p -tY 2n+l p Y
k 2n+ 2 ' k t'1 + <2n+3-Y)J t r < n ? )  dt + Sn (2n+2'm)J t V  dtl

0 0

9 9  y 2n+l j
- k [ -1 + (2n+3-Y)e E- (-Y) + 2 (2n+2 - m ) ^ 7r] ,

m-0 Y“
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where E^(Z) is the exponential integral function defined in 

Abramowitz and stegun (1965) and E^(-Y)*=E(-Y+iO)--(E^(Y)+i7r) .

Finally, the following ascending series are obtained,

G - - + - 2irike'YJn (kR )+ 2k !L— -— — — t [ 2 . e'YE (Y) ] ,
0 r r ’ O' l' » - « (.4 ) " W )2 " 1  l(D>g)

(kR1 )2n+1 Y 2n+2 .
G, — 2iricosak 2.------   [-l+<2n+3-Y)e E1 (-Y)+ S.. (2n+3-m)i--- '— } .
1 n (-4)nn!(n+1)! 1 ““ 1 Y*

(D.9)
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Appendix E DERIVATION OF AN INTEGRAL THEOREM

For a differentiable function f, there exists the following 

identity

f [ m.f + n.(W.Vf) ] dS - £ — n.f(S.W)..... (i-1..... 6),
j 1 1 j FT~^2 1

where

SB CW 3

(m^, m2> m3) — n.VW,

(E.l)

(m4 , m 5> m6) — n.V(xxW)

Proof:

Let us first prove this for i-1,2,3. From Stokes' theorem

J n. (Vxq) dS - j) q.dl,
SR CTJ

(E. 2)

where the normal and the direction of the curve satisfy the right 

hand screw rule. Let q-e^xW f. Then

-*■ 8 -*• -► n. (Vxq) - n.[e x ^  (e.xfW)]
J j

n -[eix(eix5J.w) + eix(eixfH 7 )] J J

n.[Si(Vf.5) - || 3 + : f(«.3) -fg? ]
i i

m W . V f  - fei.(VW.n). (Note n.W-0, V.W-0)
(E.3)

Since
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VxW=0

and
-+ ->• -*■ ->-► -> -> ->—► nx(VxW)-VW.n-n.V W ,

then

-► -► -»—►VW .n=n.V W .

Hence

n. (Vxq) =- n^W.Vf + fnu.

TivkIn the line integral dl — dl,
J T -nf

(E.4)

q.dl — e.xfW.dl — e. . [n(W.k) - k(W.n)]---— n.f(W.k) .
1 1 1

(E.5)

(If the Stokes' theorem is applied to an arbitrary surface instead of 

the body surface bounded by the water line on the free surface, then

dl — (nxt)xn dl and q.dl - n^[W.(txn)] dl, where t denotes the 

direction of the curve.) From equations (E.2)-(E.5), the identity 

(E.l) is proved.

Next, for i-4,5,6, let 

q— (e^ 3xx)xW.

Then

n. (Vxq) =■ n.|^ {e x[(et 3 xx)xfW]}
j J

After similar procedures for that of i-1,2,3, it follows that
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n.(Vxq) - n.W.Vf + fm. .
1 1 (E.6)

Also similarly, in the line integral

"► -► —► —► —► "P Hi —► —► —► —► *4q.dl = e. 0xfW.dl = ---- (e. _xx).[n(W.k) - k(W.n)]1-0 fZ-- 2 1 _ Jyi-n§

- e. . (xxn) (W.k)---— n.f(W.k)
7l-n§ 1_ 7l-n§ 1

(E.7)

From equations (E.2), (E.6 ) and (E.7), the identity (E.l) is proved.
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Appendix F SOME INTEGRAL IDENTITIES

Let E^(Z) denote the exponential integral function defined in 

Abramowitz and Stegun (1965), i.e.

00 -ztp1(Z) ■ J "4 dt,u
0 (F.l)

where Z is a complex number and the path of the integral does not 

cross the negative real axis. Then there exist the following 

identities.

A(f-ix) k(f-ix)
  dA - eK ^r LX;E1 (k(f-ix)), (x<0)

(F. 2)

X e*^f k(f-ix)T, „ „ k(f-ix) ,ffi — 7—^--- dA - e E.,(k(f-:Lx)) - 2?rie (x>0)A-k 1
0

(f<0 , k>0 )

For k>0, r/<0, b being complex, there are

00

J dt ■ .
0

J ~̂ SL dt - 
0

00P -irjt .
J dt - eKr?E1 (kr7-iO),
0

(F. 3)

(F .4)

(F. 5)

(F .6)
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00 irjtp
J t-iik dt " 6 »
0
00 -zt

I -4ar- dt - (bz) . (ReZ>0)t+b “1
0

J" (t+b )2 dt ' b ' ZJ t+b
0 K J 0

-zt „ -zt
6 dt, (ReZ>0)

o + b 0

(F.7)

(F.8)

(F.9)

(F.10)

These identities can be proved from contour integration. For example, 

let us prove the identity (F.4). Proof:

Iirjt p ik»;m
"t+ik dt J

0
m+i dm (t—km)

eo+i
. M  -lk"vdv - e dv (m+i-v)

ek"|L^  du - e ^ - ^ d u  
k rj kr/

(ik»7V=-u)

- e^E^(k»;+iO) ,

and the proof is completed. Other identities can be proved similarly.



Appendix G THE COORDINATE TRANSFORMATION

As shown in Chapter 5, up to second order, there are the 

following relations for coordinate transfomation

x - x' + f + Oxx' + c Hx' + 0(c ),
(G.l)

—► —► *4 *4 2 -+ 3n = n' + flxn' + e Hn' + 0(e ).
(G.2)

From these two relations, the transformation for the generalized 

normal vector can be derived:

xxn = (x' + f + ftxx' + £2Hx)x(n' + Oxn' + £2Hn') + 0(£3)

= x'xn' + |xn' + [^x(ftxn') + (ftxx')xn'] + |x(flxn')

+ [(5xx')x(flxn#) + e 2x 'xHn' + e2 (Hx')xn'] + 0(£3).

