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ABSTRACT

The literature of applications of mathematical optimisation to the problem 
of setting fixed-time traffic signals at individual road junctions is 
reviewed. The methods developed so far have been confined largely to 
steady-state conditions. The research described in this thesis therefore 
aims to develop an optimisation technique to solve the problem of setting 
traffic signals for periods of time-varying demand.

Previous methods of optimising traffic signal timings with respect to the 
total delay in the junction in a single time period are unsatisfactory 
especially when the junction is oversaturated. The existing program 
OS CADY, although it assesses performance of the junction by means of the 
sheared queueing formulae, optimises with respect to other criteria. 
Optimisation of signal timings with respect to the existing sheared delay 
formulae gives rise to difficulties in optimising a non-convex, 
non-differentiable objective function. A new sheared delay formula has 
been developed in order to overcome these difficulties. The properties of 
this formula have been investigated and optimisation of signal timings with 
respect to this new formula has been implemented. The results have been 
compared with those given by the previous method SIGSET and an approximate 
method that avoids the difficulties in optimisation. The comparison shows 
that the new formula is appropriate for use in optimising traffic signals 
for a single period.

When traffic demands are different in successive periods, the signal 
settings that are optimal for each individual period, as given for example 
by the program OS CADY, are only local solutions to the problem. These 
settings may be readjusted and the changes between them shifted in time so 
that the overall performance for those periods taken together is improved. 
A sequential optimisation technique has been developed to minimise the 
total junction delay over the successive periods taken together by 
searching for the optimal signal timings and the time-shifts subject to 
certain queue length considerations. Some example calculations are made and 
the results show that such a technique can provide modest improvements in 
the junction control performance and give less delay than the existing 
methods that optimise only for individual periods.

Suggestions for further research are given, together with a list of 
references in this field.
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CHAPTER 1. INTRODUCTION

§1.1 BASIC CONCEPTS OF TRAFFIC SIGNAL CONTROL

The ever increasing car ownership throughout the world has significantly 
improved the quality of our lives. However, as a mixed blessing, it has 
also caused many serious problems such as traffic congestion, environmental 
pollution, and road accidents. To deal with these difficulties, a lot of 
efforts have been made, among which is the installation of numerous traffic 
signals. They are usually used to allocate the right of way to the 
conflicting traffic streams at busy urban street junctions, so that the 
traffic can cross safely and the road system can be used more effectively,
and by proper choice of the signal settings, the delay to the traffic, the 
number of stops and hence the fuel consumption can be reduced. They can 
also help to provide crossing facilities for other road users like 
pedestrians and cyclists, and to give priority to public transport and
emergency service vehicles.

There are two main types of traffic signals: fixed-time and vehicle
actuated. With fixed-time signals the settings are predetermined and of
fixed duration within a certain period of time, whereas the operation of 
vehicle-actuated signals is controlled partly or fully by traffic
approaching the junction, but in this kind of control, a preset schedule is 
also required when there is heavy traffic on all roads approaching the 
junction, especially if the junction is overloaded, or when faults occur in
the vehicle actuation apparatus. In the cases where the neighbouring 
different junctions are close enough, the signals at junctions can be
linked so that their operation is co-ordinated. Since the controllers for
fixed-time signals are relatively simple and cheaper, there are still many 
of them in use. Research on fixed-time traffic signals is still very 
important nowadays, both for the operation of such signals and for the 
preset schedules required by vehicle actuated signals.

In this thesis, the focus is put on fixed-time traffic signals at an 
isolated junction, i.e. a junction whose signal operation is not linked 
with the signals at other junctions.
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§1.2 DEFINITIONS

It is assumed in this thesis that the sequence of signal aspects is red, 
red-and-amber, green, and amber. This is the common practice in Britain.

