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Abstract

We study a continuous-time principal-agent model in which the principal is ambi-
guity averse about the agent’s effort cost. The robust contract generates a seemingly
excessive pay-performance sensitivity. The worst-case effort cost is high after good
performance, but low after bad performance, which leads to overcompensation and un-
dercompensation respectively and provides a new rationale for performance-sensitive
debt. We also characterize the agent’s incentives when the contract is misspecified, i.e.,
he is offered the robust contract, but his true effort cost differs from the worst case.
Then, termination can induce shirking, the strength of incentives is hump-shaped, and
agents close to firing prefer riskier projects, while those close to getting paid prefer safer
ones. This feature resembles careers in organizations, most notably risk-shifting and
the quiet life.
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1 Introduction

Firms need to align the interests of managers and shareholders, but the environment they
operate in is prone to change. Events such as the entry of competitors, the arrival of a
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new technology, or a shift in customer demands are often impossible to anticipate. Their
impact on an individual manager’s productivity and his daily duties can be intricate, which
makes it difficult to quantify and to communicate to others.1 Consequently, firms write
employment contracts with little knowledge about how the relationship with the manager
and the contract’s ability to provide incentives may change in the future.

In this paper, we model the firm’s lack of knowledge as ambiguity and we develop a theory
of robust dynamic contracting. The firm (the principal) does not know the arrival times,
the impact, or the probability distribution of shocks to the environment. It only knows the
range which particular realizations may take, and offers the manager (the agent) a contract
which provides incentives and maximizes its payoff under the worst case. We characterize the
impact of ambiguity aversion on the shape of the optimal contract, and derive the dynamics
of the worst-case process. Our main example is when the ambiguity is about the manager’s
effort cost. For instance, the difficulty of his work could vary depending on the competitive
pressure faced by the firm or his own abilities may change over time.

The optimal contract has several novel features, which are all driven by the dynamics of
the worst case effort cost. First, the contract is divided into an over- and an undercompen-
sation region. After sufficiently high performance, the worst case effort cost is high, and, in
expectation, the agent receives higher payouts than in the case without ambiguity. After low
performance, the worst case is that his effort cost is low, and the agent is undercompensated.
This result is driven by the dynamics of the worst case, which changes depending on how
close the contract is to termination. Hence, our paper provides a new explanation for why
high performing managers receive seemingly excessive compensation, a question which has
received significant attention in both the popular press and the academic literature.2 In our
setting, the reason is not managerial power (e.g. Zwiebel (1996)), board capture (e.g. Her-
malin and Weisbach (1988)), or the exploitation of information rents, (e.g. Jensen (1986)),
but the principal’s ambiguity aversion.

Since both over- and undercompensation regions arise in the same optimal contract, our
model generates career trajectories. In expectation, a manager with a good track record will
continue to receive excessive compensation unless he encounters bad luck in the form of a
path of negative outcomes. Although a manager with a bad record can expect to move up
to the overcompensation region as long as he exerts effort, the likelihood of advancement is
lower than without ambiguity, while the chance of being fired is higher. Similarly, a young
manager starts out undercompensated but on average reaches the overcompensation region

1The same holds true for changes on a smaller scale, such as the manager’s innate ability or the quality
of his match with the firm.

2See Bebchuk and Fried (2006) and Gabaix and Landier (2008) for two examples.
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once enough time has passed. The speed of this advancement depends on his performance
record. High performing managers reach the overcompensation region faster, while low
performing ones may reach it more slowly and therefore remain undercompensated for long
periods of time, or get fired. These features resemble seniority and entrenchment, but they
arise because of the interaction of ambiguity aversion and incentive provision.

Ambiguity aversion also introduces a disconnect between the manager’s pay-performance
sensitivity (PPS) and his current effort cost. In a dynamic contract without ambiguity, the
pay-performance sensitivity is proportional to the current effort cost.3 In our setting, the
firm is forced to set the pay-performance sensitivity at the highest level at all times, since it
expects the manager to shirk under the worst case otherwise. Essentially, ambiguity aver-
sion generates a precautionary motive for the principal and the manager receives excessive
incentives, compared to both the contract without ambiguity and to his realized effort cost.
This result offers a new answer to the puzzle raised by Murphy (2003). They find that many
managers receive stock options, even when their individual impact on the firm does not seem
to be large enough to warrant them.

Finally, the optimal contract can be implemented with performance-sensitive debt. A
changing interest rate is necessary because the drift of the agent’s continuation value changes
under the worst case. The performance sensitive debt is hence used to adjust the firm’s cash
flows in the over- and undercompensation regions. This interpretation is new and differs from
current justifications for performance sensitive debt such as Piskorski and Tchistyi (2011).
The implementation consisting of equity and credit lines in DeMarzo and Sannikov (2006)
is no longer optimal.

Our notion of ambiguity corresponds to “Type I Ambiguity” in Hansen and Sargent
(2012). In that paper, a Ramsey planner does not know the “true model,” and believes that
the private sector knows the true model. For any policy, the planner evaluates both her own
payoffs and the private sector’s incentives under the worst-case model, which reflects her
concerns about robustness and her belief that the private sector knows the true model. The
analog holds in our paper. The agent knows the true evolution of the effort cost (represented
by a probability measure) and the principal chooses a contract which maximizes her payoff
under the worst-case measure. As in Hansen and Sargent (2012), both the principal’s and
the agent’s payoffs are evaluated under the worst-case measure. This setting has an intuitive
interpretation as a game between a principal, an agent, and a malevolent nature. Each agent
is endowed with an effort cost process, which represents how well his skills are suited to the
principal’s project. The principal posts a contract, but is uncertain about which agent she is
being matched with. A malevolent nature chooses the match between principal and agent,

3This result holds in DeMarzo and Sannikov (2006) and Sannikov (2008).
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to minimize the principal’s value.4

Alternatively, we can understand the contract as being optimal under the principal’s
subjective preferences. Then, the contract may fail to provide incentives if the true measure
differs from the principal’s worst case (see Hansen and Sargent (2012), p. 432 for a discus-
sion). We study this interpretation in Section 5. There, we alter the model and assume
that the agent evaluates his payoffs under a reference measure, while the principal remains
ambiguity averse. Generally, the reference measure differs from the principal’s worst case, so
the principal and agent disagree about the evolution of effort costs. This setting corresponds
to “Type II Ambiguity” in Hansen and Sargent (2012).5

This alternative setting yields novel predictions. Contrary to a long line of literature
on dynamic contracts,6 termination does not motivate the agent to work and instead may
induce shirking. Intuitively, the agent’s value from exerting effort depends on the payments
he is promised to collect in the future. However, when the firing probability is high, the
agent is unlikely to collect on the promised rewards, and thus the value of working is low.
If the effort cost under the true measure is sufficiently high, the agent shirks. Importantly,
shirking occurs even though the pay-performance sensitivity is high.

When the agent shirks, his continuation value drifts downwards. Thus, he expects to be
fired as time passes and only a sequence of lucky realizations of the Brownian noise allows
him to collect payments. In line with this intuition, agents who shirk are risk-loving. That
is, they prefer a project with higher volatility in output, or equivalently a contract with a
higher PPS. By contrast, agents who exert effort are risk averse. They can expect to enter
and then to stay in the overcompensation region forever if the noise in the output process is
sufficiently small, and thus they will always prefer to bear less risk. These results are again
driven by the principal’s ambiguity aversion. Without ambiguity, by contrast, the agent is
always risk-neutral in the PPS. Thus, the misspecified contract provides incentives for risk-
shifting at the bottom (Jensen and Meckling (1976)) and conservatism at the top (Bertrand
and Mullainathan (2003)). That is, if the agent could select the riskiness of the project, he
would choose a risky project when his continuation value is low, and a safe project when his
continuation value is high.

Our results crucially depend on the fact that ambiguity is about the effort cost. To show
4See Section 3.3 for a more detailed discussion and for more alternatives.
5In their paper, the planner is ambiguity averse but the private sector trusts the approximating model

under Type II Ambiguity. Similarly, in Section 5, the principal is ambiguity averse, but the agent evaluates
his payoffs under the reference measure.

6Theoretical works which argue that firing provides incentives to the agent are numerous, and include
Spear and Wang (2005), Wang (2011), Garrett and Pavan (2012), Fong and Li (2017), as well as a number of
works in inspired by Sannikov (2008), such as Biais et al. (2010), DeMarzo and Sannikov (2006), DeMarzo
et al. (2012) and He (2009).
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this, we study ambiguity about the firm’s average productivity in Section 6.1. The features
we have described above do not appear, because ambiguity about the productivity does not
interact with providing incentives. As a result, the worst-case productivity is static and at
the lowest possible level. The PPS is proportional to the agent’s effort cost and there are
no over- and undercompensation regions. In the misspecified contract, the agent still exerts
effort and the implementation of DeMarzo and Sannikov (2006) is optimal. In both the main
model and Section 5, the principal is ambiguity averse while the agent is not. In Section 6.3
we extend our model so that both the principal and the agent are ambiguity averse. While
agent’s worst-case differs from the principal’s worst-case, the results are qualitatively similar
to the ones in Section 5.

2 Literature

Our paper complements a long line of literature on dynamic contracts.7 It is, to the best of
our knowledge, the first to introduce ambiguity aversion in a continuous-time principal-agent
framework. In existing work, the defining features of the relationship between principal and
agent, such as effort cost or productivity, are either constant,8 or the principal knows their
objective probability law (see Marinovic and Varas (2019)), which implies that she knows the
likelihood of both the timing and the realization of changes ex ante.9 We model ambiguity
via equivalent changes of measures with respect to a reference probability. Uncertainty is
represented by Brownian Motions (see Chen and Epstein (2002)). The principal has a set of
priors and uses the maxmin criterion to determine the worst case probability and the value
of any dynamic contract. The paper thus falls into the class of maxmin expected utility
(MMEU) models (see Gilboa and Schmeidler (1989)).10

The current paper is an updated version of an earlier draft, Szydlowski (2012). A number
of papers which cite this draft have appeared. Miao and Rivera (2016) study a continuous-
time contracting problem with ambiguity where nature affects the drift, but is penalized
by an entropy cost, Dumav (2017) studies a problem where nature affects the drift without
such penalty, but where both principal and agent are ambiguity averse, and Sung (2015)

7Seminal papers include Spear and Srivastava (1987), Holmström and Milgrom (1987) and Laffont and
Tirole (1988). Continuous-time models have been studied in Sannikov (2008) and DeMarzo and Sannikov
(2006).

8This assumption is very common, and found for example in Spear and Srivastava (1987), Holmström
and Milgrom (1987) and Sannikov (2008).

9Often, it is assumed that the realizations are the agent’s private information. This is for example the
case in Battaglini (2005), Garrett and Pavan (2012) and Garrett and Pavan (2015). See also Giat et al.
(2010), Prat and Jovanovic (2014), and He et al. (2017) for the case when principal holds a subjective belief,
and disagrees with the agent about the realizations.

10See also Zhu (2016), who studies incomplete contracts in a discrete-time setting with maxmin preferences.
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studies a problem where nature affects both drift and volatility. Our results on over- and
undercompensation, performance sensitive debt, and the agent’s incentives under the mis-
specified contract do not appear in these papers. Miao and Riviera show that ambiguity
aversion about the drift may also lead to excessively high PPS. However, their result hinges
on having an entropy cost and vanishes without this assumption, as we show in Section 6.1,
whereas ours is driven by the changing cost of incentives. Dumav’s result about the PPS is
opposite - the PPS is lower than without ambiguity. This is because in his model, effort is
continuous and the optimal effort level is lower under ambiguity aversion. Finally, Sung finds
that if both principal and agent are ambiguity averse about the realized volatility, then the
optimal PPS is independent of that volatility. This result mirrors ours, because in our model
the PPS is independent of the “realized” effort cost, which changes over time. Also related
is Dicks and Fulghieri (2018), who study a Holmström and Milgrom (1987)-type framework
with ambiguity aversion and multiple agents. They show that cross-pay is optimal because
it allows agents to hedge ambiguity.

The MMEU framework has been used extensively in static contracting. Garrett (2014)
studies a procurement contract, and shows that ambiguity about the agent’s preferences leads
to the optimality of simple incentive schemes. Bergemann and Schlag (2008) and Bergemann
and Schlag (2011) study a seller problem in which the principal is ambiguity averse about
the buyer’s valuation. Di Tillio et al. (2016) demonstrate the optimality of a contract which
has ambiguous outcomes when the ambiguity is on the agent’s side.

3 Model

We study a dynamic principal agent problem. Time is continuous, infinite, and indexed by
t ≥ 0. The agent operates a single project for the principal, which yields payoffs according
to a diffusion process whose drift depends on the agent’s effort. Formally, there exists a
Brownian motion B = {Bt}t≥0 on the filtered probability space (Ω,F , P ) with filtration
F = {Ft}t≥0 satisfying the usual conditions.11 The process X = {Xt}t≥0 is given by

dXt = µdt+ σdBt, X0 = 0, (1)
11See e.g. Karatzas and Shreve (1991) for standard concepts in stochastic analysis. Throughout the paper,

we use plain letters (e.g. X, a, θ) to denote a stochastic process and subscripts (Xt, at, θt) to denote the
value at time t. All inequalities involving random variables or stochastic processes are understood to hold
P -almost surely. All measures used in the paper will be absolutely continuous with respect to P .
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which represents the output when the agent exerts effort at all times t ≥ 0.12 We denote
the filtration generated by X with FX =

{
FXt
}
t≥0

. Since the drift and diffusion coefficients
are constants, the stochastic differential equation (1) has a unique strong solution and the
filtration generated by X coincides with the filtration generated by B, i.e. FX = FB.13

The agent’s effort a = {at}t≥0, with at ∈ {0, 1}, generates a flow cost of atdκt to the
agent, where κ = {κt}t>0 follows

dκt = θ0dt+ dZt, κ0 = 0. (2)

Here, θ0 ∈
[
θ, θ̄
]
⊂ (0, µ) is constant and common knowledge,14 Z = {Zt}t≥0 is a Brownian

motion on (Ω,F , P ), and Z is independent of B. The filtration generated by κ coincides
with the filtration generated by Z, i.e., Fκ = FZ , and Equation (2) has a unique strong
solution.

The pair (B,Z) is a two-dimensional Brownian Motion on the probability space (Ω,F , P ).
We denote the filtration generated by (B,Z) as FB,Z . This filtration coincides with the
filtration generated by the output processX and the effort cost process κ: FB,Z = FB×FZ =

FX,κ = FX ×Fκ.

3.1 Change of Measures

The principal is ambiguity averse about the agent’s effort cost. Following Chen and Epstein
(2002), her beliefs consist of a set of probability measures which are mutually absolutely
continuous with respect to the reference measure P over any finite time interval. These
measures are constructed using density generators and the Girsanov Theorem.15 To this
end, we introduce a stochastic process θ = {θt}t≥0 which represents the evolution of the
agent’s average flow cost. We call θ admissible if it is FX-progressively measurable, square
integrable, and satisfies θ ≤ θt ≤ θ̄.16 We denote the set of admissible θ with Θ. Throughout
the paper, we use the notation θ ∈ FX to denote that θ is FX-progressively measurable, etc.
We use the terms progressively measurable and progressive interchangeably.

12We model shirking in Section 3.1 via Girsanov’s change of measure.
13See e.g. Karatzas and Shreve (1991), Ch. 5.2, p. 284ff. We have Xt = µt + σBt, which immediately

implies that the filtrations are identical. An equivalent setup is used in Cvitanic and Zhang (2012), p. 47.
14If θ̄ ≥ µ, then the optimal contract is trivial, since under the worst-case measure, incentivizing effort is

too costly even in the first best. The assumption that θ ≥ 0 guarantees that the agent has a disutility of
effort for any θ.

15See e.g. Karatzas and Shreve (1991), Th. 5.1, p. 191.
16Recall that we understand all relations to hold P -almost surely.
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For any θ ∈ Θ, a P -martingale zt0(θ) is determined by

zt0 (θ) = exp

(
−
∫ t

0

(θ0 − θs) dZs −
1

2

∫ t

0

(θ0 − θs)2 ds

)
and we can define a measure P θ via dP θ/dP

∣∣
Ft
≡ zt0(θ). The effort cost (2) can be written

as
dκt = θtdt+ dZθ

t , κ0 = 0, (3)

where dZθ
t = (θ0 − θt)dt + dZt is a Brownian Motion under P θ. The set of probability

measures which can be generated using Θ, PΘ =
{
P θ : θ ∈ Θ

}
, is rectangular.17

Following Sannikov (2008), we represent different effort choices of the agent via the
Girsanov Theorem. An effort process a = {at}t≥0, with at ∈ {0, 1}, is admissible if it is
FX,κ-progressively measurable and square integrable. Any admissible effort process changes
the measure P into P a, which is determined by the P -martingale ξt0(a) with

ξt0 (a) = exp

(
−
∫ t

0

µ

σ
(1− as) dBs −

1

2

∫ t

0

(µ
σ

(1− as)
)2

ds

)
,

and dP a/dP |Ft = ξt0(a). Then, the output process (1) can be written as

dXt = µatdt+ σdBa
t , X0 = 0, (4)

where dBa
t = µ

σ
(1− at)dt+ dBt is a Brownian Motion under P a.

Given a pair of martingales ξt0(a) and zt0(θ) on (Ω,F , P ), the process

zt0(a, θ) = ξt0(a)zt0(θ)

is also a martingale. We define the measure P a,θ via dP a,θ/dP
∣∣
Ft

= zt0(a, θ). Lemma 1 below
establishes that the pair (Ba

t , Z
θ
t ) is a two-dimensional Brownian motion on (Ω,F , P a,θ). In

particular, Ba and Zθ are independent under P a,θ. The proof is in Appendix A.1.

Lemma 1 (Brownian Motion under P a,θ). If (B,Z) is a two-dimensional Brownian mo-
tion on (Ω,F , P ), then (Ba, Zθ) is a two-dimensional Brownian motion on (Ω,F , P a,θ). In
particular, Ba and Zθ are independent under P a,θ.

Lemma 1 implies that
Ea,θ

[
atdκt|FX,κt

]
= atθtdt,

17This is analogous to the κ-ignorance case in Chen and Epstein (2002). See Equation 2.11 and Section
3.3 in that paper.
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where Ea,θ [.] denotes the expectation under P a,θ. Thus, we can interpret dκt as the realized
flow effort cost at time t and θt as the average flow effort cost. We can interpret P θ as
the distribution of the agent’s effort costs. Since the agent does not observe {dκs}s≥t when
choosing at,18 only θt matters for his effort decision. Thus, we refer to θt simply as the “effort
cost” throughout the paper.

