
nutrients

Article

Comparison of 24-Hour Recall and 3-Day Food Records during
the Complementary Feeding Period in Thai Infants and
Evaluation of Plasma Amino Acids as Markers of Protein Intake

Kulnipa Kittisakmontri 1,2,*, Julie Lanigan 1, Areeporn Sangcakul 3, Thipwimol Tim-Aroon 4,
Pornchai Meemaew 3, Kanticha Wangaueattachon 3 and Mary Fewtrell 1

����������
�������

Citation: Kittisakmontri, K.; Lanigan,

J.; Sangcakul, A.; Tim-Aroon, T.;

Meemaew, P.; Wangaueattachon, K.;

Fewtrell, M. Comparison of 24-Hour

Recall and 3-Day Food Records

during the Complementary Feeding

Period in Thai Infants and Evaluation

of Plasma Amino Acids as Markers of

Protein Intake. Nutrients 2021, 13, 653.

https://doi.org/10.3390/nu13020653

Received: 19 January 2021

Accepted: 12 February 2021

Published: 17 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Childhood Nutrition Research Centre, University College London Great Ormand Street Institute of Child
Health, London WC1N 1EH, UK; j.lanigan@ucl.ac.uk (J.L.); m.fewtrell@ucl.ac.uk (M.F.)

2 Division of Paediatric nutrition, Department of Paediatrics, Faculty of Medicine, Chiang Mai University,
Chiang Mai 50200, Thailand

3 Division of Clinical Chemistry, Department of Pathology, Faculty of Medicine Ramathibodi Hospital,
Mahidol University, Bangkok 10400, Thailand; areeporn.cho@mahidol.ac.th (A.S.);
pornchai.mee@mahidol.ac.th (P.M.); kanticha.wan@mahidol.ac.th (K.W.)

4 Division of Medical Genetics, Department of Paediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol
University, Bangkok 10400, Thailand; Thipwimol.tim@mahidol.ac.th

* Correspondence: kulnipa.kittisakmontri.16@ucl.ac.uk

Abstract: Background: An accurate and reliable measurement of nutrient intake is the first and
foremost step in order to optimise infant nutrition and evaluate its impact on health outcomes.
However, research on the validity of dietary assessment tools used during the weaning period is
limited, especially in lower-middle income countries. The primary aim of this study was to evaluate
relative validity of a 24-h recall method (24-HR) using a 3-day food record (3-DFR). A secondary
aim was to investigate association between protein intake from 3-DFR and plasma amino acids as
a potential protein biomarker. Methods A multicentre, prospective cohort study was conducted
in Chiang Mai, Thailand from June 2018 to May 2019. Food consumption data were collected in
healthy infants using 24-HR and 3-DFR at 9 and 12 months of age. Blood samples were obtained at
12 months (M). Plasma amino acids were analysed using high performance liquid chromatography.
Results Of 145 infants, 49% were female. At group level, paired t-tests/Wilcoxon signed rank tests
did not show significant differences between average nutrient intakes from the 2 dietary assessment
methods, except for vitamin A and vitamin C. Weighted kappa (Kw) was acceptable for all nutrients,
except for vitamin A intake at 9 M (Kw = 0.15). The Bland–Altman analyses were unbiased for most
nutrients with variable limits of agreement. At individual level, correlation coefficients (r) ranged
from acceptable to excellent (r = 0.37–0.87) while cross-classifications showed acceptable outcomes,
except for vitamin A. Multivariate analyses showed significant associations between protein intake
at 12 M from the 3-DFR and plasma concentrations of branched-chain amino acids (BCAA) and
essential amino acids (EAA), even after adjusting for gender, milk feeding type and energy intake.
Conclusions For infants aged 9–12 M, a 24-HR can be used as a more practical alternative to a 3-DFR
for most nutrients although caution is required for some micronutrients, especially vitamin A. A
repeated interview might further improve the accuracy. Furthermore, protein intake, particularly
animal-based protein, significantly predicted plasma BCAA and EAA concentrations regardless of
gender, type of milk feeding and energy consumption.

Keywords: validity; dietary assessment tool; protein intake; plasma amino acids; protein biomarker;
infant nutrition; complementary feeding; lower-middle income countries

1. Introduction

The double burden of malnutrition (DBM) is an emerging problem affecting global
populations especially in lower-middle income countries (LMICs) [1]. It can begin very
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early in life and continues its impact throughout the life-course [2]. Understanding how
early-life nutrition influences child health and nutritional status is a fundamental step to
prevent and manage the DBM. However, accurate and reliable estimates of dietary intake
are needed to draw conclusions or develop pragmatic guidelines from nutritional studies.
These should be population specific and based on data obtained with validated tools.

Despite the considerable effort invested to develop novel dietary assessment tools
based on current technologies, the multiple-day weighed food record is still widely ac-
cepted as the best reference method to assess the relative validity of other dietary assess-
ment methods [3]. However, this technique is quite expensive and has a high respondent
burden which often leads to low participation and high attrition rates [4]. This is partic-
ularly the case for infants and young children living in LMICs where respondents may
live in challenging conditions and have limited time or resources available for measuring
foods or describing recipes in detail. Therefore, most nutritional studies related to infant
and young child feeding in LMICs collect dietary data using tools that place less burden
on participants. Several studies found that food frequency questionnaires (FFQ), dietary
recalls and estimated food diaries also provide accurate and reliable dietary assessments in
infants and young children [5–16]. However, given the small numbers of validated tools,
use of different types of household utensils and locally produced foods, more validation
studies from LMICs are needed.

