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ABSTRACT

This thesis is a theoretical and experimental study of ultrasonic scattering from 

volumetric flaws in structural materials and ultrasonic inversion techniques for 

nondestructive characterisation of such flaws.

For forward scattering problems, the Method Of Optimal Truncation (MOOT) is 

studied. A large general purposed computer model is developed based on MOOT. 

The computer model can be used to simulate ultrasonic scattering from different 

shapes and sizes of voids, with only minor changes. Numerical results for a 

number of voids are presented in both the frequency and time domains to provide 

understanding of basic physical mechanism of scattering by volumetric flaws. The 

simulated forward scattering data are also used to test a new inversion technique 

developed in this study.

A new ultrasonic inversion technique is developed for determining the geometrical 

features of a volumetric flaw in structural materials, by the inversion of the 

backscattered ultrasonic signal using the area function formula. The area function 

formula is derived from a weak scattering approximation, the Bom approximation, 

but it is shown that the area function sizing technique works well for voids which 

are clearly strong scatterers. The technique extracts the flaw size from the shape of 

the area function which is evaluated from the backscattering signal. Unlike most of 

other ultrasonic inversion schemes, this technique has the advantage that it does not 

require the determination of the flaw centroid (zero-of-time problem). The 

technique is tested by the inversion of the numerical and experimental scattering 

data for estimating the sizes of a number of flaws. The results show very good 

agreement between the true sizes and the estimated sizes.

The experimental work is carried out on simulated defects in the immersion and 

contact modes. Several techniques for processing experimental signals are 

investigated, including deconvolution techniques.
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Chapter 1. 

INTRODUCTION

1.1 Statement of the Problem

The presence of voids and inclusions is a serious threat to the integrity 

of many structural materials. Crack initiation at the boundary of such flaws is a 

common occurrence. Detection and sizing of imperfections such as these is thus 

of great importance. For example, there is interest in the reliable detection and 

characterisation of volumetric scatterers in the size range of 10 to 1000 pm in 

critical components such as turbine disc [Bond, 1989b].

This thesis is a theoretical and experimental study of ultrasonic 

scattering from volumetric flaws in structural materials and ultrasonic inversion 

techniques for nondestructive characterisation of such flaws.

Nondestructive Evaluation (NDE) may be defined as the determination 

of the serviceability of a component on the basis of nondestructive 

measurements [Thompson and Wadley, 1989]. The development of fracture 

mechanics has made it possible to predict the serviceability of parts containing 

flaws of known size. This requires nondestructive testing technique to 

characterize flaws quantitatively, i.e. to determine the size, geometric shape, 

material properties, etc. [Thompson and Thompson, 1985].

Ultrasonics is one of the most commonly used NDE methods. When a 

propagation ultrasonic wave interacts with a flaw in the material, the scattered 

waves contain rich information about the flaw. These scattered waves can be 

monitored and used for characterisation of the flaw. There are actually three 

separate stages of this characterisation process. The first stage is flaw 

detection - the determination that a signal received is actually from a flaw. The
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second stage is flaw classification - the identification of a flaw as crack-like or 

volumetric. The third stage is flaw characterisation - estimating the size, shape, 

orientation and material properties of the flaw. This thesis will be concerned 

with only one aspect of the flaw characterisation problem, reconstructing the 

geometric features of volumetric flaws in structural materials. The focus will be 

on developing a new ultrasonic inverse scattering methodology for sizing 

volumetric flaws. Attention is also paid to developing a numerical model 

simulating elastic wave interactions with volumetric flaws. The numerical 

model is used to generate forward scattering data to provide understanding of 

scattering mechanism and to test the inversion technique.

1.2 Contributions

There are four major accomplishments of this study:

(1) The development of a new ultrasonic inverse scattering technique (the 

area function sizing scheme) for sizing volumetric flaws. The method is 

shown to have some attractive advantages over the existing inversion 

techniques, such as inverse Bom approximation.

(2) Successful applications of this method experimentally to several simple 

shaped flaws, and numerically to some regular and irregular shaped 

flaws.

(3) Development of a large computer model based on the idea of the 

method of optimal truncation (MOOT) [Visscher, 1980a,b]. The 

computer model can be used to simulate ultrasonic scattering from 

different shaped voids, with only minor changes according to the size 

and shape of the void considered.
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(4) Calculation of the far-field backscattering responses from several 

irregular shaped voids in both the frequency domain and the time 

domain.

Parts of the research results from this study have been presented at two 

international conferences and the contributions are published in the 

corresponding proceedings:

(1) J. Yang and L. J. Bond, "Reconstruction of Volumetric Flaws Using 

Ultrasonic Backscattering Data", Ultrasonics International 91. Le 

Touquet, France, July 1-4, 1991, Butterworth-Heinemann (In press).

(2) J. Yang and L. J. Bond "Ultrasonic Sizing of Voids Using Area 

Functions", 18th Review of Progress in Quantitative Non-Destructive 

Evaluation. Brunswick, Maine, USA, July 29 - August 2, 1991, Vol. 11, 

Plenum Press, New York (In press).

A paper summarising this study has been submitted to a journal:

J. Yang and L. J. Bond, "Ultrasonic Technique for Sizing Voids by 

Using Area Functions", IEE Proceedings Part A (Submitted).

1.3 Thesis Structure

There are six chapters in this thesis.

Chapter 1 is an introduction in which the problem is stated, and the 

contributions of this study are outlined.

Chapter 2 is a brief review, discussing some basic concepts and terms 

for elastic waves in solids, as well as some methods dealing with ultrasonic
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forward and inverse scattering problems.

Chapter 3 contains a brief theoretical derivation of MOOT and 

discussions about numerical convergence and accuracy for this method. The 

simulated backscattering responses from some non-spherical voids are also 

presented in this chapter.

In Chapter 4, a new inversion sizing scheme, the area function sizing 

technique, is developed. Bandwidth requirements of this sizing scheme are 

discussed in this chapter. Some numerical results from application of this 

technique to regular and irregular shaped voids are presented.

Chapter 5 gives experimental sizing results for several simple flaws 

using the area function sizing method. The experimental procedures and signal 

processing techniques are discussed.

Chapter 6 gives conclusions of this study and some suggestions for 

future work.



Chapter 2

REVIEW OF THE BACKGROUND TO THE PRESENT STUDY

2.1 Introduction

This chapter deals with the background material related to this study. 

Section 2.2 briefly reviews a few basic properties of elastic wave propagation 

in solids. Section 2.3 discusses the problems of forward scattering from isolated 

volumetric flaws. Inverse scattering techniques for flaw characterisation are 

reviewed in section 2.4.

The study is confined to elastic, homogeneous and isotropic media.

Since the fundamental aspects of elastic wave propagation and scattering have 

been presented in many classic books [Auld, 1973; Graff, 1975; Hudson, 1980] 

and review papers [Thompson and Wadley, 1989; Pao, 1983], the following 

review has been kept as concise as possible.

2.2 Elastic Waves in Solids

An elastic medium can remain in equilibrium under a shearing stress. 

When the force is applied for a short time period or is 

changing rapidly the effect on the medium is considered in terms of stress 

propagation. Suppose that x{ describes the Cartesian coordinates of a material 

point in an elastic medium and that w, describes the displacement of the point 

from its equilibrium position. Then in linear regime, in the absence of any body 

force, the equations of motion have the form:

d2u. dT.. 1N
p  L = __1 (2-1)

dt2 dx.<J

where p is the density of the material, and Ti} is the mechanical stress tensor.

For stresses which do not cause permanent deformation of the solid, the stress-
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strain relation is governed by Hooke’s law:

(2-2)

with summation over the repeated subscripts k and /, where CijkJ are the 

elements of the fourth-rank elastic stiffness tensor, and ew are the elements of 

the second-rank elastic strain tensor:

duk dut ̂
+ _ i

dx[ dxk
(2-3)

The combination of equations (2-1) to (2-3) leads to the elastic wave 

equation

(A.+ [i)Ujji + \iuijj = pui (2-4a)

which can then be expressed in vector form,

TfiiT
(X+2p) V V ’it -  p Vx Vxu = p ----

d t x

where X and p are its Lamd elastic constants which are related to the 

independent elements of the elastic constant tensor:

X - C n 2Cu

(2-4b)

P = CM
(2-5)

It is possible to obtain a simpler set of wave equations by introducing 

the scalar and vector potentials <|> and H  such that

M = V<t+Vxi? (2-6)
V-i?= 0

If equation (2-6) is substituted into equation (2-4), the following equations are 

obtained
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(X+2p)VVp^|=0
d t1

(2-7)

THi! P H  A\ iv H +  p  = 0
dt2

(2-8)

They have plane-wave solutions

(2-9)

(2-10)

where and H  correspond to longitudinal and transverse waves, and Tc and p 

represent the wave vectors for longitudinal and transverse waves respectively. 

The directions of the wave vectors are the same with the wave propagation 

directions, and their values are

where c and ct are the longitudinal and transverse wave velocities respectively 

They are related to the material properties as

2.3 Forward Scattering from Isolated Volumetric Flaws

For nondestructive testing applications, we are interested in the entire 

process of elastic wave generation, propagation, scattering and detection. This

c = V(5u2p)/p (2-12)
c,=\/p/p
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section is limited to consideration of elastic wave interactions with (scattering 

by) isolated flaws.

It has been realized that meaningful flaw characterisation is possible 

only when the basic physical mechanism of scattering by discontinuities is 

understood [Fitting and Adler, 1977]. This requires strong theoretical 

foundations in elastic wave scattering by flaws. The topic of elastic wave 

propagation and scattering has produced a vast volume of literature across 

many fields of study which range from geophysics and seismology - where 

waves interact with features with dimensions of up to a few kilometres - to 

microwave electronics where interaction is with features that are a fraction of a 

millimetre [Saffari, 1986]. This section is intended to give a brief review of the 

theoretical and numerical treatments of elastic eave interactions with volumetric 

defects, quoting some key references.

A general starting point is often the decomposition of the total elastic 

displacement field, u, into an incident field, dQ, and a scattered field, us,

u - u  +u (2-13)o s

For an isolated inhomogeneity embedded in an otherwise isotropic and 

homogeneous medium, the far-field scattered ultrasonic field can be described 

by [Gubematis et al, 1977a]

  (2-14)
'  kl M

where f  is the position vector measured from the coordinates centre, At is the 

amplitude vector of the scattering longitudinal wave and Et is that of the 

scattering transverse wave.

The forward scattering problem is to obtain fi t and Et with given incident 

waves and for the known properties of the host and scatterer materials. The
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scattering and diffraction of any type is a difficult problem in mathematical 

physics. Virtually all the theoretical work that has been done with elastic waves 

has simplified the problem.

In the following discussions, the methods of solution for the forward 

scattering problem are categorized in six groups, namely (1) exact solutions, (2) 

integral formalism, (3) ray theory, (4) transition matrix methods, (5) boundary 

integral equation or boundary element methods, and (6) numerical modelling 

methods [Harker, 1988; Pao, 1983]. However, this is by no means an attempt 

to cover all the existing methods.

2.3.1 Exact solutions

It is desirable to get exact solutions in elastic wave scattering problem, 

but very few problems can be solved exactly. Only the problems of scattering 

from spherical and cylindrical scatterers have exact solutions [Pao, 1983].

Ying and Truell [1956], Johnson and Truell [1965] studied longitudinal 

and transverse waves incident on a spherical obstacle (including an elastic 

sphere, a rigid sphere and a spherical cavity) in an isotropically elastic medium. 

They explicitly evaluated expressions for the scattering cross-section in the 

Rayleigh regime. The general solutions are described in terms of an infinite 

series of linear equations. To get numerical results this series must be truncated. 

Ying and Truell [1956] series solutions are used in this study to simulate 

backscattering from spherical voids and inclusions.

White [1958] examined scattering from an infinite cylindrical scatterer, 

both theoretically and experimentally. Similar to the case of spherical scatterer, 

an infinite series of linear equations i is obtained by theoretical treatment.
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2.3.2 Integral formalism

The exact scattering solutions do not, unfortunately, generalize to more 

complex flaw shapes. For such problems, integral equation approaches and 

numerical techniques have been used extensively [Harker, 1988].

Figure 2.1 shows a general scattering situation from volumetric flaws. 

The integral equation describing the scattering from an isolated inhomogeneity 

was given by Gubematis et al [1977a] as

u,\n=u°(n+8 p tffy jr -  f/)ujf/)dvt

where Ap and ACijkl are the changes in density and elastic stiffness constant 

between host and scatterer, ijkl are direction indices, g ( r - r ’) is the Green’s 

function at r due to a point source at r ', um is the displacement field at f  \  

and the integral is over the flaw volume V1 in the space V  containing the 

scatterer. u- is the total scattered field and u° is the incident field, and co is the 

angular frequency of the incident wave.

In some problems, it is more convenient to rewrite equation (2-15) as a 

surface integral. The surface integral formulation for scattering can be found in 

many books and papers [Harker, 1988; Thompson and Wadley, 1989].

For most of flaw shapes, equation (2-15) is usually solved by 

approximation methods. For example, Kirchhoff approximation [Freedman, 

1962] and Bom approximation [Gubematis et al, 1977b] are commonly used.

a) The Kirchhoff approximation

The essence of the Kirchhoff approximation is that values and gradients

-23-



scattered
direction

volumetric
defect

incident
energy

Figure 2.1 A general scattering situation from volumetric flaws (after 
Chaloner and Bond [1987])
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of the displacements are determined by the incident field, and that the incident 

field is non-zero only in regions which would be insonified in a geometric ray 

picture [Harker, 1988]. The scattered field is then calculated by performing the 

surface integral over the region of the scattering surface outside a sharply 

defined shadow zone. The approximation is more accurate at high frequency 

and near specular angles.

The elastodynamic Kirchhoff approximation has been applied by Brind 

et al [1984] and Adler and Achenbach [1980] to scattering by a cylindrical 

cavity and by a crack. Brind et al [1984] have also developed a hybrid theory 

where creeping waves are explicitly incorporated in high frequency far-field 

integral solution.

b) The Bom approximation

This is a weak scattering approximation where elastic properties of the 

scatterer differ only slightly from those of the host material, and thus the 

scattering is weak and the total wave-field is dominated by the incident wave 

[Gubematis, et al 1977b]. The first Bom approximation is perhaps the simplest 

among all the approximation methods. It is the first term in an iteration 

perturbation series, that is, the incident (unperturbed) wave field is substituted 

for the unknown wave-field inside the scatterer. Thus the approximation only 

partially accounts for diffraction and scattering. Gubematis et al [1977b] 

applied this approximation theory to elastic wave scattering, giving the 

theoretical formulas in the frequency domain. The time domain Bom 

approximation was later reported by Richardson and Rose [1982]. The time 

domain Bom approximation is studied in more detail in chapter 4 of this thesis, 

where a new inversion sizing scheme is developed based on this approximation.

Considerable numerical and experimental work has shown that good
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agreement has been obtained using the Bom approximation with strong 

scatterers in various elastic media in the backscattering directions [Addison et 

al, 1982; Chaloner, 1987]. Gubematis et al [1977b] investigated the validity of 

the Bom approximation to strong scatterers by comparing it with exact results 

for spherical scatterers. They concluded that for voids in elastic media the Bom 

approximation describes the scattering well for ka < 1 (where k represents the 

wave number, and a represents the radius of the flaw or more generally the size 

of the flaw) and when the scattering is viewed in the backscattering directions. 

For elastic inclusions, however, where the properties of scatterer and host 

differed by 20-40%, the Bom approximation is surprisingly good for all angles 

and even at short wavelengths [Gubematis et al, 1977b].

The Distorted Wave Bom Approximation (DWBA) [Tittmann et al,

1983] is an extension of the Bom approximation. The basic idea upon which 

the DWBA is based is that any general shaped scatterer is represented by the 

combination of a spherical scatterer and a remainder function. The exact 

solution for a spherical scatterer can be calculated using the Ying and Truell 

[1956] model, and the remainder is regarded as a perturbation. It is assumed 

that the displacement field in the remainder volume is the same as in the 

sphere. The method is therefore expected to be good for near-spheres and weak 

scatterers. The approximation results from the DWBA and the experimental 

results were compared and shown good agreement [Tittmann et al, 1983].

The Bom approximation was extended by Gubematis [1979] to the 

quasistatic approximation and the extended quasistatic approximation. The 

distinguishing feature of these approximations is the replacement of the actual 

strain field inside the scatterer volume by a strain field based on the one found 

in the static problem. Gubematis [1979] showed that the extended quasistatic 

approximation is in excellent agreement with exact result for values of ka up to 

about unity.
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2.3.3 Geometric Rav Theory

Geometric acoustics is the acoustic analogue of geometric optics. The 

geometric ray theory for the scattering of acoustic waves by a smooth body 

was developed by Levy and Keller [1959]. A full exposition of this method is 

contained in the monograph by Achenbach et al [1982].

