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Abstract
Background: Cluster randomised trials, like individually randomised trials, may benefit from a baseline period of data
collection. We consider trials in which clusters prospectively recruit or identify participants as a continuous process over
a given calendar period, and ask whether and for how long investigators should collect baseline data as part of the trial,
in order to maximise precision.
Methods: We show how to calculate and plot the variance of the treatment effect estimator for different lengths of
baseline period in a range of scenarios, and offer general advice.
Results: In some circumstances it is optimal not to include a baseline, while in others there is an optimal duration for
the baseline. All other things being equal, the circumstances where it is preferable not to include a baseline period are
those with a smaller recruitment rate, smaller intracluster correlation, greater decay in the intracluster correlation over
time, or wider transition period between recruitment under control and intervention conditions.
Conclusion: The variance of the treatment effect estimator can be calculated numerically, and plotted against the dura-
tion of baseline to inform design. It would be of interest to extend these investigations to cluster randomised trial
designs with more than two randomised sequences of control and intervention condition, including stepped wedge
designs.
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Introduction

In a cluster randomised trial participants from the same
‘cluster’ (e.g. patients attending the same general prac-
tice, or the residents of a predefined geographical
region) are randomised to receive the same interven-
tion.1 As in an individually randomised trial, there may
be an advantage in assessing outcomes in clusters at
‘baseline’ – pre-randomisation – in order to control for
cluster differences and thereby increase precision.2,3

With some statistical modelling, we ought to be able to
quantify whether it is worth devoting effort to collect-
ing baseline data if this means we lose an opportunity
to collect follow-up data.

The case of a cluster randomised trial with two
repeated cross-sections – one baseline and one ‘endline’
– has been presented previously.4 In this article, we
study the case of a trial in which clusters prospectively
recruit or identify participants as a continuous process
over a given calendar period. We assume that the con-
trol is routine care, and that clusters are allocated 1:1

to intervention and control arms. In designing such an
evaluation, an investigator might reasonably ask
whether they should introduce the intervention to inter-
vention clusters straightaway, or schedule a period of
baseline data collection first, and in the latter case how
long the baseline should be.

This ‘baseline’ is a period of prospective data collec-
tion (of duration set by the investigator) during which
participants from all clusters are receiving routine care.
This is followed (for the remaining time available) by a
more conventional trial scheme in which half of the
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clusters cross over to the intervention condition and a
new series of participants is recruited from each cluster
(Figure 1).

Motivating examples

Project Masihambisane was a cluster randomised trial
of a peer mentoring programme to improve outcomes
for pregnant mothers living with HIV in KwaZulu-
Natal, South Africa.5,6 Eight antenatal clinics took
part, and were randomised to the intervention or to
routine care (four clinics in each arm). The peer men-
toring programme was then introduced at intervention
clinics. Eligible women (less than 34 weeks pregnant
and HIV seropositive) were subsequently enrolled in
clinic waiting rooms over a period from July 2008 to
April 2010. The primary outcome was a composite
score made up of indices of maternal and child health
and well-being. The investigators calculated that they
would need to recruit 1200 women in total (150 per
clinic) to achieve adequate statistical power.

A slightly different design was adopted by the
PRISMA trial of a multifaceted intervention to reduce
perinatal morbidity among women with a previous cae-
sarean delivery in Québec.7 In this trial, 40 hospitals
were randomised 1:1 to either intervention or routine
care. The trial used routinely collected data at the parti-
cipating hospitals. All eligible women delivering at one

of the hospitals during a specified period were included.
Rather than implementing the intervention straight-
away in the intervention arm, however, the investiga-
tors specified that there should be a 1-year pre-
intervention (baseline) period of recruitment in both
arms, followed by a 5-month transition period (during
which the intervention was to be introduced to 20 of
the hospitals), followed by a 2-year post-intervention
period of recruitment in both arms. The primary out-
come was perinatal mortality, and the investigators cal-
culated that 40 clusters would achieve adequate
statistical power, on the assumption that participants
were identified at a rate of 184 per hospital per year.

The question arises whether in Project
Masihambisane it might have been more efficient to
schedule a baseline period, and, in both examples, how
long this baseline period ought to be, relative to the
overall period of recruitment. In this article, we show
how theoretical trial performance can be plotted
against cross-over time to help make this decision. We
also offer some general advice on the design of this
kind of trial.