As dietary assessment methods are unable to measure true nutrient intake and are
mainly based on subjective information, biomarkers may be more accurate and provide
an objective measurement of nutrients. However, few studies in the field of infant and
child nutrition have validated their dietary assessment tools with biomarkers, for reasons
that are well-described [4,17,18]. The most common biomarkers used to validate dietary
intake in these populations are the doubly labelled water technique to evaluate energy
consumption and fatty acid analysis to assess fatty acids intake from foods [3,11,19,20].
The standard biomarker method for assessment of protein intake is the 24-h urine nitrogen
analysis. However, this has never been used to validate protein intakes of infant and child
populations due to the practical difficulties involved. By contrast, metabolomic analyses
are less intensive, require fewer samples, offer an alternative method to evaluate protein
intake and could be linked to health conditions or diseases. Plasma amino acid profiles
may be promising biomarkers [17,21,22]. Dietary protein is the only source of essential
amino acids in humans, although different protein sources have different quality. Animal
source food is known as a superior source of protein compared to plant-based foods and
some studies show that omnivorous adults have different plasma amino acids compared
with vegetarians and vegans [23]. In addition, a multicentre, randomised controlled trial in
5 European countries demonstrated that high protein intake from infant formula increased
plasma branched-chain amino acids (sum of plasma Leucine, Isoleucine and Valine) in
infants aged 6 months [24]. However, studies in adults that investigated associations
between dietary protein and plasma amino acids are inconclusive [25] and there is a lack of
studies in infants and children.

The present study aimed to (1) investigate the relative validity of a 24-h dietary recall
(24-HR) compared with an estimated 3-day food record (3-DFR) in Thai infants representing
a LMIC population; and (2) to evaluate associations between protein intake from the 3-DFR
and plasma amino acids as a potential protein biomarker.

2. Materials and Methods
2.1. Study Design and Participants

A multicentre, prospective cohort study was conducted in northern Thailand between
June 2018 and May 2019. Eligible participants were healthy-term infants who attended
the well-baby clinics of three hospitals located in Chiang Mai province for immunization
and health surveillance. Sample size was calculated to detect a 0.5 standard deviation
difference in anthropometric measurements between infants who received red meat more
often or less frequently using 80% power and 0.05 significance level. The total number
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of participants from the calculation was 126. Full details of the study protocol have
been published previously [26]. At 9 and 12 months (M) of age, participants’ caregivers
were asked to record their infant’s daily consumption for 3 days within the same week,
whether consecutive or non-consecutive, in the 3-DFR. The 24-HR records were obtained in
interviews conducted by a single paediatric nutrition-trained paediatrician at the well-baby
clinics. Blood samples were collected at 12 M by healthcare professionals at those clinics.

2.2. Dietary Assessment Tools

Before caregivers were asked to record the 3-DFR, all families attended a brief session
by the same paediatric nutrition-trained paediatrician to demonstrate how to estimate food
intake using household utensils and record the 3-DFR appropriately. The 3-DFR contains
four main parts. The first part shows two-dimensional pictures of various types of spoons
with labels. The second part includes some examples of dietary records and is followed
by the recording section. This section has free spaces for caregivers to complete the date,
mealtimes, and details of food consumption. The recipe section is the last part, where
caregivers can freely describe the recipes recorded in the third part if they are used in
multiple meals or contain many ingredients. For the 24-HR, the paediatrician interviewed
caregivers when they brought their children to the well-baby clinics at 9 and 12 M. The
information included in the 24-HR was date of record, mealtime, and amount of food
consumed. After the interview, the paediatrician checked for any unclear information in
the 3-DFR that the caregivers had returned and resolved the issue. If the 3-DFR had not
been completed, the caregivers were asked to return it to the researcher later or send it by
post. Breastfeeding was recorded as duration of feeding (minutes per feeding). Conversion
from breastfeeding duration to amount of breast milk intake was calculated following two
techniques from Lanigan et al. [11] and Olaya et al. [27]. The average intake from the two
techniques was used in the analyses.

2.3. Food Composition Programme

The study mainly used the Thai food composition programme called INMUCAL-
Nutrients, version 4.0 (2018), developed by the Institute of Nutrition, Mahidol University,
Thailand, to convert dietary data to nutrient intakes [28]. Micronutrients including calcium
(Ca), phosphorous (P), iron (Fe), zinc (Zn), vitamin A, vitamin B1, vitamin B2 and vitamin
C were reported along with energy and macronutrients. In some cases when nutrient
profiles were not available in this programme, other reliable sources such as the United
States Department of Agriculture (USDA) or the Food and Agriculture Organization of
the United Nations (FAO) were used instead. For commercial products, the nutritional
information for the specific products were obtained if they were not included in the
INMUCAL-Nutrients programme.