The roads meeting at a signalised junction are usually divided into 
approaches. An approach can be regarded as an area of road leading to the 
junction and such that traffic waiting there to cross forms only a single 
queue (or behaves like a single queue). Therefore a road entering an
junction may have one or more approaches depending on whether all the 
traffic is following the same direction or there are different queues for 
each direction, and an approach may consist of several lanes. An approach 
has right of way when traffic from it is allowed to pass the signal. 
Similarly, a stream of traffic comprises either one lane or several 
adjacent lanes of traffic which behaves as a single queue independent of 
behaviour of traffic in any other adjacent lanes. A stream is the smallest
subdivision of traffic that need to be considered in calculating signal 
timings. Two or more traffic streams are called compatible if they can 
receive green indications simultaneously and therefore they may safely 
cross the junction simultaneously. The arrival rate of traffic in each 
stream is used to specify the pattern of traffic for which timings are to 
be calculated.

In fixed-time operation of traffic signals, two or more sets of mutually
compatible streams receive green in turn for specified times. One 
repetition of this process is called a signal cycle and its duration the 
cycle time. In traffic engineering practice, for each stream a signal 
cycle is usually divided into alternate periods called effective red and 
effective green times for that stream. It is assumed that in the 
effective red times, traffic in the stream cannot pass the signal, and in
the effective green periods, it passes the signal at a uniform rate called 
the saturation flow so long as there is a queue in the stream and passes as 
it arrives if there is no queue. The effective green period is related to 
but not the same as the green period that is actually displayed by the 
signals. The relationship depends on the behaviour of traffic in the 
stream and the junction layout, and may therefore differ among streams 
receiving the same signal indications. The value for saturation flow may 
be measured or estimated by using the relevant physical layout information 
for the stream (eg. width of the corresponding approach, number of lanes, 
gradient, etc), and details are given in TRRL report RR67 (Kimber et al
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1986).

A set of streams which always receive identical signal displays is called a
group. Two groups are said to be compatible if every stream in one group
can safely have green at the same time as every stream in the other. If
two groups are incompatible, a clearance time must elapse between the end 
of displayed green for one and the start of displayed green for the other.
A phase is the sequence of signal conditions given to one or more vehicle
or pedestrian streams of traffic so that each stream allocated to the phase
receives identical signal indications. A part of the cycle in which a
particular set of groups has green is called a stage. The arrangement for 
the change between stages subject to the clearance time requirements is the 
interstage structure. Usually there is more than one practicable 
interstage structure. The composition of the stages and their order in the 
cycle together form a sequence.

For any given sequence and interstage structures, the duration of each 
stage can be defined as the intersection of the displayed greens of the
groups having green in the stage. The time between one stage and next is 
called the interstage time which is determined by the clearance times and
the interstage structure. The time from the end of the effective green
time for one stage to the beginning of that for the next is called the
lost time following the former stage. The sum of the lost times over all 
the stages is called the total lost time per cycle. The proportion of the
cycle time that is effectively green for a stage is called the
effective green time for that stage. Some of the above definitions can be 
illustrated by Fig 1.1, where a typical cross-roads is described.

However, to establish the relationship between the effective green time for 
each stream and the effective green times for those stages in which this 
stream has right of way, the concept of extra effective green time for a
stream needs to be introduced. If a stream does not have right of way in 
every stage, its extra effective green time is the sum of the amounts by 
which the effective green time for that stream overlaps the lost times
before the first and after the last stage in which the stream has right of 
way. For a stream that has right of way in every stage then its extra 
effective green time is minus the amount by which the cycle time exceeds
the effective J green time for that stream.
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There are several measures of the performance of the signal timings for a 
stream. The capacity of the stream is the maximum long term rate at which 
traffic can enter the junction. The difference between the travel time of 
a vehicle and the time it would have taken if the prevailing level of 
traffic were present and the stream in which it travels had continuous 
right of way is called the delay incurred by this vehicle.

In order to make calculations of delay, the delay can be considered as 
occurring at the stopline, with the delayed vehicles travelling at 
undelayed speed until they reach the stopline where they decelerate 
instantaneously, spending their period of delay there before accelerating 
instantaneously back to undelayed speed to pass the junction. This can be 
illustrated by Fig 1.2.