This can be further simplified. From equation (A.2), it follows that

£x(0xn') + (fixx')xn' - Ox(xxn'),

(Oxx')x(Qxn') — O(fl.x'xn').

Hence,

-► -► -+  -4- -4 -► -4 -4xxn = x'xn' + £xn' + flx(x'xn') + £x(flxn')

+ [5(3.x'xn') + c 2x 'xHn ' + £2 (Hx')xn'] + 0(e3).

The terms in the square brackets can be written in a more compact 

form. Let H be denoted by [h^ ] . Then
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x'xHn' + (Hx')xn'

V j' h, .x'.’ lj J (h22+h33)n4-h21n5-h3]n6
— x'x h2jnj + h. .x'. lj J xn' =- "h12n4+ ĥll+h33^n5'h32n6

. V j . h.,. x '.. 3J J. 'h13n4"h23n5+ ĥll+h22^n6

fl(Q.x'xn') + c^x'xHn' + e^(Hx')xn'
hlln4

h2 l V h22n5

h31n4+h32n5+h33n6

2 -* -+- £ H(x'xn')
(G.3)

Finally,

xxn - x'xn' + £xn' + Ox(x'xn') + ^x(Qxn') + c^H(x'xn') + O(e^)
(G.4)
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Table 3.1 The ratio of B._/B (kAd=2,wA/w =10,x /a=4)WD' v 0 0' n a!

kQ A
V

0.1 0.2 0.3 0.4

0.1 .005 .020 .044 .079
0.2 .020 .079 .177 .316
0.3 .044 .177 .399 .710
0.4 .079 .316 .710 1.262

r .04 .08 .12 .16



Table 6.1 Multipole expansion coefficients bm/a in sway: h/a=2.0

ka=0 .1
N=3 N=5 N=10

(1.12902, -.05419) (1.12687, -.05398) (1.12685, - .05398)
(-.03087, .00391) (-.02802, .00376) (-.02799, .00376)
( .00605, -.00038) ( .00614, -.00038) ( .00608, - .00038)

(-.00153, .00008) (-.00141, .00007)
( .00034, -.00002) ( .00034, - .00002)

(-.00008, 00000)
( .0 0 0 0 2, 00000)
(-.0 0 0 0 1, .00000)
( .0 0 0 0 0, .00000)
( .0 0 0 0 0, .00000)

ka=1.0
N=3 N=5 N-10

( .81792, -.14335) ( .81729, -.13229) ( .81717, - 13216)
( .03602, .06104) ( .03604, .05341) ( .03616, .05330)
(-.00417, -.01604) (-.00353, -.01766) (-.00370, - .01750)

(-.00096, .00477) (-.00073, .00452)
( .00047, -.00093) ( .00051, - .00096)

(-.00017, .00018)
( .00004, -.00003)
(-.0 0 0 0 1, .00001)
( .0 0 0 0 0 , .00000)
( .0 0 0 0 0, .0 0 000)
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Table 6.2 Multipole expansion coefficients a^ ^/a in heave: h/a=2.0

ka-0 .1
N=3 N-5 N=10

(-.11192, -.00532) (-.11268, .00540) (-.11269, .00540)
(1.12412, -.05347) (1.12683, -.05398) (1.12685, -.05398)
(-.02472, .00356) (-.02796, .00376) (-.02799, .00376)

( .00603, -.00038) ( .00608, - .00038)
(-.00128, .00007) (-.00141, 00007)

( .00034, - 00002)
(-.00008, 00000)
( .0 0 0 0 2, - 00000)
(-.0 0 0 0 1, 00000)
( .0 0 0 0 0, - 00000)

ka-1.0
N-3 N-5 N-10

(-.81798, -.11106) (-.81703, .13198) (-.81717, .13216)
( .81896, -.11203) ( .81703, .13198) (-.81717, 13216)
( .03446, .03623) ( .03631, .05315) ( .03616, .05330)

(-.00392, -.01726) (-.00370, - .01750)
(-.00036, .00402) (-.00073, .00452)

( .00051, -.00096)
(-.00017, .00018)
( .00004, -.00003)
(-.0 0 0 0 1, .00001)
( .0 0 0 0 0 , .000 0 0)



Table 6.3 Convergence of sway hydrodynamic coefficients
for a submerged circular cylinder: h/a-2.0

(a) added mass

ka N=3 N-5 N-10 N-20
.10 1.25032 1.24812 1.24810 1.24810
.50 .86361 .86247 .86246 .86246

1.00 .70586 .70665 .70667 .70667
2.00 .79025 .79243 .79243 .79243
4.00 .84855 .85024 .85026 .85026
8.00 .86741 .86852 .86853 .86853

16.00 .87531 .87624 .87625 .87625

(b) radiation damping

ka N-3 N-5 N-10 N-20
.10 .10753 .10721 .10721 .10721
.50 .39999 .39658 .39656 .39656

1.00 .16016 .15774 .15771 .15771
2.00 .01305 .01074 .01075 .01075
4.00 .00005 .00002 .00001 .00001
8.00 .00000 .00000 .00000 .00000

16.00 .00000 .00000 .00000 .00000

5abs 4x10"3 2x10"5 - -
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Table 6.4 Convergence of heave hydrodynamic coefficients
for a submerged circular cylinder: h/a-2.0

(a) added mass

ka N-3 N-5 N-10 N-20
.10 1.24511 1.24808 1.24810 1.24810
.50 .86220 .86245 .86246 .86246

1.00 .70962 .70669 .70667 .70667
2.00 .79349 .79243 .79243 .79243
4.00 .85178 .85027 .85026 .85026
8.00 .86953 .86853 .86853 .86853

16.00 .87710 .87625 .87625 .87625

(b) radiation damping

ka N-3 N-5 N-10 N-20
.10 .10623 .10720 .10721 .10721
.50 .39155 .39653 .39656 .39656

1.00 .15624 .15767 .15771 .15771
2.00 .00927 .01077 .01075 .01075
4.00 -.00007 .00000 .00001 .00001
8.00 .00000 .00000 .00000 .00000

16.00 .00000 .00000 .00000 .00000

5 u abs 4x10'3 2x10'5 - -
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Table 6.5 Added mass for a submerged circular cylinder: h/a-2.0

ka
a22/pir a2 a33/pira2

BIE-BIE BIE-BMP analyt. BIE-BIE BIE-BMP analyt.