2.4. Plasma Amino Acids Analysis

Sub-group analysis was performed using selected blood samples for measuring
plasma amino acids concentrations. The aim was to compare plasma levels of those infants
consuming protein in the highest and lowest quartile for each protein source, namely dairy
including breast milk, non-dairy animal-based and plant-based protein. According to
Lanigan et al., 4 days of food records should be considered in order to provide an accurate
measurement of protein intake of infants and toddlers [29] thus data from the 3-DFR were
used to select blood samples. Daily protein–energy ratio (%PE) from each protein source
at 12 M was classified into quartiles and presented as the lowest (first quartile), median
(second to third quartile) and highest intake (forth quartile). For the comparison of each of
the protein sources, the included infants had to have median intakes of the other protein
sources. Fifty-four plasma samples were selected for these analyses.

Non-fasting venous blood was collected from infants aged 12 M into EDTA tubes and
centrifuged at 4 ◦C to prepare the plasma on the same day. Plasma samples were aliquoted
into 1 mL and stored in a −20 ◦C freezer until analysis. Samples from fifty-four infants were
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selected for plasma amino acids analysis. The plasma samples were initially deproteinized
with 6% sulfosalicylic acid (1:1 v/v). After mixing, the samples were centrifuged at 10,000
rpm for 10 min. Then 80 µL of the supernatant from each sample was added to 20 µL of
Norleucine as an internal standard and the pH adjusted to 2.2 with lithium hydroxide
before analysis according to the method of Shapira et al. [30]. Free amino acids were
determined by ion exchange chromatography using the Biochrome 30+ automatic amino
acid analyser (Biochrome Ltd., Cambridge, United Kingdom). A series of lithium buffer
solutions were run through a lithium column containing the amino acids in solution.
Individual amino acids were eluted according to their pH. Post-column derivatization with
ninhydrin was utilized to elicit a spectrum of colours at different wavelengths (440 and
570 nm). Data analysis was performed using the software EZChrome Elite (SIM GmbH,
Germany). Repeatability and reproducibility were ±1.5% and within ±5%, respectively.
The sensitivity was shown as a detection of 15 ρmole at signal/noise ratio of 3:1. The quality
control for this analysis was regularly checked with both internal and external standards.

2.5. Statistical Analysis

Relative validation of the 24-HR using the 3-DFR as the reference method was per-
formed at both group and individual level. At the group level, statistical tests including
Paired t-test/Wilcoxon signed rank test, percent mean difference, weighted kappa (Kw)
and Bland–Altman plots. Spearman’s correlation and cross-classification (quartiles) were
calculated representing validity at an individual level. The results from the statistical tests
were interpreted by using suggested values from Lombard et al. [31]. Plasma amino acids
were presented as the sums of the concentrations of (1) branched chain amino acids (BCAA:
leucine, isoleucine and valine), (2) essential amino acids (EAA: leucine, isoleucine, valine,
methionine, threonine, phenylalanine, tryptophan, lysine and histidine), (3) non-essential
amino acids (NEAA: glycine, alanine, proline, serine, cysteine, aspartate, glutamate, as-
paragine, glutamine, tyrosine, and arginine) and (4) all amino acids (Total AA: combination
of EAA and NEAA). Multivariate linear regressions were used to investigate associations
between protein intake from the 3-DFR and plasma amino acids. Protein intake at 12 M
was divided into three forms including intake from all protein types, intake from animal
source foods (ASFs)—so called “animal-based protein—ABP”—and intake from plant-based
diets—so called “plant-based protein—PBP”. In multivariate models, protein intake was
examined as a predictor of BCAA, EAA, NEAA and total AA concentrations. The adjusted
models also included gender, type of milk feeding at 12 M (i.e., only breast milk, combined
and only formula/cow’s milk) and energy intake at 12 M (kcal/day) as covariates. In
addition, cross-classification was used to demonstrate the individual agreement between
protein intake and plasma amino acid status. All analyses were performed using IBM SPSS
version 26.0 (Armonk, NY: IBM Corp).

3. Results
3.1. Characteristics of Participants

A total of 145 healthy term infants (49% female) were included for the analysis. As
shown in Table 1, the percentage of infants who did not receive other types of milk apart
from breast milk alongside complementary foods was more than 50% at 9 M but dropped
to about one-third at 12 M, while the use of formula or cow’s milk increased from 9 to 12 M.
Mean z-scores for infant growth parameters were within the expected ranges compared
with the WHO growth standard [32] at 9 and 12 M. All parents were literate and around half
were college or university graduates. Notably, the mean body mass index (BMI) of fathers
was in the overweight range while mean maternal BMI was normal but just 0.2 kg/m2

below the overweight cut-off using reference values for Asian populations [33].
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Table 1. Characteristics of participants (n = 145).