Geometric acoustics makes the generalization by treating every point on 

wave-front as part of a plane wave. It assumes that rays and wave-ffonts are 

always perpendicular to each other, even in complicated cases where the 

material properties vary from point to point, so that the rays are not straight 

[Harker, 1988]. A geometric ray connects a source and a receiver by the path 

of minimum travel time of a wave. The amplitude of the wave decays as it 

radiates from the source, and the decay rate can be calculated in terms of the 

length of the ray [Pao, 1983]. Geometric ray theory is only valid at high 

frequency limit.

2.3.4 T-matrix Methods

The developments of this method have been reported in the proceedings 

of a special conference [Varadan and Varadan, 1980] and many other 

publications [Waterman, 1976; Varadan and Pao, 1976; etc.]. Varadan and 

Varadan [1988] gave a comprehensive list of publications on this topic.

The essence of the T-matrix method is that the incident and the scattered 

waves are expanded in terms of an infinite series of orthogonal basis wave 

functions. The unknown scattering coefficients are related to the known 

incident wave coefficients by an infinite matrix T. The scattered fields are then 

described in terms of a set of the basis functions and coefficients.
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In practice, the T-Matrix calculation must always be truncated and the 

approximation is made better by increasing the number of terms in the 

expansion. The accuracy of this simple truncation may be assessed by 

comparing the results obtained with those arising from the solution with an 

extra term in the series. Larger flaw size to wavelength ratios (i.e. larger ka) 

require a larger number of terms, which means that because of limitations of 

computer word-length and computing time, there is an upper bound on the ka 

range which can be treated. Also, since the T-Matrix method involves a partial 

wave expansion, the method cannot be used in practice for very short 

wavelength (large ka) incident wave [Visscher, 1980b; Albach, 1989]. The T- 

matrix approach has primarily been employed for axisymmetric scatterers when 

the wavelength is comparable to the flaw dimension.

Visscher [1980a,b] developed a method called the Method Of Optimal 

Truncation (MOOT), a least squares boundary residual method originally 

proposed for electromagnetic scattering [Davies, 1973], giving general 

approaches of the construction of the T-matrix. He has given several optimal 

truncation approaches which minimize the boundary condition errors due to the 

truncation of the infinite series. He has applied MOOT to the calculation of 

scattering from various scatterers, including spheroidal voids and inclusions.

MOOT is used in this study to simulate ultrasonic scattering from 

regular and irregular shaped voids. Chapter 4 gives more details of the theory 

and applications of MOOT.

2.3.5 Boundary Integral Equation or Boundary Element Methods

This technique is similar to the T-Matrix method in that this technique 

involves the solution of an integral equation, which in this case is obtained by 

dividing the surface of the scatterer into elements each of which then has an
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associated unknown displacement [Manolis and Beskos, 1988]. This technique 

is increasingly used and has already been used for scattering by arbitrarily 

shaped voids and also a range of both volumetric [Rizzo et al, 1985] and 

surface features [Albach, 1989; Sanchez-Sesma, 1987]. The major limitations 

appear to be due to the complexity which can be encountered in the 

formulation of the initial equations and then solution of the equation set 

involved. [Bond, 1989a]

2.3.6 Numerical Modelline Methods

In practical applications of elastic wave scattering to nondestructive 

evaluation, one frequently wants to treat complicated geometrical situations, 

which are not amenable to analytic treatment. In these cases, one can choose to 

use a completely numerical approach such as a finite difference or a finite 

element method.

The finite difference method has been successfully applied to the 

solution of many physical problems that were previously analytically 

intractable, including problems in NDE [Saffari, 1988]. The basic idea of the 

finite difference method is to replace the differential form of the wave equation 

by a discrete set of equations in which the displacements (or other values of the 

field) are defined only on the points of intersection of a grid. The partial 

derivatives in the wave equation are approximated to a given accuracy. 

Recently, the applications of this method have been widely reported [Saffari 

and Bond 1987; Bond, 1982]. A review was given by Bond [1982], in which 

he showed that a finite difference method is best suited for modelling the 

scattering problem in the resonance region where the scatterer dimensions are 

of the same order as the wavelength.

The finite element method is relatively new and has not been as widely
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applied to nondestructive testing wave propagation problems as the finite 

difference method. However, there are some publications about the applications 

of this method, e.g. Tsao et al [1983], Datta and Shah [1982]. The most recent 

review of finite difference and finite element methods was given by Bond 

[1989a].

In summary, exact solutions are only available for particular simple 

geometrical shapes (e.g. sphere). The Bom approximation is valid for small, 

weak scatterers at low frequency with ka< 1. The Kirchhoff approximation and 

geometric ray theory are applicable at high frequency. For general cases, in the 

intermediate region where ka is of unity, the T-matrix methods, the finite 

difference and finite element methods are most suitable. The properties of the 

various numerical methods considered are summarised as Table 2.1 which was 

compiled from Bond [1989a].
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Table 2.1 Comparison of various techniques applied to ultrasonic wave
propagation and scattering (after Bond [1989a])
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2.4 Inverse Scatterine Techniques for Flaw Characterisation and Sizine

In this section, the development of the inverse scattering techniques for 

characterisation of volumetric flaws is reviewed, following the most recent 

review paper by Thompson and Wadley [1989]. A very important class of 

techniques based on the formation of images is not considered since their 

implementation and interpretation does not depend on explicit knowledge of the 

principles of forward scattering models [Thompson and Wadley, 1989]. The 

inverse scattering techniques can be divided into three groups, which can be 

roughly categorized by the ratio of flaw size to wavelength.

2.4.1 High frequency or large flaws ( k a » l )

When the wavelength is small with respect to the size of the scatterer, 

the scattering can be considered to be the superposition of energy travelling 

along various ray paths. In measurements of the scattering from smooth objects 

it has been found that specular reflections, creeping rays propagating around the 

periphery of the object, and rays propagating through the interior of the object 

make major contributions to the received signals and that the time and 

amplitudes of these rays can be used in sizing and identifying the material of 

the flaw [Thompson and Wadley, 1989]. The ideas have been applied to the 

problems of sizing inclusions in ceramics [Chou et al., 1980] and voids and 

inclusions in metals [Gruber, 1980]. Figure 2.2 was; compiled from Chou et al 

[1980], showing wave forms backscattered from various flaws in Si3N4 and 

identifying the arrivals with various ray paths. However, experiments indicate 

that the creeping ray may be highly damped by the surface roughness of 

naturally occurring flaws [Cohen-Tenoudji et al, 1981], and the robustness of 

sizing techniques based on these ray paths may not be as great as desired for 

naturally occurring flaws. Moreover, in many practical cases, material 

attenuation may preclude the use of sufficiently high frequencies to allow the
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various signals to be resolved in time.

2.4.2 Mid-frequency or intermediate size flaws (ka~ 1)

When the wavelength is medial with respect to the flaw size, the 

scattered waves contain rich information about the scatterer. Many inverse 

scattering solutions in this regime have been developed for reconstructing the 

shapes of volumetric flaws. The one that has received most investigation in 

quantitative nondestructive evaluation is the Inverse Bom Approximation 

(IBA), which has been reviewed in detail by Rose [1989].

The IBA was derived from the assumption that the flaw is a weakly 

scattering, three-dimensional discontinuity [Rose and Krumhansl, 1979]. It is a 

reconstruction algorithm consisting of an inverse Fourier transform of the 

scattering amplitudes measured at appropriate angles and frequencies. Although 

the IBA is based on the weak scattering assumption, it has been found to 

accurately predict the size of voids and to be fairly robust in the presence of 

noise and limited bandwidth [Elsley and Addison, 1980].

If one assumes spherical symmetry of a scatterer, only a one­

dimensional inverse transform is required, and the algorithm can be simplified 

greatly. In fact, much of attention has been given to the 1-D case [Rose, 1989]. 

For ellipsoidal defects, the 1-D IBA algorithm can still be used. In that case 1- 

D algorithm has been shown to reconstruct the front-surface tangent plane 

distance [Rose et al, 1982]. The tangent plane distance corresponds to the 

distance from the flaw centroid to a plane, perpendicular to the propagation 

direction and tangent to that surface of the flaw, nearest the transducer. Figure

2.3 shows the tangent plane distance. A transformation is then required to 

convert plots of the front-surface tangent plane distances to the true flaw 

boundary. The experimental reconstructions of the shapes of ellipsoidal voids
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Figure 2.3 The tangent plane distance for the ellipsoidal scatterer
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and naturally occurring inclusions in aircraft engine turbine have been 

successfully accomplished [Addison et al, 1982; Hsu et al, 1984]. The 1-D IBA 

has been found to require a bandwidth of 0.5<ka<2.5 [Rose, 1989; Chaloner, 

1988].

The full three-dimensional form of the IBA has been studied less 

extensively. It has been reported that the algorithm can exactly determine the 

shape of convex defects from perfect backscattering data [Rose and Opsal, 

1983].

The major advantages of the 1-D IBA approach can be summarized as:

(1) sizing information can be obtained from band-limited data containing 

relatively long wavelengths; (2) the dimension measured lies along the line of 

propagation of the ultrasonic beam. However, there are a number of difficulties 

concerning experimental implementation of the algorithm. Most notably, the 

algorithm requires the time origin in the time domain signal to be at the flaw 

centroid. This can in principle be determined from the low frequency phase 

characteristic of the scattered signals, but practical implementation is made 

difficult by a number of factors, including the absence of low frequency energy 

in many commercially available transducers. Attempts have been made to 

restore the lost low frequency information by extrapolation [Koo et al, 1990; 

Koo, 1987]. There are also attempts to use the IBA without explicitly 

determining the flaw centroid. One of them is an empirical method called 

’’Born again" or "Bom Radius/Zero-of-Time Shift Domain (BR/ZOTSD) 

method" [Bond et al, 1988; Addison et al, 1982; Chaloner, 1988; Bond et al, 

1987]. The method involves applying the IBA algorithm for a large number of 

time-shifts. A pattern is therefore produced, from which the radius of the flaw 

can be obtained.

Kogan et al [1985] also developed an algorithm related to the IBA,
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based on the zeros of the ultrasonic scattering amplitude. The method is based 

on the observation that, for a wide class of flaws, the zeros in the real and 

imaginary parts of the frequency domain scattering amplitude occur at 

characteristic frequencies which depend on the flaw size. The method is simpler 

than the inverse Bom algorithm because the flaw sizes are extracted directly 

from the characteristic frequencies. This method employs the same input data 

as the IBA and has certain common limitations.

The another inverse algorithm which has received considerable attention 

is the Physical Optics Far Field Inverse Scattering (POFFIS) algorithm 

[Bleistein and Cohen, 1979 and 1980]. POFFIS was derived as an inverse 

solution to the scattering from voids, as described by the physical optics 

approximation. The algorithm also consists of the evaluation of the inverse 

Fourier transform of measured scattered fields. However, instead of 

reconstructing the characteristic function of the flaw as in the IBA, the normal 

derivative of this function, i.e., the flaw edge, is reconstructed. Langenberg et 

al [1982] compared several inverse scattering algorithms based on synthetic 

data, and found POFFIS applicable to a wide range of flaw shapes. As implied 

by the term "physical optics", POFFIS is a high frequency method working in 

the frequency range of 3 < ka < 7. However, in the applications, the algorithm 

has been found to work well down to frequencies as low as 1.2 ka, below 

which undersizing occurs.

Cohen-Tenoudji and Tittmann [1982] formulated an inversion algorithm 

based on the Kirchhoff approximation, where the output is the length of the 

illuminated flaw region in the direction of the ultrasonic illumination. The 

algorithm was shown to be useful in the 1 < ka < 4 range for the construction 

of an image.

2.4.3 Low frequency or small flaws ( k a « \ )
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When the wavelength is large with respect to the size of the scatterer, a 

detailed reconstruction of the flaw size is impossible. However, It has been 

found that a considerable amount of information about the flaw geometry exists 

in this long wavelength region [Richardson, 1978; Kohn et al, 1979]. Tittmann 

et al [1980] have applied probabilistic inversion methods to experimental data 

to determine the size, shape, and orientation of a spheroidal void in a titanium 

alloy.
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Chapter 3

NUMERICAL SIMULATION OF ULTRASONIC SCATTERING 

FROM  NON-SPHERICAL VOIDS

3.1 Introduction

This chapter reports numerical modelling work used to generate forward 

scattering data to test the inversion technique which is described in the next 

chapter, as well as to provide understanding of basic physical mechanism in 

scattering by voids.

In this chapter, the Method Of Optimal Truncation (MOOT), a least 

squares boundary residual method which was originally proposed for 

electromagnetic scattering [Davies, 1973] and then introduced to elastic wave 

scattering [Visscher, 1980a,b], is studied. MOOT has been investigated and 

used by many scientists, and it has been found to be efficient, versatile and 

reliable. A large computer model based on the idea of MOOT and the 

numerical results are reported in this chapter. The computer model can be used 

to simulate ultrasonic scattering from different shaped voids, with only minor 

changes according to the size and shape of the void considered.

The structure of this chapter is as follows. Section 3.2 describes the 

theory of MOOT; Section 3.3 discusses numerical convergency and accuracy; 

In Section 3.4, numerical scattering results from several non-spherical voids are 

given, and their features are explained; finally, discussions of the results are 

given in Section 3.5.

3.2 Theory of Method Of Optimal Truncation (MOOT)

The detailed theoretical treatments of MOOT can be found in many

-39-



publications [Visscher, 1980a,b; Opsal and Visscher, 1985; Visscher, 1981]. 

Here, the analysis given by Visscher [1980a,b] is followed to give a brief 

analysis and the derivation of MOOT.

Figure 3.1 depicts the scattering geometry. The wave function 

(displacement of the medium from its equilibrium position) for elastic waves is 

considered as time harmonic

u(r,t) = in r )e -‘m (3-1)

where u represents the displacement of the medium, and r is the position.

The basic idea of MOOT is to decompose the wave function,iT, into its 

partial-wave components uplm [Visscher, 1981],

^ = * - ‘V<Pfc (3-2)

(3-3)

(3-4)

where the first index specifies polarization: p=l represents the longitudinal 

wave, p=2 and 3 represent the transverse waves, and cp and \j/ are solutions of 

Helmholtz’s equation

(V2+/fc2)<p =0, (V2+ P 2)y = 0  (3-5)

They are

= ^ ) (3-6)
v ,m= 2,( p r ) r j e ,$ )

where Ylm is a spherical harmonic function, 0 and <|> are the polar and azimuthal 

angles, and zt is a spherical Bessel function. Outside flaw, in scattered wave us>
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Figure 3.1 Scattering geometry. The scatterer occupies the volume Vlt and e 
represents the surface of the scatterer.
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the outgoing spherical Hankel function, zz=A/^, should be chosen. Inside flaw, 

in incident wave iC0, the regular spherical Bessel function, zt=jt, should be 

chosen [Opsal and Visscher, 1985].

In the scattering problem, it is natural to divide the displacement into 

incident and scattered parts it0 and ust as shown in equation (2-13)

u = it +u (2-13)o s

its and it0 can be expanded in terms of the basis functions uplm [Visscher, 1981 ]r

“> E V , V .  (3-7)
pint

V V -  0-8)
pint

where the "+" means z ^ h ^ ,  and the means zt=jt.

The expansion of a vectorial plane wave with arbitrary polarisation in 

terms of spherical vector wave functions can be found in Morse and Feshbach 

[1953], and in many publications [Varadan and Pao, 1976; Visscher, 1980a,b; 

Albach, 1989]. Here only the expansion of the incident longitudinal wave is 

considered. Assume the incident longitudinal plane wave has a wave vector lc0 

with a unit amplitude

u» = e ne  'o o
(3-9)

where eQ is the polarisation of the plane wave. The expansion of u0 in terms of 

spherical vector function iTllm' is given as [Visscher; 1980b]

= (3-10)
ltm

where 0O and §0 are the polar and azimuthal angles of K0. So, the coefficients
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dllm for the incident longitudinal wave are

dUm=4Ki«-"Y;m( Q J J
^ = 0
^ = °

(3-11)

To obtain the scattering coefficients apln (equation (3-7)), equation (2-13) 

needs to be solved. To solve this equation, the boundary conditions 

constraining if on the flaw surface must be satisfied. For a void, the free 

surface boundary conditions apply, namely

T { f ) - T 'h - 0, Fis on e  (3-12)

where f  is the surface traction which is a vector with dimensions of force per 

unit area, T  is the stress tensor, n is the outward unit normal to the void

surface, and e represents the void surface. Equation (3-12) can be expressed in

vector notation as

f= 2p(n-V)if+p/2x(Vxif) + A/2V-if= 0 (3-13)

The total surface traction is naturally divided into two parts, T0 due to 

the incident wave and Ts due to the scattered waves, and they are decomposed 

into their partial-wave basis components Tplm

r = r +  r
* '  (3-14)

/  j  pint p lm  /  -> ^ p in t pint 
pint pint

Equation (3-14) is substituted into equation (3-12) to satisfy the free 

surface boundary conditions
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E  (3-i5)
plm

where r€ represents the position vector on the void surface.