.000 1.13465 1 .13444 1.13458 1.13466 1.13444 1.13458

.100 1.24820 1 .24795 1.24810 1.24818 1.24795 1.24810

.200 1.22577 1 .22553 1.22569 1.22572 1.22553 1.22569

.300 1.10242 1 .10223 1.10236 1.10239 1.10223 1.10236

.400 .96804 .96790 .96800 .96805 .96790 .96800

.500 .86250 .86239 .86246 .86252 .86239 .86246

.600 .79044 .79035 .79039 .79047 .79035 .79039

.700 .74556 .74547 .74550 .74558 .74547 .74550

.800 .72043 .72035 .72037 .72045 .72035 .72037

.900 .70898 .70891 .70893 .70901 .70891 .70893
1.000 .70672 .70664 .70667 .70674 .70664 .70667
1.200 .71769 .71761 .71766 .71771 .71761 .71766
1.400 .73735 .73726 .73732 .73736 .73726 .73732
1.600 .75811 .75801 .75809 .75812 .75801 .75809
1.800 .77679 .77669 .77678 .77680 .77669 .77678
2.000 .79243 .79232 .79243 .79244 .79232 .79243
4.000 .85028 .85015 .85026 .85029 .85015 .85026
8.000 .86856 .86843 .86853 .86856 .86843 .86853

16.000 .87628 .87615 .87625 .87629 .87615 .87625

Table 6.6 Radiation damping for a submerged circular
cylinder • h/a-2.0

ka
b 22/pTra^w b 33A»ra2u

BIE-BIE BIE-BMP analyt. BIE-BIE BIE-BMP analyt.

.000 .00000 .00000 .00000 .00000 .00000 .00000

.100 .10723 .10719 .10721 .10726 .10719 .10721

.200 .28843 .28832 .28838 .28842 .28832 .28838

.300 .39934 .39920 .39929 .39929 .39920 .39929

.400 .42363 .42350 .42359 .42358 .42350 .42359

.500 .39659 .39648 .39656 .39655 .39648 .39656

.600 .34802 .34792 .34799 .34799 .34792 .34799

.700 .29423 .29415 .29420 .29421 .29415 .29420

.800 .24286 .24279 .24282 .24285 .24279 .24282

.900 .19705 .19700 .19701 .19704 .19700 .19701
1.000 .15776 .15772 .15771 .15775 .15772 .15771
1.200 .09795 .09792 .09790 .09794 .09792 .09790
1.400 .05873 .05871 .05868 .05872 .05871 .05868
1.600 .03419 .03419 .03415 .03419 .03419 .03415
1.800 .01941 .01941 .01937 .01941 .01941 .01937
2.000 .01077 .01077 .01075 .01077 .01077 .01075
4.000 .00001 .00001 .00001 .00001 .00001 .00001
8.000 .00000 .00000 .00000 .00000 .00000 .00000

16.000 .00000 .00000 .00000 .00000 .00000 .00000



Table 6.7 Added mass for a floating circular cylinder: h/a-0.5

ka a22/pVwet a33/pVwet
BIE-BIE BIE-BMP analyt. BIE-BIE BIE-BMP analyt.

.000 1.48618 1.48593 1.48602 18.22529 18.16097 18.14833

.100 1.88486 1.88108 1.88449 .67707 .67528 .67720

.200 2.15650 2.15846 2.15591 .50414 .50400 .50435

.300 1.85093 1.85069 1.85059 .45646 .45646 .45672

.400 1.17205 1.17284 1.17233 .45536 .45534 .45565

.500 .61949 .61934 .62022 .47474 .47474 .47504

.600 .29203 .29195 .29296 .50241 .50239 .50271

.700 .11503 .11136 .11598 .53196 .53192 .53223

.800 .02251 .02199 .02339 .56003 .56000 .56029

.900 -.02327 -.02230 -.02251 .58500 .58501 .58528
1.000 -.04250 -.04124 -.04188 .60645 .60643 .60666
1.200 -.04067 -.03876 -.04013 .63873 .63865 .63888
1.400 -.01534 -.01279 -.01423 .65945 .65934 .65956
1.600 .00864 .02010 .02015 .67200 .67188 .67208
1.800 .05779 .05523 .05650 .67916 .67901 .67925
2.000 .09171 .09037 .09190 .68293 .68279 .68305

Table 6.8 Radiation damping for a floating circular
cylinder : h/a-0.5

ka b22/pVwetW b3 3 ^ Vwetw
BIE-BIE BIE-BMP analyt. BIE-BIE BIE-BMP analyt.

.000 .00000 .00000 .00000 1.19672 1.18857 1.18698

.100 .18275 .18001 .18269 .71693 .71856 .71636

.200 .80269 .80555 .80226 .48260 .48244 .48219

.300 1.55575 1.55523 1.55475 .32559 .32548 .32526

.400 1.85762 1.85721 1.85647 .21515 .21503 .21488

.500 1.75238 1.75185 1.75149 .13745 .13739 .13725

.600 1.52056 1.51995 1.52000 .08385 .08379 .08371

.700 1.29098 1.30077 1.29073 .04803 .04793 .04794

.800 1.09497 1.09422 1.09495 .02508 .02508 .02505

.900 .93348 .93217 .93361 .01096 .01131 .01128
1.000 .80091 .80016 .80109 .00387 .00384 .00382
1.200 .60011 .59899 .60021 .00006 .00006 .00006
1.400 .45815 .46654 .45821 .00331 .00331 .00331
1.600 .34886 .35780 .35485 .00856 .00853 .00855
1.800 .28055 .28075 .27796 .01365 .01357 .01362
2.000 .22182 .22210 .21982 .01769 .01770 .01771
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Table 6.9 Added mass for a submerged circular cylinder 
at forward speed: h-2a

ka &22^ ̂
2Tra a33/P 2

ica

present Wu present Wu

.3000 1.1024 _ 1.1024 _
F = .0 .5000 .8625 - .8625 -n 1.0000 .7067 - .7067 -

1.5000 .7479 - .7479 -

.3105 1.0877 1.0917 1.0877 1.0916
F - .032 .5226 .8426 .8434 .8426 .8432n 1.0640 .7075 .7090 .7075 .7094