Characteristics Results

Infant gender, n (%)
Female 71 (49.0)

Gestational age (weeks), means ± SD 38.8 ± 1.0

Type of milk feeding, n (%)
9 months

- Breast milk only 79 (54.5)
- Combined 14 (9.6)

- Formula only 52 (35.9)
12 months

- Breast milk only 46 (31.7)
- Combined 25 (17.2)

- Formula/Cow’s milk only 74 (51.0)

Anthropometric measurements, means ± SD
9 months

- WAZ −0.4 ± 0.8
- WLZ −0.1 ± 0.8
- LAZ −0.4 ± 0.9

12 months
- WAZ −0.6 ± 0.9
- WLZ −0.2 ± 0.9
- LAZ −0.5 ± 0.9

Parental BMI (kg/m2), means ± SD
- Maternal BMI 22.8 ± 4.0
- Paternal BMI 24.7 ± 3.6

Maternal education, n (%)
- Lower than bachelor’s degree 76 (52.4)
- Bachelor’s degree or higher 69 (47.6)

Paternal education, n (%)
- Lower than bachelor’s degree 87 (60.0)
- Bachelor’s degree or higher 58 (40.0)

Family income per month * (Thai Bath), n (%)
- <10,000 11 (7.6)

- 10,000–29,999 65 (44.8)
- 30,000–49,999 51 (35.2)

- ≥50,000 18 (12.4)

Completeness of dietary data, n (%)
24-h dietary recall

- At 9 months 142 (97.9)
- At 12 months 144 (99.3)

3-day food record
- At 9 months 129 (89.0)

- At 12 months 125 (86.2)
* minimum wage in Chiang Mai was 320 baht per day during period of data collection (from National Wage
Committee’s notification on Minimum Wage rate No. 9, 2018–2019). WAZ—Weight-for-age z-score; WLZ—
Weight-for-length z-score; LAZ—Length-for-age z-score; BMI—Body mass index; SD—Standard deviation.

3.2. Relative Validation at Group Level

As shown in Table 2, mean differences of all nutrient intakes between the 24-HR and
3-DFR were small and ranged between 0.6 to 7.8%, except for vitamin C intake at 12 M,
which was 13.2% lower for the 24-HR compared to the 3-DFR. Mean intakes of energy
and macronutrients were not different between the dietary assessment tools using paired
t-tests. However, for micronutrients, median intakes of vitamin A at 9 M and vitamin C at
12 M from the 24-HR were significantly lower than the 3-DFR analysed by Wilcoxon signed
rank tests.
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Table 2. Paired t-test/Wilcoxon signed rank test and mean difference of daily nutrient intakes compared between 24-h
dietary recalls (24-HR) and 3-day food records (3-DFR).
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Table 2. Paired t-test/Wilcoxon signed rank test and mean difference of daily nutrient intakes com-

pared between 24-hour dietary recalls (24-HR) and 3-day food records (3-DFR). 

 9 months 12 months 

Energy and  

Macronutrients 

24-HR 

Means ± SD 

3-DFR 

Means ± SD 
Mean difference (%) p* 

24-HR 

Means ± SD 

3-DFR 

Means ± SD 

Mean difference 

(%) 
p* 

Energy (kcal) 624.5 ± 193.9 630.0 ± 191.4 −5.6 (0.9) 0.60 725.5 ± 236.9 747.0 ± 222.5 −21.6 (2.9) 0.14 

CHO (g) 78.1 ± 25.0 79.7 ± 24.5 −1.7 (2.1) 0.28 86.7 ± 31.1 88.9 ± 28.5 −2.2 (2.5) 0.28 

Fat (g) 25.6 ± 8.7 25.6 ± 8.7 0.04 (0.2) 0.94 29.1 ± 12.0 30.4 ± 10.7 −1.3 (4.3) 0.14 

Protein (g) 19.8 ±8.4 20.2 ± 7.9 −0.4 (2.0) 0.41 28.4 ±10.5 29.3 ± 10.1 −0.8 (2.7) 0.21 

% Caloric  

distribution  

- CHO 

- Fat 

- Protein 

50.4 ± 6.1 

37.1 ± 5.7 

12.4 ± 2.8 

51.0 ± 5.3 

36.3 ± 5.4 

12.7 ± 2.6 

−0.6 (1.2) 

0.8 (2.2) 

−0.2 (1.6) 

0.28 

0.12 

0.36 

48.3 ± 8.0 

35.8 ± 6.5 

15.9 ± 3.7 

47.8 ± 6.6 

36.5 ± 5.5 

15.7 ± 3.0 

0.5 (1.0) 

−0.7 (1.9) 

0.1 (0.6) 

0.48 

0.27 

0.57 

Micronutrients 
24-HR 

Median (IQR) 

3-DFR 

Median (IQR) 
Mean difference (%) p** 

24-HR 

Median (IQR) 

3-DFR 

Median (IQR) 
Mean difference (%) p** 

Calcium (mg) 
234.0 

(170.7,539.2) 

231.0 

(172.3, 415.4) 
20.4 (6.4) 0.07 

406.9 

(209.3, 617.0) 

371.1  

(194.7, 662.5) 
5.1 (1.2) 0.78 

Phosphorous (mg) 
261.2 

(174.5, 461.6) 

251.3 

(195.4, 377.6) 
3.5 (1.1) 0.91 

415.8 

(254.7, 583.6) 

406.4  

(261.6, 627.9) 
−8.8 (2.0) 0.43 

Iron (mg) 3.2 (1.9, 8.3) 3.1 (2.2, 7.0) 0.05 (1.0) 0.83 5.1 (2.7, 8.9) 4.4 (2.9, 9.0) −0.3 (4.8) 0.36 

Zinc (mg) 2.3 (1.5, 5.0) 2.3 (1.6, 4.3) 0.1 (3.2) 0.30 3.6 (2.2, 5.1) 3.3 (2.2, 5.3) −0.1 (2.5) 0.97 