Methods

Statistical model

We restrict attention to trials with continuous outcome
measures. Suppose that participant i= 1, . . . ,mj in

(c)(a) (b)

(f)(d) (e)

Figure 1. Designs for two-arm, cluster randomised trials with continuous recruitment and a prospective baseline. (a) No transition
period; (b) recruitment/identification suspended in both arms during a transition period; (c) recruitment/identification suspended in
the intervention arm, but not the control arm, during a transition period; (d)–(f) as for (a)–(c), but the intervention arm begins the
trial in the intervention condition, rather than beginning in the control condition and crossing over to the intervention.
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cluster j= 1, . . . , 2J is recruited or identified at time tij.
We assume that each participant has the primary out-
come assessed once, at a fixed time following recruit-
ment or identification. We also assume each participant
can be identified unambiguously as being in either the
control or the intervention condition (more on this to
follow). Suppose we cross J clusters over to the inter-
vention at time t�.

Our model for outcome Yij of participant i in cluster
j is

Yij = T (tij)+ diju+ eij

where dij is 1 if cluster j is in the intervention arm and
tijøt�, and 0 otherwise. The parameter u is the treat-
ment effect we want to estimate.

The function T is the fixed effect of time on out-
come. Since we think of time as continuous it may be
appropriate to assume that T is a continuous function:
in this article we consider polynomial functions. Note
that when it comes to the analysis, the form of the time
effect may not be of great interest. Indeed, in the analy-
sis of trials of this kind T is often treated as a crude step
function: piecewise constant, but with a discontinuity at
precisely the cross-over point t�. Although it might
seem odd that the true, underlying time trend should
depend on the choice of design (i.e. on the choice of t�),
there could be situations where a control group experi-
ences a step change in outcomes at exactly the same
time as the intervention group, either coincidentally or
because control clusters are aware of the cross-over,
and this would require adjustment. We consider time
effects with and without a discontinuity at t�.

It is common when modelling longitudinal cluster
randomised trials to allow the intracluster correlation
(the correlation between outcomes of two individuals
from the same cluster) to depend on the time elapsed
between sampling the individuals.8,9 Here, we allow our
correlation to decay continuously over time with the
following parameterisation (where we assume that each
Yij has the same variance)

Corr(Yi1j,Yi2j)= rt ti1 j�ti2 jj j

Var(Yij)=s2

Time, we will assume without loss of generality, runs
from 0 to 1 over the course of the trial, hence the corre-
lation between the outcomes of two individuals from
the same cluster sampled at either end of the recruit-
ment period is tr, while the correlation between the
outcomes of two individuals from the same cluster
sampled at the same time is r. If t = 1, there is no decay
in the intracluster correlation.

The general model outlined above represents, if you
like, a kind of cluster randomised interrupted time
series analysis, with each cluster randomised either to a
condition in which routine care is interrupted at a

predetermined time by the introduction of the interven-
tion, or to a control condition.

The precision of the generalised least squares esti-
mate of the treatment effect has a well-known expres-
sion when the analysis model is correctly specified.
Formally, if we write outcomes Yik as a single column
vector Y, and parameters for fixed effects (including
time effects and treatment effect) as a column vector u,
and express the linear model above in matrix form

Y=Zu+ e, e;N(0,V)

then the variance of the generalised least squares esti-
mator for u is

Var(û)= (Z0V�1Z)�1 ð1Þ

The results presented in this article were obtained by
numerical matrix inversion in Stata (Stata Corporation,
College Station, TX, USA). Code for calculating the
variance of the treatment effect estimator under differ-
ent designs is accessible from our GitHub repository
(https://github.com/richard-hooper/CRT-continuous-
recruitment-prospective-baseline).

Model for recruitment or identification

Schematics for two-arm, longitudinal trial designs are
illustrated in Figure 1. Although we are ultimately
interested in situations where eligible participants pres-
ent at a cluster as a random process in continuous time,
we will simplify by imagining that eligible participants
arrive at each cluster at regularly-spaced times
1=m, 2=m . . . m=m, (where m is the arrival rate at each
cluster, i.e. the cluster size).

It may be necessary to include a transition period in
the intervention arm between the recruitment or identi-
fication of participants under the control condition and
under the intervention condition. A transition period
typically comprises two distinct periods: a ‘closure’
period long enough for all control participants to have
had their outcomes assessed or else to have ‘left’ the
cluster (i.e. no longer be exposed to interventions), and
an ‘implementation’ period long enough to implement
the intervention at the cluster and have it running at
full strength (Figure 1(b)).10 To avoid bias, and to sat-
isfy the assumption that each participant can be identi-
fied unambiguously as being in either the control or the
intervention condition, outcomes from the transition
period in the intervention arm should be excluded from
the primary analysis.10

Unless outcomes are routinely collected, an investi-
gator may prefer to suspend recruitment completely in
the intervention arm during the transition period. Note
that if the intervention arm is to begin the trial in the
intervention condition, with no baseline period, then
there is no need for a closure period: recruitment need
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only be delayed by the time it takes to implement the
intervention in this case (Figure 1(e)). In studies where
the closure period is appreciable this offers increased
opportunity for data collection, and hence perhaps
some statistical power advantage compared with the
design in Figure 1(b).