1.6180 .7601 .7632 .7602 .7615

.3210 1.0730 1.0958 1.0729 1.0960
F = .064 .5453 .8226 .8312 .8226 .8307n 1.1280 .7082 .7190 .7082 .7191

1.7350 .7724 .7803 .7724 .7784

.3421 1.0435 1.1291 1.0435 1.1300
F - .128 .5905 .7827 .8170 .7827 .8153n 1.2560 .7097 .7588 .7097 .7579

1.9700 .7970 .8186 .7970 .8152

Table 6.10 Radiation damping for a submerged circular cylinder 
at forward speed: h-2a

ka
b 22/P7ra2 b 33/p 2

na

present Wu present Wu

.3000 .3993 _ .3993 _
F - .0 .5000 .3966 - .3966 -n 1.0000 .1578 - .1578 -

1.5000 .0450 - .0450 -

.3105 .4060 .4071 .4059 .4073
F = .032 .5226 .3872 .3878 .3872 .3865n 1.0640 .1347 .1343 .1347 .1341

1.6180 .0307 .0320 .0307 .0319

.3210 .4126 .4209 .4125 .3908
F - .064 .5453 .3778 .3775 .3778 .3778n 1.1280 .1117 .1108 .1117 .1105

1.7350 .0163 .0223 .0163 .0221

.3421 .4258 .4619 .4258 .4664
F = .128 .5905 .3590 .3536 .3590 .3549n 1.2560 .0655 .0669 .0655 .0660

1.9700 -.0123 .0130 -.0123 .0127
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Table 6.11 Exciting forces for a submerged circular cylinder 
at forward speed: h-2a

ka
1f2 1 /P&^2a |f3l /pgA2a

present Wu present Wu

.3000 .5600 _ .5600 _
F = .0 .5000 .5581 - .5581 -n 1.0000 .3520 - .3520 -

1.5000 .1879 - .1879 -

.3105 .5559 .5551 .5533 .5528
F = .032 .5226 .5560 .5552 .5539 .5532n 1.0640 .3527 .3522 .3515 .3513

1.6180 .1883 .1883 .1877 .1877

.3210 .5518 .5514 .5467 .5468
F = .064 .5453 .5539 .5532 .5497 .5493n 1.1280 .3945 .3527 .3919 .3507

1.7350 .1888 .1886 .1875 .1873

.3421 .5437 .5452 .5336 .5359
F - .128 .5905 .5501 .5497 .5416 .5419n 1.2560 .3957 .3536 .3906 .3489

1.9700 .1897 .1889 .1872 .1862



Figure 3.1 Definition of coordinate systems 

for a vertical cylinder
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.00.
1.60

k a
*—  EXACT THEOEY t=0.0) ASYMPTOTIC t=-0.1)
fi— ASYMPTOTIC T=0.0) — ♦—  ASYMPTOTIC t=0.1)

Figure 3.2 Mean drift force on the cylinder
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1 . 50.

/®— ®s
1.00.

. 50.

.00

-1.00,
1.601.20.80.00 .10

k a
* —  EXACT FORCE ?J(pgkh)) - e -  DAMPING B_y(pA2(ga)1̂ 2)) 
f l -  DAMPING B^/(pA2(ga)1/2))

Figure 3.3 Mean drift force and wave drift 
damping on the cylinder



(x,z)

Figure 4.1 Definition of coordinate systems in 2D
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Figure 4.2 Definition of coordinate systems in 3D
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waves

(a) floating body

incident
waves

(b) submerged body

Figure 4.3 Geometry and fluid domains
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(a) pole below the free surface

(b) pole on the free surface

Figure 4.4 Definition of S- and Ĉ ; 3D
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Q

(a) pole below the free surface

(b) pole on the free surface

Figure 4.5 Definition of Ŝ ; 2D



Figure 5.1 The fixed and moving body surfaces
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LEGEND 
6=1.0% 
6= 0.1%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
h/a

Figure 6.1 Sketch of a circular cylinder

Figure 6.2 N-h/a curve for a circular cylinder
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<Added mass for a submerged circle>

•x •--- *

O-

O"

tn

0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0l.B

LEGEND 
• Ogilvie 
□ h/a=l.l
o h/a=1.25
A h/a=1.5
+ h/a=2.0
X h/a=3.0

ka

Figure 6.3a A submerged circular cylinder: 
sway/heave added mass

<Radiation damping for a submerged circle>

CM“

CMo

o-

1.6 2.01.2 1.61.40.0 0.2 0.4 0.6 0.8 1.0

LEGEND
•
□

Ogilvie
h/a=l.l

0 h/a=1.25
A h/a=1.5
+ h/a=2.0
X h/a=3.0

ka

Figure 6.3b A submerged circular cylinder:
sway/heave radiation damping



<Added m ass for a floating circle>

n-

O"

O ’

o-

0.0 0.2 0.4 0.6 0.8 1.0 1.8 2.01.2 1.6

LEGEND 
□ h/a=0.0
o h/a=0.25
A h/a=0.5
+ h/a=0.75
X h/a=0.9

ka
Figure 6.4a A surface-piercing circular cylinder: 

sway added mass

<Radiation damping for a floating circle>
LEGEND 

□ h/a=0.0

a  h/a=0.5

x h/a=0 .9n~

O' ■A—

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ka

Figure 6.4b A surface-piercing circular cylinder:
sway radiation damping
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<Added m ass for a floating circle>IO