Vitamin A (RAE) 
563.8 

(371.8, 1298.3) 

1105.0 

(478.9, 1736.6) 
−47.4 (3.7) 0.03 

474.3  

(352.4, 781.3) 

610.8 

(381.9, 1229.0) 
−47.4 (4.0) 0.05 

Vitamin B1 (mg) 
0.3 

(0.2, 0.6) 

0.3 

(0.2, 0.5) 
−0.01 (2.5) 0.11 

0.4 

(0.3, 0.6) 

0.4 

(0.3, 0.7) 
0.004 (0.8) 0.70 

Vitamin B2 (mg) 
0.5 

(0.3, 1.2) 

0.5 

(0.4, 1.1) 
0.02 (2.9) 0.74 

0.9 

(0.5, 1.3) 

0.9 

(0.5, 1.3) 
0.003 (0.3) 0.68 

Vitamin C (mg) 
60.5 

(32.5, 95.4) 

59.5 

(41.6, 96.0) 
−5.8 (7.8) 0.10 

58.8 

(35.7, 92.8) 

64.2 

(40.9, 64.2) 
−10.3 (13.2) 0.04 

 

* p—p-values from paired t-tests; ** p—p-values from Wilcoxon signed Rank tests. RAE—Retinol 

activity equivalent; CHO – Carbohydrate; IQR – Interquartile range 

* p—p-values from paired t-tests; ** p—p-values from Wilcoxon signed Rank tests. RAE—Retinol activity equivalent; CHO—Carbohydrate;
IQR—Interquartile range.

A weighted kappa (Kw) statistic was used to exclude agreement by chance (Table 3).
Apart from vitamin A intake at 9 M, Kw values for all nutrients were acceptable (Kw ≥ 0.2,
range 0.20–0.49) with narrow 95% confidence intervals (95% CIs). As shown in Table 4, Bland–
Altman analyses showed unbiased mean differences for most nutrient intakes, with only
calcium intake at 9 M and vitamin C intake at 12 M showing significant biases. Figure 1
illustrates the Bland–Altman plots demonstrating the proportional biases for these two
nutrients. When the mean intake was higher, the mean differences tended to increase for
calcium intake at 9 M but decrease for vitamin C intake at 12 M. In other words, calcium
intake at 9 M seemed to be overestimated while vitamin C intake at 12 M was likely to be
underestimated when consumptions of those nutrients were higher. Additionally, when
comparing the limits of agreement (LOA) for all nutrient intakes between 9 and 12 M,
they were broader at 12 M particularly for macronutrient and mineral intakes. Noticeably,
the LOA for vitamin A intake seemed to be widest at both 9 and 12 M compared with
other nutrients.
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Table 3. Agreements of energy and nutrient intakes between 24-HR and 3-DFR.

Nutrients
9 Months 12 Months

Kw 95% CI Kw 95% CI

Energy (kcal) 0.326 0.323, 0.329 0.301 0.298, 0.304
CHO (g) 0.281 0.279, 0.284 0.337 0.334, 0.339
Fat (g) 0.281 0.279, 0.284 0.195 0.192, 0.198

Protein (g) 0.352 0.350, 0.355 0.275 0.272, 0.277
Calcium (mg) 0.352 0.350, 0.355 0.434 0.431, 0.437

Phosphorous (mg) 0.432 0.429, 0.435 0.372 0.369, 0.375
Iron (mg) 0.361 0.358, 0.364 0.372 0.369, 0.375
Zinc (mg) 0.485 0.483, 0.488 0.443 0.440, 0.445

Vitamin A (RAE) 0.148 0.146, 0.151 0.213 0.210, 0.215
Vitamin B1 (mg) 0.352 0.349, 0.355 0.336 0.334, 0.339
Vitamin B2 (mg) 0.361 0.358, 0.364 0.301 0.298, 0.304
Vitamin C (mg) 0.317 0.314, 0.320 0.275 0.272, 0.277

Kw—Weighted kappa; CI—Confident interval; RAE—Retinol activity equivalent.

Table 4. Bland–Altman analyses.

Nutrients
9 Months 12 Months

Mean
Differences LOA ± 1.96 SD Slope of Biases

(p-Value)
Mean

Differences LOA ± 1.96 SD Slope of Biases
(p-Value)

Energy (kcal) −5.6 ±233.7 −0.52 (0.60) −21.6 ±318.9 −1.48 (0.14)
CHO (g) −1.7 ±33.8 −1.09 (0.28) −2.2 ±44.3 −1.08 (0.28)
Fat (g) 0.04 ±12.5 0.07 (0.94) −1.3 ±19.6 −1.47 (0.14)

Protein (g) −0.4 ±10.7 −0.83 (0.41) −0.8 ±14.5 −1.26 (0.21)
Calcium (mg) 20.4 ±203.9 2.20 (0.03) 5.1 ±289.3 0.39 (0.70)
Phosphorous

(mg) 3.5 ±177.5 0.43 (0.67) −8.8 ±263.4 −0.73 (0.47)

Iron (mg) 0.05 ±3.5 0.30 (0.76) −0.3 ±4.7 −1.46 (0.15)
Zinc (mg) 0.1 ±1.6 1.75 (0.08) −0.1 ±3.6 −0.54 (0.59)

Vitamin A (RAE) −47.4 ±3466.3 −1.01 (0.32) −47.4 ±4063.2 −0.25 (0.80)
Vitamin B1 (mg) −0.01 ±0.2 −0.93 (0.36) 0.004 ±0.4 0.24 (0.81)
Vitamin B2 (mg) 0.02 ±0.6 0.88 (0.38) 0.003 ±0.7 0.10 (0.92)
Vitamin C (mg) −5.8 ±66.5 −1.91 (0.06) −10.3 ±76.7 −2.92 (0.004)

LOA—Limits of agreement.