Now, a set of functions [/}],./= 1, 2, - ,  °°, is introduced, which is 

complete on the void surface. If equation (3-15) is multiplied by f* (re) (where 

"*" means the conjugate), and integrated over e , it becomes [Visscher, 1980a]

E  K J  f j ' • ^ d S +v j [  fj ’ ■ rp ldS = 0 (3-16)
| yim " J f/irn yim v J yirn

plm

which can be written in matrix form as

Q~d + Q*a = 0 <3-17)

where

Gy. -  Jf r:dsplm (3-18)

In a computer calculation, it is impossible to introduce complete sets [fj\ 

because they must always be truncated, i.e. j= l, 2, L, with L finite. If L —> oo, 

the matrix equation (equation (3-17)) is completely equivalent to the stress free 

boundary conditions, and the solutions will not depend on the choice of I the 

complete set [/}]. When L is finite, as it must be in practice, an error is 

encountered in satisfying the boundary conditions, and the set [fj\L must be 

chosen very carefully. MOOT optimizes the approximate solution by a least 

squares minimization of that error. The result of that minimization for a void 

scatterer is [Visscher, 1980a,b; Opsal and Visscher, 1985; Opsal, 1981]
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j  p lm
(3-19)

This result is used in this study. If equation (3-19) is substituted into equation 

(3-18), then the results are

m -  -I, (-1 + 1), I, 

so the rank of the matrices is

3(1 + 3 + 5 + -  + 21̂  + 1) = 3(lma+ l f  = L 

where "3" is because p  has three values.

Consideration is now restricted to axially symmetric voids, to obtain an 

important computation simplification. Without further loss of generality, it is 

assumed that the axis of symmetry to be along the z axis. By careful inspection 

using the properties of spherical harmonic functions, it is found that [Visscher, 

1980a,b]

So, both Q+ and Q  are block-diagonal matrices which can be rearranged as

Q p lm , p'I'm1 ~  j [  

Q p lm , p'l'm! ~  j [

(3-20)

As discussed before, the matrices are always truncated: 

I = 0, 1, 2,

if  | rni^m (3-21)

Q(0) 0 - 0 0

0 <2(1) • • 0

2  = (3-22)

0 • 0

0

and
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QV> =

Q 1mm, 1mm m Qlmm,3l

Qu m, 1 mm

Q31 m, 1 mm Q3/ m,3/ mm ix r a n

(3-23)

where Q represents either Q  or Q+, and the rank of Q(m) is

Equation (3-17) can then be solved through a set of smaller rank 

equations

Q~im)d (m)+ Q +(m)a {m) = 0 (3-241

where

d (m) =

1mm

0

0

(3-25)

a™ =

a1 mm

a2mm

a31 m

(3-26)
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By inspection of the matrix elements using the properties of the 

spherical harmonic function, one can find that both Q  and £)+ satisfy [Visscher, 

1980b]

<3 - 2 7 >

This means that there is no need to solve the equations for negative m 

separately. Once the equations for positive m have been solved, the coefficients, 

aplm> for negative m can be obtained from those for positive m,

( 3 ' 2 8 )

Far-field results

Once aplm have been calculated, the amplitudes of the scattered waves 

can be obtained immediately. In the area of non-destructive evaluation, the far- 

field results are usually of interest. Here only the scattered longitudinal wave in 

the far-field is considered. From equation (3-2), the displacement vector for the 

scattered longitudinal wave is given by

1/m
= k - 'Y , a uJ<PL(n  (3-29)

Im
= k - ' 'E a l l Vh?Xkr)Y,J.0,4?)

im

For large arguments, the spherical Hankel functions hjn(kr) have the 

following asymptotic property
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ikr

kr
(3-30)

Thus, in the far-field, when the argument kr is large, the scattered longitudinal 

wave can be regarded as outgoing spherical wave, and its amplitude can be 

found as the radial component of the scattered displacement vector

[u,(n}r=erk~'T, aiim—5--yJ0.<t>)dhfXkr) , ,  , n
  v  ff) (h~i (3-31)l !

HZ dr

Using equation (3-30) and a recursion formula of the Bessel functions,

z',(x) = - z M(.x) + ! ^  , (3-32)
X

to process equation (3-31), one obtains

[ * ( %  “ t>)L Jr r /- K kzrim * kzr
~ikr e g
r 1

(3-33)

where At is the longitudinal scattering amplitude, also defined in equation (2- 

14), and

*« -« ,E  + ) (3-34)
im k. k zr

In the far-field,

r-»  0 (3-35)
k b

So, A[ can be approximated as

(-()'« , J W )  (3-36)
Im
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The differential cross-section for longitudinal wave, da/dO., (where dQ is 

the differential element of solid angle), is defined as the scattered longitudinal 

power per unit solid angle divided by the incident power per unit area. With a 

unit amplitude for the incident longitudinal wave, the differential cross-section 

is related to by the following equation [Gubematis et al, 1977a]

The total longitudinal cross section, a„ is defined as the ratio of the 

average longitudinal power flux scattered into all directions to the average 

intensity of the incident fields [Gubematis et al, 1977a]. It is simply the 

integration of dc/dQ  over all angles. From equation (3-37)

When the convergence of the method is considered the following two 

quantities are considered [Opsal and Visscher, 1985]: (1) the total longitudinal 

cross-section, a„ expressed as equation (3-38), and (2) the normalized boundary 

residual,

(3-37)

Im

(3-38)

Im

(3-39)

3.3 Implementation. Numerical Convergence and Accuracy
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Based on the above theoretical analysis of MOOT, a computer program 

has been developed to calculate ultrasonic wave scattering from axially 

symmetric voids. As a test case, a 4:3 oblate void in titanium (c=6.20 km/s, 

ct- 3.125 km/s) is used to discuss the implementation of the computer program 

and the numerical convergency and accuracy. The void is shown as figure 3.2, 

where a:b=4:3 and a-0.22 mm. Oblate voids are important since they serve as 

models for volumetric flaws found in structural applications. Numerical results 

for several other voids are presented in Section 3.4.

The main parts of the program are listed below.

(1) Calculation of the surface traction components, on the surface of the 

void. The formulas for these calculations can be found in many classic 

books and papers [Pao and Mow, 1973; Visscher, 1980b]. These 

formulas are included in Appendix 3A. Appendix 3B contains Bessel 

functions and spherical harmonic functions, and their properties, which 

are essential for the evaluation of these formulas.

(2) Evaluation of Q matrix elements. After the surface traction components 

have been calculated, a /z-point Gauss-Legendre quadrature scheme 

[Press et al, 1986] is used to evaluate the surface integral (equation (3- 

20)) to get the matrix elements.

(3) Solving linear system, equation (3-24), to obtain partial-wave 

coefficients aplm.

(4) Calculation of the scattering amplitude,^, from aplm using equation (3- 

36).

There are two most important parameters influencing accuracy and
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computing time. One is the number of the integration points (n) taken in the 

Gauss-Legendre numerical integration scheme. Another parameter is the 

truncation limit ( l ^ )  which determines the ranks of the matrices.

Larger n leads to more accurate matrix elements. But, because of the 

limitation of computing time, n cannot be made too large. It is determined in 

practice by trial and error. Figure 3.3 demonstrates the effect of changing n on 

the total longitudinal scattering cross-section, a,, for the 4:3 oblate void with 

ka -2.2 and incident polar angle 0o=7t/4. It is seen that a, converges rapidly 

when n>8. Similarly, figure 3.4 shows the same data for a higher incident 

frequency (ka=6.6). a, is seen to converge rapidly when n> 12.

Figure 3.5 displays the effect of increasing on a, for the 4:3 oblate 

void with 0o=7t/4 and ka=2.2. converges rapidly when /max>3, especially 

when lma]̂ >5. Figure 3.6 shows the same data for a higher incident frequency 

(ka=6.6). Comparing these two figures, one can see that a, converges faster for 

lower incident frequency.

The satisfactory convergence of the total longitudinal cross section itself 

cannot conclude that the solutions for the scattering problem are close to the 

correct ones. However, the boundary residual (equation (3-39) is a conclusive 

criteria to assess the accuracy of the numerical scattering results for voids. The 

boundary condition for a void is that f= 0 on e (the surface of the void). If t s is 

an exact scattering solution, JUQ equals zero. If and only if J!J0 is small, then 

the solution for displacements, surface tractions, amplitudes, etc., is close to the 

correct one. Smaller J!J0 means more accurate solution.

To illustrate the effect of changing on accuracy and to display the
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Figure 3.3 Total longitudinal cross section for 0o=tt/4 and ka=2.2.
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Figure 3.4 Same as figure 3.3, but ka -6.6.
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Figure 3.5 a, over for 0o=7u/4 and ka=2.2.
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Figure 3.6 Same as figure 3.5, but ka=6.6.
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convergence properties of JIJ0, JtJ0 has been calculated for the 4:3 oblate void 

with 0o=7t/4. Figure 3.7a shows how J!J0 converges for ka=2.2. Figure 3.7b 

shows the same data for a shorter incident wavelength (ka=6.6). It can be seen 

from these two figures that the boundary residual for a higher frequency 

converges more slowly. Results presented by Opsal and Visscher [1985] also 

showed that the solution for the scatterer with a larger aspect ratio converges 

more slowly than the solution for the scatter with a smaller aspect ratio.

According to the above discussion about the effects of changing the 

number of integration points (n) and the truncation limit ( l ^ )  on accuracy and 

convergency of the solution, the computer program has been designed in such a 

way that for lower frequencies and scatterers with smaller aspect ratios, smaller 

n and are used. For higher frequencies and scatterers with larger aspect 

ratios, larger n and are selected.

The computer program has been run to simulate the scattering from 

several regular and irregular shaped voids. The results are shown below and 

compared with the published results if available.

3.4 Numerical results for Several Voids

The voids considered here include a 4:3 oblate void, a 2:1 oblate void, 

an ovate void and two overlapping voids.

3.4.1 A 4:3 oblate void

The void is shown as figure 3.2. Figure 3.8a displays the backscattering 

amplitudes^T/, for six incident directions. With the incident polar angle 

increasing from 0 to tu/2, At becomes smaller and smaller, as expected by 

intuition, because the encountered cross-sectional area becomes smaller and
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Figure 3.7b Boundary residual over for 0o=ti/4 and ka=6.6 .
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Figure 3.8a Backscattering amplitude from a 4:3 (220:165 fim) oblate void
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Figure 3.8b Backscattering amplitude from a 4:3 spheroidal void, published by 
Opsal and Visscher [1985]
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smaller. Figure 3.8b shows the scattering results from a 4:3 oblate void . 

published by Opsal and Visscher [1985] who used a method called Augmented 

MOOT which is more complicated and more accurate. Comparing figure 3.8a 

with figure 3.8b, one can find that the scattering features, such as the ka values 

where the peaks and valleys occur, peak ratios for different incident directions, 

are almost identical. Since the scattering amplitudes were normalized in 

different ways for these two figures, they are not compared.

Figure 3.9a shows the backscattering amplitude in the frequency domain 

at a single direction (0o=O.27t). Figure 3.9b shows the time-domain response at 

that direction. This was obtained by taking a Fourier transform of the data in 

figure 3.9a. The Fourier transform was performed simply using the signal 

processing software, MATLAB.

As the frequency domain response is limited to a certain frequency 

range, the time domain response is also limited to the same frequency range. A 

cosine bell window function is introduced in the Fourier transform to avoid 

Gibbs oscillations in the time domain response due to cut-off of some 

frequency information [Zhang and Bond, 1989; Papoulis, 1977].

Some features of figures 3.9a and 3.9b can be qualitatively and 

quantitatively understood. Part of the incident wave is specularly reflected from 

the front surface, and part is bent around the void (creeping wave) and excites 

a reflected plane wave on the other side of the void in the backward direction 

to interfere with the specular part. These are shown as figure 3.10. One can 

clearly see from figure 3.9b that a main pulse reflected from the front surface 

of the void and a further weak pulse, corresponding to the creeping wave, 

arriving at a time T later. The oscillating pattern in the frequency domain 

corresponds to the interference between these two signals. These features are 

very similar to the scattering features from a spherical void which were
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Figure 3.9a The frequency domain backscattering amplitude at 0=0.27t
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Figure 3.9b The time domain backscattering response at 0̂ =0.271
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discussed by Gruber [1980] and Kino [1987].

From the paths for the specular reflection and the creeping wave 

indicated in figure 3.10, the transit time, t, between these two waves (for a 

spheroidal void) can be estimated as

T = 2r jc  + 2Ealcc (3-40)

where cc represents the creeping wave velocity which is about 0.87c in titanium 

[Gruber, 1980; Zhang and Bond, 1989], and 2Ea is the distance the creeping 

wave has to creep, halfway around the void. (E is the complete elliptic integral 

of the second kind, and E=1.38 for a 4:3 spheroid.) re is the tangent plane 

distance shown in figure 3.10, 2re is equal to the distance (dI+d2) indicated in 

figure 3.10. At 0o=O.2rc, re=0.845a, thus, x-4.86alc is obtained from equation 

(3-40).

As pointed out by Zhang and Bond [1989], in the time domain response 

there is spreading in the wave packet following the front surface reflection and 

in the creeping wave components. As neither of these is a simple delta 

function, the determination of the arrival time for the creeping wave leaves to 

some debate. In this study, the zero crossing point (A) (see figure 3.9b) is used 

as the arrival time for the creeping wave, following Zhang and Bond [1989] *s 

suggestion. The transit time thus measured from figure 3. ^ b  is 4.92±0.04 ale, 

which is very close to the transit time obtained from equation (3-40).
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3.4.2 A 2:1 oblate void

The void considered here is a 2:1 (a:b=252:126 pm) oblate void in 

titanium. Figure 3.11 shows the frequency domain backscattering responses for 

three incident directions: 0o=O, 7 1 / 4 ,  and jc/2. The results are compared with the 

results published by Opsal and Visscher [1985], shown as figure 3.12. The 

scattering patterns compare well, especially at lower frequencies when ka<4.

The discrepancies may be due to that Opsal and Visscher used a 

modified MOOT which is more accurate than MOOT used here, especially 

when the aspect ratio of the scatterer is large or the frequency is high.

Figures 3.13a-c show the time domain responses at these three directions 

obtained from Fourier transforming the data in figure 3.11. The simple physical 

arguments used to explain the scattering from the 4:3 oblate void can be 

employed here in the same way to analyze the scattering features.

The transit time, T ,  between the specular response and the creeping 

wave can be calculated from equation (3.40). For a:b=2:1, £=1.21. T is 

different for each direction, as re is different. Table 3.1 lists T for these three 

directions. The transit times measured from the numerical results in figures 

3.13a - 3.13c agree with this analysis very well.

Table 3.1 Transit time between the specular response and the creeping wave 
for the 2:1 oblate void

0 o re (a) T  (ale) by 
analysis

T  (ale) measured 
from calculations

0 0.50 3.78 3.60±0.04

7 C /4 0.79 4.36 4.28±0.04

k/2 1.00 4.78 4.74±0.04
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Figure 3.12 Backscattering from a 2:1 oblate void, by Opsal and Visscher [1985]

-63-



xlO-6 2:1 oblate, 0 deg

(a)

(b)

(c)

01
o .
g

normalized time, ctla
xlO-6 2:1 oblate, 45 deg

xlO-6

normalized time, ctla
2:1 oblate, 90 deg

i

2.5

0.5

i
-0.5

-1.5

-2.5

normalized time, ctla
Figure 3.13 The time domain responses from the 2:1 oblate void at three directions (a) 

0=0; (b) 0=7t/4 ; (c) 0=7t/2 .
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3.4.3 An ovate void

The shape and dimensions of the void are shown as figure 3.14. It 

consists of a half 4:3 oblate and a half 3:4 prolate. It is axially symmetric, but 

not centrally symmetric. Some examples of backscattering from this void are 

shown in figures 3.15-3.17.

Figure 3.15a shows the scattering situation at 0o=O, indicating the 

specular reflection and the creeping wave path. Figures 3.15b and 3.15c show 

the frequency domain and time domain responses. As in the case of oblate 

void, part of the incident wave is specularly reflected by the front surface, and 

part of the incident wave incites a longitudinal creeping wave at the shadow 

boundary (point A). The creeping wave travels along the circumference away 

from the point A and excites a reflected longitudinal wave on the other side of 

the void (point B). From figure 3.15a, for 0o=O, the transit time (t) between, 

the specular reflection and the creeping wave can be estimated as

x =2b/c + 2Ealcc = 5M a/c  (3-41)

where 2Ea is the distance the creeping wave has to creep, as indicated in figure 

3.15a.