CM-

<0

X
o-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 2.01.4 1.6 1.8
ka

□
LEGEND
h/a=0.0

o h/a=0.25
A h/a=0.5
f h/a=0.75
X h/a=0.9

Figure 6.5a A surface-piercing circular cylinder: 
heave added mass

<Radiation damping for a floating circle>

non-;-

o-

0.0 0.2 0.4 0.6 0.8 2.01.0 1.2 1.81.4 1.6
ka

□ h/a=0.0
o h/a=0.25
A h/a=0.5
+ h/a=0.75
X h/a=0.9

Figure 6.5b A surface-piercing circular cylinder:
heave radiation damping
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<A submerged circle, RSUB=2.0 ka=0.5> <A submerged circle, RSUB=2.0 ka=0.5>

16.0 - 10.0 - 5.0 0.0kx 5.0 10.0 15.0 - 15.0 - 10.0 -6.0 0.0
kx

5.0 10.0 15.0

(a) ka-0.5; real part (b) ka-0.5; imaginary part

<A submerged circle. RSUB=2.0 ka=1.0> <A submerged circle, RSUB=2.0 ka-1.0>

16.015.0 10.05.00.0
kx

- 5.0- 10.0- 15.010.05.0- 5.0 0.0kx- 10.0- 15.0

(c) ka-1.0; real part (d) ka-1.0; imaginary part
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<A submerged circle, RSUB=2.0 ka=2.0> <A submerged circle, RSUB=2.0 ka=2.0>e

on

oti

e

oO'

- 10.0 -6.0 6.00.0kx 10.0 180 - 16.0 15.05.0 10.0- 10.0 -6.0 0.0kx
(e) ka-2.0; real part (f) ka-2.0; imaginary part

<A submerged circle, RSUB=2.0 ka=4.0> <A submerged circle, RSUB=2.0 ka=4.0>

15.06.0o.o 10.0- 15.0 - 10.0 - 5.0 kx
(g) ka-4.0; real part

LEGEND
Re[k»]

10.015.0 — 15.0 - 10.0 - 5.0 0.0 5.0kx
(h) ka-4.0; imaginary part

LEGEND 
Impcft]

15.0

Figure 6.6 Free surface elevation due to sway of a
submerged circular cylinder: h/a-2.0



Figure 6.7 Mesh of a submerged circular cylinder

+

Figure 6.8 Mesh of a submerged rectangular cylinder
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<A submerged circle>

2.01.0 1.2 1.6 1.81.40.0 0.2 0.4 0.6 0.8

LEGENDanalyt.
o h=1.5a BIE-BIE 
a h=1.5a BIE-BMP 
o h=3.0a BIE-BIE 
v h=3.0a BIE-BMP

ka

Figure 6.9 Added mass for a submerged circular cylinder

<A submerged circle>
CM"

O"

O-
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

LEGEND
analyt.

o h=1.5a BIE-BIE 
a  h=1.5a BIE-BMP 
o h=3.0a BIE-BIE 
v h=3.0a BIE-BMP

ka

Figure 6.10 Radiation damping for a submerged circular cylinder
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<A submerged rectangle B/D=l>
LEGEND

• Maeda 
■ Maeda 

BIE-BMP
h=1.5D/2 sway BIE-BIE 
h=1.5D/2 heave BIE-BIE 
h=3.0D/2 sway BIE-BIE 
h=3.0D/2 heave BIE-BIE

1.8 2.00.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
kB/2

Figure 6.11 Added mass for a submerged rectangular cylinder

<A submerged rectangle B/D=l>

O-

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

LEGEND
BIE-BMP

o h=1.5D/2 sway BIE-BIE 
a h=1.5D/2 heave BIE-BIE 
+ h=3.0D/2 sway BIE-BIE 
x h=3.0D/2 heave BIE-BIE

kB/2

Figure 6.12 Radiation damping for a submerged
rectangular cylinder



Figure 6.13 Mesh of a floating
circular cylinder

Figure 6.14 Mesh of a floating 
elliptic cylinder

Figure

■o-o-o-o-o-

o-oo-o-o-o-o-o-o

6.15 Mesh of a floating Figure 6.16 Mesh of a floating
rectangular cylinder triangular cylinder



-294-
< A floating semicircle >< A floating semicircle >

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8 1.8 2.0
ka0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ka

< A floating semicircle > < A floating semicircle >

Q.p

0.4 0 6  0.8 1.0 1.2 1.4 1.6 1.8 2.0
ka

1.4 1.6 1.8 2.0ka
LEGEND

analyt.__________
+ Nestegard 
a p resen t BIE-BMP 
o p resen t BIE-BIE

Figure 6.17 Added mass and radiation damping
for a floating circular cylinder
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< A floating ellipse > < A floating ellipse >

2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0ka

< A floating ellipse > < A floating ellipse >

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ka ka

LEGEND 
presen t BIE-BMP 

o p resen t BIE-BIE

Figure 6.18 Added mass and radiation damping
for a floating elliptic cylinder: b/a-0.5
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< A floating rectangle > < A floating rectangle >

0.0 0.2 0.4 0.8 0.8 1.0 1.2 1.4 1.8 1.8 2.0
ke>/2

< A floating rectangle > < A floating rectangle >

.0 1.8 2.0

LEGEND 
presen t BIE-BMP 

o p resen t BIE-BIE 
+ Nestegard

Figure 6.19 Added mass and radiation damping
for a floating rectangular cylinder
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< A floating triangle >

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0kB/2

< A floating triangle >

too

o
o.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
kS/52

LEGEND 
p re sen t BIE-BMP 

o p resen t BIE—BIE 
+ Nestegard 
□ Vugts

< A floating triangle >

0.0 0.2 0.4 0.6 0.6 1.0 1.2 1.4 1.6 1.8 2.0
kB/2

< A floating triangle >

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8
kB /2

Figure 6.20 Added mass and radiation damping
for a floating triangular cylinder
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< A floating semicircle >