3.2 Principal’s and Agent’s Problems

Observability Output X is observable to both principal and agent, while effort a and
realized flow costs κ are private to the agent. The drift of the effort cost θ in Equation (3)—
equivalently, the measure P a,θ— is known to the agent but unknown to the principal. Since
effort is FX,κ-progressive and since θ is FX-progressive, the agent does not know {θs}s>t
when choosing effort at at time t. Intuitively, the agent knows the process θ as a functional
of X, but does not know its realizations in advance. Likewise, the agent does not observe
the increment dκt or future realizations {κs}s>t when choosing effort at time t.19

Contracts The principal commits to a contract α, which she offers to the agent. An
admissible contract consists of a pair of FX-progressively measurable and square integrable
stochastic processes (â, c) = {ât, ct}t≥0 and a FX-stopping time τ . Additionally, c is right
continuous with left limits and satisfies dct ≥ 0. We denote the space of admissible contracts
as A. Here, â is the recommended effort that is determined by the principal, given her
observations of X. In equilibrium, where the incentive compatibility of the agent holds,
the recommended effort â is indeed the agent’s optimal effort. The agent’s cumulative
consumption is given by ct =

∫ t
0
dcs and the restriction dct ≥ 0 reflects the agent’s limited

liability.20 The stopping time τ indicates when the agent is fired, in which case the firm is
shut down, and the principal receives a scrap value of L ∈ [0, (µ − θ̄)/r), while the agent
receives an outside value normalized to zero.21

It is worth to remark that we rule out screening contracts in which the principal offers the
agent a menu to get him to reveal the effort cost. Given the richness of the space Pθ,
such screening contracts may be too costly to write or enforce.22 Additionally, while â is

18Recall that a is FX,κ-progressively measurable.
19Intuitively, at time t, the agent does not know the increment κt+h−κt for any h > 0, since that increment

is random and driven by a Brownian motion.
20This rules out trivial contracts in which the principal can incentivize effort by exacting arbitrarily severe

punishments upon observing a history of low output. The qualitative features of the optimal contract remain
unchanged if we assume dct ≥ −cdt for some finite c > 0.

21If L ≥ (µ− θ̄)/r, then the principal would prefer to liquidate the project immediately in the first best,
i.e. when effort is observable.

22It is well known that screening contracts are not feasible in the setting of DeMarzo and Sannikov (2006),
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FX-progressive in equilibrium, off equilibrium FXa , the filtration generated by output Xa

given the actual effort process a, and FB do not necessarily coincide, i.e., FXa 6= FB. This
is because the actual effort a is chosen by the agent who observes (Xt, κt), or equivalently
(Bt, Zt), and hence, a can be FB × FZ-progressive but not progressive w.r.t FX or equiva-
lently FB. Lemma 2 below proves that it is without loss of generality to restrict attention
to effort a ∈ FX . Intuitively, choosing effort that is adapted to a larger filtration than FX

is never strictly optimal for the agent.

Principal’s Problem Both principal and agent are risk neutral. The agent is more im-
patient than the principal and discounts time at rate γ > r.23 He receives consumption
payments from the principal and incurs the effort cost when at = 1. The agent’s continua-
tion value at t ≥ 0 given α ∈ A and θ ∈ Θ is

Wt(α, θ) ≡ Ea,θ

[∫ τ

t

e−γ(s−t)(dcs − asdκs)
∣∣FX,κt

]
. (5)

The principal is ambiguity averse about the effort cost θ. In modeling ambiguity aver-
sion, we follow Hansen and Sargent (2012)’s notion of “Type I Ambiguity.” Specifically, the
principal believes that the agent knows the true measure in PΘ, which governs the evolution
of θ and which is unknown to the principal. The principal then evaluates each contract α
under the worst-case measure P â,θ(α), which minimizes her value. Importantly, the principal
evaluates both her own and the agent’s payoffs under the worst case, since she believes that
the agent knows the true measure. For any incentive compatible contract, the agent’s actual
effort a is the same as the recommended effort â, so that P a,θ(α) = P â,θ(α).

This specification has an intuitive interpretation as a game between the principal, the
agent, and a malevolent nature. First, the principal posts the contract α. Then, nature
chooses θ, which can be interpreted as the match quality between the agent’s skills and the
principal’s project. Then, given both α and θ, the agent chooses his effort optimally.24

Formally, the optimal contracting problem is given by

J0 = sup
α∈A

inf
θ∈Θ

Ea,θ

[∫ τ

0

e−rt (dXt − dct)
]

(6)

especially given the generality with which we model the process θ.
23Given that the utilities of both principal and agent are linear, the principal would optimally choose to

defer payments indefinitely into the future if the agent were not impatient.
24See the discussion in Section 3.3 for more details.
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subject to the incentive compatibility condition

W0 (α, θ (α)) ≥ W0 (α̃, θ (α))

for α̃ =
{
{ãt, ct}t≥0 , τ

}
, where ã = {ãt}t≥0 ∈ FX,κ is the agent’s effort when deviating, and

the participation constraint
W0 (α, θ (α)) ≥ 0.

Here, θ (α) ∈ Θ is the worst case for the principal given contract α, which arises from the
minimization in Equation (6). To cleanly isolate the effect of ambiguity aversion, we restrict
attention to contracts which always induce effort, i.e. at = 1 for all t < τ . We state a
sufficient condition so this is optimal in Section B.1.

3.3 Discussion

Ambiguity Aversion Our definition of ambiguity aversion follows “Type I Ambiguity” in
Hansen and Sargent (2012), which considers a Ramsey problem. Under Type I ambiguity,
the Ramsey planner believes that “the private sector knows a correct probability specification
linked to the planner’s approximating model [...] that is unknown to the Ramsey planner
but known by the private sector.” Then, the planner uses the worst-case model to calculate
the robust optimal policy. In particular, she calculates both the private sector’s incentives
and her own payoffs under the worst-case.

In our setting, the “approximating model” is represented by the measure P and the
“worst-case model” for any contract α is represented by the measure P a,θ(α). As in Hansen
and Sargent (2012), the agent knows the true model and both the agent’s and the principal’s
payoffs are evaluated under P a,θ(α). As in Hansen and Sargent (2012), the agent in our
model is not ambiguity averse. Instead, when choosing his effort policy, the agent knows the
stochastic process θ, but does not know its realizations in advance. In particular, since θ is
adapted to the filtration generated by output, FX , at time t the agent knows none of the
realizations θs for any s > t. However, for any realized path of output {Xs}0≤s≤t, the agent
knows what the realized path {θs}0≤s≤t is, since θ is FX-progressive and the agent observes
the path of output X.

Under “Type I Ambiguity,” the measure P a,θ(α) can be interpreted as the physical (or
true) measure which governs the evolution of X and κ. Alternatively we can interpret the
principal’s problem as deriving the robust optimal contract given her subjective preferences,
which may fail to provide incentives whenever the true θ differs from the worst-case θ (α)

(see Hansen and Sargent (2012), p. 432, for a discussion of this interpretation). We consider
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this alternative in Sections 5 and 6.3. In Section 5, the reference measure P is the true
measure which governs the evolution of κ and the agent is not ambiguity averse. While in
the main model, both principal and agent evaluate the contract under P a,θ(α), in Section
5, the agent evaluates the contract under P a,θ0 . That is, the principal and agent disagree
and the agent believes that the “average effort cost” at each time t is θ0. This specification
corresponds to “Type II Ambiguity” in Hansen and Sargent (2012). In Section 6.3, the agent
is also ambiguity averse and evaluates the contract under her own worst-case process θA,
with associated measure P a,θA . Generally, P a,θA differs from P a,θ(α) and the principal and
agent disagree about the evolution of κ.

Games vs. Nature As in Hansen et al. (2006), our setting can be interpreted as a game
between the principal, the agent, and a malevolent nature. The principal first chooses the
contract, then nature chooses a process θ to minimize the principal’s value. Taking as given
both the contract α and the process θ, the agent then chooses effort optimally.25 Taking the
agent’s continuation value as the state variable, the contracting problem is then a zero-sum
game between principal and nature (see Fleming and Souganidis (1989)). This setup allows
for two possible interpretations: (1) The firm is endowed with an output process X and
a “task difficulty process” κ. Nature can alter the distribution of the task difficulty P θ to
reduce the value to the principal. The agent then learns the process θ after being hired, but
does not know its realizations in advance. (2) There are different agents, each endowed with
a process θ, which represents the match quality between the agent’s skills and the project.
The principal posts a contract α and is then matched with an agent. Which agent the
principal is matched with is chosen by nature.

Ambiguity via Girsanov’s Theorem The role of the second Brownian Motion Z is to
make our framework conform to the multiple-priors specification in Gilboa and Schmeidler
(1989). We assume that the path of Z is not observed by the principal, so that the contract
is FX-progressive, but not necessarily FX,κ-progressive. The increment dZt at any time t
is independent of the agent’s information, so without loss of generality, his optimal effort
choice is also progressive w.r.t. FX only.26 It is thus intuitive that Z does not affect the
worst case of the principal. We therefore assume that θ is FX-progressive and, in particular,
is independent of Z.

25Importantly, the setup is common knowledge, so when choosing whether to accept contract α, the agent
knows that nature’s best response to α is θ (α).

26We prove this below in Lemma 2.
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4 Optimal Contract

Even though the principal is ambiguity averse, the continuation value approach still applies.27

In particular, for a contract α ∈ A and process θ ∈ Θ, it is optimal for the agent to choose
effort which is FX-progressive, so that the agent’s continuation value is also FX-progressive.
Then, the agent’s continuation value can be represented as a diffusion process with respect
to the Brownian Motion Ba.

Lemma 2. For any contract α ∈ A and density generator θ ∈ Θ, the agent’s optimal effort
is FX-progressive without loss of generality. There exists an FX-progressive and square
integrable process ψ = {ψt}t≥0 such that the agent’s continuation value satisfies

dWt = (γWt + θtat) dt− dct + ψtdB
a
t . (7)

Exerting effort at time t is incentive compatible whenever

ψt ≥
σ

µ
θt.

We can express the continuation value under measure P a,θ in terms of the output process
X as28

dWt =
(
γWt + atθt

)
dt− dct + ψt

1

σ
(dXt − µatdt),

using Equation (4). When the agent always exerts effort, i.e. at = 1 for all t ≤ τ , the above
equation reduces to

dWt =
(
γWt + θt

)
dt− dct + ψt

1

σ
dBt,

which follows from Equation (1).29 We can interpret the process ψt as the agent’s pay-
performance sensitivity, since it determines how strongly his continuation value reacts to
changes in output. The key difference to DeMarzo and Sannikov (2006) is that the principal
is ambiguity averse about the agent’s effort cost and therefore about whether her incentives
are strong enough for the agent to exert effort.

We now characterize the optimal contract. We show that the worst-case effort cost de-
pends on the past performance of the agent and there are two regimes in the contract. For

27See e.g. Spear and Srivastava (1987) and Sannikov (2008).
28Generally, the agent’s continuation value will evolve differently for different θ, since the cost of effort

evolves differently under different measures P a,θ. We could highlight this dependency by writing the contin-
uation value process as W θ

t instead of Wt, but we will omit this for the sake of notation. To characterize the
robust optimal contract, we will solve for the contract and the worst-case density generator, which we will
call θ∗t , simultaneously. This will implicitly determine the dynamics of the continuation value process under
the worst case.

29Note that when the agent always exerts effort, then Bt = Bat for all t < τ .
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high continuation values, the effort cost is at the highest level θ̄ while for low continuation val-
ues it is at θ. Ambiguity aversion leads the principal to choose the highest pay-performance
sensitivity even when she believes the agent’s effort cost is low.

To intuitively derive a solution to the principal’s problem, consider the agent’s incentives
in Equation (7). On a small interval of time, the agent shirks whenever his effort cost θt
is larger than the loss in continuation value µ

σ
ψt, i.e. θt >

µ
σ
ψt. If the contract has pay-

performance sensitivity ψt < σ
µ
θ̄, the agent optimally shirks whenever θt is between ψt µσ and

θ̄. For any pay-performance sensitivity ψt and effort cost θt, his optimal effort is thus

a (ψt, θt) = 1

{
ψt ≥

σ

µ
θt

}
.

Since the principal values effort, whenever ψt < µ
σ
θ̄ the worst case is θt = θ̄, which leads the

agent to shirk. Thus, no contract with ψt <
σ
µ
θ̄ can be incentive compatible. To prevent

shirking, the principal must set the pay-performance sensitivity to

ψ̄ ≡ σ

µ
θ̄,

independently of the effort cost, i.e. even when θt < θ̄. This way, she ensures the agent
works under the worst case.

However, there is another channel for ambiguity to affect the principal’s value, because
the contract is dynamic. The principal’s value is generally hump-shaped in the continuation
value W , which is a state variable. When it is increasing in W , a higher value for the agent
is preferable, because it entails a lower likelihood of inefficient termination.30 If this is the
case, then the worst-case effort cost is low, i.e. θt = θ. Intuitively, if the effort cost is low,
the growth in the agent’s continuation value (see Equation (7)) is also low and the risk of
termination increases, hurting the principal. Conversely, if the principal’s value is decreasing
in W , the effort cost is high, i.e. θt = θ̄.

To show these results rigorously, we establish that the principal’s value function is suffi-
ciently smooth to solve a variant of the HJB equation which accounts for ambiguity,31 and
indeed has the conjectured shape.

30This is a standard feature of continuous-time contracts. It appears in DeMarzo and Sannikov (2006),
Sannikov (2008), and other related papers.

31Precisely, Equation (10) is a HJB-Isaacs equation, which is known to arise in continuous-time zero-sum
games. See Fleming and Souganidis (1989) for a seminal reference, and Fleming and Soner (2006), Chapter
11 for a textbook treatment of the deterministic case.
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Proposition 1. The optimal pay-performance sensitivity equals

ψt ≡ ψ̄ =
σ

µ
θ̄ (8)

for all 0 ≤ t ≤ τ and the worst-case effort cost θ∗ = {θ∗t }t≥0 satisfies

θ∗t = θ∗ (Wt) =

 θ̄ if Wt ≥ W 0

θ if Wt < W 0.
(9)

The principal’s value function is strictly concave, twice differentiable, and satisfies

rJ (Wt) = max
ψt≥ψ̄

min
θt∈[θ,θ̄]

µ+ J ′ (Wt) (γWt + θt) +
1

2
J ′′ (Wt)ψ

2
t (10)

on
[
0, W̄

]
with the boundary conditions J (0) = 0, J ′(W̄ ) = −1 and J ′′(W̄ ) = 0. Further,

dct = 0 for all Wt < W̄ . W 0 is the point for which J ′(W 0) = 0. The agent’s continuation
value follows

dWt = (γWt + θ∗ (Wt)) dt− dct + ψ̄dBt. (11)

When Wt > W̄ , the principal’s value function is J (Wt) = J(W̄ )− (Wt− W̄ ). The principal
pays Wt − W̄ immediately to the agent and the contract continues with a continuation value
of W̄ .

The shape of the value function and the worst-case effort cost process are illustrated in
Figure 1. We provide a sufficient condition so that implementing effort at all times is optimal
in Section B.1 in the Appendix.

The contract has a number of striking implications.

Excessively high pay-performance sensitivity Ambiguity induces a wedge between
effort cost and pay-performance sensitivity (PPS). Unlike in DeMarzo and Sannikov (2006),
the optimal PPS no longer proportional to the effort cost. This can be seen by inspecting
Equation (8) and (9). If the continuation value is below W 0, the worst-case effort cost is θ
while the pay-performance sensitivity is ψ̄. That is, compared to the effort cost, the principal
seems to be using an excessively high PPS. The reason is her ambiguity aversion. If the PPS
is below ψ̄, the worst case for the principal is an effort cost which induces the agent to
shirk. Setting the PPS at ψ̄ is the only way to ensure that the agent works for any possible
realization of θt. This finding adds a new explanation to the long-standing debate about
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W̄W 0

θ∗(W ) = θ̄θ∗(W ) = θ

W

J
(W

)

Figure 1: Shape of J (W ) and θ∗ (W )

whether equity stakes for CEOs are excessive, e.g. Bebchuk and Fried (2006).32

Over- and Undercompensation Under ambiguity, agents with good past performance
may be overcompensated and those with bad past performance may be undercompensated.
To see this, compare the expected payoffs to the agent under the optimal contract to those
under the reference probability P , when the effort cost is θ0. The ambiguity averse principal
believes that for high continuation values, the effort cost is high. In that case, she will pay
the agent more in expectation. In this sense, the agent is overcompensated relative to the
contract without ambiguity. For low continuation values, the principal believes the effort
cost to be low and the agent is undercompensated. Thus, ambiguity aversion may not only
generate incentives which seem excessively strong, but also lead to higher expected payments
to agents. The proposition below formalizes the intuition.

Proposition 2. For given θ̄ and a θ sufficiently small, there exists a θ0 such that the agent’s
expected compensation under the robust contract,

Ea∗,θ∗
[∫ τ

t

e−γ(s−t)dcs

∣∣∣FX,κt

]
,

32As we show below, ψ̄ can be understood as the equity share of the CEO in the implementation of the
optimal contract.
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is larger than his expected compensation without ambiguity for Wt sufficiently large and
smaller for Wt sufficiently small.

Career Trajectories The optimal contract can generate a career trajectory in which an
agent starts out as being undercompensated33 and then over time moves up in “seniority” and
ends up being overcompensated. This happens because over- and undercompensation arise
on the path of the same contract. An undercompensated agent’s continuation value has low
drift, so that on average his expected value form the contract rises slowly. He is also more
likely to be fired. If after enough time he moves to the overcompensation region, the drift of
his continuation value is faster, that is he accumulates value more quickly, and the likelihood
that he is terminated is lower.34 These features resemble seniority in organizations, see e.g.
Farber and Gibbons (1996) and Lazear and Oyer (2012).

Performance-Sensitive Debt With ambiguity, the optimal contract is implemented with
performance sensitive debt. Importantly, the equity-and-credit-line implementation of De-
Marzo and Sannikov (2006) is no longer optimal.35 Here is the intuition. With ambiguity,
the drift of the agent’s continuation value changes depending on the performance history of
the firm. Any implementation of the optimal contract must replicate this change in drift.
Otherwise, it is either not incentive compatible because it pays the agent too little or not
optimal because it pays him too much.

A long-term debt contract with a performance-sensitive interest rates accomplishes this.
When the firm is performing poorly (W is low) the debt contract mandates a higher interest
rate, which lowers the growth rate of the cash accumulating in the firm. When the firm is
performing well, the interest is lower and cash accumulated more quickly.

Proposition 3. Suppose the firm has long term debt, a credit line, and equity. Let Mt be
the draw on the credit line. If the long-term debt has a performance-sensitive interest rate

rt =

{
r1 if Mt < M0

r2 if Mt ≥M0

for some appropriately chosen values r1 > r2 and M0, then the optimal contract is imple-
mented.

33This happens whenever the initial continuation value is sufficiently low.
34This follows from three facts: (1) the continuation value is higher, (2) the drift of the continuation value

is higher, and (3) the volatility is the same as in the undercompensation region. Formally, the probability
of hitting Wt+∆ = 0 for any ∆ > 0 is lower.

35See also DeMarzo et al. (2012).

17



The role of performance sensitive debt is not to incentivize the agent to exert effort, as
is the case in Piskorski and Tchistyi (2011), since the managerial equity share already serves
this function, or to act as a screening device as in Manso et al. (2010). Instead, the debt
is used to adjust the growth of the manager’s continuation value. This role for performance
sensitive debt is new.