3.3. Relative Validation at Individual Level

As suggested by Lombard et al. [31], cross-classification and correlation coefficient (r)
were used to investigate the relative validation at individual level. As shown in Table 5,
most nutrient intakes reached an acceptable level for cross-classification showing ≥50% in
the same quartiles except for vitamin A intake (9 M 38.9%; 12 M 45.2%) and fat intake at
12 M (43.5%). However, when considering misclassification, none of these had more than
10% in opposite quartiles (range: 0–4.8%). In order to investigate association between the
24-HR and 3-DFR at individual level, Spearman’s correlation was used due to the skewness
of micronutrient intakes. As shown in Table 5, the correlation coefficients were good to
excellent (range 0.52 to 0.87) for all nutrient intakes, except for vitamin A at 9 M (r = 0.37).
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A weighted kappa (Kw) statistic was used to exclude agreement by chance (Table 3). 
Apart from vitamin A intake at 9M, Kw values for all nutrients were acceptable (Kw ≥ 
0.2, range 0.20–0.49) with narrow 95% confidence intervals (95% CIs). As shown in Table 
4, Bland–Altman analyses showed unbiased mean differences for most nutrient intakes, 
with only calcium intake at 9M and vitamin C intake at 12M showing significant biases. 
Figure 1 illustrates the Bland–Altman plots demonstrating the proportional biases for 
these two nutrients. When the mean intake was higher, the mean differences tended to 
increase for calcium intake at 9M but decrease for vitamin C intake at 12M. In other words, 
calcium intake at 9M seemed to be overestimated while vitamin C intake at 12M was likely 
to be underestimated when consumptions of those nutrients were higher. Additionally, 
when comparing the limits of agreement (LOA) for all nutrient intakes between 9 and 
12M, they were broader at 12M particularly for macronutrient and mineral intakes. No-
ticeably, the LOA for vitamin A intake seemed to be widest at both 9 and 12M compared 
with other nutrients. 
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Table 5. Cross-classification and Spearman’s correlations of nutrient intakes compared between 24-HR and 3-DFR.

Nutrients
9 Months 12 Months

% Same
Quartiles

% Opposite
Quartiles

Correlation
Coefficient *

% Same
Quartiles

% Opposite
Quartiles

Correlation
Coefficient *

Energy (kcal) 54.8 0 0.79 53.2 1.6 0.72
CHO (g) 50.8 0 0.74 56.5 2.4 0.65
Fat (g) 50.8 0.8 0.75 43.5 4.8 0.59

Protein (g) 57.1 0.8 0.75 50.8 1.6 0.53
Calcium (mg) 57.1 0 0.85 65.3 0 0.86

Phosphorous (mg) 64.3 0 0.81 59.7 0 0.81
Iron (mg) 57.9 0 0.82 59.7 0.8 0.85
Zinc (mg) 69.0 0 0.87 66.1 0.8 0.80

Vitamin A (RAE) 38.9 4.8 0.37 45.2 4.8 0.52
Vitamin B1 (mg) 57.1 0 0.81 56.5 0 0.75
Vitamin B2 (mg) 57.9 0 0.78 53.2 0 0.79
Vitamin C (mg) 54.0 0.8 0.74 50.8 0 0.74

* p-value < 0.001 for all nutrients.
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3.4. Association of Protein Intake with Plasma Amino Acids