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00.0 0.5 1.0

LEGEND
BIE-BMP
BIE-Bffi”

ka

< A floating semicircle >

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

LEGEND 
BIE-BMP 
BIE-BIE ~

k a

Figure 6.21 Irregular frequencies: k^Rj-1.822, ^ ^ - 3 . 2 8 9 ,  
k3Rj-4.891 ... (Rj-1.5a)



<Sway—heave for a submerged circle h/a=2>
LEGEND 

Encounter freq expn
x Wave freq expn 
o W U

O"

2.0 2.5 3.0 3.5 4.0 4.5 5.00.0 0.5 1.0 1.5
ka

<Sway—heave for a submerged circle d/a=2>
to

LEGEND 
Encounter freq expn

O"

x Wave freq expn 
o W U

O"

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ka

Figure 6.22 Comparison of the wave frequency expansion 
with the encounter frequency expansion for 
a submerged circular cylinder: h/a-2.0
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<A floating circle> <A floating circle>

2.50.5 1.0o.o 1.5 2.0
ka ka

<A floating circle> <A floating circle>

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.52.01.50.0 0.5 1.0
ka ' ka

LEGEND 
& Fta— 0.064 
o Fh» 0.0 
+ Fh- 0.064

Figure 6.23 Added mass for a floating
circular cylinder at forward speed
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<A floating circle>

0.0 o.s 1.0 1.5 2.0 2.5
k a

<A floating circle>

<a»o A— A----A --------- —A - -

0.0 0.5 1.0
"T"
1.5

k a

<.A floating circle> <A floating circle>

o.o 1.50.5 1.0 2.0 2.5
ka

LEGEND 
A__Fh»-0.064 
o Fh» 0 0 

Fh- 0.064

Figure 6.24 Radiation damping for a floating
circular cylinder at forward speed
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<A floating circle> <A floating circle>

o.s0.0 1.0 1.5 2.0 2.5

a) 6-

2.50.0 2.00.5 1.51.0ka ka
LEGEND 

a Fh— 0.064 
o Fh— 0 0 
+ F h - 0.064 
■ Zhao et al. 
•  Zhao e t al. 
a  Zhao e t al.

Figure 6.25 Exciting forces for a floating
circular cylinder at forward speed

<A floating circle> <A floating circle>

1.0 2.51.5 2.00.50.0
ka

LEGEND 
Fh— 0.064 
Fh- 0.0 
Fh- 0.064 

■ Zhao e t al. 
•  Zhao e t al. 
□ Zhao e t aL

2.52.01.51.00.50.0 ka

Figure 6.26 Dynamic responses of a floating
circular cylinder at forward speed
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<A floating circle>

o _

in

o .
2.0 2.51.50.5 1.00.0

LEGEND
Ha— 0.064__
Tn= 0.0 ”
Fa= 0.064___________

a  Ri=-.064 single degree 
o Fn= 0.0 single degree 
+ Fh=0.064 single degree

k a

< A  floating circles

o.o 0.5 1.0 1.5 2.0 2.5

LEGEND 
Fq=-0.°64 
Fn= 0.0
Fn= 0.064

a Fh=— .064 single degree 
o Eh== 0.0 single degree 
-i- Fn=0.064 single degree

ka

Figure 6.27 Coupling effects of responses of a
floating circular cylinder at forward speed
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< A floating rectangle >

O-

OQ °"

CM-̂tlb-

O ”

o.
0.0 0.5 1.0 1.5 2.0 2.5

LEGEND a Fn=-0.064 o Fn= 0.0 + Fn= 0.064

kB/2

< A floating rectangle >

o-

0.0 0.5 2.0 2.51.51.0

LEGEND a Fh=-0.064 o Eh= 0.0 + Fn= 0.064

kB/2

Figure 6.28 Exciting forces for a floating
rectangular cylinder at forward speed
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< A floating rectangle >

o
LEGEND

Fn=-0.064
Fn= 0.0
Fn= 0.064___________

a Fh=-.064 single degree
o fti= 0.0 single degree 
+ Fh=0.064 single degree

C\J_

2.0 2.50.5 1.0 1.50.0

< A floating rectangle >

01"

O"

o.
1.5 2.0 2.50.0 0.5 1.0

LEGEND 
Fh=— 0.064 
Fn= 0.0
Fn= 0.064

a  Fh=-.064 single degree 
o Fh= 0.0 single degree 
+ Ri=0.064 single degree

kB/2

Figure 6.29 Dynamic responses of a floating
rectangular cylinder at forward speed
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<A submerged circle h/a=2> <A submerged circle h/a=2>

o.o 0.3 1.0 1.5 2.0 2.5
ka

<A submerged circle h/a=2> <A submerged circle h/a=2>

1.5 2.00.5 1.0o.o o.o 0.5 1.0 1.5 2.0 2.5ka ka

LEGEND 
a Fh»—O.OM 
o Fh— 0 0 
+ Fh- 0.064

Figure 6.30 Added mass for a submerged
circular cylinder at forward speed: h/a-2.0
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<A submerged circle h/a=2> <A submerged circle h/a=2>

\
\

<A submerged circle h/a=2> <A submerged circle h/a=2>

1.5 2.0 150.0 0.5 1.0 ka
LEGEND 

a fh— 0.064 
o fh» 0 0 
+ Fh- 0.064

Figure 6.31 Radiation damping for a submerged
circular cylinder at forward speed: h/a-2.0
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<A submerged circle h/a=2>

o.o 0.5 1.0 1.5 2.0 2.5
k a

LEGEND 
a Fh— 0.064 
o Fh* 0.0
j_jh-o.o64_ Figure g . 32 Exciting

circular

<A submerged circle h/a=2>

o.o 0.5 to 1.5 2.0 2.5ka

LEGEND 
Fh— 0.064
Fh-0.0___________
Fh* 0.064____________

a Fh— 0.064 single degree 
o Fh* 0.0 single degree 
+ Fh* 0.064 single degree

<A submerged circle h/a=2>

 A
0.0 0.5 1.0 1.5 2.0 2.5

k a

forces for a submerged
cylinder at forward speed: h/a-2.0

<A submerged circle h/a=2>

2.0too.so.o ka

Figure 6.33 Dynamic responses of a submerged
circular cylinder at forward speed: h/a-2.0
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<A subm erged circle h/a=2>