Figures 3.16a-c show the scattering results when the incident angle 0O is 

rc/2. The transit time should be

T = 2a/c+ E(a+b)/cc = 5.70 a/c (3-42)

where E(a+b) is the distance the creeping wave has to creep, as indicated in 

figure 3.16a.

Similarly, figures 3.17a-c show the scattering results when the incident 

angle 0o=tc. In this case, the transit time is
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T = I d le  + 2 E b /c c = 5 .13a /c (3-43)

where 2Eb is the distance the creeping wave has to creep, as indicated in figure 

3.17a.

All the transit times measured from figures 15c, 16c and 17c are 

compared with the above predictions in Table 3.2. The agreements are 

satisfactory.

Table 3.2 Transit time between the specular response and the creeping wave 
for the ovate void

0o re (a) x (ale) by 
analysis

T (ale) measured 
from calculations

0 1.33 5.84 5.85±0.06

tc/2 1 .00 5.70 5.67±0.06

71 0.75 5.73 5.76±0.06

There are no published results available to compare for this case. Ovate 

voids are important, because they can serve as more generalized models than 

spheroidal voids for volumetric flaws found in structural materials.
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Figure 3.15 Backscattering from the ovate void at 0o=O. (a) the front surface reflection 
and the creeping wave; (b) the frequency domain amplitude; (c) the time 
domain response.
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Figure 3.16 Backscattering from the ovate void at 0o=7t/2  (a) the front surface 
reflection and the creeping wave (b) the frequency domain amplitude; (c) 
the time domain response.
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Figure 3.17 Backscattering from the ovate void at 0o=7t. (a) the front surface reflection 
and the creeping wave (b) the frequency domain amplitude; (c) the time 
domain response.
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3.4.4 Two overlapping spherical voids

The void considered here consists of two overlapping spherical voids, 

one half the radius of the other, with its centre on the surface of the large 

sphere. Figure 3.18 illustrates its shape and dimensions. The radius of the large 

sphere is 200 pm, and the radius of the small sphere is 100 pm. Figures 3.19 to 

3.22 show the simulated backscattering results at some incident directions:

0o=O, 7t/2 , 2tt/3, and n. (At 0o=2tc/3, the incident wave reaches the two voids at 

the same time.) Opsal and Visscher [1985] studied the same shaped void. Their 

frequency domain results are also shown in these figures.

Figures 3.19(a), 3.20(a). 3.21(a), 3.22(a) represent the calculatedin
scattering amplitudes obtainedAthis study in the frequency domain. Figures 

3.19(b), 3.20(b), 3.21(b), 3.22(b) are the results by Opsal and Visscher [1985]. 

It can be seen from these two groups of figures that at each incident direction, 

the scattering patterns predicted by these two studies are very similar.

Figures 3.19(c), 3.20(c), 3.21(c) and 3.22(c) are the time domain 

responses obtained from this study. Some features of the responses can still be 

explained by the model of a front surface specular reflection followed by a 

creeping wave. Figures 3.19(d), 3.20(d), 3.21(d) and 3.22(d) indicate the 

specular reflections and possible paths for the creeping waves. The specular 

reflections and the creeping waves are well observed in the time domain 

responses. Quantitative analysis of the transit times between the specular 

reflections and the creeping waves is made difficult by the complicity of the 

shape of the void.
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Figure 3.19 Backscattering from the two overlapping voids at 0o=O. (a) the 

frequency domain amplitude obtained from this study
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Figure 3.19 (Cont’d) (b) the frequency backscattering amplitude published by Opsal
and Visscher [1985]
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Figure 3.19 (Cont’d) (c) the time domain response from this study
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Figure 3.19 (Cont’d) (d) the front surface reflection and the creeping wave
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Figure 3.20 Backscattering from the two overlapping voids at 0o=ti/2, (a) the 

frequency domain amplitude from this study
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Figure 3.20 (Cont’d) (b) the frequency domain amplitude published by Opsal and
Visscher [1985]
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Figure 3.20 (Cont’d) (c) the time domain response obtained from this study
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Figure 3.20 (Cont’d) (d) the front surface reflection and the creeping wave
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Figure 3.21 Backscattering from the two overlapping voids at 0o=27t/3, (a) the 

frequency domain amplitude obtained from this study
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Figure 3.21 (Cont’d) (b) the frequency domain amplitude published by Opsal and 
Visscher [1985]
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Figure 3.21 (Cont’d) (c) the time domain response obtained from this study

Figure 3.21 (d) the front surface reflection and the creeping wave
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Figure 3.22 Backscattering from the two overlapping two voids at 0o=7t, (a) the 

frequency domain amplitude from this study
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Figure 3.22 (Cont’d) (b) the frequency domain amplitude from Opsal and Visscher 
[1985]
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Figure 3.22 (Cont’d) (c) the time domain response from this study
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Figure 3.22 (Cont’d) (d) the front surface reflection and the creeping wave
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3.5 Discussions

The simulated backscattering results for a variety of voids have been 

presented in both the time and frequency domains. Some of the results in the 

frequency domain have been compared with the published results if available, 

and they compare well. The scattering results from the ovate void, a more 

general shaped void, are not found in the literature.

The time domain results are band-limited to the same frequency ranges 

as the frequency domain results. The physical significance of some scattering 

features has been discussed. All the results presented here can be explained 

using a simple physical model, i.e. a leading front surface specular reflection 

followed by a creeping wave which travels around the circumference at a 

velocity close to that of a longitudinal wave. In most cases, the transit times 

(between the specular reflections and the creeping waves) measured from the 

numerical time domain responses agree very well with the simple physical 

analysis. This, on one hand, justifies the physical analysis. On the other hand, it 

also indicates that the numerical calculations are reliable.

The backscattering results presented in this chapter are used to test the 

inverse sizing technique developed in the next chapter.

The computer model is based on the idea of MOOT, which involves a 

partial wave expansion, and therefore cannot be used in practice for very short 

wavelength incident waves [Albach, 1989; Visscher, 1980b].
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Appendix 3A 

NUMERICAL TREATMENTS OF 

THE SURFACE TRACTION COMPONENTS

The implementation of equation (3-20) into a computer program requires 

first to calculate the surface traction components, Tpim. This appendix deals with 

numerical treatments of the surface traction components. The most of the basic 

equations can be found in many classic books and publications. The following 

equations were compiled from Visscher [1980b] with references to Pao and 

Mow [1973] and Morse and Feshbach [1953].

To calculate the surface traction components, one needs the displacement 

components and their derivatives. The following equations are the components 

of the displacement in spherical coordinates for the basis functions, uplm. u+ is 

obtained with zt=h{l\  and u is obtained with zt=jt.

(A.l)

_ zfkr) dYlmm )
u%lbn=~ r  ae

(A. 2)

im (A.3)
4) 1 lm £rsin0

(A.4)
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“ ♦  2 f o .=  Z , ( P / ' ) 30

(A.5)

(A.6 )

u> 3/m
(A.7)

-0  3/m

i  d [ p r Z (( p r ) ]  a r j e , * )

Pr </(Pr) 30
(A.8)

>  3/m

im 1 d[prz,(pr)] 
sin0 p r  d(pr) r j 0 .4 » (A.9)

Their derivatives in spherical coordinates are as follows.

d 2z.{kr) /a  m \(A.10)
a {/cry

UD \lm,r~k-
d zfjcr)

d{kr) kr ae
(A .ll)

, im du. ,, = k_________
♦ ' sin0  d(kr)

Z'(kr)
kr rjfiA) (A. 12)
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ur llm,6
dzfjkr) a r te(e,(|)) 
rd(kr) ae (A. 13)

U0 1 (m,e ~ *
z,(kr) 32yje,<t>)

W  ae2
(A.14)

"o i/m,e_ ̂
im z,(£r) a

i
3^ ©

3G sinG
(A.15)

im dz(kr)

_fr *m Z$ r } (A.17)
140 /crsinG " l r  30

im
£rsinG (A. 18)

u = 0r 21m,r (A.19)

l8 21m, , ~ P im dzf$r)
sinG d($r) (A.20)
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9 2/m,r

Ur 21m, Q

UQ 21m, Q

U df 21m,0 ~

W A =r 2/m, 9

M0 2/m, 9 ~

^9 2/m, 9

M ,, =r 3/m, r

P
dZ,(pr) arta(e,9)
d(pr) 30

(A.21)

0 (A.22)

- p i^ z ,( p r ) _ L
K p r  ' M 30

r j M )
sinO

(A.23)

P z,(pr) 32rj9,<t>) 
(Pr) 302

(A.24)

0 (A.25)

pr(sin0 )2
(A.26)

: P -
im z /P r) 3Kta(e,9)

sinO Pr 30
(A.27)

- P /(/+!)
3(Pr)

z,(Pr)

~ W
(A.28)
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u,0 31m, r = - P d(pr)l

1 d[^rzffir)\  

P^ <*(pr)
w j e . * )

u<}> 31m, r = - P im d 
sin0 d($r)\

1 d[Prz,(pr)]

W  d(pr)

30
(A.29)

(A.30)

“r 3we = - P / (/+1)
z,(pr) a y je ^ > )  

(Pr)2 30
(A.31)

M0 3/m, 6 -  P
i d [p rz /p r)]  y r j e , * )

3/m.e _ P

(Pr)2 difir) 302

im d\firzffir)\  0

I
a r—

s CD Ô-

(P O2 d(pr) 30 sin0

(A.32)

(A.33)

o  i / i  1 3  Z/P r ) i m  v  , a  . , ut = -P  /(/+1)------ Y. (0,0)'3  fa.9 r* )2 s in 0 (A .34)

W0 3/m,4> P
i m  3[prz,(pr)] 3 rj0 ,(j)) 

(Pr)2sin0 3 (p r) 30
(A.35)

« = P ---- — — d[firzt(fir)] (B5)
^ ^  H (prsin0)2 /((pr) *"v T'

The above derivatives are the results in spherical coordinate system, and 

the following relations are employed,

-86-



From the above equations, the surface traction components for the basis 

functions can be obtained from equation (3-13). The easiest way is to express t  

in terms of its components in a coordinate system of the surface e . Shown as 

figure A .l, this Cartesian coordinate system is in general different for each 

point on e , and is defined by three mutually perpendicular unit vector n 

(outward normal to e ), $ (which lies in the surface e because of the assumed 

axial symmetry) and p (in the surface perpendicular both to n and <j>). In this 

(n,p,<j>) coordinate system, the components of the surface traction (equation (3-

The u symbols here are the components of the displacements (and their 

derivatives) in the (h,p,<j>) coordinate system. They can be computed from 

equations (A.l) to (A.36).

13)) are

t -  2u u + XV 'itn  • n ,»
(A.38)

(A.39)

(A.40)

If the surface e  is expressed as



Figure A.l Cartesian coordinate system of the surface e . $ lies in the 
surface e ; h is normal to e ; p is normal both to n and $.

-88-



r = R(Q) (A.41)

then in the (n,p,<ji) coordinate system the components of it are

un-ucos%  -M0sin^ 
up- u r sin^ + w0cos^

(A.42)

where

£ = arctan *'(0)
* (0)

1 .  1 - —K <C <—71 
2 2

(A.43)

The components of the derivatives of i! in (n,f),$) coordinate system are

Me,e + —
V T  J

sin2£ + sin£ cos^
ur

- ur,e-uB,r
(A.44)

u =p ,n cos^ sin^ + Uq rcos2£ -
Ur

M r , e -
sin2£ (A.45)

u =n,P
u.

Ur,r-UB,B-

r \

cos^ sin£ -  Uq rsin2£ + “r.0 --
v r ;

cos2̂ (A.46)

u.
“»,» = C0SS -  “«,♦ Sin^ -  — r~Z Sin(0  -  5)rsinu

(A.47)

U$,n = U$,rC0Ŝ i _U^,eS'n^ (A.48)
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V*d in equation (A.38) can be simplified as follows:

For the longitudinal wave, when p =1

V-itUm = k-'V 2$ = -*<t> = -kz ,(kr)YJQ ^)  (A.49)

For the transverse waves, when p =2 or 3 

V 'V = 0  (A.50)

When these equations are substituted into equations (A.38) to (A.40), the 

components of the surface traction for the basis functions can be evaluated. The 

formulas are

ur plm.rcos%

XV-it

u
UB plm,B +

r plm sin2!; + sin!; cos!; 0 plm
Ur plm,B UB plm,r

y-1
’plm

sin2 !;
u

plm,r ^0 plm,B
r plm cos2 !;

u
plm,0 ^0 plm,r

0 plm (A.52)

A*

$ plm cos!; (w + m_ _,_0 -sin£(w. _,_0 + we
u.

$ plm,r r plm,i|> <|> plm, 0 0 plm,$) - _ H t L  sin(0 -^ )  
rsin0

(A.53)
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Appendix 3B:

BESSEL FUNCTIONS AND SPHERICAL HARMONICS

In evaluation of the displacements and surface traction components, 

spherical Bessel functions, spherical harmonics, and their first and second 

derivatives are needed. These special functions and their properties can be 

found in many classic mathematics books. Here some useful equations were 

compiled from Korn and Korn [1961], Jackson [1963], Press et al [1986], and 

Visscher [1980b].

Spherical Bessel functions

z/x) is used to express any of the spherical Bessel functions 

j)(x), y/x), h\1](x) or hj2)(x). The spherical Bessel functions satisfy the following 

relations

zu l (x) = — zl(x ) - z l_l(x) (B.l)

z'(x) = -zu l (x) +
Iz (B.2)
X

Z,
// (B.3)

where

(B.4)
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Spherical harmonics

Mathematically, the spherical harmonics are related to associated 

Legendre polynomials by the equation

rje,<|>)=
\

21+1 (/ m)! />,“ (co s9 )e^  
4ji (l + m)l

The spherical harmonics have the following properties

Y.JPAW-D-YZJQ.*)

j T d ̂  T id (cose)^w(e, <t>) ̂ „ (e , <>)=5 ,,,8  m,„,

sine yL(o,<(>)= -(/+  lo o ser ,

\
(21 +1)(/ +1 + m)(/ +1 -  m) 

2/73

y"(e,<t>)=-£££iyL(9.t))^sm0

m ‘
sin20

-1(1+1)

S ‘
dQ

f  ^
m 2

sin29 , v y
= /(/ + 1)8 IV

where

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)
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Due to the occurrence of the terms sin70 and sin2Q, some equations for 

the surface traction are, in the numerical sense, singular at 0= 0  and tu, if they 

are evaluated directly from these equations. They are however, not singular in 

the analytical sense, since they describe physical phenomena that are 

continuous in space. It can be shown that, if proper limiting procedures are 

applied, these equations are finite at 0=0 and k . For the limiting procedure, the 

following properties of the Legendre polynomials have to be employed. They 

can be found in Albach [1990] and Stratton [1941].

mP tm(cosB) cos 0
+ l)(/ + m)F/m 1(cos0 ) + />/m+1(cos0 )]

sin0 22 L'
+ msin0P /w(cos0 )

(B.13)
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C hapter 4

INVERSE SCATTERING TECHNIQUE: SIZING VOLUMETRIC 

FLAWS USING THE AREA FUNCTIONS

4.1 Introduction

This chapter reports the theoretical and numerical model studies for a 

new technique used to determine the size of the void in structural materials, by 

the inversion of the backscattered ultrasonic signal using the area function 

formula. Experimental work will be described in Chapter 5. The formulation of 

this method is based on a weak scattering approximation (the Bom 

approximation), but this sizing technique is shown to work well for voids 

which are clearly strong scatterers. The area function has been widely used as a 

method to determine the position of the flaw centroid, assisting implementation 

of some inversion algorithms, such as inverse Bom approximation (IBA) [Rose, 

1989; Chaloner and Bond, 1987].

The sizing scheme described in this chapter involves a direct inversion 

of the backscattered signal, obtained in a single pulse-echo measurement, to 

reconstruct the cross-sectional area of the flaw, ffom which the flaw size is 

extracted. The technique is sensitive to intermediate frequency information 

making it potentially useful for materials with a high attenuation response.

The plan of this chapter is as follows. In Section 4.2, the time domain 

Bom approximation is reviewed. In Section 4.3, the formulation of the area 

function is given. Section 4.4 discusses the area function for a spherical void, 

and the method of extracting the radius of a spherical void ffom the area 

function. In Section 4.5, the ultrasonic transducer bandwidth requirements of 

the area function sizing scheme are discussed. In Section 4.6, this technique is 

extended to the sizing of non-spherical voids, and the numerical results for the
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reconstructions of several non-spherical voids are presented. Finally, in Section 

4.7, conclusions are given.