What is less clear is whether we should continue
recruitment in the control arm while the intervention
arm is in transition (or, for routinely collected out-
comes, whether to include control arm outcomes from
this period in the analysis), as illustrated in Figures 1(c)
and (f). This violates the principle of having concurrent
intervention and control participants, but with some
statistical modelling it could offer greater precision for
estimating the treatment effect. We investigate designs
with and without recruitment in the control arm during
the transition period.

Under the model for recruitment described above
(i.e. assuming that each of the J clusters in the interven-
tion arm generates the same number of observed out-
comes Yij with the same joint distribution, and similarly
for each of the J clusters in the control arm) the var-
iance in equation (1) will be proportional to s2=J . This
variance can be evaluated (as we will do in this article)
for s2 = 1 and J = 1 in order to obtain a multiplier
that can be used to calculate the variance for any s2

and J . Note that in practice no cluster randomised trial
would have J = 1 (one cluster in each arm).

Scenarios investigated

We plot the variance of the treatment effect estimator
for different cross-over times, for all combinations of
m= 25, 50, 100, 200, r= 0:001, 0:005, 0:01, 0:05, 0:1,
and t = 1:0, 0:5, 0:1, with no transition period. We also
illustrate what happens if there is a transition period
(12.5%, 25%, 37.5%, or 50% of the total recruitment
period available), for different t, in the case
m= 100, r = 0:05, and we compare the trial perfor-
mance with or without the inclusion of control data
from the transition period.

We consider two kinds of fixed time effect: a cubic
polynomial and a piecewise constant function with a
discontinuity at the cross-over (step function). Note
that as long as we include a piecewise constant time
effect with a discontinuity at the cross-over in our
model, then whatever other fixed effects of time we also
include in the model (such as an additional linear trend
or cubic polynomial), the variance of the treatment
effect estimator will remain the same. This is a corol-
lary of a more general invariance theorem proved by
Grantham et al.,11 and follows because the pattern of
control and intervention conditions in the intervention
arm corresponds exactly to the piecewise constant time
effect. Hence we label our findings in the latter case as
being simply for a ‘discontinuous’ time effect.

To illustrate how the precise form of the time effect
might influence our conclusions, we illustrate results for
polynomial time effects with polynomial degrees 2 up
to 6, alongside results for a discontinuous time effect, in
the case m= 100, r= 0:05, t = 0:5, with no transition
period.

Finally, we apply our approach to the design of
Project Masihambisane, one of the trials we introduced
earlier as a motivating example.

Results

Figures 2 and 3 show how the variance of the treatment
effect estimator depends on the cross-over time, for dif-
ferent combinations of m, r and t, with no transition
period. Figure 2 assumes a discontinuous effect of time,
and Figure 3 assumes a cubic polynomial effect. The
figures are remarkably similar. Indeed, Figure 4 shows
how (in the particular example m= 100, r= 0:05,
t = 0:5) as we increase the degree of the polynomial
effect of time from linear, to quadratic, cubic, and
through to sextic, the variance curve approaches the
form for a discontinuous time function, as if asymptoti-
cally. This suggests that some generalisable conclusions
may be drawn regarding optimal design choices, irre-
spective of the form of the time effect.

Observe, also, how the shape of each curve in
Figures 2 and 3 depends principally on t and mr: that
is, for given t, if m doubles and r halves then the shape
of each curve remains roughly the same. This suggests
that we should be able to choose an optimal design
based only on t and mr.

The figures reveal that in some scenarios the optimal
design is to start the intervention arm in the interven-
tion condition (i.e. to have no baseline period), while in
others there is an optimal duration for the baseline. The
optimal proportion of data collection effort dedicated
to the baseline is anything up to one-half, but no more
(just as seen in the case of a trial with two repeated
cross-sections – one baseline and one endline).4,12

The graph may be used to identify the optimum in a
given scenario, but we observe that as a practical rule
of thumb, for given r and t, investigators would not go
far wrong by choosing from the two specific options of
having no baseline period at all, or having a baseline
period taking up half of the trial period, whichever
leads to the smaller variance. In every case in Figure 2,
this strategy is close to optimal in terms of the variance
achieved. As a rough rule of thumb, then, when there is
no transition period, a baseline period is unnecessary
for t = 1 when mr is around 1 or smaller, for t = 0:5
when mr is around 2 or smaller, and for t = 0:1 when
mr is around 5 or smaller.