In sub-group analyses, we compared protein intake at 12 M from the 3-DFR with
plasma amino acids, as a potential biomarker for protein. Protein intakes (g/day) from all
protein sources—ABP and PBP—of infants in this sub-group were normally distributed and
were not different compared to protein intakes from the whole study population suggesting
they were representative (data not shown). Protein intake showed significant associations
with levels of BCAA, EAA and total AA before adjusting for gender, type of milk feeding
and energy intake. For the adjusted models, protein intake was associated only with
BCAA and EAA concentrations, with a greater effect size compared to the unadjusted
models. Furthermore, only ABP intake was significantly related to BCAA and EAA levels
for both regression models. According to the adjusted models, a 1 g/day increase in the
consumption of ABP is associated with a 10.5 and 14.8 nmol/mL increase in plasma BCAA
and EAA levels, respectively. Figure 2 shows simple scatter plots corresponding to the
results in Table 6. The right column shows the associations between protein intake (g/day)
from all sources or ASFs and BCAA and/or EAA levels while the left column shows the
correlations between % protein–energy and BCAA and/or EAA levels. The plots show
positive linear correlations between protein intake from all sources and ABP regardless
of adjustment for energy intake. There was no association between intakes of PBP and
plasma amino acids nor between protein intakes and NEAA. In addition, the coefficient of
determinations (r2) indicated that around 20% of BCAA and EAA levels could be predicted
by protein intake, but the proportions were slightly decreased when adjusting for energy
consumption. At an individual level, the cross-classification showed poor agreement
between protein intake and plasma amino acid status. Nevertheless, intake of ABP showed
better agreement; a high percentage in the same quartile (42.6%) and the lowest percentage
of misclassification (1.9%) was found between intake of ABP and BCAA status (Table 7).
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Figure 2. Correlations between protein intake from 3-day food records (3-DFR) and plasma amino acids at 12 M. The triangles (∆) and
circles (O) represent the associations between protein intakes and plasma levels of branched-chain amino acids (BCAA) and essential
amino acids (EAA), respectively. The coefficient of determination (R2) and correlation coefficients (r) are shown in the right upper
corner of all scatter plots. Significant p-values are shown as * (p < 0.05) and ** (p < 0.001). Correlations between plasma levels of BCAA
and total protein intake, protein–energy percentage (%PE), protein intake from animal source foods (ASFs) and %PE from ASFs are
shown in graphs A, B, C and D, respectively. Correlations between plasma levels of EAA and total protein intake, %PE, protein intake
ASFs and %PE from ASFs are shown in graphs E, F, G and H, respectively.

Table 6. Multivariate regression analysis predicting plasma amino acids by protein intake at 12 M.

Protein Intake
(g/day)

BCAA Levels EAA Levels NEAA Levels Total AA Levels

Crude
β

Adjusted 1

β
Crude

β
Adjusted 1

β
Crude

β
Adjusted 1

β
Crude

β
Adjusted 1

β

All sources 7.4 ** 11.2 * 10.9 ** 15.8 * 4.2 3.8 15.0 * 19.6
ABP 7.8 ** 10.5 * 11.5 ** 14.8 * 4.1 3.7 15.6 * 18.5
PBP 31.3 * 28.4 48.1 * 39.1 25.8 6.5 73.8 * 45.6

1 Controlled variable in the adjusted model included gender, type of milk feeding and total energy intake * p < 0.05: ** p < 0.001.
ABP—Animal-based protein; PBP—Plant-based protein; BCAA—Branched-chain amino acids; EAA—Essential amino acids; NEAA—Non-
essential amino acids; AA—Amino acids.

Table 7. Cross-classification between protein intake at 12 M and plasma amino acids levels.

Protein
Intake (g/d)

BCAA EAA NEAA Total AA

% Same
Quartile

% Opposite
Quartile

% Same
Quartile

% Opposite
Quartile

% Same
Quartile

% Opposite
Quartile

% Same
Quartile

% Opposite
Quartile

All sources 44.4 1.9 38.9 3.7 27.8 7.4 24.1 5.6
ABP 42.6 1.9 37.0 3.7 29.6 9.3 29.6 7.4
PBP 33.3 7.4 29.6 9.3 27.8 11.1 38.9 13.0

ABP—Animal-based protein; PBP—Plant-based protein; BCAA—Branched-chain amino acids; EAA—Essential amino acids; NEAA—Non-
essential amino acids; AA—Amino acids.
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3.5. Daily Variation of Energy Consumption from the 3-DFR

To investigate day-to-day variation of the reference method used in this study, we anal-
ysed the variation of daily energy consumption from the 3-DFR at 9 and 12 M (Figure 3). Small
variations were observed across three days at both 9 and 12 M regardless of increasing solid
food intake with lower milk consumption at 12 M. The ANOVA repeated measurements
also showed non-significant differences among days 1–3 (data not shown).
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Figure 3. Variation in daily energy intake from 3-days food records. (A) shows the variation in total
energy intake (kcal/day) at 9 and 12 months, while (B,C) demonstrate the variation in energy intakes
from milk and complementary foods, respectively.

4. Discussion

In this study, we found that the 24-HR can be used as a practical alternative to a 3-DFR
for Thai infants especially during the complementary feeding period. The comparison
of nutrient intakes between these methods showed favourable outcomes at both group
and individual level except for some micronutrients. Vitamin A intake was the most
problematic with disagreement between the two methods at both levels. Although energy
and macronutrient intakes demonstrated good to excellent correlations and acceptable
agreements between methods. Comparison with a protein biomarker demonstrated that
protein intake, particularly ABP, predicted plasma BCAA and EAA concentrations even
after adjusting for gender, type of milk feeding and energy consumption.