4.2. The Time Domain Bom Approximation

The weak scattering limit yields one of the simplest theories of elastic 

wave scattering. For cases of interest to NDE, Gubematis et al [1977b] have 

studied systematically the weak scattering limit in terms of the Bom 

approximation. Their work was carried out in the frequency domain, and 

considerable intuitive understanding of the problem resulted. Despite its 

simplifying assumption, the frequency domain Bom approximation has been 

widely used in NDE studies. Further, it led to the development of the inverse 

Bom approximation [Rose and Krumhansl, 1979].

Later, Rose and Richardson [1982] formulated the weak scattering 

theory in the time domain using the Bom approximation. The time domain 

formulation is also rich in its own insights and intuitions, and its picture gives 

rise to simple transparent formulas for the scattering problem, which allow the 

solutions of many problems by inspection. The scattering amplitude for more 

complicated problems can be easily estimated in an intuitive way. The 

importance of the time domain Bom approximation in this study is that it is the 

basis for the derivation of the area function formula which relates the cross- 

sectional area of the flaw with the scattering amplitude in a simple way.

As reviewed in Chapter 2, in order to solve the scattering equation, one 

may express it in integral form and then iterate to develop an infinite 

perturbation series. When only the leading term in the series is considered, the 

solution is called the Bom approximation [Gubematis et al, 1977b]. Here, Rose 

and Richardson’s [1982] approach is followed in describing the time domain 

Bom approximation.
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Consider a longitudinally polarized impulse incident upon an isotropic 

homogeneous inclusion with material parameter pf, A*, and pf embedded in an 

isotropic homogeneous host material with constant material parameter p0, Aq, 

and Pq. Here p is the density, and A and p are the Lame parameters. The 

incident impulse is described by

X.(Kt) = uae 5 ( t - — )
c

where eQ is the direction of incidence, t represents time, c is the longitudinal 

velocity in the host medium, u0 determines the magnitude of the impulse, r is 

the position, and 5 is a delta function. According to the Bom approximation, 

the longitudinal impulse response function of the flaw(/?/r,e0,ej)is given as 

[Rose and Richardson, 1982]

2 / a A \
p 3r-Y(r-)S(f--£fi_) (4-2)

c2 dt2J c

Where es represents the direction of scattering, and y(f) is known as the 

characteristic function of the flaw, which is defined as one inside the flaw and 

zero elsewhere. The function f(e0>es) depends on the properties of the host and 

the flaw materials, as well as on the relative angle between eQ and er  It is given 

by Gubematis et al [1977b] as

° ! 4k

^5p - „ 5X + 25p(e,-es)2  ̂
v .e 'e -

vPo ° 1 V2p„
(4-3)

Here Ap, AA, and Ap are the deviations of the flaw’s material parameters, 

which are defined as Ap=pr p0, AA=Ar A0, and Ap=pf-po.

R{t,z0,z%) (equation (4-2)) in the time domain and A t (equation (2-14)) in 

the frequency domain (or k domain) are a Fourier transform pair. They have 

been normalized and do not depend either on the intensity of the incident pulse
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or on the distance at which the asymptotic scattering is measured.

In this study, only the backscattering situation is considered, where e=- 

eoi and equation (4-3) becomes

1

4tc

8 p + 5A, + 25p

"p7  " V W
(4-4)

In this case, G,eJ becomes ~R{(t,e0,-e0) which is expressed as /T/f) for 

simplicity. Thus

M 0,~ e )e o d 2 r . _ 2e -r

di‘
J d 3 ry ( r )  5 ( t -  _ L _ )  (4-5a)

There is a simple geometrical interpretation of /T/r): the integral in 

equation (4-5a) corresponds to the cross-sectional area, S(t), of the flaw 

intersected by a plane defined by

2 = £  (4-6)
2

where z is the position along the axis of propagation. This plane defines the 

locus of points in the flaw which has a constant travel time from the 

transducer. The simple planar form of this locus results from the plane wave 

approximation and from the weak scattering assumption that the incident 

impulse travels at the velocity of the host inside the flaw [Rose and 

Richardson, 1982]. Figure 4.1 shows the backscattering geometry.

So, equation (4-5a) can be rewritten as

R(t) = - ^ ° '  d2S(t) (4-5b)
' c2 dt2

It is seen ffom equation (4-5b) that the backscattered impulse response of a
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z -c t /2

incident wave

backscattered wave

Figure 4.1 Backscattering geometry, where S(t) is the cross-sectional area, o is 
the origin o f the coordinates.
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flaw is proportional to the second derivative of the cross-sectional area of the

area, S(t), of the flaw and its second derivative, S"(t), which makes the problem 

straightforward and simple. Figure 4.2 shows the backscattering ffom a weak 

scattering spherical flaw as an example. Figure 4.2b is the cross-sectional area 

(S(t)) of the flaw, which has a parabolic shape with maximum at the flaw 

centroid. Figure 4.2c represents the second derivative of S(t) and also the time 

domain impulse response of the flaw. The sign of the delta function in figure 

4.2c depends on the material properties of the flaw relative to those of the host.

4.3 Area Function

— >
The relationship between the impulse response function (R/t)) and the 

cross-sectional area (S(t)) is now considered in the opposite way. According to 

equation (4-5b), if R{(t) is known, S(t) can be reconstructed by double 

integration of R/1)

where Ri(t)=e0Ri(t); AF(t) represents the reconstructed cross-sectional area, 

which is defined as the area function for the flaw in order to distinguish it from 

the original true cross-sectional area, S(t).

Equation (4-7) therefore provides the basis for an inversion scheme that 

uses the ultrasonic backscattering data to reconstruct the cross-sectional area of 

the flaw, ffom which the flaw size can be extracted.

In practice, however, evaluation of AF(t) by direct double integration of 

RJt) is not desirable, since the backscattered response is inevitably convolved 

with the finite transducer bandwidth and system noise. As a result, a direct

flaw. Determination of /?/f) therefore reduces to finding the cross-sectional

Reconstructed S(t)-AF{t) = - (4-7)
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C c j

Figure 4.2 Backscattering from a weak scatterer, (a) a spherical flaw; (b) 
the cross-sectional area, S(t); (c) second derivative of S(t), and 
impulse response of the flaw.
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time-domain deconvolution of the system response from the measured signal is 

vulnerable to instabilities [Koo et al, 1990]. Instead, it is better to do the signal 

processing in the frequency domain, where it is possible to make specific 

corrections (e.g. using Wiener filter [Kino, 1987]) in order to desensitize the 

results to the presence of noise. It is therefore more practical and desirable to 

evaluate AF(t) in the frequency domain. This can be done by using the Fourier 

integral theory [Papoulis, 1977] to process equation (4-7). According to the 

Fourier integral theory, the double integration of a spatial signal is equivalent to 

the inverse transform of its Fourier transform divided by the factor - /2, where /  

is frequency. Equation (4-7) can then be expressed in the frequency domain as

where At is the Fourier transform of R/t). In the following sections, all the area 

functions considered are evaluated in the frequency domain using equation (4- 

8 ), rather than in the time domain through equation (4-7). In equations (4-7) 

and (4-8), the term c*/f(e0,-e0) is a constant. Since the absolute value of the 

magnitude of the area function is not the interest of this study, this term is 

ignored in the evaluation of the area function. The area function evaluated 

without this term is simply normalized for presentation in such a way that its 

maximum is one.

It is clearly understood from equation (4-8) that in order to exactly 

evaluate the area function, an infinite frequency spectrum of the scattering data 

is needed. However, all the ultrasonic equipments, especially the transducers, 

are band-limited. That is to say there is only a limited range of frequency 

information available. The simple truncation of a certain length of spectrum 

from an infinite one can be regarded as the multiplication of the original 

infinite spectrum by a rectangular window function which has a much shorter 

length L There are other window functions which can be used in signal 

processing, such as, Hanning, Hamming, Bartlett functions [Papoulis, 1977]. No

(4-8)
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matter which window function is used, the distortion of the area function in one 

way or another is inevitable. In the following discussions of the numerical 

evaluation of the area function and the sizing technique, it is first concentrated 

on the usage of the simplest window function - a rectangular window function. 

The effects of using other window functions on the sizing results are then 

compared with the results from using a rectangular window function.

Figure 4.3 shows the area function (solid line) for a 200 pm radius ideal 

weak scattering sphere in titanium. The input data At was obtained by using the 

frequency domain Bom approximation formula [Gubematis et al, 1977b] which 

is

sm(ka)-kacos(ka) (4.9)
' k

where a is the radius of the sphere, /  is the frequency and k is the wave number 

defined as k=2izflc. At was band-limited in the frequency range of 0 < ka < 6.5. 

The dashed line in the figure represents the true cross-sectional area. It can be 

seen that agreement between the area function and the true cross-sectional area 

is very good except for some minor differences due to the cut-off of the high 

frequency information.

4.4 Spherical Void, and Radius Estimation

The formulation of the area function (equation (4-8)) is based on the 

weak scattering approximation, however, many naturally occurred flaws in 

structural materials are strong scatterers including voids. Previous research by 

Gurbemitis et al [1977b] has shown that for voids in elastic media the Bom 

approximation describes well the scattering when the wavelength of the incident 

wave is approximately an order of magnitude larger than the scatterer and when 

the scattering is viewed in the backscattered direction. In this section, the 

validity of the area function formula for voids is investigated. A new sizing
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Figure 4.3 AF(t) and S(t) for a 200 }im radius weak scattering inclusion in 
titanium (c=6.20 km/s, c,=3.125 km/s)
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scheme using the area function is developed. We start from the simplest case, 

the spherical void.

The series solutions of Ying and Truell [1956] were employed to 

simulate the backscattering data A, from spherical voids. Figure 4.4 represents 

the frequency domain backscattering amplitude from a 200  pm radius spherical 

void in titanium. Figure 4.5 shows the calculated area function, AF(t), and the 

true cross-sectional area, S(t)> for the void. The input backscattering amplitude 

At for the evaluation of AF(t) was in the frequency range of 0 < k a <  6.5, 

where a represents the radius of the void. It is impossible to input all the high 

frequency data. Fortunately, equation (4-8) (the factor 1/f2) suggests that high 

frequency data plays much less significant role than low frequency data. Effects 

of loss of high and low frequency data will be discussed in Section 4.5.

In figure 4.5, both AF(t) and S(t) have been normalized so that their 

maxima are one. It is observed from figure 4.5 that the early arrival of the area 

function (AF(t)) agrees very well with that of the true cross-sectional area 

(S(t)\ while in the later parts the agreement is less good. This is not a surprise, 

because the area function formula is derived from a weak scattering 

approximation, and the void is a strong scatterer.

Figures 4.6a and 4.6b compare the similarities and the differences 

between the impulse response for an ideal weak scattering spherical inclusion 

and the impulse response for a spherical void in titanium. It is seen that the 

early arrivals of the two impulse responses agree with each other well, and the 

later parts diverge. For both weak and strong scattering, there is a common 

feature, a delta-function spike, which occurs at a time determined by tangency 

of the incident pulse and the flaw surface. Research by Chen [1987] gives a 

theoretical explanation for these similarities and differences. Applying the 

elastodynamic ray theory to an arbitrary void in an isotropic and homogeneous
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Figure 4.4 Backscattering amplitude from a 200 |im radius spherical void in 
titanium
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Figure 4.5 The area function, AF(t), and the cross-sectional area, S(t) for a 200 
pm radius spherical void.
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-  r

Figure 4.6a The impulse response function for an ideal weak scattering spherical 
inclusion. The down arrows denote delta functions, where x-2alc 
[Kogan et al, 1985J.

Figure 4.6b The impulse response function for a spherical void in an otherwise 
isotropic and homogeneous elastic medium. The down arrow denotes 
a delta function, where x=2a/c. [Kogan et al, 1985]
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medium, he found that for the host material having a Poisson ratio 1/3, which 

is true for most structural materials, the early arrival of the backscattered signal 

from a void is expected to agree with the Bom prediction.

From the above observation and analysis, the early arrival of the area 

function for a spherical void may therefore be used to extract the radius of the 

void. In figure 4.5, t ^  represents the time at which AF(t) reaches it maximum 

value, and tmin represents the time when AF(t) has the last valley point before 

the time t ^ .  It is seen from figure 4.5 that the maximum value of AF(t) occurs 

a little before the maximum value of S(t), at which the incident wave passes 

through the centre of the void. The minimum value of AF(t) (the last one 

before t ^ )  occurs a little before S(t) starts rising from zero, at which the 

incident wave starts touching the void. The time difference (At) between the 

values where AF(t) starts from minimum (tmin) and reaches maximum ( t ^ )  

therefore can be regarded as an approximation to the time difference (AT) 

between the times at which the incident wave starts touching the void and when 

it passes through the centre of the void. Given the relationship between the 

position, z, and the time, f, in the backscattering geometry as shown in equation 

(4-6), the radius of the void can therefore be estimated using At by the relation

2

Thus, equations (4-8) and (4-10) provide a simple sizing technique, the 

area function sizing scheme. The data in figure 4.5 was used to estimate the 

radius in this way. The resulting radius estimation is 204 pm, which is just 2% 

over the true radius.

Although the time origin used in figure 4.5 was chosen to be at the 

centre of the void, the choice of time origin has no effect on the shape of the
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area function. Equation (4-7) indicates that AF(t) moves with the shift of time 

origin, but its shape remains unchanged and neither does At change. Thus, the 

estimated radius is not affected by the choice of time origin in the time domain 

signal.

4.5 Bandwidth Requirements

In practice, the bandwidth of a transducer is usually not as wide as that 

used in the calculation of AF(t) shown in figure 4.5 (0 < ka < 6.5). The 

bandwidth effects are investigated here. Figure 4.7 shows the shape change in 

the area function for a 200  pm radius spherical void in titanium, with respect to 

the changing bandwidth of the input data A„ which varies from 0 < ka < 6.5 to 

1 < ka<  2. There are two important observations to be made from this figure. 

First, while narrowing the bandwidth of the input data seriously distorts the 

shape of the area function, t ^  and rmjn remain remarkably stable. This 

observation is the basis for the practical applicability of this sizing technique. 

The second observation from figure 4.7 is that the time at which AF(t) is zero 

(represented by t0) is not as stable as the time with respect to the changing 

bandwidth. This second observation is the reason why we use tmin, rather than 

0̂’

Radius estimations obtained using simulated scattering data for a 

spherical void in titanium with limited bandwidth are shown in figure 4.8, 

where the normalized radius represents the ratio of the estimated radius to the 

true radius. The "o" curve in figure 4.8 shows how the radius estimates are 

affected when the minimum ka value present in the data is raised from 0  to 1.8 , 

while the maximum ka value is fixed at 6.5. The curve indicates a general trend 

that insufficient low frequency data cause underestimate of the radius. If an 

error of less than 2 0 % is required, a loss of low frequency information to ka >

1 can be tolerated. The "*" curve in figure 4.8 shows the effects of lowering
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the maximum ka value present in the data, while the minimum ka value is 

fixed at 0. The general trend is that a loss of high frequency data leads to 

overestimate of the radius. If an error of less than 20% is required, a loss of 

high frequency data to ka < 3 can be tolerated.

From the above simplified analysis of bandwidth effects on radius 

estimates, it is concluded that a minimum bandwidth of 1 < ka < 3 is adequate 

to obtain radius estimates accurate to within 20%. In practice, the bandwidth 

requirements can be less restrictive, because the errors caused by loss of low 

and high frequency data have opposite effects on the sizing results. A 

bandwidth of 1 < ka < 2 for a void of 2 00  pm radius was tested using 

simulated data (the corresponding AF(t) is shown in figure 4.7), the radius 

estimate obtained is 216 pm, which is 8% over the true radius.

However, in real measurements, the radius (a) of a void is not known a 

priori, so the transducer which can be used in practice should have a wide 

bandwidth so that it is able to cover a wide range of expected flaw sizes. The 

effect of the match between flaw sizes and transducer bandwidth properties is 

shown as figure 4.9. The figure shows the normalized radius vs the centre 

wave-number kc of a transducer, multiplied by the flaw radius a. Each curve is 

for a transducer of different relative bandwidth, expressed in terms of the ratio 

of the maximum frequency of the transducer to the minimum frequency 

It can be found out from this figure that for a / ^ , / ^ ^ 8 :! transducer, 

measurements will be accurate to within 20% for a 3:1 range of flaw sizes; for 

a / max.'/min=4:1 transducer and the same level of accuracy, the range flaw sizes is 

about 1.6:1. Curves for transducers with other bandwidth properties can be 

calculated and presented in the same way. Figures like figure 4.9 can be used 

as a guide for selecting a transducer to match a particular range of flaw sizes.