In practice, of course, we may not be sure of the val-
ues of r and t. Suppose we want to choose a duration
for the baseline that minimises the maximum variance
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over a range of plausible r or t. Figure 2 illustrates
how, for given r, the value of t that leads to maximum
variance depends on the length of the baseline. If our
goal was to minimise the maximum variance over a
wide range of t we might end up concluding, on con-
sulting plots like those in Figure 2, that the best choice

of baseline was something intermediate between no
baseline and a baseline taking up half the trial period.

Figures 5 and 6 illustrate what happens to the var-
iance curve when there is a transition period. A transi-
tion period effectively reduces the number of
participants per cluster and also (if t\1) the

Figure 2. Variance of the treatment effect estimator according to the number of participants recruited in each cluster (m), the
timing of cross-over in the intervention arm, the intracluster correlation for two participants sampled from the same cluster at the
same time (r), and the factor by which this intracluster correlation is reduced for two participants sampled from the same cluster at
opposite ends of the trial period (t). There is no transition period, and the time effect is assumed to be a discontinuous at the cross-
over. The variance in a given application is the value shown on the axis multiplied by s2=J, where s2 is the variance of the outcome
and J is the number of clusters in each arm.
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correlation between outcomes before and after intro-
duction of the intervention in a cluster. Still, for given
m, r and t the overall shape of the curve seems to be
changed little unless t is small and the transition period
is wide: the effect of including a transition period is
principally to compress the curve within a narrower
window of possible cross-over times, and to increase
the variance.

Comparing Figure 5(a) and (b) (or Figure 6(a) and
(b)) shows that including control data from the

transition period has only a modest impact on the pre-
cision of the estimate. In the example that follows, we
assume data are excluded from both the control and
intervention arms over the transition period.

Example

Project Masihambisane, described earlier, ran over a
total of 21 months, and the sample size calculation for
the trial assumed that 150 participants would be

Figure 3. As Figure 2, but the time effect is assumed to be cubic polynomial.
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recruited at each cluster in this time (i.e. 86 per cluster
per year). The trial was designed to achieve 80% power
to detect a standardised mean difference in outcomes
of 0.25.5,6 No details were given of assumptions regard-
ing the intracluster correlation.

Peer mentors who delivered the Project
Masihambisane intervention worked fulltime in the
participating antenatal clinics. The intervention is con-
ducted over four antenatal visits, and clinics have

contact with participating women for 6 weeks after
birth, so in a design that is to include a baseline period
of recruitment, where all clinics are delivering routine
care, it would be prudent to follow this with a closure
period of, say, 6 months to allow participants recruited
under the routine care condition to have passed
through the system. Peer mentors also require initial
training, so we need to allow for an implementation
period of, say, 3 months. Let us suppose that in Project

Figure 4. Results in the case m= 100, r= 0:05, t = 0:5, with no transition period, according to the degree of the polynomial
assumed for the time effect. At the bottom are the results when the time effect is discontinuous at the cross-over.
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Masihambisane this training period preceded the
21 months of data collection, so that the total available
time for running the trial, including implementation,
was 24 months, with m in this case being 172.

A design with a baseline period would require an
overall transition period of 9 months (6 months closure
and 3 months implementation). Figure 5(c) shows plots

of the variance of the treatment effect estimator, for
different r and t. The plots also show where the respec-
tive variance curves would start if the transition period
was just the 3-month implementation period. The start-
ing point of the latter curve (at 3 months) is important
because it shows how a design with no baseline period
would perform.

Figure 5. Effect of a transition period on the variance of the treatment effect estimator. Cross-over is the time at which
recruitment/identification under the intervention condition begins in the intervention arm. The time effect is assumed to be
discontinuous at the cross-over. (a) and (b) m= 100, r= 0:05 with recruitment/identification in the control arm (a) suspended or
(b) continued during the transition period; (c) the example of Project Masihambisane, running for 24 months with a 9-month
transition period (or a 3-month transition period if the intervention is implemented straight away, with no baseline).
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Suppose, for example, that r= 0:05 and t = 1.
Then the optimal design is to cross over at around
15 months, with a variance of 0:060s2=J . Note that
this is not far from the variance for a more symmetrical
design that crosses halfway between 9 and 24 months –
that is, a design with a 7.5-month baseline period, fol-
lowed by a 9-month transition period, followed by a
7.5-month follow-up period – which works out as
0:061s2=J . In order to detect an effect size of u� with
power (1� b) at significance level a we need