Few validation studies of dietary assessment tools have been conducted in infants
compared to other age groups and most were in western countries or high-income settings.
Recently, Beaton et al. [34] suggested that a 24-HR was a validated tool when using an
estimated food record as a reference in Australian toddlers (average age 12.85M). However,
only five nutrients (energy, protein, calcium, iron and added sugar) were analysed in
this study. Although the results showed good agreement at group and individual levels
using multiple statistical approaches including Bland–Altman analysis, a major concern
was the reference method used in this study. They combined nutrient intakes from both
24-HR and 2-day food record (2-DFR) to create the reference method; so-called “24-HR +
2DFR”. These two methods are different by their nature and the chance of good agreement
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might be increased because the 24-HR data was also included in the reference method.
From a LMIC perspective, while most of studies validated a FFQ with various types of
reference methods [5,19,35,36], Hemsworth and colleagues7 compared the relative validity
of an interactive 24-HR and one-day weighed food record in rural Malawian infants
(aged 9–10 m). This study showed significant differences between mean intakes of energy
and protein, while Bland–Altman analyses indicated a systematic bias from the 24-HR
compared with the reference method. No individual level comparisons were made. For
Malawian toddlers aged 15M, the interactive 24-HR showed good agreement at group level
and acceptable agreements at individual level when compared with a weighed record [10].
However, the 24-HR significantly overestimated energy and nutrient intake in a large
number of participants from the same population and may require adjustment to provide
more accurate results [9].

Although the present study did not use a multiple day weighed food record as a
reference, there is evidence of strong correlation and good agreement between estimated
and weighed food records [11,37,38], and studies have suggested that fewer days of record
are required for infants and young children [29,39]. In addition, if respondents are taught
how to estimate a portion size properly, the accuracy of estimated food consumption
should be improved [40]. The small day-to-day variation in energy intake observed in the
estimated 3-DFR used in this study suggests it is highly reliable and justifies its use as the
reference method to validate the 24-HR.

Regarding the disagreements between dietary assessment methods for micronutrient
intakes, especially for vitamin A, Lombard et al. [31] linked the poor validity of vitamin A
intake to irregular consumption of the good sources of vitamin A on daily basis. As we
found more disagreements for vitamin A intake from many statistical tests than for other
micronutrients, the dietary intakes of the outliers were re-checked. The results showed
that a tablespoon of liver can make a large difference in the vitamin A intake if liver
consumption was recorded on only one of the dietary assessment methods; one tablespoon
of cooked pork liver and chicken liver can provide 2859 and 1344 RAE, respectively.

To our knowledge, the present study is the first to compare protein intake with plasma
amino acids as a potential protein biomarker in an infant population especially during the
complementary feeding period when protein consumption rapidly increases in terms of its
quantity and quality [41]. Although plasma amino acid analysis is not recommended as the
gold standard, this technique is more feasible and practical in infants and young children
than the recommended recovery biomarker, 24-h urine nitrogen. There are several studies
demonstrating an association between protein intake, especially ABP, and plasma amino
acids [25,42–44]. Socha et al. [24] reported higher levels of BCAAs and EAAs in infants
aged 6M who were randomly assigned to receive a high protein formula compared to those
randomized to a low protein formula, or breast-fed. BCAA were the most determinant
metabolites from metabolomic analysis in the high protein intake group [45].

The findings from our study suggested that protein intake particularly from ASFs
was significantly associated with plasma BCAA and EAA levels in infants during the
complementary feeding period. Although overall agreement between protein intake and
plasma amino acids was poor at the individual level, the percentage of the same quartile
between ABP and BCAA status was still high and nearly acceptable and showed only 1.9%
of misclassification. However, further controlled studies with larger sample size are still
needed to confirm the use of plasma amino acids as a protein biomarker and compare it
with other dietary assessment methods.

Our study has several strengths. Firstly, the range of statistical approaches used to
investigate the relative validation in this study at both group and individual level was
more than in other studies [18,31]. Additionally, the overall results were consistent for each
nutrient intake despite the five different approaches applied. Secondly, we also used a
dietary biomarker to assess protein intake estimated by our dietary assessment method
which can reduce the subjective biases from self-reported errors and improve accuracy. The
high compliance is also a strength, with more than 85% of the 3-DFR and almost 100% of
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the 24-HR completed. Fourthly, all respondents were trained how to use their household
utensils to estimate food intake. Finally, as the INMUCAL-Nutrients programme was
developed using a database of local Thai foods and ingredients, the majority of foods were
available in this programme and this may decrease the chance of estimation errors incurred
by using less relevant food composition tables.

However, the study also has some limitations. The lack of repeated 24-HR at each
time point meant that we cannot demonstrate the reliability of this tool. Although data
for the 3-DR suggested the variation in energy consumption on a daily basis was small,
repeated 24-HR interviews could bring other benefits particularly in assessing the intake of
foods that are not regularly consumed. In addition, due to time constraints, a single field
researcher had to check the 3-DFR and conduct the interviews for the 24-HR while infants
were waiting for their immunization and health surveillance, and some parents did not
complete the 24-HR properly during the time available. However, all were contacted later
by phone to complete the 24-HR. Finally, the consumption of grains and legumes, which
are better sources of PBP than cereals or vegetables, was low in our participants, and this
may affect the generalizability of the non-significant association between plasma amino
acids and PBP to other populations where grains and legumes are regularly consumed as
part of their everyday diets.

5. Conclusions

Our study suggests that a 24-HR can be used as a practical alternative to a 3-DFR in this
infant population during the complementary feeding period, although caution is required
when assessing the intake of some micronutrients, particularly vitamin A. Protein intake,
especially ABP significantly predicted levels of BCAA and EAA regardless of gender, type
of milk feeding and energy consumption. However, further studies with larger sample size
are needed to confirm the relationship between protein intake and plasma amino acids in
infants. In order to improve accuracy of a 24-HR, a repeated interview might be needed.
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