A good broadband commercial transducer might typically have an 8:1
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range of usable frequency. As an example, according to figure 4.9, a transducer 

with a centre frequency of 7.5 MHz, /*,■„=!*7 MHz, and / max= l3.3 MHz 

(fmax-fmin-S-’l )  would be capable of measuring radii of voids in titanium in the 

range of 200 pm to 600 pm to an accuracy of 20% using the area function 

sizing scheme.

Comparing figures 4.8 and 4.9 with the results of the bandwidth effects 

on the accuracy of the IB A published by Elsley and Addison [1980] and 

Addison et al [1982] (they are shown as figures 4.8a and 4.9a), it is found that 

the general trends of bandwidth requirements for these two techniques are very 

similar, however, the bandwidth requirements of the area function sizing 

technique are less severe than those of the IB A. According to Rose [1989], the 

IB A requires a minimum bandwidth of 0.5 < ka < 2.5 in order to give radius 

estimates accurate to within 20%, while the area function technique requires a 

bandwidth of 1 < ka < 3 to give the same level of accuracy.

Effects of using other window functions

As mentioned early, rectangular window function is not the only 

function which can be used to select a segment of an infinite spectrum. In 

signal processing, other kinds of window functions are usually used to reduce 

the side lobe characteristics of a rectangular window to improve the results 

[Papoulis, 1977]. Here, effects of imposing the Hanning window function, one 

of the most commonly used window functions in spectrum analysis, on the flaw 

sizing results are investigated. The Hanning function is defined as [Papoulis, 

1977]

r
w(n) -  i  

2
1 + C O S

r \ \  
Kn

\

(4-11)

where n is the data point.
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Figure 4.10 compares the effects of imposing a Hanning and a 

rectangular window function to the scattering spectrum on the accuracy of the 

area function sizing technique. The solid lines are for the rectangular window, 

the dashed lines are for the Hanning window. Same as figure 4.8, the "o" 

curves show how the radius estimates are affected when the minimum ka value 

present in the data is raised from 0 to 1.8, while the maximum ka value is fixed 

at 6.5. The "*" curves show the effects of lowering the maximum ka value, 

while the minimum ka value is fixed at 0. The figure clearly reveals that using 

a Hanning window function does not improve the accuracy of the area function 

sizing technique, and using a rectangular window generates much better results. 

In the following study, a rectangular window function is used for the evaluation 

of the area functions.

4.6 Non-Soherical Voids

In this section, the area function sizing technique is applied to non- 

spherical voids. The case of centre-symmetric void is first considered, and then 

the more general case of non-centre-symmetric void is considered.

4.6.1 A spheroidal void

A 2:1 (252x126 pm) oblate void in titanium is taken as an example. The 

void is shown as figure 4.11.

The backscattering data were simulated using MOOT in Chapter 3, and 

shown as figure 3.11. The scattering data in the frequency range of 0 to 20 

MHz (0 < ka < 5.0, where a is the longer semiaxis of the oblate void) were 

used to calculate the area functions. Figures 4.12a to 4.12c show the resulting 

area functions and the true cross-sectional areas for three incident directions of
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0o=O, 7C/4 and rc/2, where the angle 0O is measured from the symmetry axis (see 

figure 4.11).

It is seen from figures 4.12 that as in the case of spherical void, the first 

part of AF(t) in each incident direction predicts S(t) very well. The time 

difference, At, between the times where AF(t) starts from minimum (tmin) and 

reaches maximum ( t ^ )  may therefore be used to estimate the tangent plane 

distance in the incident direction in the same way that it extracts the radius of a 

spherical void, by the relation

r ( 0 )  = —  (4 -1 2 )
2

The backscattering data (A{) in the frequency range of 3 to 20 MHz 

(0.74 < ka < 5.0, which can be met by a good transducer in practice) were used 

to evaluate the area functions for several incident directions, to estimate the 

tangent plane distances using equation (4-12). The results are shown in Table

4.1 and figure 4.13. Because of the symmetry of the void, only the results in 

the range of 0 < 0O < tc/2 are shown in the table.

Table 4.1 and figure 4.13 show that all the estimated tangent plane 

distances, re(0o), are in good agreement with the true values of re(0o). The 

largest error is less than +18% of the true value. For all the directions, the 

same frequency range was used, so the relative bandwidth krJQJ was different 

for each direction, changing from 0.37 < krJQJ < 2.5 at 0o=O to 0.74 < krJQJ 

< 5 at 0o=7i/2. This is believed to be the reason why the error for each direction 

is so different.

If the tangent plane distances are estimated for a number of directions, 

the boundary of the void can be reconstructed using a nonlinear least-squares
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Table 4.1 Ture and estimated tangent plane distance for the 2:1 oblate void

e0 true re (pm) kre estimated re 
(pm)

error (%)

0 126 0.37-2.50 148 17.5

71/16 133 0.39-2.64 152 14.3

tc/8 151 0.44-3.00 164 8.6

3tc/16 175 0.51-3.47 179 2.3

Jt/4 199 0.58-3.95 204 2.5

5tc/16 221 0.65-4.38 240 8.6

3tt/8 238 0.70-4.72 258 8.4

775/16 248 0.73-4.92 262 5.6

tc/2 252 0.74-5.00 258 2.4
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fitting procedure [Schmerr et al, 1989; Hsu et al, 1984]. However, it is not the 

interest of this study.
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4.6.2 An ovate void

This is a case of non-centre-symmetric void. The backscattering 

amplitudes for an ovate void in titanium have been studied in Chapter 3, and 

they are used in this section to study the area functions for the void. Figure 

3.13 (also shown in the next page as figure 4.14) depicts the shape and 

dimensions of the void, and the backscattering amplitudes for several incident 

directions can be found in figures 3.14 to 3.16.

These backscattering data in the frequency range of 0 to 20 MHz (0 < 

ka < 4.5) were used to evaluate the area functions. Figures 4.15a to 4.15e show 

the calculated area functions and the true cross-sectional areas for five 

directions: 0o=O, 7t/4, tu/2, 37t/4 and k . As in the cases of spherical and 

spheroidal voids, the first part of each AF(t) agrees very well with that of the 

corresponding S(t). The time difference (At) between and tmin therefore can 

be regarded as an approximation to the time difference (AT) between the times 

at which the incident wave starts touching the void and when it passes through 

the position with the maximum cross-sectional area. Here, to assist the 

discussion, the term local radius is defined as the distance from the position 

where the flaw’s cross sectional area has the maximum value to a plane 

(perpendicular to the propagation direction) tangent to the front surface of the 

flaw (see the void’s geometry in figure 4.14). The local radius is represented as 

r{. Thus, the local radius rt can estimated by the value of cAt!2.

Because of the complexity of the void’s geometry, only three special 

directions (0o=O, tc/2, 7t) are considered for flaw sizing. For 0o=O, rt=b\ for 

0o=7t/2, rt=a\ for 0o=tc, r{=d (b, a, d are shown in figure 4.14). The 

backscattering data in a practical frequency range of 2 to 17 MHz (0.45 < ka < 

3.82) were used to evaluate the area functions and to estimate the local radii for 

these three directions. The sizing results are listed in Table 4.2. It can be seen
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Figure 4.14 The geometry of the ovate void, rt is the local radius
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that cA//2 estimates the local radius very well. All the errors are within 16%. 

The same frequency range was used for all the incident directions, while the 

dimension of the void is different for each direction. As a result, the relative 

bandwidth ka, kb and kd were in different range. This may be a reason why the 

errors for these three directions are so different.

Table 4.2 The true and estimated local radii for the ovate void

6 true local 
radius rt (Jim)

krt range estimated local 
radius (|im)

error
(%)

0 293 0.60<&><5.09 308 5.5

k/2 220 0.45<to<3.82 216 -2.7

7Z 165 0.34<M<2.86 193 15.8
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4.6.3 Two overlapping spherical voids

This is another example of more complicated non-centre-symmetric 

voids. The shape and dimensions of the void have been illustrated in Chapter 3 

and shown as figure 3.17 (also shown here in the next page as figure 4.16).

The backscattering results were discussed in Chapter 3. The simulated 

scattering data in frequency range of 0 to 29.6 MHz (0 < k a <  6, where a 

represents the radius of the larger sphere) were used to calculate the area 

functions of the void. Figures 4.17 show the area functions and the true cross- 

sectional areas for two incident directions of 0o=O and k . As the cases 

discussed before, in each direction the agreement between the first part of AF(t) 

and that of S(t) is observed to be good. The result at direction of 60=k deserves 

more attention, where the area function has also clearly reconstructed the small 

sphere. This means that the area function has potential to reconstruct the fine 

details of the flaw shapes.

At direction of 0o=O or k / 2, the local radius is just the radius of the 

larger sphere. As discussed in the last case, At (between ^  and measured 

from the area function can be used to estimate the local radius and therefore the 

radius of the larger sphere, by the relation r^cAt/2. At 0o=tc, the local radius is 

the addition of the radii of the two spheres (represented as a+), so the value of 

cAt/2 can be used to estimate a+. In any other direction, the geometry becomes 

very complicated, and sizing is not performed here.

The frequency range of the input scattering data for the evaluation of the 

area functions was limited in a practical frequency range of 2 to 17 MHz (0.41 

< ka < 3.41) to size the void for the incident directions of 0o=O, tt/2, and tc.

The sizing results are listed in Table 4.3. The difference between the estimated 

and the true values are all less than 6%.
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Figure 4.16 The geometry of the two overlapping voids
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Table 4.3 The true and the estimated local radii for the overlapping 
voids at three directions

0 true local radius 
(pm)

krt range estimated local 
radius (pm)

error
(%)

0 200 0.41<&z<3.41 205.5 2.8

k/2 200 0.41<ta<3.41 208.5 4.3

K 300 0.62<foz+<5.12 315.8 5.3
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4.7 Discussions and Conclusions

It has been shown numerically that the area function formula based on 

the Bom approximation provides a simple inversion technique which can be 

used to determine the size and shape of voids in structural materials. For 

spherical voids, the radii! (a) can be estimated; for non-spherical voids, the 

tangent plane distances (re) (for centre-symmetric voids) or the local radii (r,) 

(for non-centre-symmetric voids) can be estimated. The technique has certain 

bandwidth/flaw size match requirements, however, a good transducer can cover 

a useful range of flaw sizes. All the sizing results in this chapter were obtained 

by processing the simulated scattering data in some practical frequency ranges 

which can be met by commercial transducers.

There are some similarities between this sizing scheme and the IBA.

First of all, they share the same theoretical basis - the Bom approximation. 

Secondly, the bandwidth requirements follow the same trends - insufficient low 

frequency data causes underestimate of the flaw size and lack of high frequency 

data leads to overestimate of the flaw size.

However, the area function sizing technique has two distinguished 

advantages over the IBA:

(1) The area function sizing scheme does not require to determine the flaw 

centroid. The IBA has to be supplemented by another method to locate 

the flaw centroid and shift the time domain signal so that the time origin 

is at the flaw centroid (zero-of-time problem), before the algorithm can 

be implemented. This is one of the main objections to the use of the 

IBA for defect sizing. Even though there have been some advances in 

solving this problem [Chaloner and Bond, 1987; Bond et al, 1988; 

Addison et al, 1981], to date, determination of the flaw centroid in
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ultrasonic reconstruction of flaws remains an unresolved fundamental 

problem [Koo et al, 1990]. In fact, the area function algorithm has been 

used by some scientists [Koo et al, 1990; Chaloner and Bond, 1987] as 

an interim algorithm in the IBA to locate the flaw centroid. Even if the 

zero-of-time problem were perfectly solved, implementing the IBA 

would require more signal processing work than implementing the area 

function technique.

(2) The bandwidth requirements for the area function sizing technique are 

less severe than those of the IBA. In order to give radius estimates 

accurate to within 20%, the area function sizing scheme requires a 

bandwidth of 1 < ka < 3, while the IBA requires a bandwidth of 0.5 < 

ka < 2.5.

Cohen-Tenoudji and Tittmann [1982] formulated an inversion algorithm 

based on the Kirchhoff approximation, which gives anoutput function A(t). The 

algorithm is very similar to the area function algorithm in the frequency 

domain. However, they sized the flaws in a different way. In their study, the 

radius of the sphere and the semi-axis of the ellipsoid were obtained by using the 

time difference between the value where the function A(t) crosses zero and r=0. 

There are two problems in their method: (1) the position of the flaw centroid 

must be estimated (as the IBA), and therefore zero-of-time needs to be solved 

first; (2) the time t0 where the function A(t) crosses zero is used, while it has 

been shown in figure 4.7 that t0 is much less stable than tmin with respect to the 

changing bandwidth.

The applicability of the area function sizing technique to strong 

scattering inclusions has not yet been studied. Given the conclusion by 

Gubematis et al [1977b] that for elastic inclusions where the properties of 

defect and host differed by 20-40%, the Bom approximation is very good for
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all angles and even at short wavelengths, it is expected that this sizing 

technique will be able to be applied to some types of strong scattering 

inclusions.



Chapter 5 

EXPERIMENTAL RESULT

5.1 Introduction

This Chapter describes the experimental implementation of the area 

function sizing scheme and the results obtained. Section 5.2 is a description of 

the experimental system. Section 5.3 describes the experimental procedures and 

the signal pre-processing techniques used to obtain the isolated flaw signal. 

Section 5.4 gives the experimental sizing results obtained with several simple 

flaws. Section 5.5 is the discussions of the experimental results.

5.2 Experimental System

The experiment system is shown schematically in figure 5.1. The 

experiments can be performed in either immersion or contact testing mode.

In immersion testing experiments, the transducers are scanned 

mechanically using a XYZ scanning frame fixed on a water tank. The stepping 

motor drives can move the slides (and therefore the transducers installed on 

them) by 2.5 pm increments.

The pulse-receiver used in the experiments is a Panametrics 5052PR, 

which excites the transducers by a sharp voltage spike of about -200 to -380 

volts. The resistive load presented to the transducer by the pulse-receiver can 

be altered between 50 to 250 ohms for optimum matching. Data acquisition is 

performed using a GOULD Biomation model 4500 digital oscilloscope at a 

sampling rate of 100 MHz with 8 bit resolution [Saffari, 1986]. The sampled 

time domain signal is then transferred to an IBM-PC via an IEEE 488 data bus 

for processing. The PC is also linked to UCL (University College London)
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Figure 5.1 Schematic diagram of the experiment set up
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Data Exchange, through which the computing facilities of ULCC (University of 

London Computer Centre) and Bloomsbury Computer Consortium can be 

accessed.

The transducers used are various commercial broadband piezoelectric 

transducers, with different frequency characteristics. These transducers are listed 

in Table 5.1.

Table 5.1 Transducers used in the experiments

Transducer Centre
frequency

Mode Element
diameter

Near field or 
focal length

Ultran XL 
50-5-P3

5 MHz immersion
(focused)

12 mm 77 mm in 
water (focal 

length)

Krautkramer 
5KB 53051

5 MHz contact 10 mm 19.2 mm in 
steel

Harisonic
CRO208

2.25 MHz contract 10 mm 9 mm in 
aluminium

The characteristics of a transducer are very complicated. Some of its 

basic properties can be understood by modelling the transducer as a simple 

piston source which sits on an ideal baffled surface [Krautkramer and 

Krautkramer, 1983]. The radiation pattern produced by any ultrasonic 

transducer is composed of two zones, knows as (1) the Fraunhofer Zone or 

"far-field”, and (2) the Fresnel Zone or "Near-field”. Figure 5.2 (after 

Krautkramer and Krautkramer [1983]) shows the theoretical axial pressure 

variations with distance for a normal flat transducer.

All contact and immersion flat transducers have a natural "focus". The
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Figure 5.2
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pressure peak in an axial beam profile at the point of the natural focus is given 

the symbol Y0+ in figure 5.2. The natural focus corresponds to the transition 

from the near field to the far-field. This transition distance is the near-field 

length which is represented by N. The most commonly used approximate 

expression for calculation of the near-field length is [Krautkramer and 

Krautkramer, 1983]

* - ! £ !  (5-D
4 X

where D is the element diameter of the transducer, and X is the wavelength in 

the material transmitting the sound. All the experiments reported in this thesis 

were conducted in the far fields of the transducers.

Focused immersion transducers employ acoustic lenses to manipulate the 

pattern of the sound beam. Through the use of acoustic lenses, it is possible to 

shift the position of Y0+ towards the transducer. The Y0+ point then becomes the 

focus of the transducer. Focused transducers are usually used in the 

experiments to improve the sensitivity and signal-to-noise ratio when the flaw 

is very small or the scattering is very weak. The first transducer in Table 5.1 is 

a point focused transducer.

The samples considered in the investigation are listed in Table 5.2. The 

properties of the materials are also listed in the table.