5 Misspecified Contract

We now consider a misspecified contract and show that this contract cannot incentivize the
agent to always exert effort. We alter the model as follows. The agent believes that the
evolution of κ is given by the reference measure P . That is, he believes that θt = θ0 for
all t and he evaluates any contract under the measure P a,θ0 . The principal is ambiguity
averse and evaluates any contract under the worst case P â,θ(α) defined in Section 3. This
specification corresponds to “Type II Ambiguity” in Hansen and Sargent (2012).

Now, the principal’s ambiguity aversion leads to heterogeneous beliefs even when the
contract is incentive compatible, i.e. the agent evaluates the contract under P a,θ0 and the
principal evaluates it under P a,θ(α).36 We distinguish two cases: (1) the principal is sophis-
ticated, i.e. she understands that the agent evaluates the contract under P a,θ0 and that
this measure differs from P a,θ(α) ; (2) the principal is naive, i.e. she mistakenly believes
that the agent evaluates the contract under P a,θ(α).37 Since the naive principal uses an in-
correct probability measure to evaluate the agent’s incentives, we say that the contract is
misspecified.

With a sophisticated principal, the model collapses to the one in DeMarzo and Sannikov
(2006), which we show in Appendix B.2. Intuitively, if the principal knows that the agent
uses P a,θ0 , then she knows that the agent’s effort cost is θ0, irrespective of the principal’s
beliefs. The optimal contract is then the one in DeMarzo and Sannikov (2006). Thus, we
focus on the naive principal for the remainder of this section.

The naive principal offers the agent the contract in Proposition 1. The agent understands
that the principal (mistakenly) believes that the continuation value follows Wt in Equation
(11). Since the agent evaluates the contract under P a,θ0 , his true continuation value differs
from Wt. It is given by

36This is the crucial difference to Section 3. There, both the principal and the agent evaluate the contract
under P a,θ(α), i.e. there is no disagreement. See Equation (6) for the definition of θ (α). Recall that â = a
and thus P â,θ(α) = P a,θ(α) for any incentive compatible contract.

37Miao and Rivera (2016) consider a sophisticated principal in a setting with drift ambiguity, see their p.
1416. When studying Type II Ambiguity, Hansen and Sargent (2012) only consider a sophisticated Ramsey
planner, i.e. the planner understands that the private sector evaluates payoffs under the reference measure.
They do not consider a naive planner as we do.
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Vt = Ea,θ0

[∫ τ

t

e−γ(s−t) (dcs − asdκs)
∣∣∣FX,κt

]
,

where a = {at}t≥0 represents the agent’s actual effort.
Since the contract is Markovian in Wt (see Proposition 1), the agent can use the mis-

specified continuation value Wt to keep track of payments and termination. Generally, the
agent may shirk, in which case Wt evolves as

dWt =
(
γWt +

(
θ∗ (Wt)− θ̄

)
+ θ̄at

)
dt− dct + ψ̄dBa

t (12)

from the agent’s perspective.38

Thus, the agent’s problem is given by

V0 = sup
a
Ea,θ0

[∫ τ

0

e−γt (dct − atdκt)
]

subject to Equation (12). Here, the process {ct}t≥0 and the stopping time τ are obtained
from Proposition 1 and the optimization occurs over admissible effort processes. Taking Wt

as the state variable, we now characterize the agent’s HJB equation and show that the agent
may shirk whenever Wt is sufficiently low.

Proposition 4. The agent’s true continuation value Vt is Markovian in the misspecified
value Wt, i.e. Vt = V (Wt), and satisfies almost everywhere the HJB equation

γV (W ) = max
a∈{0,1}

−θ0a+ V ′ (W )
(
γW +

(
θ∗ (W )− θ̄

)
+ θ̄a

)
+ V ′′ (W )

1

2
ψ̄2 (13)

with boundary conditions V (0) = 0 and V ′(W̄ ) = 1. V (W ) is continuously differentiable
for all W ∈ [0, W̄ ] and twice continuously differentiable on [0,W 0) and (W 0, W̄ ].

The agent exerts effort whenever

V ′ (W ) ≥ θ0

θ̄
.

There is a θ̂0 such that for all θ0 ≤ θ̂0, the agent always exerts effort. For θ0 > θ̂0, the agent
shirks when W ∈ [0,Ws (θ0)) for some Ws (θ0) ≤ W 0 and works for all W ∈ [Ws (θ0) , W̄ ].
Further, there exists a θ̃0 > θ̂0 so that for θ0 > θ̃0, V (W ) is concave, while for any θ0 ≤ θ̃0,
V (W ) is convex on [0,W 0), and concave on

[
W 0, W̄

]
.

The strength of incentives in the misspecified contract can be summarized by V ′ (Wt).
38This follows by applying Girsanov’s Theorem to Equation (11).
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Intuitively, shirking leads to a lower drift of Wt (see Equation (12)) and V ′ (Wt) is the value
the agent places on the drift in Wt.

The proposition contains important results about the strength of the agent’s incentives
and his attitude towards risk. We explain those below for the case when θ̂0 < θ0 ≤ θ̃0, which
is the most interesting one.

Shirking at the Bottom In the case without ambiguity, the contract’s incentives are
always sufficient to motivate the agent to work. Because the misspecified contract features
an excessively high pay performance sensitivity, it is tempting to conclude that the incentives
under this contract are stronger and that the agent always works.39 This is wrong. Instead,
the agent shirks when Wt is low. Intuitively, the worst-case effort cost is low, i.e. θt = θ,
so the drift of Wt is low as well (see Equation (7)). This increases the likelihood that Wt

hits the termination boundary at zero rather than the payout boundary W̄ . In other words,
the agent is more likely to be fired rather than being paid.40 As the proposition shows, this
effect can destroy the agent’s incentives despite the higher PPS.

This result is in stark contrast to a large literature on dynamic contracts, which shows
that the treat of termination helps provide incentives (e.g. Spear and Wang (2005), DeMarzo
and Sannikov (2006), Biais et al. (2010), Wang (2011), Garrett and Pavan (2012), and Fong
and Li (2017)). In e.g. DeMarzo and Sannikov (2006), the principal knows the agent’s
effort cost and under the optimal contract, the PPS is sufficient to incentivize effort at
all continuation values. As Proposition 4 shows, this is no longer true if the contract is
misspecified, even though the PPS is excessively high.

Importantly, our result on shirking at the bottom is consistent with empirical evidence.
Flabbi and Ichino (2001) find that workers with less seniority, who are more likely to be
fired, are also more likely to have high absenteeism or to engage in misconduct, which can
be interpreted as shirking.41 In the context of our model, a low seniority corresponds to a
low continuation value, since the agent is more likely to be fired.

Hump-Shaped Incentive Strength The agent’s marginal value of exerting effort is

V ′ (Wt) θ̄ − θ0,

39Precisely, the pay performance sensitivity without ambiguity is ψt = σ
µθ0, while here it is σ

µ θ̄, which is
strictly higher.

40Recall that the agent is paid only when Wt = W̄ , so if the drift of Wt is low, the likelihood of hitting
zero before hitting W̄ is higher.

41See their Table 7, p. 373.

20



which can be seen from Equation (13). Thus, the strength of the agent’s incentives is
proportional to V ′ (Wt). This value first increases for continuation values below W 0 and
then decreases for values above W 0.

Here is the intuition. As we argued above, incentives may fail for low continuation
values, because the low drift implies a high likelihood of termination. As W moves away
from zero, the likelihood of termination decreases and the agent is more likely to reach the
payment boundary W̄ . Because of this, the strength of incentives increases. As W increases
beyond W 0, however, the agent is likely to reach the payment boundary and unlikely to
be terminated with or without exerting effort. Thus, the strength of incentives declines.
Overall, the agent’s incentives are the strongest for moderate continuation values.

These results predict that agents with low seniority will shirk, but agents with high
seniority will have low incentives to exert effort. This provides an alternative explanation
for managerial entrenchment (e.g. Berger et al. (1997)).

Risk-Loving Juniors, Risk-Averse Seniors When the agent shirks, the drift of Wt is
negative so in expectation Wt converges to the firing boundary.42 By staying in the contract
and shirking, the agent is essentially betting on luck and his value function is convex.43

Thus, the agent is risk-loving, in the sense that he would prefer a higher volatility ofWt. For
W > W 0 however, a higher volatility increases the chance of reaching the undercompensation
region, which is bad for the agent. Because of this, his value is concave and the agent is risk-
averse. InterpretingW as seniority, this implies that more junior agents are risk-loving while
senior ones are risk-averse. This result is consistent with the literature on “the quiet life”
(see e.g. Bertrand and Mullainathan (2003)), which documents that entrenched managers
become risk-averse.

‌
Figure 2 displays the agent’s value function for high, medium and low effort cost values.

In the upper panels, the dashed line is the identity, at which V (W ) = W . Thus, depending
on the effort cost as well as the current W , the agent’s value may be higher or lower than
one the principal believes him to have. The lower panels display the slope of the agent’s
value. He exerts effort whenever V ′ (W ) is above the solid black line, which corresponds to
θ0
θ̄
.

42See Equation (12).
43This is precisely the reason why the agent does not immediately leave the contract, given that he is not

getting paid currently, and knows that he eventually will be fired if he continues shirking.
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Figure 2: Agent’s Value Function and Incentives
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6 Extensions

6.1 Drift Ambiguity

When ambiguity aversion is about the productivity of the project, i.e. the drift, there is
no interaction between the worst case and incentive provision. This is because under the
optimal contract, the agent’s incentives are the same independently of the project’s produc-
tivity. As a result, the worst case is static and given by a low productivity at all points in
time. The features we have found with effort cost ambiguity, i.e. excessive pay-performance
sensitivity, over- and undercompensation, do not arise, and performance-sensitive debt does
not implement the optimal contract.

There is now a single Brownian motion B on the probability space (Ω,F , P ). Ambiguity
is modeled again via Girsanov’s theorem and a set of density generators

Θ =
{
θ : θ ≤ θt ≤ θ̄

}
,

so that −µ
σ
< θ < 0 < θ̄. The effort cost is now a constant κ with 0 < κ < θ + σµ, instead

of being a stochastic process as in Equation (3).44 Under measure P , the output follows

dXt = µdt+ σdBt,

while under measure P a,θ,

Ba,θ
t = Bt +

∫ t

0

1

σ
(µ (1− as)− θs) ds (14)

is a Brownian motion and
dXt = (µat + θt) dt+ σdBa,θ

t .

Different θ now represent different drifts for the output. The reference measure P corresponds
to the case when θt = 0 and at = 1 for all t. That is, we have θ0 = 0. For any incentive
compatible contract, the agent’s continuation value is given by

Wt = Ea,θ

[∫ τ

t

e−γ(s−t) (dcs − asκds) |FXt
]
,

which is the analog of Equation (5). Under P a,θ, the continuation value admits the repre-
44For the same reason as in Section 3, this assumption is needed to prevent the contract form becoming

trivial. If θ + σµ < κ, then under the worst case implementing effort is not optimal even in the first best.
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sentation
dWt = (γWt + κat) dt− dct + ψtdB

a,θ
t

and the agent exerts effort whenever

ψt ≥ ψ ≡ σ

µ
κ.

The principal’s problem is to solve

J0 = sup
α∈A

inf
θ∈Θ

Ea,θ

[∫ τ

0

e−rt (dXt − dct)
]

subject to incentive compatibility and participation for the agent. Below, we establish the
analog of Proposition 1 and characterize the optimal contract.

Proposition 5. Under drift ambiguity, the principal’s value function is twice continuously
differentiable, and satisfies

rJ (W ) = max
ψ′≥ψ

min
θ∈[θ,θ̄]

µ+ θ + J ′ (W ) (γW + κ) + J ′′ (W )
1

2
ψ′2

on
[
0, W̄

]
subject to the boundary conditions J (0) = 0, J ′(W̄ ) = −1 and J ′′(W̄ ) = 0. For

all t, the worst case is θt = θ and the pay performance sensitivity ψt equals

ψt = ψ ≡ σ

µ
κ. (15)

A few features are noteworthy.

Static Worst Case The worst case in the dynamic contract is the same as in the static
one. In a one-shot contracting model with ambiguity aversion about the average productivity,
the worst case is that the productivity is at its lowest possible level. This result extends
to a dynamic model, because ambiguity about the drift does not interact with the agent’s
incentives. Ambiguity about effort cost generates a worst case that changes over time,
precisely because of this interaction.

No Excessive Incentives Because ambiguity aversion does not interact with incentive
provision, the PPS is the same as in a contract without ambiguity. Similarly, drift ambiguity
does not generate regions of over- and undercompensation.
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Equity and Credit Lines Since the drift of Wt is constant, the standard equity-and-
credit-line implementation of DeMarzo and Sannikov (2006) remains optimal.

‌
It is worthwhile to compare the result of Proposition 5 to the ones obtained by Miao and

Rivera (2016) and Dumav (2017). In Miao and Riviera’s paper, the PPS can be above the
level required to incentivize effort (here σ

µ
κ). This is because their paper features an entropy

cost.45 A lower drift increases the principal’s payoff via the entropy cost, so the worst case
depends continuously on the choice of PPS. Setting the PPS higher than necessary may be
beneficial for the principal because of this interaction. As our Proposition shows, Miao and
Riviera’s result disappears if there is no entropy cost, i.e. when we are in a standard maxmin
framework. In Dumav’s paper, effort is continuous as in Sannikov (2008). Ambiguity aversion
then lowers the optimal effort and therefore the optimal PPS compared to the case without
ambiguity. His result does not rely on an entropy cost.

6.2 Misspecified Contract under Drift Ambiguity

Just as in the baseline model, we can study the agent’s value function when the contract
is misspecified. Because the interaction with incentive provision is missing, drift ambiguity
fails to generate the effects found in Section 5.

As in the setup in Section 5, the agent evaluates the contract under measure P a,θ0 and
knows that the output process follows46

dXt = µatdt+ σdBa,θ0
t .

His true continuation value is given by

Vt = Ea,θ0

[∫ τ

t

e−γ(s−t) (dcs − asκds) |FXt
]
,

which is the analog of Equation (12). The principal is naive, i.e. she believes that the
agent evaluates the contract under the same measure as her, and she offers the contract of
Proposition (5). Thus, the agent knows that the principal evaluates the contract under P a∗,θ,

45See their Eq. (25) on p. 1417.
46Consistent with the notation in Section 6.1, P a,0 is the measure under which

Ba,0t = Bt +

∫ t

0

µ

σ
(1− as) ds

is a Brownian motion, i.e., when θt = 0 for all t. See Equation (14).
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i.e. that she believes that the drift is µ+ θ.47 As in Section 5, the dynamics of the contract
are determined by Wt, which is now the misspecified continuation value from the principal’s
viewpoint and which follows

dWt = (γWt + κ) dt− dct + ψdBa∗,θ
t

=

(
γWt + κat −

ψ

σ
θ

)
dt− dct + ψdBa,θ0

t ,

using Girsanov’s theorem. Here, ψ is defined in Equation (15). As in Section 5, the true
continuation value is Markovian in Wt, i.e. Vt = V (Wt). Characterizing the agent’s HJB
equation shows that it is always optimal to exert effort.

Proposition 6. The agent’s value function V (Wt) has the unique solution V (Wt) = Wt −
κ
γµ
θ on

[
0, W̄

]
. The misspecified contract is incentive compatible, i.e., at = 1 for all t < τ ,

and the agent is risk-neutral in W .

There is no shirking for low W , the strength of incentives, V ′ (W ), is constant, and the
agent is indifferent to the volatility of W . Ambiguity about the drift thus fails to replicate
the results of Section 5.48

6.3 Ambiguity Averse Agent

We now consider the case when the principal and the agent are both ambiguity averse. Then,
the contract either collapses to the one in DeMarzo and Sannikov (2006) (if the principal is
sophisticated) or has the same qualitative features as the misspecified contract in Section 5
(if the principal is naive).

The setting is the same as in Section 3, except that the agent is also ambiguity averse.
For any given contract α, the agent’s value is given by

W0 (α) = inf
θA∈Θ

Ea,θA
[∫ τ

0

e−γt (dct − atdκt)
]
, (16)

That is, the agent evaluates the contract under P a,θA and his continuation value is given by

Wt = Ea,θA
[∫ τ

t

e−γ(s−t) (dcs − asdκs)
∣∣∣FX,κt

]
.

47In Proposition 5, the worst-case is θ∗t = θ for t < τ and the optimal effort is a∗t = 1 for all t < τ . Thus,
P a

∗,θ denotes the probability measure under a∗ and θ∗, from the principal’s perspective.
48Since θ < 0, we have V (Wt) > Wt for all t < τ .
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The contract is incentive compatible whenever

W0 (α) ≥ inf
θA∈Θ

E ã,θA
[∫ τ

0

e−γt (dct − ãtdκt)
]

(17)

for any admissible effort process ã.
The principal’s problem is now given by

J0 = sup
α∈A

inf
θP∈Θ

Ea,θP
[∫ τ

0

e−rt (µatdt− dct)
]
, (18)

subject to the incentive compatibility condition (17), and the participation constraintW0 (α) ≥
0. As in Section 3, we focus on contracts which implement effort at all times. Generally,
the agent’s worst-case θA and the principal’s worst-case θP may differ.49 Thus, as in Section
5, ambiguity potentially leads to disagreement, and we have to distinguish between a naive
and a sophisticated principal.

Proposition 7. If the principal is sophisticated, the optimal contract is the same one as
in DeMarzo and Sannikov (2006), with constant effort cost θ̄. If the principal is naive, the
agent may shirk. The agent’s effort is given by Proposition 4, with θ0 replaced by θ̄.

The intuition for this result is simple. For any contract which requires effort, the agent’s
worst case is simply that the effort cost is high, i.e. θAt = θ̄ for all t < τ . If the principal
is sophisticated, she understands that the agent effectively has a constant effort cost of θ̄
and her own ambiguity aversion does not affect her optimal contract. She then optimally
offers the contract of DeMarzo and Sannikov (2006). If the principal is naive, she offers
the contract of Proposition 1, but the agent, essentially, has a constant effort cost θ̄. The
characterization in Section 5 applies and the agent shirks whenever Wt is sufficiently low.

6.4 Ambiguity about Constant Effort Costs

In this section, we restrict the set of density generators so that the effort cost θt is constant
across time. In this setting, the worst-case effort cost is either always high or always low
and the features highlighted in Section 4 do not arise. Thus, having a sufficiently rich set of
density generators which allows for θt to be time-varying is crucial for our results.

Consider the setup of Section 3 and suppose that the set of admissible density generators
is given by

Θ =
{
{θt}t≥0 : θt = θ̂ for all t ≥ 0, θ̂ ∈

{
θ, θ̄
}}

.

49Hence, even if the contract is incentive compatible, the measures P a,θ
P

and P a,θ
A

may differ.
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Intuitively, after the principal chooses the contract, nature chooses the effort cost, but is
restricted to choosing one which is constant in time. Alternatively, the principal is ambiguity
averse about the effort cost, but only considers constant effort costs to be possible. For
simplicity, we restrict attention to contracts which implement a constant pay-performance
sensitivity.

Proposition 8. The principal’s value function satisfies

rJ (W ) = sup
ψ≥ψ̄

µ+ J ′ (W ) (γW + θ∗) + J ′′ (W )
1

2
ψ̄2 (19)

on
[
0, W̄

]
with boundary conditions J (0) = L, J ′(W̄ ) = −1 and J ′′(W̄ ) = 0, where

ψ̄ =
σ

µ
θ̄

and where θ∗ is the worst-case effort cost. The optimal PPS is given by ψt = ψ̄.