1.5 2.00.5 1.0 2.50.0

LEGEND
Fn=-.064
Fn=0.0
Fn=0.064___________

v Q neglected Fn=— 0.064 
□ Q neglected Fh= 0.064

ka

<A submerged circle h/a=2>

2.0 2.51.51.00.50.0

LEGEND 
Fn=— .064 
Fn=0.0
Fn=0.064

v Q neglected Fn=— 0.064 
□ Q neglected Ri= 0.064

ka

Figure 6.34 Influence of Q term on the responses of a
submerged circular cylinder at forward speed: h/a-2
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<A submerged circle h/a=1.5> <A submerged circle h/a=1.5>

o"

0.5 1.9 2.0 2.9 LO 1.9 2.0 2.9

<A submerged circle h/a=1.5> <A submerged circle h/a=1.5>

o'

0.9 LO LS0.0 2.0 2.5 2.00.5 LO 1.9 2.50.0ka ka
LEGEND

__Fh~;064________
fh-0.0_____________
Eh-0.064___________

▼ Q neglected Fh—0.064 
□ Q neglected Fh— 0.064

Figure 6.35 Added mass for a submerged
circular cylinder at forward speed: h/a-1.5
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<A submerged circle h/a=1.5>

o.o 0.5 1.0 L5 2.0 2.5ka

<A submerged circle h/a=1.5>

0.5 L5 2.0to 2.50.0
ka

LEGEND
Fh=-.064
Fb=0.0______________
Fn=0.064___________

v Q neglected Fn=-0.064 
□ Q neglected Fh= 0.064

Figure 6.36 Radiation damping for a submerged
circular cylinder at forward speed: h/a-1.5
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<A submerged circle h/a=1.5>

O"

o_
0.0 0.5 1.0 1.5 2.0 2.5

ka

LEGEND
JRa— 0.064 __
Fh= 0.0
Fn= 0.064__________

v Q neglected Pta=-0.064 
□ Q neglected Fh= 0.064

<A submerged circle h/a=1.5>

o.o 0.5 1.0 2.51.5 2.0

LEGEND 
Fb=-0.064 _ _ 
F n = 0.0
Fa= 0.064___________

v Q neglected Fh=-0.064 
o Q neglected Fh= 0.064

ka

Figure 6.37 Exciting forces for a submerged
circular cylinder at forward speed: h/a—1.5
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<A submerged circle h/a=1.5>

0.5 1.50.0 1.0 2.0 2.5

LEGEND
_Fn=-.064
Fn=Q.O
Fn=0.064___________

v Q neglected Fh=-0.064 
□ Q neglected Fb= 0.064

ka

<A submerged circle h/a=1.5>

o.o 0.5 1.0 1.5 2.0 2.5

LEGEND 
_Fn=-064 
Fh=0.0
FYi=0.064

v Q neglected Fh=—0.064 
□ Q neglected Fh= 0.064

ka

Figure 6.38 Dynamic responses of a submerged
circular cylinder at forward speed: h/a-1.5
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<A submerged circle h/a=1.5>

o.o 0.5 1.0 1.5 2.0 2.5
ka

LEGEND
Fh=-0.064
Uh=0.0
Fh=0.064

a Fh—-0.064 single degree 
o Fh=0.0 single degree 
+ Fh=0.064 single degree

<A submerged circle h/a=1.5>

o.o 0.5 1.0 1.5 2.0 2.5

LEGEND
Fh=-0.064
Fh=0.0
Fh=0.064

a Fh=-0.064 single degree 
o Fh=0.0 single degree 
+ Fh=0.064 single degree

ka

Figure 6.39 Coupling effects of responses of a submerged
circular cylinder at forward speed: h/a-1.5
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<A submerged ellipse h/a=2> <A submerged ellipse h/a=2>

A A

A'

2.5 0.00.5 0.50.0 1.0 1.0 1.51.5 2.0 2.52.0
k a  k a

<A submerged ellipse h/a=2> <A submerged ellipse h/a=2>

o.o 0.5 1.0 1.5 2.52.02.51.5 2.00.5 1.00.0 ka ka

LEGEND 
a Fh— 0.064 
o  F h - 0.0 

+ F h - 0.064

Figure 6.40 Added mass for a submerged elliptic
cylinder at forward speed: b/a-0.5, h/a-2.0
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<A submerged ellipse h/a=2> o submerged ellipse h/a=2>

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
ka  ^a

<A submerged ellipse h/a=2> <A submerged ellipse h/a=2>

2.5 2.52.01.51.5 2.00.5 1.0 1.00.50.0 0.0
ka k a

LEGEND 
a Fh»—0 064 
o Fh= 0 0 
+ Fh* 0.064

Figure 6.41 Radiation damping for a submerged elliptic 
cylinder at forward speed: b/a-0.5, h/a-2.0
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<A submerged ellipse h/a=2> <A submerged ellipse h/a=2>
CM
O

oCM
O

2.0 2.50 0 1.505 1.0
~ A

0.5 1.0 1.50.0 2.0 2.5
k a  k a

LEGEND 
a Fh— 0 064 
o F h - 0 0 
♦ Fn= 0.064

Figure 6.42 Exciting forces for a submerged elliptic
cylinder at forward speed: b/a-0.5, h/a-2.0

<A submerged ellipse h/a=2> <a submerged ellipse h/a=2>

2.52.01.50.50.0 0.0 0.5 1.0 1.5 2.0 2.5
k a k a

LEGEND 
Fh— 0 064

F h - 0.0_________________
F h - 0.064_______________

a Fh— 0.064 sing le  deg ree  

o F h - 0.0 sing le  deg ree  
x F h - 0 .064 s ing le  deg ree

Figure 6.43 Dynamic responses of a submerged elliptic
cylinder at forward speed: b/a-0.5, h/a-2.0