5.3 Experimental Procedures and Pre-Signal Processing

The procedures for experimental implementation of the area function 

sizing scheme are summarised in figure 5.3. The steps 1 to 5 are referred to as 

signal pre-processing; the steps 6 and 7 are the implementation of the area 

function sizing algorithm.
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Table 5.2 Samples and material properties

Samples used in the experiments

Material
Block

dimensions
(mm)

Defect type
Defect

dimensions
(mm)

Location

1 Buehlers
"Transoptic"

Disk 30 dia 
13 thick

Spherical
polystyrene

inclusion
0.8 dia

10 mm 
from block 

centre

2 Titanium
Rectangular

55X35X24
Bored

cylinder 0.53 dia
1.5 mm 

from 
surface

3 Maraging
steel

Rectangular 
100X100*45

Spherical
void

0.6 dia Block
centre

4 Aluminum
Rectangular
200X100X35

Bored
cylinder 1.45 dia

7.5 mm 
from 

surface

Properties of the materials

Material Longitudinal
velocity
(m /s)

Transverse
velocity
(m /s)

Density
(g/cm 3)

Titanium 6200 3125 4.35

Buehler's
"Transoptic"

2690 1340 1.18

Polystyrene 2350 1200 1.06

Maraging steel 5700 3120 8.0

Aluminium 6320 3130 2.7

The properties for Buehler's "transoptic", polystyrene and maraging steel 

were obtained from Chaloner [1988] where she used the same samples. The 

properties for titanium and aluminium were obtained from Krautkramer 

and Krautkramer [1983].
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spectrum to eliminate frequencies 
at which magnitude of reference 

spectrum is too small

Figure 5.3 Procedures for measuring the flaw sizes using the area 
functions
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The main objective of the signal pre-processing is to isolate the flaw 

signal. In ultrasonic measurements, a measured signal is always convolved with 

system and material effects that are not flaw related, such as pulser-receiver, 

oscilloscope circuit characteristics and material attenuation. To isolate the signal 

scattered from the flaw, these effects must be removed. The process of isolating 

the flaw response from the effects of the rest of the testing system is often 

referred to as deconvolution [Fitting and Alder, 1977].

Experimentally, the first problem is the detection of the flaw signal in 

the received waveform. This is usually done simply by noting points at which 

the signal rises significantly above the background level. Because the flaw is 

usually small, the return amplitude from the flaw is very sensitive to the 

probe/flaw alignment and it requires a degree of patience to optimise the signal.

It is desirable to obtain as high a signal-to-noise ratio as possible. The 

signal-to-noise ratio can be enhanced by either increasing the signal level or 

decreasing the noise level. The major noise sources in a flaw signal are either 

thermal noise generated in the electronic components, grain scattering noise in 

the material, or tail signals from the front face of the part under investigation 

[Addison et al, 1982].

To increase the signal level, one may simply increase the output of the 

transducer. However, this will not improve the signal to grain-scattering-noise 

ratio, since the amplitude of the grain scattering noise rises in proportion to the 

strength of the incident wave. Another way to increase the signal level is to use 

focused transducers. Focusing is an effective way of increasing the echo 

amplitude from small reflectors at the focus. In this study, a focused transducer 

has been used on two small scatterers.

Decreasing the noise level is another approach to improve the signal to
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noise ratio. The thermal noise can be reduced by the time averaging of a large 

number of signals captured at different moments. The tail of a front surface 

echo noise can be reduced by subtraction of a measured signal from a flawless 

region of the same or a similar part [Addison et al, 1982]. However, these 

noise-reducing measures are not taken in this study in order to make the 

experiments as simple as possible. Another reason is that in practical 

applications, these measures may not be easily incorporated, or even after these 

measures being taken, the signals are usually not as good as the signals 

obtained in laboratory without these treatments. It is also one of the intentions 

to see how well this sizing scheme works with a low signal-to-noise ratio.

The choice and acquisition of the reference signal (in step 1) will be 

discussed in detail in the sub-section "deconvolution techniques".

In step 2, the portion of the acquired waveform containing the flaw 

signal or the reference signal is separated by multiplying the waveform by a 

window function whose length and position are selected by the operator. A 

shaped window such as a Hanning window is often a good choice in spectrum 

analysis. However, using such windows distorts the late-arriving creeping wave 

(which is an essential part of the scattering signal from a void), therefore a 

rectangular window function is used in this study.

The next step (Step 3) is to perform FFT to obtain the spectrum of the 

time domain signal. In order to increase the frequency domain resolution, 

before the FFT is performed, the signal is padded with zeros at the end to give 

a total of 1024 or 2048 points. FFT is performed using the signal processing 

software, MATLAB.

The deconvolution algorithm used in step 4 will be discussed in the 

subsection "deconvolution techniques".
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In step 5, the deconvolved spectrum is examined to eliminate 

frequencies at which the magnitude of the reference spectrum is too small, 

usually around less than 10% - 20 % of the peak amplitude of the reference 

spectrum [Addison et al, 1982].

With the isolated raw flaw spectrum in a certain frequency range, the 

area function is evaluated using equation (4-8) in step 6.

Finally, in step 7, the time t ^  and tmin are found from the resulting area 

function and the time difference At between and tmin is measured and usedm a x  n u n

to estimate the radius by the relation a=cAt/2 (equation (4-10)).

Deconvolution techniques

Before a proper deconvolution procedure can be established, the 

experimental system must be analyzed. A generalized ultrasonic spectroscopic 

system is depicted as figure 5.4 which is from Fitting and Adler [1977]. An 

electrical waveform generated by the transmitter is applied to the transmitting 

transducer to producer an acoustic pulse. Since it is very difficult in 

conventional NDT to transfer energy from an ultrasonic probe into a specimen 

via an air gap, some form of coupling material should be provided. For contact 

testing, this can be done by smearing a layer of coupling gel onto the specimen 

surface. For immersion testing, the whole inspection can be carried out in a 

water bath, where the water serves as the coupling material. Other liquids also 

can be used as coupling materials. As the acoustic wave propagates through the 

material being studied, interactions of the acoustic energy with the material 

alter the amplitude, phase and direction of the wave. A receiving transducer 

then captures the acoustic energy and converts the mechanical signal to an 

electrical signal. An amplifier is usually needed to increase its amplitude. The 

signal is then recorded and processed in an analysis system, which is usually
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Figure 5.4 A generalized ultrasonic spectroscopy system (after Fitting and 
Adler’[1977])
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done using a computer nowadays.

In the ultrasonic system analysis, each component of the system depicted 

in figure 5.4 can be reasonably assumed as a linear time-invariant (LTI) system 

[Frederick and Seydel, 1973]. Although such an assumption may not be always 

appropriate, generally it reflects reality and does provide a good basis for 

assessing the performance of system components [Fitting and Adler, 1977].

The behaviour of a LTI system can be completely described by its 

impulse time response or its equivalent frequency response. These two 

responses are a Fourier transform pair. Figure 5.5 displays a block diagram of 

the ultrasonic testing system with references to Fitting and Alder [1977] and 

Koo [1987]. The time domain response and the frequency domain response are 

shown with symbols at the left and right sides of the figure respectively.

Among them, a(co) is the attenuation coefficient which is dependent on the 

frequency (the attenuation is caused mainly by absorption and dispersion); dt 

represents the distance of the acoustic path between the transmitting transducer 

and the flaw, and d2 is the distance of the acoustic path between the flaw and 

the receiving transducer.

Hence, from figure 5.5, if the noise is neglected, the output time domain 

response is

v,(0 = r(t) *x2(t) * c2(r) * m2(t) */(f) cx(t) *p(t) * v,.(0 (5-2)

The corresponding output frequency response is

V,(co) =i?(co)X2(co)C2(ci))«'“<<“HF(co)e‘a<“HCl(co)X1((o)/>((o)V'i(co) (5‘3)

In this study, only the backscattering direction (pulse-echo) is 

considered, where a single transducer is used to transmit and receive acoustic
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Figure 5.5 Elements of an ultrasonic testing system model as a linear, time- 
invariant system
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waves, in which case

C1(co) = C2(co) = C(co)
X1(co)=X2(co)=X(co) (5-4)

Thus, according equation (5-3), the backscattering output frequency response is 

V^co) =F(co)X2(co)C2(co)e'2a<“HF(co)V'i((o)F((o) C5' 5)

In principle, all the responses plus the input and output voltages can be 

measured and therefore the backscattering flaw response can be obtained by 

direct deconvolution

F( co) = --------------------- L__-------------------  (5-6)
/?(co)X2(w)C2(co)e':ta<“HF(m)V((o)

However, it is impractical. In practice, a reference signal representing the 

spectrum of the complete interrogating system is sought. This can be done by 

obtaining an reflection from the back surface of a flawless specimen as a 

reference signal [Addison et al, 1982; Chaloner and Bond, 1987]. This 

specimen should be made of the same material as the flawed specimen, and its 

back surface should be made at the same distance from the front surface as the 

flaw. Here is an analysis to explain why this signal can be used as a reference 

signal. Figure 5.6 shows the flawed specimen and the flawless reference 

specimen. Replacing the term F(co) in equation (5-5) with the term co), the 

reflection function for the back surface, one can obtain the frequency response 

of the signal reflected from the back surface of the flawless specimen

^ ( “ )= /?(“ )^ 2(®)C2(co)e'2̂ “HF(co)Vj( c o ) ^ t(co) (5-7)

It is well known that for a flat surface, Rback(co) is a frequency-independent 

coefficient constant which depends on the properties of the specimen material 

and the material loading the surface. When the wave coming from an
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acoustically harder material (e.g. titanium) strikes an acoustically softer material 

(e.g. water or air), Rback(co) is a negative constant [Krautkramer and 

Krautkramer, 1983]

***<«»=- |£  I (5 ‘8)

where the negative sign indicates the reversal of the phase relative to the 

incident wave, and lisl is a constant.

Comparing equation (5-7) with equation (5-5), one can obtain the flaw 

response through the following deconvolution algorithm using a back surface 

reflection as the reference signal

V (co) V (co)
F( co) = — 1 — ( - 1 E . k\) =___| E | (5-9)

' - ^ ( 0 9 )  1

In this study, only relative scattering amplitude information is needed, so 

the frequency-independent constant factor \e \ can be discarded without 

affecting the relative scattering amplitude. The deconvolution process can 

therefore be rewritten as

F(co) = .^°({0) (5-10)
V ® )

Where Vre{a&) represents the reference spectrum, and is taken as

V< D) — (5-11)

Bear in mind that the flaw scattering amplitude obtained from equation 

(5-10) has only relative meaning with an unknown normalization factor.

To simplify the problem further, we do not use another flawless 

specimen, instead, the reference signal is obtained from the back surface of the
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flawed specimen itself (see figure 5.6). In this case, the spectrum of the back- 

surface reflection is

V^JO)) = R(oy)X2(CD)C2(Q-))e-2a(,a>dP(C£i)Vi(u )( -  [£[) (5-12)

where d is the distance from the front surface to the back surface of the flawed 

specimen. If the reference spectrum is still taken as equation (5-11), the 

corresponding deconvolution procedure should therefore be corrected by the 

factor exp(-2cxj((O)(d-d0)) (compare equations (5-12) and (5-7)):

V°m  (5_13)
y « )

The value of exp(-2a((£>)(d-d0)) is dependent on the frequency. However, as (d- 

d0) is usually small, the factor exp(-2a((ii)(d-d0)) is ignored in this study, and 

the deconvolution procedure is still expressed as equation (5-10).

In immersion testing mode, the reflection from the front surface of a 

specimen also contains all the characteristics of the testing system and can be 

used as a reference signal. In this case, since the wave coming from an 

acoustically softer material strikes an acoustically harder material, the incident 

and reflected waves are in phase. So

(5_14)

and the corresponding deconvolution procedure is

F(co)= V‘i<S>) (5-15)

As in equation (5-13), since d0 is usually small, the factor exp(2a((d)d0) in 

equation (5-15) is ignored, and the deconvolution procedure is still expressed as 

equation (5-10).

The deconvolution procedure expressed in equation (5-10) neglects the
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noises. However, at two ends of the reference spectrum where the signal-to- 

noise ratio is low, such operation is unstable. Thus, equation (5-10) must be 

modified to handle this situation. The Wiener filter [Muradami et al, 1978;

Kino, 1987] has been successfully employed to desensitizes the deconvolution 

process.

The Wiener filter desensitized deconvolution can be expressed as 

[Mradami et al, 1978],

K,(©)F(co) = _L __W (co) 

where W(co) is the Wiener filter and is defined as

W(co) = __________________
|Vre/co ) |2 + e 2(co)

where Q(co) is known as the desensitization term and usually taken to be a non- 

optimally chosen, frequency independent constant [Neal et al, 1992]. The most 

commonly used value for Q has been 10% of the maximum value of the 

reference magnitude [Neal et al, 1992; Neal and Thompson, 1986],

2  = 0.1 |V * « » )L , (5-18)

To test how well this deconvolution model works, an experiment was 

performed on Sample 1, a Buehlers "Transoptic" disc containing a 400 pm 

(obtained from optical measurement) radius polystyrene spherical inclusion. The 

sample was manufactured at Ames Laboratory, Iowa State University, USA.

The transducer used was the Ultran XL 50-5-P3, a point focused transducer. Its 

centre frequency was about 4.6 MHz and its bandwidth at 14 dB below the 

peak amplitude was approximately 0.8 - 8.4 MHz. The measurement was 

performed in a water immersion tank. The experimental results are displayed in

(5-16)

(5-17)
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figures 5.7 to 5.10.

The transducer was first focused at the front surface of the sample to 

obtain a reference signal in the time domain. Figures 5.7a and 5.7b show the 

reference signal and its spectrum. The transducer was then focused at the depth 

where the inclusion was known to be located, and scanned around the inclusion 

until the transducer and flaw aligned properly and the maximum reflection 

signal was obtained. Figure 5.8a shows the measured time domain flaw signal, 

and figure 5.8b is its spectrum.

Equation (5-16) was then used to deconvolve the flaw signal from the 

reference signal. The desensitising Wiener filter term Q was set at 10% of the 

maximum value of the reference magnitude. The result was found to be 

insensitive to small changes in the filter level (the value of Q). The spectrum of 

the resulting raw flaw signal is shown as the solid line in figure 5.9. This result 

is compared with the numerical simulation result which is shown as the dashed 

line in figure 5.9. The simulation result was calculated by employing Ying and 

Truell [1956] series solutions. Both the experimental data and the calculated 

data are normalized so that their maxima are one in order to be compared. It is 

seen that the scattering features shown in these two curves, such as the 

frequencies where peaks and valleys occur, agree very well.

The raw flaw frequency response was then transformed back to the time 

domain as shown in figure 5.10. Two signals in figure 5.10 are apparent. The 

first reflection is from the front face of the inclusion, and the second reflection 

is assumed to be from the back face of the inclusion. The transit time ( t )  

between these two reflections can be calculated approximately as

T -  —  - 2 x 0 - 8 ,  068  (549)
c 2.35

where d is the diameter of the inclusion, and c is the longitudinal velocity in
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the inclusion. The transit time measured from figure 5.10 is 0.72 ± 0.01 ps*, 

which is in good agreement with the calculation using equation (5-19).

The interference of these two reflections gives rise to the characteristic 

oscillating pattern in the frequency domain shown in figure 5.9. The separation 

between peaks or valleys should be about

A/= i - 1.47 MHz (5-20)
T

This value is close to what is observed in figure 5.9.
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5.4 Experimental Results

Using the signal pre-processing techniques illustrated in the last section, 

experiments were performed on several samples. The area functions were 

evaluated using the experimentally measured scattering data and then used to 

estimate the sizes of the scatterers.

5.4.1 A small cylindrical hole 0=265 um)

The sample used was a titanium block containing a 265 pm radius 

(obtained by optical measurement) circular cylindrical hole about 1.5 mm from 

and parallel to a surface of the block. Figure 5.11 shows the position at which 

the experiment was performed.

The experiment was performed in immersion mode. The transducer used 

was the Ultran XL 50-5-P3. The centre frequency of the transducer was about

6.5 MHz and its bandwidth at 14 dB below the peak amplitude was 

approximately 3 - 1 1  MHz. The transducer was first focused at the front 

surface to obtain a reflection as the reference signal. Since the hole is much 

nearer to the front surface than to the back surface, by choosing the signal from 

the front surface as the reference rather than that from the back surface, the 

differences caused by variation in the travelling distances of the reference and 

the flaw signals are smaller. The time domain reference signal is shown as 

figure 5.12a, and its spectrum is shown as figure 5.12b. The transducer was 

then focused at the depth where the hole was known to be located to obtain the 

time domain flaw signal which is shown as figure 5.13a. Its spectrum is 

displayed as figure 5.13b.