Since in general, J (W ) is non-monotone in θ,50 it is difficult to characterize the worst-
case θ∗ analytically. However, we can numerically solve the principal’s HJB equation and
determine the worst-case for given parameter values. The results are given in Figure 3. For
sufficiently low initial continuation value W0, the worst-case is the constant process θ, while
for sufficiently high values, the worst-case is θ̄.

7 Conclusion

This paper aims towards understanding contracts when firms have limited information, which
we interpret as ambiguity aversion. In a dynamic setting, this is natural. Firms may not
even know the distribution of shocks to the agent’s willingness to work or his productivity.
Since the cost of incentivizing the agent changes over time, so does the worst case. These
dynamics generate important predictions for the agent’s compensation and provide a new
role for performance-sensitive debt. To insure against ambiguity, the principal must provide
incentives which seem excessively strong, both compared to the agent’s realized effort cost
and the contract without ambiguity. Our model thus can generate overcompensation, i.e.

50We have
∂

∂θ
J (Wt) = E

[∫ τ

t

e−r(s−t)J ′ (Ws) |FXt
]
,

which follows from differentiating the principal’s HJB equation with respect to θ and using the Feynman-
Kac formula (see DeMarzo and Sannikov (2006), p. 2699). Since J ′ (W ) can be both positive and negative,
∂
∂θJ (Wt) can also be positive or negative, depending on parameters.
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Figure 3: Principal’s value function for different effort costs in Equation (19). Parameters:
γ = 0.15, r = 0.1, σ = 5, µ = 10, L = 40, θ = 1 and θ̄ = 2. The blue line corresponds with
effort cost θ and the red line corresponds with θ̄.

higher expected payments, for successful managers together with a seemingly generous equity
package, which induces a high PPS. These features have long puzzled researchers interested
in CEO compensation. To our knowledge, our explanation based on robustness is new.

The second contribution of our paper is to study the agent’s incentives under a misspec-
ified contract. Firing, which in many contracts acts as an incentive device, now diminishes
the agent’s incentives, because the misspecified contract does not accurately compensate the
agent for the likelihood of being laid off. As a result, this contract generates shirking at the
bottom and an incentive to risk-shift. That is, if the agent were allowed to pick the project,
he would prefer a riskier one. By staying in the contract, he is gambling on a sequence of
good performance, which brings him into a region where exerting effort is valuable. Once
that region is reached, the agent’s preferences reverse. He seeks to minimize the risk of the
project for fear of being terminated. These features, which resemble preferences for risk-
shifting and the quiet life, do not occur in the canonical model of DeMarzo and Sannikov
(2006). They are solely the result of introducing ambiguity.
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A Proofs

A.1 Proof of Lemma 1

This result is a standard consequence of the Girsanov Theorem (see Jeanblanc et al. (2009),
Sec. 1.7.4, p. 72). It is proven here for the reader’s convenience.

Suppose that (Bt, Zt) is a two-dimensional Brownian motion on (Ω,F , P ). By the Lévy
characterization of Brownian motion (Øksendal (2003), Theorem 8.6.1), (Ba

t , Z
θ
t ) is a Brow-

nian motion with respect to P a,θ if and only if

(i) (Ba
t , Z

θ
t ) is a martingale w.r.t. P a,θ; and

(ii) (Ba
t )2 − t, (Zθ

t )2 − t, and Ba
t Z

θ
t are martingales w.r.t. P a,θ.

Given the definition of P a,θ (i.e., dP θ/dP a,θ|Ft ≡ zt0(a, θ) for all t), a process At is a martingale
w.r.t. P a,θ if and only if Atzt0(a, θ) is a martingale w.r.t. P . Thus,

(
Ba
t , Z

θ
t

)
is a martingale

under P a,θ if and only if (Ba
t z

t
0(a, θ), Zθ

t z
t
0(a, θ)) is a martingale under P . Respectively,

(Ba
t )2 − t, (Zθ

t )2 − t, and Ba
t Z

θ
t are martingales under P a,θ if and only if ((Ba

t )2 − t) zt0 (a, θ),(
(Zθ

t )2 − t
)
zt0 (a, θ), and Ba

t Z
θ
t zt0 (a, θ) are martingales under P .

In what follows, we prove the equivalent to conditions (i) and (ii) under measure P . We
first characterize the SDE for the density process

zt0(a, θ) = exp
(
−
∫ t

0

(θ0−θs)dZs−
1

2

∫ t

0

(θ0−θs)2ds
)

exp
(
−
∫ t

0

µ

σ
(1−as)dBs−

1

2

∫ t

0

(µ
σ

(1−as)
)2
ds
)
.

Since the exponential map x 7→ ex is a C2 function, we apply the Ito formula to zt0(a, θ) =

exp(Mt), for the process Mt which satisfies

dMt = −(θ0 − θt)dZt −
1

2
(θ0 − θt)2dt− µ

σ
(1− at)dBt −

1

2

(µ
σ

(1− at)
)2
dt,

to get the differential equation for zt0(a, θ) under P :

dzt0(a, θ) = zt0(a, θ)dMt +
1

2
zt0(a, θ)dMt · dMt = −zt0(a, θ)((θ0− θt)dZt +

µ

σ
(1− at)dBt). (20)

Equation (20) provides the differential equations of (Ba
t z

t
0(a, θ), Zθ

t z
t
0(a, θ)) under P , by the
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Ito formula:

d(Ba
t z

t
0(a, θ)) = Ba

t dz
t
0(a, θ) + zt0(a, θ)dBa

t + dBa
t · dzt0(a, θ)

= −Ba
t z

t
0(a, θ)(θ0 − θt)dZt + zt0(a, θ)

(
1− µ

σ
(1− at)Ba

t

)
dBt;

d(Zθ
t z

t
0(a, θ)) = Zθ

t dz
t
0(a, θ) + zt0(a, θ)dZθ

t + dZθ
t · dzt0(a, θ)

= zt0(a, θ)
(
1− (θ0 − θt)Zθ

t

)
dZt − Zθ

t z
t
0(a, θ)

µ

σ
(1− at)dBt.

These two equations show that Ba
t z

t
0(a, θ) and Zθ

t z
t
0(a, θ) are Ito integrals:

Ba
t z

t
0(a, θ) = Ba

0 −
∫ t

0

Ba
s z

0
s(a, θ)(θ0 − θs)dZs +

∫ t

0

z0
s(a, θ)

(
1− µ

σ
(1− as)Ba

s

)
dBs, (21)

Zθ
t z

t
0(a, θ) = Zθ

0 +

∫ t

0

z0
s(a, θ)

(
1− (θ0 − θs)Zθ

s

)
dZs −

∫ t

0

Zθ
sz

0
s(a, θ)

µ

σ
(1− as)dBs. (22)

Without loss of generality, we normalize Ba
0 = 0 and Zθ

0 = 0. Next, by using Equations
(21)-(22), we prove conditions (i) and (ii).

(Part (i)) The pair (Ba
t , Z

θ
t ) is integrable under P a,θ, since (Ba

t z
t
0(a, θ), Zθ

t z
t
0(a, θ)) is

integrable under P , because a = {at}t≥0 and θ = {θt}t≥0 are bounded. Then, from Equa-
tions (21)-(22) we see that (Ba

t z
t
0(a, θ), Zθ

t z
t
0(a, θ)) are Ito integrals under P and hence P -

martingales.51 Thus, Ea,θ[(Ba
T , Z

θ
T )|FB,Zt ] = (Ba

t , Z
θ
t ) for all T ≥ t.52

(Part(ii)) A similar argument as in part (i) shows that (Ba
t )2 − t, (Zθ

t )2 − t, and Ba
t Z

θ
t

are martingales w.r.t. P a,θ.53 Specifically, we characterize the differential equations for
((Ba

t )2 − t)zt0(a, θ), ((Zθ
t )2 − t)zt0(a, θ), and Ba

t Z
θ
t z

t
0(a, θ), in terms of (Bt, Zt) under P :

d(((Ba
t )2 − t)zt0(a, θ)) = −zt0(a, θ)dt+ ((Ba

t )2 − t)dzt0(a, θ) + 2Ba
t z

t
0(a, θ)dBa

t

+zt0(a, θ)dBa
t · dBa

t + 2Ba
t dB

a
t · dzt0(a, θ)

= −zt0(a, θ)((Ba
t )2 − t)(θ0 − θt)dZt

+zt0(a, θ)
(

2Ba
t − ((Ba

t )2 − t)µ
σ

(1− at)
)
dBt.

The first equality holds by the Ito formula and the second equality holds by Equation (20).
The differential equation for d(((Ba

t )2− t)zt0(a, θ)) shows that the process ((Ba
t )2− t)zt0(a, θ)

51All Ito integrals are martingales, see e.g. Karatzas and Shreve (1991), Prop. 2.10, p. 139.
52In particular, note that the Girsanov Theorem implies that

(
Ba, Zθ

)
∈ FB,Z and FBa,Zθ ⊂ FB,Z (see

e.g. Jeanblanc et al. (2009), p. 77). It is sufficient to prove that
(
Ba, Zθ

)
is a martingale under FB,Z . Then,

by the tower property of conditional expectations,
(
Ba, Zθ

)
is also a martingale under its own filtration,

FBa,Zθ , i.e. Ea,θ[(BaT , ZθT )|FB
a,Zθ

t ] = (Bat , Z
θ
t ).

53Equivalently, ((Bat )2 − t)zt0(a, θ), ((Zθt )2 − t)zt0(a, θ), and Bat Zθt zt0(a, θ) are martingales w.r.t. P .
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is characterized as an Ito integral given the Brownian motion (Bt, Zt) under P . Given the
integrability of (Ba

t )2 − t and the boundedness of at and θt, we have

((Ba
t )2 − t)zt0(a, θ) = −

∫ t

0

z0
s(a, θ)((B

a
s )2 − s)(θ0 − θs)dZs

+

∫ t

0

z0
s(a, θ)

(
2Ba

s − ((Ba
s )2 − s)µ

σ
(1− as)

)
dBs.

Thus, ((Ba
t )2 − t)zt0(a, θ) is an Ito integral and therefore is a P -martingale:

E
[
((Ba

T )2 − T )zt0(a, θ)
∣∣FB,Zt

]
= ((Ba

t )2 − t)zt0(a, θ) ∀T ≥ t.

Equivalently, (Ba
t )2 − t is a martingale under P a,θ, using dP a,θ = zt0(a, θ)dP :

Ea,θ
[
(Ba

T )2 − T
∣∣FB,Zt

]
= E

[
((Ba

T )2 − T )zt0(a, θ)
∣∣∣FB,Zt

]
= (Ba

t )2 − t ∀T ≥ t.

Note that because FB
a,Zθ

t ⊆ FB,Zt ,54 we also have Ea,θ[(Ba
T )2− T |FB

a,Zθ

t ] = (Ba
t )2− t for all

t. Similarly, we can show that ((Zθ
t )2− t)zt0(a, θ) and Ba

t Z
θ
t z

t
0(a, θ) are martingales under P ,

and hence, ((Zθ
t )2 − t) and Ba

t Z
θ
t are martingales under P a,θ:

d(((Zθ
t )2 − t)zt0(a, θ)) = −zt0(a, θ)dt+ ((Zθ

t )2 − t)dzt0(a, θ) + 2Zθ
t z

t
0(a, θ)dZθ

t

+zt0(a, θ)dZθ
t · dZθ

t + 2Zθ
t dZ

θ
t · dzt0(a, θ)

= −zt0(a, θ)((Zθ
t )2 − t)µ

σ
(1− at)dBt

+zt0(a, θ)
(
2Zθ

t − ((Zθ
t )2 − t)(θ0 − θt)

)
dZt

and

d(Ba
t Z

θ
t z

t
0(a, θ)) = Ba

t Z
θ
t dz

t
0(a, θ) + Zθ

t z
t
0(a, θ)dBa

t +Ba
t z

t
0(a, θ)dZθ

t +Ba
t dZ

θ
t · dzt0(a, θ)

+Zθ
t dB

a
t · dzt0(a, θ) + zt0(a, θ)dBa

t · dZθ
t

= zt0(a, θ)Ba
t

(
1− Zθ

t (θ0 − θt)
)
dZt + zt0(a, θ)Zθ

t

(
1−Ba

t

µ

σ
(1− at)

)
dBt.

From parts (i) and (ii), we conclude that (Ba
t , Z

θ
t ) is a two-dimensional Brownian motion

under P a,θ. Furthermore, Ba
t and Zθ

t are independent:

Ea,θ
[
Ba
TZ

θ
T |F

B,Z
t

]
= Ba

t Z
θ
t = Ea,θ

[
Ba
T

∣∣FB,Zt

]
Ea,θ

[
Zθ
T

∣∣FB,Zt

]
∀T ≥ t,

54See again Jeanblanc et al. (2009), p. 77.
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when the first equality holds because Ba
t Z

θ
t is a martingale under P a,θ (condition (ii)) and

the second equality holds because (Ba
t , Z

θ
t ) is a martingale under P a,θ (condition (i)).

A.2 Proof of Lemma 2

The agent optimizes over admissible effort ã ∈ FX,κ taking the contract α and the process
θ as given. We prove the result using the martingale characterization of non-Markovian
control problems in Elliott (1977), together with a guess and verify approach which shows
that ã ∈ FX without loss of generality.

The agent maximizes his continuation value, at each t, under P ã,θ:

sup
ã∈FX,κ

E ã,θ

[∫ τ

t

e−γ(s−t) (dcs − ãsdκs)
∣∣FX,κt

]
.

By Lemma 1, Zθ is a Brownian Motion under P ã,θ and therefore we have for any admissible
ã ∈ FX,κ,

E ã,θ
[
ãsdκs

∣∣FX,κt

]
= E ã,θ

[
ãs
(
θsds+ dZθ

s

) ∣∣FX,κt

]
= E ã,θ

[
ãsθsds

∣∣FX,κt

]
,

since E ã,θ[ãsdZ
θ
s

∣∣FX,κt ] = 0. Thus, the agent’s problem simplifies to

sup
ã∈FX,κ

E ã,θ

[∫ τ

t

e−γ(s−t) (dcs − ãsθsds)
∣∣FX,κt

]
.

Elliott (1977), Corollary 3.2, implies that the effort process a∗ ∈ FX,κ is optimal if and only
if ∫ t

0

e−γs (dcs − a∗sθsds) + e−γtWt(α, θ)

is a martingale on the probability space (Ω,F , P a∗,θ) with respect to the filtration FX,κ.
Elliott (1977), Theorem 4.3, implies that a∗ ∈ FX,κ is optimal if and only if there exists a
FX,κ-progressive and square integrable process ψ∗ =

{
ψ∗t,B, ψ

∗
t,Z

}
t≥0

such that

∫ t

0

e−γs (dcs − a∗sθsds) + e−γtWt(α, θ) =

∫ t

0

e−γsψs,BdB
a∗

s +

∫ t

0

e−γsψs,ZdZ
θ
s (23)

Then, the optimal effort a∗ ∈ FX,κ satisfies

ψ∗t,B
µ

σ
a∗t + ψ∗t,Zθt + ċt − θta∗t = sup

ãt

ψ∗t,B
µ

σ
ãt + ψ∗t,Zθt + ċt − θtãt. (24)
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where ċt = dct
dt

at each t.55 It is worth to remark that a part of optimal contract (c, τ) are
treated independent of agent’s effort choice ã in Equation (24). This is because, following a
change in effort ãt, the future consumption

∫ τ
t
dcs and hence the continuation valueWt change

only through a change in Xt—or equivalently, a change in measure P α̃,θ. This simplifies
Equation (25) to

ψ∗t,B
µ

σ
a∗t + ψ∗t,Zθt − θta∗t = sup

ãt

ψ∗t,B
µ

σ
ãt + ψ∗t,Zθt − θtãt. (25)

Rewriting the RHS of Equation (25) shows that the Hamiltonian is linear in the effort ãt,
given (ψ∗t,B, ψ

∗
t,Z) and θt:

Ht(ãt) =
(
ψ∗t,B

µ

σ
− θt

)
ãt + ψ∗t,Zθt.

Thus, the agent exerts effort a∗t = 1 at t if and only if

ψ∗t,B
µ

σ
≥ θt. (26)

To show that a∗ ∈ FX without loss of generality, we use a guess-and-verify approach. We
conjecture that {ψ∗t,B, ψ∗t,Z}t≥0 = {ψt, 0}t≥0 for a FX-progressively measurable and square-
integrable process ψ = {ψt}t≥0. Such a process {ψ∗t,B, ψ∗t,Z}t≥0 is progressively measurable
and square integrable in FX,κ. We now show that the conjectured process {ψ∗t,B, ψ∗t,Z}t≥0

satisfies (23) with the optimal effort process a∗ ∈ FX characterized by (26).
First, since ψ ∈ FX and θ ∈ FX , the Hamiltonian (25) implies that the agent’s opti-

mal effort satisfies a∗ ∈ FX without loss of generality. It remains to show that for such
an a∗ ∈ FX , the continuation value is FX-progressive as well, so that our conjecture of
{ψ∗t,B, ψ∗t,Z}t≥0 = {ψt, 0}t≥0 with ψ ∈ FX is indeed correct.

The LHS of Equation (23) with effort a∗ ∈ FX implies that

Ea∗,θ

[∫ τ

0

e−γs (dcs − θsa∗sds)
∣∣FX,κt

]
is the conditional expectation of the random variable

∫ τ
0
e−γs (dcs − θsa∗sds), whose integrand

55We allow ċt to be ±∞. Any admissible consumption process {ct}t≥0 is right continuous. If ct is not left-
continuous at t, set ċt =∞ when lims↓t cs > lims↑t cs and ċt = −∞ when lims↓t cs < lims↑t cs.When ct is not
continuous, Equation (24) holds in the limit sense, with a truncated process ċMt ≡ max{min{dctdt ,M},−M}
at each t. The optimal effort a ∈ FX,κ is the limit of aM ∈ FX,κ as M →∞, when aM ∈ FX,κ satisfies

ψ∗t,B
µ

σ
a∗t + ψ∗t,Zθt + ċMt − θta∗t = sup

ãt

ψ∗t,B
µ

σ
ãt + ψ∗t,Zθt + ċMt − θtãt.
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is FX-progressive. Hence,

Ea∗,θ

[∫ τ

0

e−γs (dcs − θsa∗sds)
∣∣FX,κt

]
= Ea∗,θ

[∫ τ

0

e−γs (dcs − θsa∗sds)
∣∣FXt ] ,

which is a martingale with respect to FX . The proof is immediate from the Tower property
of conditional expectation, given the integrability of the integrand {e−γs(dcs − θsa∗sds)}s≥0.
Finally, the martingale representation theorem56 implies that there exists a process ψ ∈ FX

such that∫ t

0

e−γs (dcs − θsa∗sds)+e−γtWt(α, θ) = Ea∗,θ

[∫ τ

0

e−γs (dcs − θsa∗sds)
∣∣FXt ] =

∫ t

0

e−γsψsdB
a∗

s .