<A submerged ellipse h/a=2>

o_
0.0 0.5 1.0 1.5 2.0 2.5

ka

LEGEND
_Fh=-0.064
Ri=0.0
Fh=0.064

v Q neglected Fh=—0.064 
□ Q neglected Fh= 0.064

<A submerged ellipse h/a=2>

2.52.00.5o.o 1.51.0

LEGEND
Fh=-0.064
Fh=0.0
Fh=0.064

v Q neglected Fh=—0.064 
□ Q neglected Fh35 0.064

ka

Figure 6.44 Influence of Q term on the responses of a
submerged elliptic cylinder at forward speed: h/a-2



<A floating circle>

O'

O"

O'

o.
2.51.5 2.00.0 1.00.5

LEGEND 
Fh=-0.032, restrained 
Fh= 0.0, restrained 
Fh= 0.032, restrained

k 0a
Figure 6.45 Horizontal mean drift force on a floating

ciruclar cylinder: restrained from responses

<A floating circle>

O"

O-

O"

O'

0.0 0.5 1.0 1.5 2.0 2.5

LEGEND 
Fh=-0.032, free 
Fn= 0.0, free 
Fn= 0.032, free 

■ Zhao et al.
• Zhao et al.
□ Zhao et al.

Figure 6.46 Horizontal mean drift force on a floating
circular cylinder: free to respond in sway and heave
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<A floating circle>

2.52.01.51.00.50.0

LEGEND 
Fh=-0.032, restrained 
FYi= 0.0, restrained 
Fh= 0.032, restrained

Figure 6.47 Vertical mean drift force on a floating
circular cylinder: restrained from responses

<A floating circle>o
too

in
CM01

omb
t

LEGEND 
En=-0.032, free 
Fh= 0.0, free 
Fn= 0.032, free

0.0 0.5 1.0 1.5 2.0 2.5
k0a

Figure 6.48 Vertical mean drift force on a floating
circular cylinder: free to respond in sway and heave



<A floating rectang}e>

O ’

O-

2.51.5 2.01.00.50.0

LEGEND 
Fn=-0.032. free 
Fn= 0.0, free 
Fn= 0.032, free

k0B/2

Figure 6.49 Horizontal mean drift force on a floating rectangular 
cylinder: free to respond in sway and heave

0.0

<A floating rectangle>oino

in
CMo

t §
COlb

in
CM01

oin01

LEGEND 
Fn=—0.032, free 
Fh= 0.0, free 
Fh= 0.032, free

0.5 1.0
k0B/2

1.5 2.0 2.5

Figure 6.50 Vertical mean drift force on a floating rectangular
cylinder: free to respond in sway and heave



<A submerged circle h/a=2>
LEGEND 

Fh=-0.032, free
Fn= 0.0, free
Fh= 0.032, free

x Fn=-0.064, restrained 
o Fh=-0.032, restrained 
o Fh= 0.0, restrained

■o- v Fa= 0.032, restrained
□ Fh= 0.064, restrained

0.0 0.5 1.0 1.5 2.0 2.5
k0a

Figure 6.51 Horizontal mean drift force on a submerged 
circular cylinder: h/a-2.0

<A submerged circle h/a=2>
LEGEND 

Fn=-0.032, free 
Fh= 0.0, free
Fh= 0.032, freeo -

x Fn=-0.064, restrained 
o Fh=-0.032, restrained 
o Fh= 0.0, restrainedo-
^ Fh= 0.032, restrained
□ Fh= 0.064, restrained

lb« -•o-

0.0 0.5 1.0 1.5 2.0 2.5
k0a

Figure 6.52 Vertical mean drift force on a submerged
circular cylinder: h/a-2.0
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<A subm erged ellipse h/a=2>

x.
00

2.52.01.51.00.0 0.5

LEGEND 
Fn=-0.032, free 
Fh= 0.0, free
Fh= 0.032, free 
Fb=-0.064, restrained

o Fh=-0.032, restrained
o Fh= 0.0, restrained 
v Fh= 0.032, restrained 
□ Fb= 0.064, restrained

Figure 6.53 Horizontal mean drift force on a submerged 
elliptic cylinder: b/a-0.5, h/a-2.0

<A submerged ellipse h/a=2>

2.51.5 2.0o.o 0.5 1.0

LEGEND 
Fn=-0.032, free
Fn= 0.0, free
Fn= 0.032, free 

x Fh=-0.064, restrained
o Fh=-0.032, restrained 
o Fh= 0.0, restrained 
v Fh= 0.032, restrained 
□ Fb= 0.064, restrained

k 0a

Figure 6.54 Vertical mean drift force on a submerged
elliptic cylinder: b/a-0.5, h/a-2.0
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<A floating circle, Fh= 0.0> <A floating circle, fh= 0.032>

d- 5 °*

2.52.01.51.00.50.50.0 1.0 0.01.5 2.0 2.5

LEGEND 
& F,/pgA2 
» F„/pgA.2

x m̂/pgA Figure 6.55 Components of the horizontal mean drift force
0 F fy/pgA
~Fa/PgA2 on a floating circular cylinder: restrained

<A floating circle, Fh=0.0> <A floating circle, Fh=0.032>

O O '

0.0 0.5 2.51.0 2.01.51.5 0.5 1.02.0 0.02.5

LEGEND
* Pr/pgA2

* P Tf/PgA 

x F ni/P8A2

° Prv/pgA Figure 6.56 Components of the horizontal mean drift force
P p/p̂ K __________ _on a floating circular cylinder: free to

respond in sway and heave



<A floating circle>

2.52.01.51.0o.o 0.5

LEGEND
free
restrained 

o Zhao et al.

k na

Figure 6.57 Wave drift damping for a floating circular cylinder
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<A floating rectangle>
o

2.50.0 2.00.5 1.0 1.5
k0B/2

Figure 6.58 Wave drift damping for a floating 
rectangular cylinder