Jø0:060
s

u�

� �2

z1�a=2 + z1�b

� �2

where zp is the 100pth centile of a standard normal dis-
tribution. So, to detect a standardised mean difference
of 0.25 with 80% power at the 5% significance level
requires eight clusters per arm using the formula above,
though due to problems arising from small numbers of
clusters it may be wise to add one or more clusters per
arm.13,14

Now suppose, alternatively, that r= 0:02 and
t = 0:5. Then the optimal design with a baseline period
is to cross over at around 10 months, giving a variance
of 0:052s2=J . But note what happens if we dispense
with the baseline period altogether and begin the trial
after an implementation period of just 3 months: this
results in an even smaller variance, of 0:046s2=J . To
detect a standardised mean difference of 0.25 with 80%

power at the 5% significance level using the latter
design requires six clusters per arm using the formula
above.

Discussion

In considering the benefits of a prospective baseline
period in a cluster randomised trial with continuous
recruitment/identification of participants over a fixed
calendar period, we find that in some circumstances it is
optimal not to include a baseline, while in others there
is an optimal duration for the baseline. We also note that
in most circumstances investigators could achieve close to
optimal precision either with a design that has no baseline
or with one that divides the available time in half – a
‘none or half’ approach – though they would still need to
evaluate the performance of both these options, and it
may be just as easy (and more informative) to plot perfor-
mance over all possible cross-over times.

All other things being equal, the circumstances where
it is preferable not to include a baseline period are those
with a smaller recruitment rate, smaller intracluster cor-
relation, greater decay in the intracluster correlation
over time, or wider transition period (particularly if this
includes an appreciable closure period). If there is a
transition period between recruiting or identifying par-
ticipants under the control and intervention conditions
in the intervention arm, then there may only be a

Figure 6. As Figure 5, but the time effect is assumed to be a cubic polynomial. (a) and (b) m= 100, r= 0:05 with recruitment/
identification in the control arm (a) suspended or (b) continued during the transition period.
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modest benefit to having data available from the con-
trol group during this transition period.

Our conclusions seem to be robust to the form of the
underlying time effect, so when designing a trial there
may be little point in trying to predict exactly what the
form will be. In practice there will be an advantage to
adjusting appropriately for the actual time effect at
analysis, if we know its functional form, since this will
improve precision and is the basis on which we calcu-
lated sample size. Nevertheless, adjusting simply for a
piecewise constant effect of time with a discontinuity at
cross-over is still an attractive approach to analysis
since it should give an estimate of the treatment effect
that is unbiased, at least if the pattern of recruitment is
the same in control and intervention clusters.

The calculation of the variance of the treatment
effect estimator in a generalised least squares frame-
work, and hence of required sample size in different
scenarios, is achieved with numerical matrix inversion,
and needs some coding. We have not been able to
derive analytical expressions for required sample size,
in general. However, if the intracluster correlation is
uniform over time (t = 1 in our model), then sample
size can be calculated using methods for cluster rando-
mised trials with repeated cross-sections and no decay
in the intracluster correlation.4,15,16 If t = 1 and there
is no baseline period, then the sample size calculation
problem reduces to that for a straightforward, parallel
groups cluster randomised trial.17,18

We assumed a particular parametric form for the
decay in the intracluster correlation to help us under-
stand the more general impact of this kind of decay on
optimal design. Other models for the intracluster corre-
lation could, of course, be investigated. When designing
a trial in practice, an investigator will want reassurance
that methods exist for analysing the data that can
accommodate suitable intracluster correlation struc-
tures: a decaying correlation such as we have assumed
can be specified as part of a mixed regression model in
SAS PROC MIXED (SAS, Cary NC, USA), with the
nlme package for R,19 or in ASReml for R (VSNi,
Hemel Hempstead, UK), for example. More software
solutions may become available over time.

We simplified considerably in assuming that eligible
participants present at regular, fixed intervals rather
than as a random continuous-time process, but assum-
ing that the arrival rate is constant over time we would
expect arrival times in a sample to become increasingly
uniformly spread as the rate increases. Simulation stud-
ies that have investigated the impact of unevenly spaced
arrival times on precision of the treatment effect estima-
tor in the context of stepped wedge designs suggest that
this impact is small.9

We have limited our attention in this article to two-
arm designs. It would be of interest to extend these
investigations to cluster randomised trial designs with

more than two randomised sequences of control and
intervention condition, including stepped wedge designs.
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