(27)
This verifies that the conjecture {ψ∗t,B, ψ∗t,Z}t≥0 = {ψt, 0}t≥0 with ψ ∈ FX is indeed correct,
i.e. the conjecture satisfies Equation (23) at the agent’s optimal effort a∗. Hence, a∗ solves
the agent’s problem, follows from again applying Elliott (1977) Theorem 4.3.

Moreover, the agent’s HJB equation (25) implies that a∗t = 1 whenever

ψt ≥
σ

µ
θt.

Lastly, Equation (27) derives the differential equation for Wt(α, θ):

e−γt(dct − θta∗tdt)− γe−γtWt + e−γtdWt = e−γtψtdB
a∗

t ,

which can be rewritten as

dWt =
(
γWt + a∗t θt

)
dt− dct + ψtdB

a∗

t =
(
γWt + a∗t θt

)
dt− dct + ψt

1

σ
(dXt − µa∗tdt).

Writing the agent’s optimal effort a∗ simply as a then yields Equation (7). This complete
the proof.

A.3 Proof of Proposition 1

The proof consists of three steps. We show that the principal’s HJB-Isaacs equation (10) has
a unique solution with the properties described in the proposition, using a shooting method
(e.g. Bailey et al. (1968)). Then, in Lemma 7 we show that the optimal contract and the
worst-case effort cost solve the maxmin problem in Equation (10). Using the shape of the

56Here, we are using the Martingale Representation Theorem under P a
∗,θ, which is obtained form P via

Girsanov’s change of measure. Doing so is standard in mathematical finance, see Shreve (2004), Corollary
5.3.2, p. 222, or Jeanblanc et al. (2009), Prop. 1.7.7.1 , p. 78.
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value function, we then verify in Lemma 8 that the optimal contract and worst-case process
solve the principal’s problem in Equation (6).

A.3.1 Solution of the HJB Equation via the Shooting Method

Define the function H : [0,Wmax]× R2 → R for Wmax and ψmax sufficiently large as

H (W,u, p) = − min
ψ∈[ψ̄,ψmax]

max
θ∈[θ,θ̄]

ru− µ− p (γW + θ)
1
2
ψ2

. (28)

The principal’s HJB equation (10) can now be written as

J ′′ (W ) +H (W,J (W ) , J ′ (W )) = 0. (29)

We define an initial value problem (IVP) consisting of Equation (29) and initial conditions
J (0) = L and J ′ (0) = s for some s ∈ R instead of the boundary conditions provided in
Proposition 1. Lemmas 3 and 4 present properties of the solution of the IVP (29), which
is denoted by Js (.) : [0,Wmax] → R, with Wmax chosen sufficiently large. Lemmas 5 and 6
establish that there exists a unique s∗ such that the solution to the IVP (29) is equivalent to
the solution to the boundary value problem (10) in Proposition 1, i.e. Js∗ (·) = J (·). This
shooting method concludes that the principal’s HJB equation (10) has a unique solution
which satisfies the properties in Proposition 1. The proof is analogous to Szydlowski (2019),
Section A.2.57

Lemma 3. Fix a domain [0,Wmax] with Wmax sufficiently large. Then, the initial value
problem (IVP) in Equation (29) has a unique twice continuously differentiable solution on
the domain [0,Wmax] for any starting slope s. Moreover, the solution is uniformly continuous
with respect to s.

Proof. The proof consists of showing that the function H (W,u, p) satisfies the conditions of
Hartman (2002), Th. 1.1, p. 8, which establishes the existence of a unique solution via the
Picard-Lindelöf Theorem, and applying Hartman (2002), Th. 2.1, p. 94, which establishes
continuity with respect to initial conditions.

Hartman (2002), Th. 1.1, p. 8 requires that H (W,u, p) is continuous in (W,u, p) and
Lipschitz continuous in (u, p), uniformly on the domain [0,Wmax].

That H (W,u, p) is jointly continuous in (W,u, p) follows from successively applying
Berge’s maximum theorem (see Aliprantis and Border (2006), Th. 17.31, p. 570), first
to the inner maximization and then the outer minimization.

57In particular, the Lemmas below and their proofs are nearly identical to Szydlowski (2019), Prop. 7,
Lem. 2, and Lem. 3, p. 835-837. They are provided here as a convenience to the reader.
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Moreover, H (W,u, p) is Lipschitz continuous in (u, p), uniformly on [0,Wmax]. Here is
the argument. First, consider the inner maximization and write

f (W,u, p) = max
θ∈[θ,θ̄]

ru− µ− p (γW + θ)

= ru− µ− pγW − pθ − 1{p < 0}p
(
θ̄ − θ

)
.

Clearly, we have
|f (W,u, p)− f (W, ũ, p̃)| ≤ K (|u− ũ|+ |p− p̃|)

for some K sufficiently large whenever p, p̃ ≥ 0 or p, p̃ < 0.58 When p ≥ 0 > p̃,

f (W,u, p) = ru− µ− pγW − pθ

and
f (W, ũ, p̃) = rũ− µ− pγW − p̃θ̄.

Thus
|f (W,u, p)− f (W, ũ, p)| ≤

(
r |u− ũ|+ |γW | |p− p̃|+

∣∣p̃θ̄ − pθ∣∣) .
Since p ≥ 0 > p̃, we have

∣∣p̃θ̄ − pθ∣∣ ≤ pθ − p̃θ̄ ≤ (p− p̃) θ̄ = |p− p̃| θ̄.

Thus,
|f (W,u, p)− f (W, ũ, p)| ≤ K (|u− ũ|+ |p− p̃|)

for some sufficiently large K. The case p < 0 ≤ p̃ is analogous. The above arguments
establish that f (W,u, p) is Lipschitz continuous in (u, p), uniformly on [0,Wmax].

Now, it remains to apply the same argument to

g (W,u, p) = min
ψ∈[ψ̄,ψmax]

f (W,u, p)
1
2
ψ2

.

Whenever f (W,u, p) and f (W, ũ, p̃) have the same sign, the minimizer ψ is the same for
(u, p) and (ũ, p̃). Therefore, the continuity and uniform-Lipschitz continuity of f implies the
same properties of g. Specifically, we again have59

|g (W,u, p)− g (W, ũ, p̃)| ≤ K (|u− ũ|+ |p− p̃|) ,
58Here, notice that the domain [0,Wmax] is finite.
59We write K as the Lipschitz constant again, with slight abuse of notation.
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and g is Lipschitz on that region. We next consider the case when f (W,u, p) ≥ 0 >

f (W, ũ, p̃). The same argument as before applies. In particular, we have

g (W,u, p) =
f (W,u, p)

1
2
ψ2
max

and
g (W, ũ, p̃) =

f (W, ũ, p̃)
1
2
ψ̄2

,

so that

|g (W,u, p)− g (W, ũ, p̃)| =

∣∣∣∣f (W,u, p)
1
2
ψ2
max

− f (W, ũ, p̃)
1
2
ψ̄2

∣∣∣∣
=

f (W,u, p)
1
2
ψ2
max

− f (W, ũ, p̃)
1
2
ψ̄2

≤ f (W,u, p)− f (W, ũ, p̃)
1
2
ψ̄2

=
|f (W,u, p)− f (W, ũ, p̃)|

1
2
ψ̄2

≤ K
1
2
ψ̄2

(|u− ũ|+ |p− p̃|) .

Thus, g (W,u, p) is Lipschitz continuous for such values. The argument for the case f (W,u, p) <

0 ≤ f (W, ũ, p̃) is analogous.
Thus, Hartman (2002), Th. 1.1, p. 8 applies and guarantees the existence and uniqueness

of a twice differentiable solution. Hartman (2002), Th. 2.1, p. 94, requires that H (W,u, p)

is continuous and that for any s, the IVP (29) has a unique solution. We have already
established both properties.

Now, we can use the shooting method. The boundary conditions J ′(W̄ ) = −1 and
J ′′(W̄ ) = 0 in the statement of Proposition 1 imply that J(W̄ ) = J∗(W̄ ), where J∗ (W ) is
given by

J∗ (W ) =
µ− θ̄
r
− γ

r
W.

We will characterize W̄ as the first point at which J (W ) hits J∗ (W ).
Pick a large negative number b. There exists a unique Wb such that J∗(Wb) = b. Let us

define the set B ⊂ R2 as

B = {(x, y) : x ∈ [0,Wb] , y = b} ∪ {(x, y) : x ∈ [0,Wb] , y = J∗ (x)} .
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Here, the first set on the RHS is the graph of a horizontal line with value b on the domain
[0,Wb] and the second set is the graph of J∗ (W ) on the domain [0,Wb].

Let us denote the solution to IVP (29) for any given s as Js (W ) and define W̄ (s) =

inf {W : Js (W ) = J∗ (W )}. The function W̄ (s) is well defined whenever s is sufficiently
large. We will show below Lemma 6 that there indeed exists an s at which W̄ (s) is well
defined.60

Lemma 4. Any solution to the IVP (29) such that 0 > J ′s
(
W̄ (s)

)
≥ −1 holds is strictly

concave on
(
0, W̄ (s)

)
.

Proof. Since s is kept constant throughout the proof, we simplify the notation W̄ (s) to W̄
and Js (·) to J (·). First, suppose that 0 > J ′

(
W̄
)
> −1. Then, the HJB Equation (10) im-

plies that J ′′(W̄ ) < 0, since otherwise J(W̄ ) > J∗(W̄ ). By continuity of J ′′ (W ), there exists
an interval (W̃ , W̄ ) such that J ′′ (W ) < 0 for W ∈ (W̃ , W̄ ). If we can pick W̃ = 0, we have
established the result. By way of contradiction, define Ŵ = sup

{
W < W̄ : J ′′ (W ) ≥ 0

}
and

suppose that such a Ŵ exists. By continuity of J ′′ (W ), we have J ′′(Ŵ ) = 0. If J ′(Ŵ ) ≥ 0,
the HJB equation implies that

rJ
(
Ŵ
)

= µ+ J ′
(
Ŵ
)(

γŴ + θ̄
)
≥ µ > rJ∗

(
Ŵ
)
,

which is a contradiction, since we defined W̄ as the first point at which J (·) crosses J∗ (·).
If J ′(Ŵ ) < 0, then we have

J ′′′+

(
Ŵ
)

=
− (γ − r) J ′

(
Ŵ
)

1
2
ψ̄2

> 0,

where J ′′′+ (W ) is the right derivative of J ′′ (W ), which is obtained by differentiating the HJB
equation. But this implies that the function J ′′ (W ) cannot cross zero at Ŵ from above. In
particular, we cannot have J ′′(Ŵ ) = 0 and J ′′(Ŵ + ε) < 0 for any small ε > 0. Thus, we
have another contradiction. In sum, the point Ŵ cannot exist and we have J ′′ (W ) < 0 for
all W < W̄ .

Now, consider the case J ′
(
W̄
)

= −1. Then, the HJB equation implies that J ′′
(
W̄
)

= 0,
since otherwise J(W̄ ) 6= J∗(W̄ ). Calculating the left derivative of the HJB equation at W̄
yields

1

2
ψ̄2J ′′′−

(
W̄
)

= − (γ − r) J ′−
(
W̄
)
− J ′′−

(
W̄
) (
γW̄ + θ̄

)
= − (γ − r) J ′−

(
W̄
)

= γ − r > 0.

60Intuitively, whenever s is very large, Js (W ) is very steep and then is guaranteed to hit J∗ (W ).
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Thus, there exists an interval (W̃ , W̄ ) such that J ′′ (W ) < 0 forW ∈ (W̃ , W̄ ). The remainder
of the proof is the same as in the previous case.

The remainder of Appendix A.3.1 shows that there exists a unique starting slope s∗ that
satisfies the boundary condition in Proposition 1: i.e., J ′s∗(W (s∗)) = −1, which concludes
that the solution Js∗(·) of IVP (29) is a solution of the boundary value problem (10) in
Proposition 1. To this end, we define a mapping S(s) = J ′s(W (s)) : R→ R. The argument
is two-fold: Lemma 5 shows that S(s) is strictly decreasing in s, and Lemma 6 shows the
existence of s∗ such that S(s∗) = −1, using the continuous mapping theorem.

Lemma 5. There exists at most one s∗ such that J ′s∗(W̄ (s∗)) = −1.

Proof. Consider two initial slopes s′ > s. We first show that Js′ (W ) > Js (W ) on (0,Wmax).
To see this, let Ŵ = inf {W : J ′s′ (W ) ≤ J ′s (W )} and suppose by way of contradiction that
such a Ŵ exists. By construction, we have J ′s′ (W ) > J ′s (W ) for all W < Ŵ and therefore
Js′(Ŵ ) > Js(Ŵ ). Further, we have

H
(
Ŵ , Js(Ŵ ), J ′s(Ŵ )

)
= H

(
Ŵ , Js(Ŵ ), J ′s′(Ŵ )

)
> H

(
Ŵ , Js′(Ŵ ), J ′s′(Ŵ )

)
,

since H (W,u, p) is decreasing in u (see Equation (28)). Then, Equation (29) implies that
J ′′s′(Ŵ ) > J ′′s (Ŵ ). This is a contradiction to the definition of Ŵ : J ′s′(Ŵ ) = Js(Ŵ ) and
J ′′s′(Ŵ ) > J ′′s (Ŵ ) imply the existence of ε > 0 such that J ′s′(Ŵ + ε) < J ′s(Ŵ + ε), but then
Ŵ 6= inf {W : J ′s′ (W ) ≤ J ′s (W )}. Thus, we have a contradiction and J ′s′ (W ) > J ′s (W ) for all
W ∈ (0,Wmax). This, in turn, implies that Js′ (W ) > Js (W ), because Js′ (0) = Js (0) = L.
Since Js′ (W ) > Js (W ), we also have W̄ (s′) < W̄ (s), i.e. W̄ (s) is strictly decreasing in s.

To establish the result in the statement of the lemma, suppose by way of contradiction
that s′ > s and that J ′s′(W̄ (s′)) = J ′s(W̄ (s)) = −1. Then, we have

−1 = J ′s′
(
W̄ (s′)

)
> J ′s

(
W̄ (s′)

)
.

Since W̄ (s′) < W̄ (s) and since Js (W ) is strictly concave on (0, W̄ (s)) by Lemma 4, it must
be the case that J ′s(W̄ (s′)) > J ′s(W̄ (s)), which together with the previous inequality implies
that −1 > J ′s(W̄ (s)), a contradiction.

Lemma 6. There exist two values s̄ > s, such that for all s ≥ s̄, S (s) ≥ 0, and for all
s < s, S (s) ≤ −1.

Proof. Consider the mapping

T (s) = inf {W : (W,Js (W )) ∈ B} .
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Intuitively, T (s) is the lowest value of W for which Js (W ) hits the boundary B. For
s ≤ s and s sufficiently small, Js (W ) hits the constant line {(W, y) : W ∈ [0,Wb], y = b}.
By choosing s sufficiently small, the hitting point can be made arbitrarily close to 0, i.e.
T (s) ↓ 0 as s → −∞. Similarly, for s > s̄ and s̄ sufficiently large, Js (W ) hits the function
J∗ (W ) and the hitting point can be made arbitrarily close to zero by picking s̄ sufficiently
large.

We now prove this, using Gronwall’s Lemma. Fix s > 0 and suppose that W̃ =

inf {W : J ′s (W ) ≤ 0} ∈ (0,Wb). On the interval [0, W̃ ], we have J ′s (W ) > 0 and Js (W ) ≥
L > 0. Then, Equation (28) implies that for any W ∈ [0, W̃ ],

0 = J ′′s (W ) +H (W,Js (W ) , J ′s (W )) ≤ J ′′s (W ) +H (W, 0, J ′s (W ))

so that

J ′′s (W )− min
ψ∈[ψ̄,ψmax]

max
θ∈[θ,θ̄]

−µ− J ′s (W ) (γW + θ)
1
2
ψ2

= J ′′s (W ) +
µ+ J ′s (W ) (γW + θ)

1
2
ψ̄2

≥ 0,

which implies that

J ′′s (W ) +
µ+ J ′s (W ) (γWb + θ)

1
2
ψ̄2

≥ 0

for all W ∈ [0, W̃ ]. Defining the auxiliary function g (W ) = −
(
J ′s (W ) + µ

γWb+θ

)
, the above

inequality is equivalent to

g′ (W ) ≤ −γWb + θ
1
2
ψ̄2

g (W ) .

Then, Gronwall’s Lemma implies that

g (W ) ≤ g (0) exp

(
−γWb + θ

1
2
ψ̄2

·W
)

or equivalently

J ′s (W ) ≥
(
s+

µ

γWb + θ

)
exp

(
−γWb + θ

1
2
ψ̄2

·W
)
− µ

γWb + θ

for all W ∈ [0, W̃ ]. Thus, by picking s arbitrarily large, we can guarantee that Js (W ) is
arbitrarily steep on [0,Wb]. Because of this, we can pick a sufficiently large s̄ such that
W̃ > Wb and J ′s̄ (W ) ≥ 0 for W ∈ (0,Wb). For any s ≥ s̄, Js (W ) hits J∗ (W ) arbitrarily
close to 0. The argument establishing s is analogous.

Now, we can define for some small ε > 0,
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Bε = {(W, y) ∈ B : W ≥ ε} .

By the preceding arguments, there exists a sufficiently small s such that Js (W ) hits the
line {(y,W ) : y = b} at W = ε and there exists a sufficiently large s̄ such that Js̄(W̄ (s̄)) =

J∗(W̄ (s̄)) and W̄ (s̄) = ε. Since the solution to the IVP (29) is uniformly continuous with
respect to s, T (s) is continuous for s ∈ [s, s̄]. Since the set Bε is compact, the continuous
mapping theorem implies that T (s) is onto, i.e. T ([s, s̄]) = Bε. Thus, there exists a
subinterval of [s, s̄] for which Js (W ) hits J∗ (W ).

Now, we establish that there exists an s such that S (s) = Js(W̄ (s)) ≤ −1. Pick Ŵ

sufficiently close to Wb, so that J∗(Ŵ ) = −M > b for some sufficiently large M > 0.61

By the preceding argument, there exists a slope s such that W̄ (s) = Ŵ , i.e. Js(W̄ (s)) =

J∗(Ŵ ). Suppose by way of contradiction that 0 > J ′s(Ŵ ) > −1. Then, by Lemma 4,
Js (W ) is strictly concave on (0, Ŵ ) and we have J ′s (W ) > −1 for W < Ŵ . This implies
that Js(Ŵ ) > Js (0) − Ŵ . Since J ′∗(Ŵ ) = −γ

r
< −1 and since Ŵ can be chosen so that

J∗(Ŵ ) = −M is negative and large, we have Js (0) − Ŵ > J∗(Ŵ ).62 But then Js (W )

cannot hit J∗ (W ) at Ŵ , because Js(Ŵ ) > Js(0)− Ŵ > J∗(Ŵ ). Thus, we must have either
J ′s(Ŵ ) ≥ 0 or J ′s(Ŵ ) ≤ −1.