Deconvolution was then performed using Equation (5-16) (the 

desensitization term Q was set at 10% of the maximum reference magnitude),
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and figure 5.14 shows the resulting raw flaw spectrum. The raw flaw response 

in the frequency range of 3 to 11 MHz (0.81 < ka < 2.95) was then used to 

evaluate the area function using equation (4-8). The resulting area function is 

shown as figure 5.15. From this figure, the time at which the area function 

has its maximum (point A) was found and measured. Then the last valley 

before t ^  was found and the time tmin was measured. The time difference (At) 

between and was calculated to give the estimate for the radius of the 

hole, using the relation a-cAtl2  (equation (4-10)). The radius estimate is 255 ± 

15 pm, which is in excellent agreement with the optically measured radius of 

265 pm (this value was reported in Som [1991]).

Som [1991] measured the radius of the same hole using high frequency 

(up to 50 MHz). The method he used was Satellite Pule Observation Technique 

(SPOT) [Gruber, 1980]. The diameter estimation was given by him as 513 ± 10 

pm, which compares well with the result obtained from this study.
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Figure 5.11 The position for the experiment on the titanium block 
containing a small cylindrical hole
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Figure 5.12a Reference time domain signal obtained from the front surface of the 
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Figure 5.12b Frequency spectrum of the above reference signal
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Figure 5.15 The area function for the small cylindrical hole, obtained from the
scattering data shown in figure 5.14
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5.4.2| A spherical void

The sample was a maraging steel block containing a 300 pm radius 

spherical void in the block centre. The sample was made by diffusion bonding, 

manufactured at Royal Ordnance pic. Figure 5.16 depicts the position of the 

experiment. The experiment was performed in contact mode, and the transducer 

used was the Krautkramer G5KB 53051. The experiment was made difficult 

due to a high level of grain scattering from the host material and the 

interferences from the bonding line. Results were easier to obtain and contained 

fewer anomalous contributions along the bonding line rather than normal to it 

despite the increase in grain scattering.

In contact testing, the state of the coupling is one of the most difficult 

experimental parameters to control. It is found that measurements are extremely 

sensitive to the thickness and uniformity of the coupling material [Saffari,

1986]. As shown in figure 5.5 and equation (5-5), a frequency dependent 

coupling factor, C(co), is included in the linear system model. Great care was 

taken in the experiment to ensure that the coupling factors were not too 

different in the acquisition of the reference signal and in the acquisition of the 

flaw signal. However, by no means it could be maintained exactly same.

The centre frequency of the transducer was about 4.5 MHz and its 

bandwidth at 14 dB below the peak amplitude was approximately 2 - 7  MHz.

The reference signal was obtained from the back surface of the sample.

It is shown as figure 5.17a, and its spectrum is shown as figure 5.17b. The time 

domain flaw signal is shown as figure 5.18a, and figure 5.18b is its spectrum. 

Deconvolution was performed using equation (5-16), and the resulting raw flaw 

spectrum is shown as figure 5.19. The desensitization term Q was chosen to be 

15% of the maximum value of the reference magnitude, higher than that used
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in the last experiment because of a low signal-to-noise ratio in this experiment.

The scattering data in the frequency range of 2 to 7 MHz (0.67< ka < 

2.33) was used to evaluate the area function which is shown as figure 5.20. The 

time difference At between and (see figure 5.20) was then measured 

from the resulting area function and used to estimate the flaw radius using the 

relation a=Atcl2 (equation (4-10)). The radius estimate is 336 ± 1 5  pm. The 

nominal radius of the void was recorded as 300 pm [Chaloner, 1988]. The 

difference is about 12%. The less accurate sizing result was probably caused by 

that the flaw signal was seriously contaminated by the noises due to a high 

degree of grain scattering and less desirable bonding quality. Some errors also 

occurred in the deconvolution process due to ignored factor exp(-2a((O)(d-d0)) 

(see equation (5-13)). In this experiment, this factor was more significant than 

that in the last experiment, because the distance d-d0 was much larger (50 mm) 

and the a(co) was larger due to a high degree of grain scattering of the material.

Chaloner [1988] reported the sizing results for the same sample using 

the IB A. The radius estimations in her study were in the range of 253 - 271 

pm.
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Figure 5.16 The position for the experiment on the maraging steel block 
containing a spherical void
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Figure 5.17b Frequency spectrum of the above reference signal
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Figure 5.20 The area function for the 300 |im spherical void, obtained from the
scattering data shown in figure 5.19
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5.4.3 A large cylindrical cavity

The sample used was an aluminum block containing a 725 pm radius 

circular cylindrical hole which is 7.5 mm from and parallel to a surface of the 

block. The experiment was performed in contact mode. The position for the 

experiment is displayed as figure 5.21. The transducer used was the Harisonics 

CRO208. The centre frequency of the transducer was about 3.5 MHz and the 

its bandwidth at 20 dB below the peak amplitude was approximately 1 . 2 - 5  

MHz.

The reference signal was obtained from the back surface. The time 

domain reference signal and its spectrum are shown as figures 5.22a and 5.22b 

respectively. The time domain flaw signal was then captured and it is shown as 

figure 5.23a. Figure 5.23b is the spectrum of the flaw signal. Equation (5-16) 

was then used to perform deconvolution (the desensitization term was set as: 

Q -0 .1 1 Vre/to ) \ma]) t and figure 5.24 shows the deconvolved flaw spectrum.

As in the last experiment, great care was needed in this experiment to 

ensure that the coupling factors were not too different in the acquisition of the 

reference signal and in the acquisition of the flaw signal. The flaw signal in 

this experiment was much cleaner compared with that in the last experiment, 

because the level of the grain scattering in the aluminum block was much 

weaker than that in the maraging steel block, and there was no bonding line 

influence in this experiment. The errors occurred during the deconvolution 

process due to the ignored factor exp(-2a(to)(d-d0)) (equation (5-13)) was 

smaller in this experiment, as (d-d0) was much smaller (7.5 mm compared to 50 

mm in the last experiment) and a(co) was smaller as well due to a lower degree 

of grain scattering.

The deconvolved flaw scattering data in the frequency range of 1.2 to
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4.6 MHz (0.85< ka < 3.3) was then used to evaluate the area function using 

equation (4-8). The resulting area function is shown as figure 5.25, from which 

At between and t ^  was measured and the radius was estimated using 

equation (4-10) (a=cAt/2). The estimated radius is 696 ± 1 5  pm which is 4% 

less than the nominal radius of 725 ± 25 pm.
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Figure 5.21
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5.5 Discussions

The ultrasonic flaw sizing algorithm using the area function has been 

tested experimentally for three cases, (1) a small cylindrical hole (r=265 pm) in 

a titanium block, (2) a spherical void (r=300 pm) in a maraging steel block, 

and (3) a large cylindrical hole (r=725 pm) in an aluminum block.

In all these three experiments, although the area functions evaluated 

from the experimental data are seriously distorted, compared with the 

corresponding true cross-sectional areas, all the sizing results are in good 

agreement with the optically or mechanically measured flaw sizes. The 

experimental results have verified the conclusions made in the last chapter 

based on the simulation results. The experimental results have shown that the 

algorithm can be applied to estimate the sizes of voids to an acceptable 

accuracy, provided proper transducers are used. A guide for selecting 

transducers has been discussed in Chapter 4 (see figure 4.9). In general, if 

adequate bandwidth is available, the results agree with the nominal sizes of the 

defects to within 10% and often better.

Although none of the tests were strictly speaking "blind", since in each 

case the approximate flaw radius was known, the optical measurement value of 

the 265 pm radius cylindrical hole and the mechanical measurement value of 

the 725 pm radius cylindrical hole were obtained after the ultrasonic 

measurements.

The surface finish of the defect in the diffusion bonded maraging steel is 

unknown, but it is expected that some surface roughness may be present due to 

the spark erosion process [Chaloner, 1988]. This might be one of the reasons 

why the sizing result with this sample is less accurate.
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The flaw signal from the spherical void in maraging steel block was 

seriously corrupted by noises. Some sources of the noise could have been 

compensated for in signal processing. However, this was not done in order to 

keep the experiment as simple as possible, and more important to see how well 

this sizing scheme performs with a highly contaminated flaw signal. Even 

though the sizing result is not as good as the other two cases, it is still very 

acceptable in practical application which is very encouraging.

All the defects used in the experiments have the greatest dimension less 

than 1.5 mm. This is because, in the majority of materials, flaws of greater 

dimension can be adequately and accurately described by conventional imaging 

methods and more specialised techniques are not necessary.

No samples with more complicated defect geometries are available. 

However, the simulation studies in Chapter 4 suggests that the method can be 

applied to some other shaped voids.

The comparisons between the area function sizing technique and the 

IB A have been made in Chapter 4.
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Chapter 6 

CONCLUSIONS

6.1 Summary of the Results

This thesis reports a theoretical and experimental study of ultrasonic 

scattering from volumetric flaws in structural materials and ultrasonic inversion 

techniques for sizing such flaws.

For forward scattering problems, the Method Of Optimal Truncation 

(MOOT) has been studied and used to generate forward scattering data. MOOT 

has been widely applied in the study of the elastic wave interactions with 

various scatterers. It has been found accurate and reliable.

In this study, a large general purposed computer model was developed, 

based on MOOT. The computer model can be used to simulate ultrasonic 

scattering from different shapes and sizes of voids, with only minor changes to 

specify the size and shape of the void considered. Backscattering amplitudes for 

a number of voids (including spheroidal voids, an ovate void, and two 

overlapping voids) were calculated and presented both in the frequency and 

time domains. These results were used to provide understanding of basic 

physical mechanism of scattering by voids. A simple physical model, which 

assumes a leading front surface specular reflection followed by a creeping wave 

which travels around the circumference of the void at a velocity close to that of 

longitudinal wave, was extended and shown to apply to ovate and some more 

complex voids. The transit times between the specular reflections and the 

creeping waves were measured from the numerical time domain responses for 

several voids, and they are in good agreement with the analytical results from 

the physical model.
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For inverse scattering problems, the study has addressed only one aspect 

of the flaw characterisation problems, the determination of the flaw’s geometric 

features. Other aspects of the flaw characterisation, such as flaw classification 

and determination of the flaw’s material properties, are not specifically 

addressed.

In this study, a new ultrasonic sizing technique, the area function sizing 

scheme, has been developed for sizing isolated volumetric flaws in structural 

materials. The method determines the size of a flaw by the inversion of the 

backscattered ultrasonic signal using the area function formula. The area 

function formula is derived from a weak scattering approximation, the Bom 

approximation, but it has been demonstrated by numerical and experimental 

results that the sizing scheme works well for voids which are clearly strong 

scatterers.

This area function sizing technique can be formulated and used in either 

the time or the frequency domain. It is easier to understand in the time domain, 

in terms of relating it to specific flaw geometric features. However, it is easier 

and more stable to do signal processing in the frequency domain. Following the 

time domain analysis, the work in this study was therefore performed in the 

frequency domain.

The area function sizing technique has been tested to reconstruct 

geometric features of several regular and irregular shaped voids using the 

numerical backscattering data in some practical frequency ranges which can be 

met by commercial transducers. The technique has also been tested to size 

several simple flaws experimentally. The experiments and numerical studies 

have demonstrated that, provided sufficient spectral bandwidth is available (at 

least about 1 < ka < 3), the simple shaped voids can be accurately sized 

normally to within 10% using the area function sizing technique. Satisfactory
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sizing result has been observed with a low signal-to-noise-ratio signal (Section 

5.4.2).

The area function sizing scheme shares much of its theoretical basis with 

the IB A [Rose, 1989]. It also shares some of the attractive features of the IB A 

which were summarised in Chaloner’s Ph.D thesis [1988]. These are:

(1) The area function technique does not require absolute amplitude 

measurement, which makes it much easier for the method to be applied 

in practice. Accurate absolute amplitude is very difficult to measure in 

practical applications, even in laboratory. It is very dependent on the 

scattering situation, location, coupling material and equipment etc..

(2) The evaluation of the area function (equations (4-7) and (4-8)) involves 

an integration of the experimental data which has the effect of 

desensitising the inversion to random noise.

(3) Low frequency data is highly weighted which means that the effects of

noise due to grain scattering (which increases with the fourth power of

frequency in elastic materials) are minimised.

However, this study has shown that the area function sizing scheme has 

several distinguished advantages over the IB A. These advantages have been 

discussed in Chapter 4, and they are summarised as follows:

(1) The area function sizing technique does not require to locate the flaw 

centroid in the time domain signal to assist the implementation of the 

algorithm. The difficulty of solving the zero-of-time problem is therefore 

avoided, and this avoids one of the main obstacles encountered when the 

IBA is applied. Even if the zero-of-time problem were perfectly solved, 

implementing the IBA would require more signal processing procedures 

than implementing the area function sizing technique.
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(2) The bandwidth requirements for the area function sizing method (1 < ka

< 3) appear to be less severe than those of the IBA (0.5 < ka < 2.5).

The applicability of the area function sizing scheme is at present limited 

due to simplifying assumptions in its theoretical derivation, which is based on a 

weak scattering assumption. The results presented in the thesis are for voids. 

The extension of this technique to strong scattering inclusions has not yet been 

studied.

Another limitation of the area function sizing scheme is its bandwidth 

requirements. Each transducer with a certain bandwidth can only be used to 

size a certain range of the flaw sizes. The broader the transducer bandwidth, the 

wider range of the flaw sizes that it can be used to size. This limitation can 

only be eased by the improvement of the bandwidth of the available ultrasonic 

transducers. This transducer-based limitation are not unique for this inversion 

technique. They are also shared by the IBA and many other ultrasonic inversion 

schemes.

In summary, the area function sizing scheme has been shown to be a 

simple and direct way of inverting ultrasonic scattering amplitudes to obtain the 

geometric features of isolated flaws in the bulk of a structural material.

6.2 Suggestions for Future Research

This section gives a number of suggestions for future work based on this 

study. Most of them are direction extensions to the work already performed 

which should improve experimental results or which should expand the range 

of application of the technique.

For the forward scattering numerical mcdel, it is worthwhile to expand
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the model to deal with inclusions. This should be straightforward. It can be 

done by replacing the stress free boundary conditions with the boundary 

conditions for the elastic inclusion.

With the development of the expert system, the indirect inversion 

techniques become more attractive. The computer model based on MOOT can 

be used to generate data bases to develop adaptive learning inversion sizing 

schemes.

For the area function sizing scheme, there are a number of questions 

which need to be addressed.

Because the formulation of this technique is based on a weak scattering 

approximation, it is necessary to investigate further the theoretical reason why 

the technique works so well for voids, which are clearly strong scatterers. This 

should lead to a better understanding of the physical process. It has been shown 

that there is a creeping wave present in the backscattering signal from a void. 

The effects of the creeping wave on the area function sizing technique should 

be studied further in the next stage study.

The extension of the area function technique to strong scattering 

inclusions should be studied numerically and experimentally. The Bom 

approximation has been shown to work well for some strong scattering 

inclusions [Gubematis et al, 1977b]. It is therefore expected that the area 

function sizing scheme would apply to some types of strong scattering 

inclusions.

The evaluation of the area function involves an integration and as a 

result it is insensitive to random noise. (Chapter 5 has shown a very noisy 

experimental signal, which gave a reasonable sizing result.) However, it is
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inevitable that noise affects at least some procedures of the sizing scheme. The 

effects of noise on sizing results should be studied quantitatively in future 

research.

The bandwidth requirements of the area function sizing technique are 

not severe. However, the wider the bandwidth of the transducer, the more 

accurate the sizing result. All real signal measurements are expected to lose 

some lower frequency and much of the higher frequency components. For this 

sizing technique, low frequency data is highly weighted. In future research, 

some extrapolation methods could be used to reconstruct the low frequency end 

of a signal, so as to improve the sizing results.

The application of this sizing technique to some complex shaped 

scatterers has been investigated in Chapter 4 using numerical forward scattering 

data. However, more work is still needed, especially from the experimental 

point of view.

So far, the deconvolution has been performed by obtaining a reference 

signal from either the back-surface or the front surface of a sample, but this can 

be difficult in practice. Koo [1987] has successfully used the leading pulse of 

the signal from a flaw itself as the reference for the deconvolution in the 

experiments. He pointed out that with an impulsive input signal, the output 

signal from a flaw usually contains a leading pulse plus other later arriving 

responses. If the scatterer is a volumetric flaw, then the leading pulse is the 

front surface echo which is the same as from a perfect reflector at the flaw 

location but normalized by the unknown flaw Gaussian curvature and reflection 

coefficient. Since this front pulse also contains all the characteristics of the 

testing system except the flaw, it can be extracted and used as a reference 

signal in the deconvolution process. This deconvolution process may be used to 

make the area function sizing technique more easily applied in practical

-181-



situations.

The success of implementing this deconvolution process means that 

sizing can be performed in a single measurement, with no need for another 

measurement to get the reference signal. Thus, all the procedures needed can be 

incorporated into a computer software, and the sizing scheme can be developed 

into a "real-time" method - displaying the sizing result right after a 

measurement is taken.
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