Again by way of contradiction, suppose that J ′s(Ŵ ) ≥ 0. Then, it must be the case that
J ′′s (Ŵ ) < 0, otherwise Equation (29) implies that Js(Ŵ ) ≥ µ

r
> J∗(Ŵ ), a contradiction. If

J ′′s (W ) < 0 for all W < Ŵ , then J ′s(Ŵ ) ≥ 0 implies that J ′s (W ) > 0 for all W < Ŵ , so
that Js (W ) ≥ L > 0 for all W ∈ (0, Ŵ ). But then, we cannot have Js(Ŵ ) = J∗(Ŵ ), since
we have chosen Ŵ so that J∗(Ŵ ) < 0. Thus, there must exist some W < Ŵ such that
J ′′s (W ) > 0 and J ′s (W ) > 0. By continuity of J ′s (·) and J ′′s (·), there exists an interval of
W such that J ′′s (W ) > 0 and J ′s (W ) > 0 on that interval. But then, Equation (29) implies
that Js (W ) > µ

r
> J∗ (W ) for any such W , which is a contradiction. Thus, we cannot have

J ′s(Ŵ ) ≥ 0. Together with the previous argument, this establishes that J ′s(Ŵ ) ≤ −1 and
therefore that there exists an s such that S(s) ≤ −1. An analogous argument establishes
that S (s̄) ≥ 0 for s̄ sufficiently large.

We can now use the continuous mapping theorem on S (s) for s ∈ [s, s̄]. Since S(s) ≤ −1,
S(s̄) > −1, and S (s) is continuous, there exists an s∗ such that S(s∗) = −1. By Lemma 5,
this s∗ is unique.

Together, these arguments establish that there exists a unique starting slope s∗, such
that Js∗ (W ) satisfies the boundary conditions Js∗ (0) = 0, J ′s∗(W̄ ) = −1, J ′′s∗(W̄ ) = 0 and

61Recall that throughout the argument, we are picking b and Wb to be sufficiently large.
62Here, notice that J∗ (W ) +W is strictly decreasing in W .
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that Js∗ (W ) is strictly concave on (0, W̄ ). Thus, Js∗ (W ) solves the HJB equation (10) with
the above boundary conditions.

A.3.2 Verification

We first characterize necessary conditions for optimality.

Lemma 7. For any incentive compatible contract which implements effort at time t ≤ τ, we
have ψt ≥ ψ̄. The worst-case effort cost is given by

θ (ψt,Wt) =


θ̄ if J ′ (Wt) ≤ 0 and ψt ≥ ψ̄

θ if J ′ (Wt) > 0 and ψt ≥ ψ̄

θ̄ if ψt < ψ̄.

Any contract with ψt > ψ̄ is suboptimal.

Proof. First, a contract that features ψt < ψ̄ and implements effort (i.e., at = 1) at the same
time cannot be incentive compatible. This is because the worst-case effort cost at time t is

θ (ψt,Wt) ∈ arg min
θ∈[θ,θ̄]

(µ+ J ′ (Wt) θ) a (ψt, θ) + J ′ (Wt) γWt + J ′′ (Wt)
1

2
ψ2
t , (30)

where a (ψt, θt) = 1{ψt ≥ σ
µ
θt} is the agent’s optimal choice of effort. Because J ′ (Wt) ≥ −1

and µ > θ̄, the term multiplying a (ψt, θ) in the above equation is positive, i.e.

µ+ J ′ (Wt) θ ≥ 0

for all θ ∈
[
θ, θ̄
]
. Thus, the RHS of Equation (30) is minimized by picking any θ (ψt,Wt) ∈

(σ
µ
ψt, θ̄], which induces effort at = 0 whenever ψt < ψ̄. Thus, no contract with ψt < ψ̄ is

incentive compatible. Hence, we have ψt ≥ ψ̄ for all t ≤ τ for any incentive compatible
contract.

If ψt ≥ ψ̄, we have a (ψt, θt) = 1 for any θt∈
[
θ, θ̄
]
. Then, the minimizer θ (ψt,Wt)

satisfies

θ
(
ψ̄,Wt

)
≡ θ∗ (Wt) =

{
θ̄ if J ′ (Wt) ≤ 0

θ if J ′ (Wt) > 0

for any ψt ≥ ψ̄.
Finally, we show that any contract with ψt > ψ̄ is suboptimal. Because J (W ) is strictly

concave on [0, W̄ ), we have

ψ̄ = arg max
ψt≥ψ̄

(µ+ J ′ (Wt) θ (ψt,Wt)) + J ′ (Wt) γWt + J ′′ (Wt)
1

2
ψ2
t
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given that the contract implements at = 1. Thus, at the optimal contract, we have ψt = ψ̄

and any ψt > ψ̄ is suboptimal.

The above result establishes Equation (9) in the statement of Proposition 1. Overall, the
above arguments establish that

ψ̄ = max
ψt≥ψ̄

min
θ∈[θ,θ̄]

(µ+ J ′ (Wt) θ) a (ψt, θ) + J ′ (Wt) γWt + J ′′ (Wt)
1

2
ψ2
t .

In particular, we have

rJ (Wt) ≥ µa (ψt, θ (ψt,Wt)) + J ′ (Wt) (γWt + θ (ψt,Wt) a (ψt, θ (ψt,Wt)))

+
1

2
J ′′ (Wt)ψ

2
t

for any ψt ≥ 0. It remains to show that this solution equals the principal’s payoff in the
optimal contract. This follows from a verification argument, suitably modified to account
for ambiguity aversion. We present this argument next.

Lemma 8. The solution to the HJB equation (10) equals the principal’s value function in
Equation (6).

Proof. We now verify that the contract is optimal.63 Consider an arbitrary incentive com-
patible contract α and let θ (α) = {θt (α)}t≥0 be the minimizer in Equation (6). Denote with
P a,θ(α) the measure under the pair (a, θ (α)). Define the value from following this contract
until time t ≤ τ and then changing to the candidate for the optimal contract as

Gt (α, θ (α)) =

∫ t

0

e−rs (dXs − dcs) + e−rtJ (Wt) . (31)

Here, J (W ) is the solution to the principal’s HJB equation (10). Note that J (Wτ ) = L for
t = τ since Wτ = 0. Formally, we have

dWs =

 (γWs + θs (α)) ds− dcs + ψsdB
a
s for s ≤ t

(γWs + θ∗s) ds− dc∗s + ψ̄dBa∗
s for s > t

(32)

and we define processes α̃s = 1 {s ≤ t}αs+1 {s > t}α∗s and θ̃s = 1 {s ≤ t} θs (α)+1 {s > t} θ∗s
for s ≤ τ .

63The proof is similar to the one in DeMarzo and Sannikov (2006), p. 2712f. It is modified to account for
ambiguity.
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Using Itô’s Lemma under P a,θ(α) together with Equation (32) yields

dGt (α, θ (α)) = e−rt
(
µatdt+ σdBa

t − dct + J ′ (Wt) ((γWt + θt (α) at) dt− dct + ψtdB
a
t )

+J ′′ (Wt)
1

2
ψ2
t dt− rJ (Wt) dt

)
.

The solution of the HJB equation (10) is strictly concave on [0, W̄ ) and satisfies J ′ (W ) = −1

forW ≥ W̄ , since J (W ) = J(W̄ )−(W−W̄ ) forW ≥ W̄ . It follows that− (1 + J ′ (Wt)) dct ≤
0 for any Wt ∈ (0, W̄ ) and − (1 + J ′ (Wt)) dct = 0 for Wt ≥ W̄ . Also, we have

µat + J ′ (Wt) (γWt + θt (α) at) + J ′′ (Wt)
1

2
ψ2
t ≤ rJ (Wt) ,

which follows from Equation (10). Taken together, these inequalities imply that

ertEa,θ(α) [dGt (α, θ (α))]

= Ea,θ(α)

[(
µat + J ′ (Wt) (γWt + θt (α) at) + J ′′ (Wt)

1

2
ψ2
t − rJ (Wt)

)
dt

− (1 + J ′ (Wt)) dct + (σ + ψtJ
′ (Wt)) dB

a
t

]
≤ Ea,θ(α) [(σ + ψtJ

′ (Wt)) dB
a
t ] .

The solution to the principal’s HJB equation J (W ) is strictly concave on [0, W̄ ), J ′ (W ) = −1

for W ≥ W̄ and J ′ (W ) ≥ −1 for W < W̄ . Moreover, Lemma 6 implies that the solution to
the HJB equation has a finite starting slope J ′ (0). Thus, J ′ (W ) is bounded for all W ≥ 0

and the term ψtJ
′ (Wt) is square integrable. This implies that

Ea,θ(α) [(σ + ψtJ
′ (Wt)) dB

a
t ] = 0,

since Ba is a Brownian Motion under P a,θ(α). Thus, we have shown that

Ea,θ(α) [dGt (α, θ (α))] ≤ 0

so that Gt (α, θ (α)) is a Pα,θ(α)-supermartingale. This implies that

G0 (α, θ (α)) ≥ Ea,θ(α) [Gt∧τ (α, θ (α))]
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for any fixed t ≥ 0. Taking t→∞ yields

G0 (α, θ (α)) ≥ Ea,θ(α) [Gτ (α, θ (α))] .

By construction of Gt (α, θ (α)) in Equation (31), we have G0 (α, θ (α)) = J (W0) for any
(α, θ (α)) . Thus,

J (W0) = G0 (α, θ (α)) ≥ Ea,θ(α) [Gτ (α, θ (α))] ≥ inf
θ∈Θ

Ea,θ [Gτ (α, θ)] ,

where the last inequality follows from taking the infimum over θ ∈ Θ. Taking the supremum
over contracts α ∈ A then yields

J (W0) ≥ sup
α∈A

inf
θ∈Θ

Ea,θ [Gτ (α, θ)] . (34)

We now establish the reverse inequality to (34). Consider the optimal contract α∗ , with
effort a∗ = (a∗t )t≥0 with a∗t = 1 for all t < τ , and an arbitrary density generator θ ∈ Θ.
Define Gt (α∗θ) analogously as

Gt (α∗, θ) =

∫ t

0

e−rs (dXs − dcs) + e−rtJ (Wt)

for t ≤ τ . Under P a∗,θ, Ito’s Lemma yields

dGt (α∗, θ) = e−rt
(
µdt+ σdBa∗

t − dc∗t + J ′ (Wt)
(
(γWt + θt) dt− dc∗t + ψ̄dBa∗

t

)
+J ′′ (Wt)

1

2
ψ̄2dt− rJ (Wt) dt

)
.

For any W ∈ (0, W̄ ), we have

rJ (Wt) = min
θ∈[θ,θ̄]

µ+ J ′ (Wt) (γWt + θ) + J ′′ (Wt)
1

2
ψ̄2

≤ µ+ J ′ (Wt) (γWt + θt) + J ′′ (Wt)
1

2
ψ̄2

where θt ∈
[
θ, θ̄
]
is arbitrary in the second line. Then, by a similar argument as in the

previous case, Gt(α
∗, θ) is a P a∗,θ-submartingale and we have G0 (α∗, θ) ≤ Ea∗,θ [Gt∧τ (α∗, θ)].

Taking t → ∞ then yields G0 (α∗, θ) ≤ Ea∗,θ[Gτ (α∗, θ)]. As in the previous case, we have
J (W0) = G0 (α∗, θ) and therefore J (W0) ≤ Ea∗,θ [Gτ (α∗, θ)]. Taking the infimum over θ ∈ Θ
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implies that
J (W0) ≤ inf

θ∈Θ
Ea∗,θ [Gτ (α∗, θ)] ≤ sup

α∈A
inf
θ∈Θ

Ea,θ [Gτ (α, θ)] . (35)

Taken together, Equations (34) and (35) imply that

J (W0) = sup
α∈A

inf
θ∈Θ

Ea,θ [Gτ (α, θ)]

= sup
α∈A

inf
θ∈Θ

Ea,θ

[∫ τ

0

e−rt (dXt − dct) + e−rτL

]
.

The last equation follows because τ = inf {t : Wt = 0} and J (Wτ ) = L.
It remains to verify that under the optimal contract α∗ and the density generator θ∗ =

{θ∗t }t≥0, where θ∗t = θ(ψ̄,Wt) for all t < τ , the process Gt (α∗, θ∗) is a P a∗,θ∗-martingale.
Under P a∗,θ∗ , we have

dGt (α∗, θ∗) = e−rt
(
µdt+ σdBa∗

t − dc∗t + J ′ (Wt)
((
γWt + θ

(
ψ̄,Wt

))
dt− dc∗t + ψ̄dBa∗

t

)
+J ′′ (Wt)

1

2
ψ̄2dt− rJ (Wt) dt

)
.

The definition of the HJB equation (10) implies that

rJ (Wt) = max
ψt≥ψ̄

min
θt∈[θ,θ̄]

µa (ψt, θt) + J ′ (Wt) (γWt + θta (ψt, θt)) +
1

2
J ′′ (Wt)ψ

2
t

= µ+ J ′ (Wt)
(
γWt + θt

(
ψ̄,Wt

))
+

1

2
J ′′ (Wt) ψ̄

2

and we have dct ≥ 0 whenever J ′ (Wt) = −1, which is the case for Wt ≥ W̄ , and dct = 0

otherwise. Thus, we have

ertEa∗,θ∗ [dGt (α∗, θ∗)]

= Ea∗,θ∗

[(
µ+ J ′ (Wt)

(
γWt + θt

(
ψ̄,Wt

))
+

1

2
J ′′ (Wt) ψ̄

2 − rJ (Wt)

)
dt

−dct (J ′ (Wt) + 1) + σdBa∗

t

(
σ + ψ̄J ′ (Wt)

) ]
= Ea∗,θ∗

[
σdBa∗

t

(
σ + ψ̄J ′ (Wt)

)]
= 0,

i.e. Gt (α∗, θ∗) is a P a∗,θ∗-martingale. This implies that J (W0) = G0 = Ea∗,θ∗ [Gτ (α∗, θ∗)].
Thus, α∗ is the optimal contract and θ∗ is the worst-case effort cost.
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A.4 Proof of Proposition 2

Let (a∗, c∗, τ ∗) denote the robust optimal contract and θ∗ the worst-case effort cost. Similarly,
let (a, c, τ) denote the optimal contract without ambiguity aversion. The latter contract is
identical to the optimal contract in DeMarzo and Sannikov (2006). In either setting, we can
write any continuation value Wt for t ≤ min {τ ∗, τ} as

Wt = Ea∗,θ∗
[∫ τ∗

t

e−γ(s−t)dc∗s

∣∣∣FX,κt

]
− Ea∗,θ∗

[∫ τ∗

t

e−γ(s−t)θ∗sds
∣∣∣FX,κt

]
and

Wt = E

[∫ τ

t

e−γ(s−t)dcs

∣∣∣FX,κt

]
− E

[∫ τ

t

e−γ(s−t)θ0ds
∣∣∣FX,κt

]
.

Denote the expected compensation under the worst-case and the contract without ambiguity
as

g∗ (Wt) = Ea∗,θ∗
[∫ τ

t

e−γ(s−t)dc∗s

∣∣∣FX,κt

]
and

g (Wt) = E

[∫ τ

t

e−γ(s−t)dcs

∣∣∣FX,κt

]
.

The continuation value Wt is a sufficient statistic for expected compensation, i.e. the func-
tions g (·) and g∗ (·) depend on the contract through Wt alone (see Proposition 1). The
proposition claims that there is a value of θ0 such that

g∗ (Wt) < g (Wt)

wheneverWt is sufficiently low and that the inequality is reversed wheneverWt is sufficiently
high.

We first record basic properties of g (W ) and g∗ (W ). Since the agent is fired atW = 0 and
hence receives no further payments, we have g (0) = g∗ (0) = 0. Moreover, the construction
of g∗ (Wt) and g (Wt) imply, respectively

g∗ (Wt) = Wt + Ea∗,θ∗
[∫ τ∗

t

e−γ(s−t)θ∗sds
∣∣∣FX,κt

]
and

g (Wt) = Wt + E

[∫ τ

t

e−γ(s−t)θ0ds
∣∣∣FX,κt

]
,

so that g∗ (Wt) > Wt and g (Wt) > Wt for all Wt > 0. Under P a∗,θ∗ , g∗ (W ) is the unique
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solution to the ODE

γg∗ (W ) = g∗′ (W ) (γW + θ∗ (W )) + g∗′′ (W )
1

2
ψ̄2 (36)

with boundary conditions g∗ (0) = 0 and g∗′
(
W̄ ∗) = 1, where W̄ ∗ is the payout boundary in

the optimal contract under ambiguity. This follows directly from applying the Feynman-Kac
Theorem under measure P a∗,θ∗ . Similarly, g (W ) is the unique solution to

γg (W ) = g′ (W ) (γW + θ0) + g′′ (W )
1

2
ψ2 (37)

with g (0) = 0 and g′(W̄ ) = 1, where ψ = θ0σ/µ and W̄ is the payout boundary in the
contract without ambiguity. Both g (W ) and g∗ (W ) are linear functions with slope one
for continuation values right of their respective payout boundaries, i.e. g′ (W ) = 1 for
W ≥ W̄ and g∗′ (W ) = 1 for W ≥ W̄ ∗. Standard arguments imply that g (W ) is uniformly
continuous in its parameters on any bounded interval [0,Wmax]. In particular, g (W ) is
uniformly continuous in θ0. In the following, we write g (W, θ0) to denote the dependence of
g on the parameter θ0. Similarly, g∗ (W ) is uniformly continuous in θ̄ and θ.

Moreover, g (W ) is strictly concave on [0, W̄ ]. To see this, differentiate Equation (37) on
[0, W̄ ] to yield

g′′′ (W )
1

2
ψ2 = g′′ (W ) (γW + θ0) ,

so that g′′′ (W ) and g′′ (W ) have the same sign. This implies that g′′ (W ) cannot cross zero
on [0, W̄ ]. Thus, g (W ) is either strictly concave, strictly convex, or linear. Since g (W ) > W

for W > 0, it must be the case that g′ (0) > 1 = g′(W̄ ). Thus, g (W ) is strictly concave.
We now present the main argument. Assume that θ = 0. If θ0 = θ̄, then g

(
W, θ̄

)
>

g∗ (W ) for all W > 0. Intuitively, g
(
W, θ̄

)
has the same volatility but a higher drift than

g∗ (W ), so the agent gets paid more in expectation. If θ0 = 0, then the unique solution to
the ODE (37) is g (W ) = W . This is immediate, since for θ0 = 0 the agent faces no effort
cost and the contract in DeMarzo and Sannikov (2006) pays him an immediate lump sum
of W . In particular, if θ0 = 0, then W̄ = 0. Moreover, when θ = 0, g∗ (W ) is linear on
[0,W 0∗), where W 0∗ is the point at which θ∗ (W ) exhibits a jump. This follows by plugging
in θ∗ (W ) = 0 for W < W 0∗ into (36) and picking any ĝ > W 0∗ as a boundary condition,
i.e. g∗ (W ) = C ·W with C > 1 is the unique solution to the ODE (36) on [0,W 0∗] with
boundary conditions g∗ (0) = 0 and g∗(W 0∗) = ĝ > W 0∗.

Since g∗ (W ) does not depend on θ0, it holds that g
(
W, θ̄

)
> g∗ (W ) for W ∈ (0,W 0∗]

and that g (W, 0) = W < g∗ (W ) for W ∈ (0,W 0∗]. We now consider the following cases
(1) W̄ ≤ W 0∗ for θ0 = θ̄ and (2) W̄ > W 0∗ for θ0 = θ̄. In the latter case, since g (W, θ0) is

49



uniformly continuous in θ0, there exists a θ0 such that W̄ = W 0∗. Suppose that g(W 0∗, θ0) ≤
g∗(W 0∗). Then, since g∗ (W ) is linear on [0,W 0∗] and g (W, θ0) is strictly concave, there
exists a Ŵ ≤ W 0∗ such that g (W, θ0) > g∗ (W ) for W ∈ (0, Ŵ ) and g (W, θ0) < g∗ (W ) for
W ∈ (Ŵ ,W 0∗).64 We now show that g∗ (W ) > g (W, θ0) for W > W 0∗. Since W̄ = W 0∗,
we have g′ (W, θ0) = 1 for all W > W̄ = W 0∗. On the interval [W 0∗, W̄ ∗], g∗(W ) is strictly
concave. To see this, differentiate Equation (36) for W ∈ (W 0∗, W̄ ∗) to obtain

g∗′′′ (W )
1

2
ψ̄2 = g∗′′ (W )

(
γW + θ̄

)
,

which implies that g∗′′ (W ) cannot cross zero. Thus, g∗(W ) is either strictly concave, strictly
convex, or linear on (W 0∗, W̄ ∗). Since g∗′(W 0∗) > 1 = g∗′(W̄ ∗), g∗(W ) must be strictly
concave on (W 0∗, W̄ ∗). But then, we must have g∗′(W ) > 1 = g′(W, θ0) for all W > W 0∗.
Since g∗(W 0∗) > g(W 0∗, θ0), it follows that g∗(W ) > g(W, θ0) for W ≥ W 0∗.

Now, suppose that g(W 0∗, θ0) > g∗(W 0∗) if W̄ = W 0∗. Then, there exists a θ0 such that
W̄ < W 0∗, Ŵ = inf {W > 0 : g (W, θ0) = g∗ (W )} exists, and Ŵ < W 0∗. Since g (W, θ0) is
concave and g∗ (W ) is linear on [0,W 0∗], we have indeed g (W, θ0) > g∗ (W ) for allW ∈ (0, Ŵ )

and g (W, θ0) < g∗ (W ) for all W ∈ (Ŵ ,W 0∗]. Since W̄ < W 0∗, it holds that g′(W 0∗, θ0) = 1

and g(W 0∗, θ0) < g∗(W 0∗). Then, the same argument as in the previous case establishes that
g (W, θ0) < g∗ (W ) for all W > W 0∗.

Overall, we have just shown that g∗ (W ) < g (W, θ0) for W < Ŵ and g∗ (W ) > g (W, θ0)

forW > Ŵ whenever W̄ > W 0∗, which is the result we set out to establish. Now, consider the
case W̄ ≤ W 0∗ for θ0 = θ̄. Fix some Ŵ ∈ (0,W 0∗). By uniform continuity of g (W, θ0) in θ0,
there exists a θ0 such that g(Ŵ , θ0) = g∗(Ŵ ). Since g (W, θ0) is strictly concave and g∗ (W )

is linear on [0,W 0∗], we have g (W, θ0) > g∗ (W ) for W ∈ (0, Ŵ ) and g (W, θ0) < g∗(W ) for
W ∈ (Ŵ ,W 0∗). The remainder of the proof is then the same as in the previous case.

Thus, we have shown that for θ = 0, there exists a θ0 such that g (W, θ0) > g∗ (W )

for W ∈ (0, Ŵ ) and g (W, θ0) < g∗ (W ) for W > Ŵ for some value Ŵ . The result in the
proposition statement then follows since g∗ (W ) is uniformly continuous in θ, so the result
continues to hold when θ > 0 is sufficiently small.

A.5 Proof of Proposition 3

Suppose that the firm has long term debt D, a credit line CL with constant interest γ, and
equity. Suppose that the equity share of the agent is Ψ = ψ̄ 1

σ
, the amount of long term debt

64The latter interval is empty if Ŵ = W 0∗.
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equals

D =
1

r

(
µ− h

Ψ
− γCL

)
for some h ∈

(
θ, θ̄
)
, and the long term debt is performance sensitive. Whenever Wt > W 0

the interest on the debt is

r1 =
µ− γCL − θ̄

Ψ

D
< r,

while when Wt ≤ W 0 the interest is

r2 =
µ− γCL − θ

Ψ

D
> r.

Let pt be the instantaneous debt repayment rate. We have pt = r1D if Wt > W 0 and
pt = r2D otherwise. Denote with Mt the draw on the credit line, which follows

dMt = γMtdt+ ptdt+ dDivt − dXt,

where dDivt are dividend payments, and dXt is the change in the firm’s output. Plugging
in the values for pt yields

dMt = γMtdt+

(
µ− 1

Ψ
θ∗ (Wt)− γCL

)
dt+ dDivt − dXt,

where θ∗(Wt) is given by Equation (9). Using guess and verify, the agent’s continuation
value Wt in Equation (7) solves

γWt = max
a∈{0,1}

−Ψ

(
γMt + µ− 1

Ψ
θ∗ (Wt)− γCL +

dDivt
dt
− µa

)
+
dct
dt
− θ∗ (Wt) a.

Setting dct = ΨdDivt implies that the optimal contract is implemented andWt = Ψ (CL −Mt),
where CL = W̄

Ψ
is the credit limit.

A.6 Proof of Proposition 4

We now solve the agent’s problem when the naive principal offers the misspecified contract.
We prove Proposition 4 by a standard approach. First, Lemmas 9 and 10 show that the
agent’s HJB equation (13) has a unique solution with the properties stated in Proposition
4. Then, in Lemma 11, we verify that the solution is indeed the agent’s value function. The
arguments in this section are similar but simpler than those in Appendix A.3, because the
boundary W̄ is exogenous in the agent’s problem.
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Lemma 9. The agent’s HJB equation (13) with the boundary conditions V (0) = 0 and
V ′(W̄ ) = 1 has a solution which solves the equation for all points in

[
0, W̄

]
\ {W 0}, is C1

everywhere on
[
0, W̄

]
and C2 on

[
0, W̄

]
\ {W 0}.

Proof. Equation (13) is equivalent to

V ′′ (W ) +
2

ψ̄2
H (W,u, p) = 0,

where
H (W,u, p) = max

a∈{0,1}
−γu− θ0a+ p ·

(
γW +

(
θ∗ (W )− θ̄

)
+ θ̄a

)
.

The function H is Lipschitz continuous in (u, p) for all W ∈
[
0, W̄

]
. For two appropriately

chosen constant functions V̄ (W ) = V̄ < 0 and V (W ) = V > 0, the inequalities

V̄ ′′ (W ) +H
(
W, V̄ (W ) , V̄ ′ (W )

)
≥ 0

and
V ′′ (W ) +H (W,V (W ) , V ′ (W )) ≤ 0

can be verified to hold. Moreover, H (W,u, p) satisfies

|H (W,u, p)| ≤M (1 + |p|)

for all u ∈
[
V , V̄

]
and W ∈

[
0, W̄

]
. Then, a variant of Thompson (1996), Theorem 1 es-

tablishes the existence of a solution which solves the equation almost everywhere, and has
absolutely continuous first derivative. Since θ∗ (W ) is constant on [0,W 0) and (W 0, W̄ ],
H (W,u, p) is continuous on these regions, and it can be shown that V (W ) is twice con-
tinuously differentiable on either region.65 Thus, V (W ) satisfies (13) at all points except
W 0.

Lemma 10. The solution to Equation (13) with boundary conditions V (0) = 0 and V ′
(
W̄
)

=

1 is unique.

Proof. Consider two solutions U, V on
[
0, W̄

]
, and define Z (W ) = U (W ) − V (W ), which

65Precisely, we can construct a separate boundary value problem for each of the regions, and by Strulovici
and Szydlowski (2015), each has a twice continuously differentiable solution on its respective domain.

52



satisfies

γZ (W ) = max
a∈{0,1}

(
−θ0 + U ′ (W ) θ̄

)
a− max

a∈{0,1}

(
−θ0 + V ′ (W ) θ̄

)
a

+ (U ′ (W )− V ′ (W ))
(
γW + θ∗ (W )− θ̄

)
+

1

2
ψ̄2 (U ′′ (W )− V ′′ (W ))

= max
a∈{0,1}

(
−θ0 + U ′ (W ) θ̄

)
a− max

a∈{0,1}

(
−θ0 + V ′ (W ) θ̄

)
a

+Z ′ (W )
(
γW + θ∗ (W )− θ̄

)
+

1

2
ψ̄2Z ′′ (W )

on [0, W̄ ]\{W 0}. The boundary conditions U (0) = V (0) = 0 and U ′(W̄ ) = V ′(W̄ ) = 1 imply
that Z (0) = Z ′(W̄ ) = 0. The equation above implies that on [0,W 0), Z (W ) can neither
have a strictly positive local maximum nor a strictly negative local minimum. Specifically,
suppose that Z (W ) > 0 is a local maximum for some W ∈ (0,W 0) . Then, Z ′ (W ) = 0,
which implies that U ′ (W ) = V ′ (W ) and that

max
a∈{0,1}

(
−θ0 + U ′ (W ) θ̄

)
a = max

a∈{0,1}

(
−θ0 + V ′ (W ) θ̄

)
a.

But then, we have

γZ (W ) =
1

2
ψ̄2Z ′′ (W ) ≤ 0,

since Z ′′ (W ) ≤ 0 whenever W is a maximum, which is a contradiction to Z (W ) > 0. The
proof that Z (W ) cannot have a strictly negative local minimum is analogous. The same
argument establishes that Z (W ) cannot have a strictly positive local maximum or a strictly
negative local minimum on (W 0, W̄ ]. Thus, since Z (0) = 0, either (1) Z (W ) = Z ′ (W ) = 0

for allW ∈ (0,W 0), (2) Z (W ) > 0 and Z ′ (W ) > 0 for allW ∈ (0,W 0) or (3) Z (W ) < 0 and
Z ′ (W ) < 0 for allW ∈ (0,W 0). If Z (W ) < 0 for allW ∈ (0,W 0), then by continuity of Z (.)

and Z ′ (.), it holds that Z (W 0) < 0 and Z ′ (W 0) < 0. But then, since Z (W ) cannot have
a strictly negative minimum, we must have Z ′ (W ) < 0 for all W ∈ (W 0, W̄ ]. In particular,
this implies that Z ′(W̄ ) < 0, which is a contradiction to the boundary condition Z ′(W̄ ) = 0.
The case when Z (W ) > 0 for W ∈ (0,W 0) is analogous. Thus, we must have Z (W ) = 0

for W ∈ (0,W 0), in which case continuity guarantees that Z (W 0) = Z ′ (W 0) = 0, so that
Z (W ) = Z ′ (W ) = 0 for all W ∈ (W 0, W̄ ].

Overall, the argument establishes that Z (W ) = 0 is the unique solution to the above
equation, so that U (W ) = V (W ) for all W ≤ W̄ .

Lemma 11. The solution to Equation (13) equals the agent’s value function.

Proof. The proof follows from the Feynman-Kac Theorem, which applies because V (W ) is
continuously differentiable and twice differentiable almost everywhere in W . Take F (Wt) =
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e−γtV (Wt) and let a (Wt) be the optimal effort choice of the agent in Equation (13). By
Itô’s Lemma for semimartingales and Equation (12), we have

dF (Wt) = e−γt
(
−γV (Wt) +

(
γWt +

(
θ∗ (W )− θ̄

)
+ θ̄a (Wt)

)
V ′ (Wt) + V ′′ (Wt)

1

2
ψ̄2

)
dt

+e−γtV ′ (Wt)
(
−dct + ψ̄dBa

t

)
= e−γt

(
θ0a (Wt) dt+ V ′ (Wt)

(
−dct + ψ̄dBa

t

))
.

Since the firing time τ satisfies τ = inf {t : Wt = 0} we have for any constant time T > 0,

Ea,θ0 [F (Wτ∧T )− F (W0)] = Ea,θ0
[
e−γ(τ∧T )V (Wτ∧T )− V (W0)

]
= Ea,θ0

[∫ τ∧T

0

e−γt (θ0a (Wt) dt− V ′ (Wt) dct)

]
.

Because dct = 0 whenever Wt 6= W̄ , we can replace V ′ (Wt) dct with V ′(W̄ )dct, so that

V (W0) = Ea,θ0

[∫ τ∧T

0

e−γt
(
V ′(W̄ )dct − θ0atdt

)]
+ Ea,θ0

[
e−γ(τ∧T )V (Wτ∧T )

]
. (38)

The transversality condition

lim
T→∞

Ea,θ0
[
e−γTV (WT )

]
= 0

holds because V (W ) is bounded. Applying the conditionsWτ = 0, V (0) = 0 and V ′(W̄ ) = 1

to Equation (38) and letting T go to infinity then yields the result.

Before we proceed, we record a technical result which will be used later.

Lemma 12. We have V (W ) > 0 for all W ∈ (0, W̄ ] and V ′ (W ) > 0 for all W ∈
[
0, W̄

]
.

Proof. The agent can guarantee himself a strictly positive payoff for all W > 0 by always
shirking, which implies that V (W ) > 0 for all W ∈ (0, W̄ ]. In turn, this implies that
V ′ (0) ≥ 0. If V ′ (0) = 0, then the agent shirks at W = 0 the agent’s HJB equation implies
that (13) V ′′ (0) = 0. Similarly, all higher order derivatives are zero and the agent’s value
is a constant function, i.e. V (W ) = 0 for all W ≤ W̄ , a contradiction. Thus, it must be
the case that V ′ (0) > 0. To show that V ′ (W ) > 0 for all W ∈ [0, W̄ ], suppose by way
of contradiction that Ŵ = inf {W : V ′ (W ) ≤ 0} exists. Then, V ′(Ŵ ) = 0 by continuity of
V ′ (W ) and since V ′(Ŵ ) = 0 < θ0

θ̄
, the agent optimally shirks at Ŵ (see Equation (13)).
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Thus, the HJB equation (13) implies that

V ′′
(
Ŵ
) 1

2
ψ̄2 = γV

(
Ŵ
)
> 0.

This is a contradiction. By construction of Ŵ , we have V ′ (W ) > 0 forW ∈ (Ŵ −ε, Ŵ ). But
since V ′′(Ŵ ) > 0, the function V ′ (W ) cannot cross zero from above at Ŵ . Thus, V ′ (W ) > 0

for all W ∈ [0, W̄ ].

We next study the properties of the value function and the agent’s optimal effort. Lemma
13 contains a technical result. Lemmas 14 and 16 show that either the agent works for all
W or that there exists a cutoff Ws ∈ (0,W 0] such that the agent shirks for W < Ws and
works for W > Ws. Lemma 18 shows that for θ0 sufficiently small, the agent works for all
W and that for θ0 sufficiently large, he shirks for W < Ws.

In the remainder of the section, we work with the scaled value function

Ṽ (W ) = V (W )− θ0

θ̄
W (39)

to simplify notation. It is optimal for the agent to exert effort whenever Ṽ ′ (W ) > 0, so
that it is more convenient to study Ṽ instead of V . By Lemma 9, Ṽ (W ) is continuously
differentiable everywhere on [0, W̄ ] and twice continuously differentiable on [0, W̄ ] \ {W 0}.

Lemma 13. For any n ∈ R denote

In (W ) =

∫ W

0

exp
(
− 1

1
2
ψ̄2

∫ u
0

(γy + n) dy
)

(
u+ n

γ

)2 du,

which is finite on any interval not containing W = −n
γ
. On any interval [W1,W2] ⊂ [0,W 0]

on which the agent shirks, the solution to Equation (13) satisfies66

Vls (W ) =

(
W − θ̄ − θ

γ

)(
Cls1 + Cls2Iθ−θ̄ (W )

)
+
θ0

θ̄
W − θ0

γ

θ̄ − θ
θ̄

,

and Cls2 = 0 whenever θ̄−θ
γ
∈ [W1,W2]. If the agent works on [W1,W2] ⊂ [0,W 0], the solution

satisfies

Vlw =

(
W +

θ

γ

)
(Clw1 + Clw2Iθ (W )) +

θ0

θ̄
W − θ0

γ

θ̄ − θ
θ̄

.

66The constants Cls1 and Cls2 denote shirking when θt is low. Similarly, Clw1 and Clw2 denote working
when θt is low, and Chs1 and Chs2 denote shirking when θt is high.
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On any interval [W1,W2] ⊂
[
W 0, W̄

]
on which the agent shirks we have

Vhs (W ) = W (Chs1 + Chs2I0 (W )) +
θ0

θ̄
W,

and if the agent works we have

Vhw (W ) =

(
W +

θ̄

γ

)
(Chw1 + Chw2Iθ̄ (W )) +

θ0

θ̄
W.

Proof. We only provide a proof for the first case; the proofs for the other cases are analogous.
Consider the transformation Ṽ (W ) = V (W )− θ0

θ̄
W . When W < W 0 (i.e., θ∗ (W ) = θ) and

the agent shirks, V (W ) solves the equation

γV (W ) = V ′ (W )
(
γW −

(
θ̄ − θ

))
+ V ′′ (W )

1

2
ψ̄2,

and since Ṽ ′ (W ) = V ′ (W )− θ0
θ̄
and Ṽ ′′ (W ) = V ′′ (W ) by construction, Ṽ (W ) solves

γṼ (W ) = Ṽ ′ (W )
(
γW −

(
θ̄ − θ

))
− θ0

θ̄

(
θ̄ − θ

)
+ Ṽ ′′ (W )

1

2
ψ̄2.

On any interval [W1,W2] with W2 < W 0 a particular solution to the homogeneous equation

γṼ (W ) = Ṽ ′ (W )
(
γW −

(
θ̄ − θ

))
+ Ṽ ′′ (W )

1

2
ψ̄2

is Ṽ (W ) = W − θ̄−θ
γ
, and any general solution is of the form

Ṽ (W ) =

(
W − θ̄ − θ

γ

)(
Cls1 + Cls2Iθ−θ̄ (W )

)
− θ0

γ

θ̄ − θ
θ̄

for some constants Cls1, Cls2 ∈ R, which are determined from the boundary conditions at W1

and W2.67 Since the agent’s value function is finite on
[
0, W̄

]
, Cls2 = 0 if W2 >

θ̄−θ
γ
.

Corollary 1. On any interval [W1,W2] ⊂
[
0, W̄

]
with W 0 /∈ [W1,W2] on which the agent’s

effort is constant, i.e. he either works for all W ∈ [W1,W2] or shirks for all W ∈ [W1,W2],
V (W ) is either strictly concave, strictly convex, or linear.

Proof. Differentiate Ṽ (W ) twice to get for any n ∈
{
−
(
θ̄ − θ

)
, 0, θ, θ̄

}
and W 6= −n

γ

V ′′ (W ) = −C2
γ

1
2
ψ̄2

exp

(
− 1

1
2
ψ̄2

∫ W

0

(γy + n) dy

)
.

67See for example Polyanin and Zaitsev (2002).
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Since Ṽ ′′ (W ) = V ′′ (W ) by construction, if C2 > 0, V (W ) is concave, if C2 < 0, V (W ) is
convex, and if C2 = 0 it is linear.

Using the explicit characterization in Lemma 13 and Corollary 1, we characterize the
agent’s effort policy on

[
0, W̄

]
.

Lemma 14. If the agent works at W 0, he works for all W ∈ [W 0, W̄ ].

Proof. If the agent works at W 0, one of the following cases must hold: (1) Ṽ ′(W 0) > 0,
(2) Ṽ ′(W 0) = 0 and Ṽ ′′+(W 0) > 0, (3) Ṽ ′ (W 0) = 0 and Ṽ ′′+ (W 0) < 0, and (4) Ṽ ′(W 0) =

Ṽ ′′+(W 0) = 0. If Ṽ ′(W 0) > 0, then by continuity of Ṽ ′ (W ) there exists an interval of
positive length (W 0, W̃ ] on which the agent works. The same holds when Ṽ ′(W 0) = 0

and Ṽ ′′+(W 0) > 0. If W̃ = W̄ , we have established the result. By way of contradiction,
suppose that W̃ < W̄ . Then, we can define wlog W̃ = inf

{
W ∈ [W 0, W̄ ] : Ṽ ′ (W ) ≤ 0

}
.

By continuity of Ṽ ′ (W ), it holds that Ṽ ′(W̃ ) = 0. Since Ṽ ′(W̃ ) = 0 < Ṽ ′(W 0), Corollary
1 implies that Ṽ ′′ (W ) < 0 on (W 0, W̃ ], i.e. Ṽ (W ) is strictly concave on the entire interval
(W 0, W̃ ]. Moreover, Ṽ ′′(W̃ + ε) < 0 for some ε > 0, since by Lemma 9 Ṽ ′′ (W ) is continuous
on (W 0, W̄ ]. This implies that Ṽ ′(W̃+ε) < 0, so the agent shirks on some interval (W̃ , W̃+ε).
On this interval, Ṽ (W ) is concave, again by Corollary 1. Therefore, for all W > W̃ the
agent shirks and Ṽ ′ (W ) < 0 for allW ∈ [W̃ , W̄ ]. In particular, this implies that Ṽ ′(W̄ ) < 0.
However, by Equation (39) the boundary condition V ′(W̄ ) = 1 is equivalent to Ṽ ′(W̄ ) > 0

and we have a contradiction. If Ṽ ′ (W 0) = 0 and Ṽ ′′ (W 0) < 0, then the previous argument
establishes that the agent shirks for all W > W 0, which again is a contradiction to the
boundary condition at W̄ . Finally, if Ṽ ′(W 0) = Ṽ ′′+(W 0) = 0, then Corollary 1 establishes
that the agent’s value is linear on [W 0, W̄ ], so the agent works on that interval.

Lemma 15. If the agent works at W = 0, he works for all W ∈
[
0, W̄

]
.

Proof. Suppose that the agent works atW = 0, which implies that Ṽ ′ (0) ≥ 0. We distinguish
the cases Ṽ ′ (0) = 0 and Ṽ ′ (0) > 0. If Ṽ ′ (0) > 0, then since Ṽ ′ (W ) is continuous, there
exists an interval of positive length on which the agent works. On this interval, Ṽ (W ) takes
the form

Ṽ (W ) =

(
W +

θ

γ

)
(Clw1 + Clw2Iθ (W ))− θ0

γ

θ̄ − θ
θ̄

by Lemma 13. The boundary condition at zero is Ṽ (0) = 0 which implies Clw1 = θ0
θ
θ̄−θ
θ̄
> 0.

If Clw2 < 0, then by Corollary 1 Ṽ (W ) is convex and Ṽ ′(W ) > Ṽ ′(0) > 0 for allW ∈ [0,W 0].
Thus, the agent works on [0,W 0]. Since Ṽ ′ (W 0) > 0 by continuity of Ṽ ′ (W ) (see Lemma
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9), Lemma 14 implies that the agent also works for all W ∈ [W 0, W̄ ]. If Clw2 > 0, then

Ṽ ′ (W ) = Clw1 + Clw2Iθ (W ) + Clw2

exp
(
− 1

1
2
ψ̄2

∫W
0

(γy + θ) dy
)

(
W + θ

γ

) > 0

for all W ∈ [0,W 0], and the agent works for all W ≤ W 0. Since the agent works at W 0,
again by Lemma 14, the agent also works for all W ∈ [W 0, W̄ ].

Finally, if Ṽ ′ (0) = 0 and the agent works at W = 0, then the agent’s HJB equation (13)
and the boundary condition Ṽ (0) = 0 imply that V ′′ (0) = Ṽ ′′ (0) > 0, so that Ṽ ′ (W ) > 0

for some interval of positive length. The remainder of the proof is then the same as in the
previous case.

Lemma 16. If the agent shirks at W = 0, he shirks for all W ∈ [0,Ws) and works for all
W ∈ [Ws, W̄ ], where Ws = inf

{
W ∈ [0, W̄ ] : a (W ) = 1

}
and Ws ≤ W 0. The agent’s value

function is convex on [0,Ws].

Proof. If the agent shirks atW = 0, then Ṽ ′ (0) ≤ 0. We distinguish the cases Ṽ ′(0) < 0 and
Ṽ ′(0) = 0. First, consider the case when Ṽ ′ (0) < 0. If the agent shirks for all W ∈ [0, W̄ ],
then we have Ṽ ′(W̄ ) ≤ 0, which is inconsistent with the boundary condition V ′(W̄ ) = 1,
since the boundary condition implies that Ṽ ′(W̄ ) = 1− θ0

θ̄
> 0 by Equation (39). Thus, the

point Ws = inf
{
W ∈ [0, W̄ ] : a (W ) = 1

}
exists and Ṽ ′(Ws) = 0 by continuity of Ṽ ′ (W ).

Suppose thatWs ≤ W 0. By Corollary 1, this implies that Ṽ ′′ (W ) > 0 for allW ∈ [0,Ws],
since Ṽ ′(0) < 0 = Ṽ ′(Ws). If Ws < W 0, then for W ∈ [Ws,W

0), Corollary 1 implies that
Ṽ ′′ (W ) > 0, since Ṽ ′′ (Ws) > 0. Thus, Ṽ ′(W 0) > Ṽ ′ (Ws) = 0, so that the agent works at
W 0. Then, Lemma 14 implies that the agent works for all W ∈ [W 0, W̄ ].

If Ws = W 0, we must distinguish three cases: (1) Ṽ ′′+(W 0) > 0, (2) Ṽ ′′+(W 0) < 0 and
(3) Ṽ ′′+(W 0) = 0. If V ′′′+ (W 0) > 0, then the agent works on some interval [W 0,W 0 + ε]. By
Lemma 14, the agent works for all W ∈ [W 0, W̄ ]. If Ṽ ′′+(W 0) < 0, the agent shirks on some
interval (W 0,W 0 + ε). Then, Corollary 1 implies that Ṽ ′′ (W ) < 0 on that interval, which
implies that the agent shirks for allW ≥ W 0, which again is a contradiction to the boundary
condition at W̄ . Finally, when Ṽ ′′+(W 0) = 0, then Corollary 1 implies that the agent’s value
function is linear on [W 0, W̄ ] and we have Ṽ (W ) = Ṽ ′(W 0) = 0 for all W ∈ [W 0, W̄ ]. This
is another contradiction, since the boundary condition at W̄ . Thus, the only possible case
is that the agent works for all W ∈ [W 0, W̄ ] if Ws = W 0.

Next, suppose that Ws ∈ (W 0, W̄ ). We will show that this results in a contradiction.
In that case, Ṽ ′(W 0) < 0 since W 0 < Ws, and the agent shirks on (W 0,Ws). At Ws, the
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agent’s HJB equation (13) yields

γṼ (Ws) = Ṽ ′ (Ws) γWs + Ṽ ′′ (Ws)
1

2
ψ̄2

or equivalently

γṼ (Ws) = Ṽ ′′ (Ws)
1

2
ψ̄2,

since Ṽ ′(Ws) = 0. By construction of Ws, Ṽ ′ (W ) < 0 for all W ∈ (0,Ws). Together with
Ṽ (0) = 0, this implies that Ṽ (Ws) < 0. Then, the equation above implies that Ṽ ′′(Ws) < 0.
This is a contradiction, since when Ṽ ′′(Ws) < 0, the function Ṽ ′ (W ) cannot cross zero from
below at Ws. Thus, it must be the case that Ws ≤ W 0.

Next, consider the case Ṽ ′ (0) = 0. If the agent shirks at W = 0, then the agent’s HJB
equation (13) at W = 0 implies that

γṼ (0) = −θ0

θ̄

(
θ̄ − θ

)
− Ṽ ′ (0)

(
θ̄ − θ

)
+ Ṽ ′′ (0)

1

2
ψ̄2.

Plugging in Ṽ (0) = Ṽ ′ (0) = 0 then yields Ṽ ′′ (0) > 0. Then, a variant of Lemma 14 implies
that the agent works for all W > 0 and we have Ws = 0.

Overall, we have shown that Ws ≤ W 0 exists and that the agent’s value is convex on
[0,Ws].

Lemma 17. The agent’s value function is concave on
[
W 0, W̄

]
.

Proof. By the preceding Lemma, the agent works for allW ∈ [Ws, W̄ ], where Ws ≤ W 0. For
W ∈ (Ws, W̄ ), we have V ′ (W ) ∈ (θ0/θ̄, 1) by construction. Suppose by way of contradiction
that V ′′+(W 0) > 0. Then, by Corollary 1, V ′′ (W ) > 0 on (W 0, W̄ ), since V ′′ (W ) = Ṽ ′′ (W )

for all W ∈ [0, W̄ ] \ {W 0}. Moreover, the agent’s HJB equation (13) implies that

γV
(
W 0
)

= −θ0 + V ′
(
W 0
) (
γW 0 + θ̄

)
+ V ′′+

(
W 0
) 1

2
ψ̄2

and
γV
(
W 0
)

= −θ0 + V ′
(
W 0
) (
γW 0 + θ

)
+ V ′′−

(
W 0
) 1

2
ψ̄2,

which together imply that

1

2
ψ̄2
(
V ′′+
(
W 0
)
− V ′′−

(
W 0
))

= −V ′
(
W 0
) (
θ̄ − θ

)
< 0,

since V ′(W 0) > 0 by Lemma 12. Thus, we have 0 < V ′′+ (W 0) < V ′′− (W 0). Corollary 1 then
implies that V ′′ (W ) > 0 for all W ∈ (Ws,W

0). By Lemma 16, V ′′ (W ) > 0 for W ∈ [0,Ws].
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Thus, overall, we have V ′′ (W ) > 0 for all W ∈ [0, W̄ ] \ {W 0}.
On (W 0, W̄ ), the agent’s HJB equation (13) implies that

γV (W ) = −θ0 + V ′ (W )
(
γW + θ̄

)
+ V ′′ (W )

1

2
ψ̄2

or equivalently

V ′′ (W )
1

2
ψ̄2 = γ (V (W )− V ′ (W )W ) +

(
θ0 − V ′ (W ) θ̄

)
.

Since V ′ (W ) > θ0/θ̄ on (W 0, W̄ ), the second term is negative. The first term is negative as
well. To see this, define

Z (W ) = V (W )− V ′ (W )W

and note that Z (0) = 0 and Z ′ (W ) = −V ′′ (W )W. Above, we have shown that V ′′ (W ) > 0

for allW ∈ [0, W̄ ] and thus Z ′ (W ) < 0. Since Z (0) = 0, this implies that Z (W ) < 0. Thus,
we have V ′′ (W ) < 0 on (W 0, W̄ ), which is a contradiction.

Hence, it must be the case that V ′′+ (W 0) ≤ 0. Then, Corollary 1 implies that V ′′ (W ) ≤ 0

for all W ∈ [W 0, W̄ ], which is what we set out to prove.

We thus have established that there are only two possible regimes. Either the agent works
for allW ∈ [0, W̄ ], or he shirks on [0,Ws) and works on [Ws, W̄ ]. Which of the regimes arises
depends solely on the initial slope of Ṽ (W ), which in turn depends on the effort cost θ0.

Lemma 18. There exists a cutoff θ̂0 such that for θ0 > θ̂0 the agent shirks for W < Ws and
for θ0 < θ̂0 the agent works for all W .

Proof. Let Vθ0 (W ) be the value function given effort cost parameter θ0 and Vθ0 (W,a) the
value function given a certain effort policy a ≡ {at}t≥0 with at = 1 on a set of time with
strictly positive measure. We have for any θ′0 > θ0

Vθ′0 (W,a) ≤ Vθ0 (W,a)

for any such a, and the inequality is strict for W > 0. Let

aθ0 ∈ arg sup
a
Vθ0 (W,a) .

Then,
Vθ′0 (W ) = Vθ′0

(
W,aθ′0

)
< Vθ′0

(
W,aθ′0

)
≤ Vθ0 (W, aθ0) = Vθ0 (W )

for W > 0. Thus, the value function Vθ0 (W ) is decreasing in θ0, uniformly for all W > 0.
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Since Vθ0 (0) = Vθ′0 (0) = 0 for all θ′0, θ0 > 0 by the boundary condition at zero, we must have
V ′θ0 (0) > V ′θ′0

(0) for θ′0 > θ0.
Consider the case θ0 = θ. We have Vθ (W ) > W for W > 0 and hence V ′ (0) > 1 > θ

θ̄
.

By Lemma 15, the only solution for an agent with θ0 = θ is to work at all W . Similarly, for
θ0 = θ̄, we must have Vθ̄ (W ) < W for W > 0. For this agent, V ′ (0) < 1 = θ0

θ̄
and hence the

agent shirks at W = 0. By Lemma 16, the agent works for all W ≥ Ws.
Given the existence of types which work at all W and shirk at W = 0, the result follows

from continuity and monotonicity of V ′θ0 (0) in θ0.

A.7 Proof of Proposition 5

Since the agent exerts effort whenever ψt ≥ ψ ≡ σ
µ
κ, the principal’s HJB equation for any

incentive compatible contract is given by

rJ (W ) = max
ψ′≥ψ

min
θ∈[θ,θ̄]

µ+ θ + J ′ (W ) (γW + κ) + J ′′ (W )
1

2
ψ′2

= max
ψ′≥ψ

µ+ θ + J ′ (W ) (γW + κ) + J ′′ (W )
1

2
ψ′2

with boundary conditions J (0) = L, J ′(W̄ ) = −1 and J ′′(W̄ ) = 0. This equation has a
unique, twice continuously differentiable and strictly concave solution, which follows from
a similar argument as in the proof of Proposition 1. Setting ψ to ψ̄ is optimal since J is
concave. The verification argument for this HJB equation is similar to the one in Proposition
1.

A.8 Proof of Proposition 6

The agent’s value satisfies the HJB equation

γV (W ) = max
a∈{0,1}

−κa+ V ′ (W )

(
γW + κa− ψ

σ
θ

)
+ V ′′ (W )

1

2
ψ2

on
[
0, W̄

]
with boundary conditions V (0) = 0 and V (W̄ ) = W̄ . This equation has a unique

twice continuously differentiable solution. Guessing V (W ) = W + C for some constant C
yields

γW + γC = max
a∈{0,1}

−κa+ γW + κa− ψ

σ
θ.
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Thus, a = 1 is optimal for all W ∈
[
0, W̄

]
and we have

C = − ψ

γσ
θ = − κ

γµ
θ > 0.

This establishes the proposition.

A.9 Proof of Proposition 7

That θAt = θ̄ for all t is the agent’s worst case can be seen directly from Equation (16). For
any contract α, we have

Ea,θA
[∫ τ

0

e−γt (dct − atdκt)
]
≥ Ea,θ̄

[∫ τ

0

e−γt (dct − atdκt)
]
,

where θ̄ =
{
θ̄
}
t≥0

is the constant process θ̄t = θ̄. We can now apply the martingale repre-
sentation theorem under P a,θ̄ (e.g. Shreve (2004), Corollary 5.3.2, p. 222) to get

dWt =
(
γWt + θ̄at

)
dt− dct + ψtdBt.

Exerting effort is incentive compatible whenever

ψt ≥ ψ̄ ≡ µ

σ
θ̄.

Suppose first that the principal is sophisticated. Then, her problem is given by Equation
(18). Her own worst-case θP does not affect the agent’s (true) value in Equation (16). Thus,
her HJB equation is

rJ (W ) = max
ψt≥ψ̄

min
θP∈[θ,θ̄]

µ+ J ′ (W )
(
γW + θ̄

)
+

1

2
ψ̄2J ′′ (W )

= max
ψt≥ψ̄

µ+ J ′ (W )
(
γW + θ̄

)
+

1

2
ψ̄2J ′′ (W )

with boundary conditions J (0) = L, J ′(W̄ ) = −1, and J ′′(W̄ ) = 0. This equation is
equivalent to the one in DeMarzo and Sannikov (2006) and their characterization applies.
The optimal contract is then identical to theirs.

Now, suppose that the principal is naive, i.e. she offers the contract of Proposition 1 and
believes that the agent evaluates this contract under P a∗,θ∗ . Since the agent’s worst-case
is given by θAt = θ̄, we can redefine θ0 = θ̄ in Proposition 4, which then characterizes the
agent’s optimal effort.

62



B Additional Results

B.1 Sufficient Condition for Effort

We now provide a sufficient condition so that implementing at = 1 for all t is optimal.

Proposition 9. Implementing at = 1 is optimal as long as for all W ∈
[
0, W̄

]
,

ψ̄ ∈ arg max
ψ≥0

min
θ∈{θ,θ̄}

(µ+ J ′ (W ) θ) a (ψ, θ) + J ′′ (W )
1

2
ψ2.

This holds whenever
J ′ (0) ≤ µ

θ̄ − θ
and

γrL ≥ (γ − r) µ
r
.

Since J (W ) is uniformly bounded below µ
r
, the first condition holds if θ̄−θ is sufficiently

small. The second condition guarantees that effort is always optimal,68 and is satisfied for γ
sufficiently close to r.

The proof is similar to the one in DeMarzo and Sannikov (2006), p. 2721f, which estab-
lishes an analogous result in their model. It is hence omitted.

B.2 Sophisticated Principal

The agent’s value is given by

W0 (α) = Ea,θ0

[∫ τ

0

e−γt (dct − atdκt)
]
.

Under measure P a,θ0 , the martingale representation theorem (e.g. Shreve (2004), Corollary
5.3.2, p. 222) implies that

dWt = (γWt + θ0at) dt− dct + ψtdB
a
t (40)

and the contract is incentive compatible whenever

ψt ≥
σ

µ
θ0. (41)

68See DeMarzo and Sannikov (2006), Proposition 8.
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The principal’s problem is

J0 = sup
α∈A

inf
θ∈Θ

Ea,θ

[∫ τ

0

e−rt (dXt − dct)
]

subject to incentive compatibility and participation for the agent, i.e. W0 (α) ≥ 0 and
Equations (40) and (41). Since θ does not affect the agent’s problem, it is irrelevant for the
principal. Thus, the principal’s problem is equivalent to the one in DeMarzo and Sannikov
(2006) and their characterization applies.
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