Based on this assumption, the delay can further be regarded as coming from 
three sources:

(a) Randomness in the arrival of traffic.
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(b) Overload when the degree of saturation is greater than one for some 
time.

(c) Alternation of red and green which causes delay even to traffic that 
arrives uniformly.

Delay arising from (a) and (b) is called random delay, and addition delay 
caused by (c) is called uniform delay. They can be estimated separately. 
To measure the delays in a stream, two measurements can be used: the first 
is the average delay per pcu (or per vehicle), d, and the second is called 
the delay per unit time, D, which is regarded as the average of the number 
of vehicles that would be queueing at any time instant during a certain 
time period if the vehicles followed that simplified paths. This is 
preferable for use when time-dependent expressions for delays are employed.

Correspondingly, the traffic queues occurring at a signalised junction can 
be regarded as consisting of two parts: the random queue length and the
uniform queue length, and they are also estimated separately. Formulae for 
estimating queues and delays will be given explicitly in Chapter 3.

When estimating delay or queue lengths, the traffic is usually regarded as 
consisting of identical vehicles equivalent in size and performance to an 
average passenger car. Traffic flows are thus expressed in terms of these 
passenger car units (known as pcu’s) and actual vehicles of various types 
are considered as equivalent to different numbers of these units.

§1.3 CONSTRAINTS IMPOSED ON SIGNAL TIMINGS

To ensure safe and practical operation of fixed-time signals, some 
constraints have to be introduced. These usually include the following:

1) Clearance time constraints:
A clearance time must elapse between any consecutive green times for 
incompatible groups.

2) Cycle time constraint:
The cycle time should not be too long or too short, therefore a maximum 
or minimum cycle time or both may be introduced, or the cycle time can 
be specified.
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3) Green time constraints:
Maxima or minima or both may be imposed on the green times for various 
phases or stages or for both.

4) Maximum acceptable degree of saturation:
There should be a maximum acceptable value of X, the degree of
saturation, for each stream. This can be denoted by P, and the product
of P and the capacity of a stream is then called the practical capacity 
for that stream.

5) Queue length constraints:
Due to the physical layout of the junction, the maximum queue length at 
the end of the red for certain streams may be subject to an upper limit, 
or some penalty may be imposed on unnecessarily longer queues.

§1.4 NOTATION

The following commonly accepted notation will be used throughout this
thesis. Let

g = the effective green time for a stream in seconds 
r = the effective red time for a stream in seconds 
e = the extra effective green time for a stream in seconds
c = the cycle time in seconds (c = r + g)
X, = proportion of the cycle that is effectively green for a stage 
A = the proportion of the cycle that is effectively green for a

stream (A = g/c)
C = a parameter depending on the service patterns (C = 0.5 ~ 0.6) 
q = the average arrival rate for a stream in pcu/second
s = the saturation flow rate on a stream in pcu/second
y = the flow ratio of this stream (= q/s)
Q = the traffic capacity of a stream (= As)
X = the degree of saturation for a stream (= q/Q)
P = the maximum acceptable X for a stream
L = the queue length in pcu or the lost time per cycle in

seconds (whichever applicable) 
t = time instant
T = the length of a time period over which q and Q are assumed 

constant
d = the average delay to a pcu in a stream in seconds
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D = the delay per unit time (rate of delay) in pcu
W= the total delay over the period T (=DT)
j1 = the common factor by which q can be increased in each stream
a  = the reserve capacity as a percentage of the given arrival rate

Some subscripts will be used so that different variables can be represented 
by combining them with the above basic letters. The following rules apply
unless specified. If there are n streams in the junction, and there are m
stages in the signal cycle and there are p time periods during each of 
which the traffic flow in each stream is constant, then let

i denotes in stage i (i = 1, 2, m) 
j denotes in stream j (j = 1, 2, —, n)
k denotes during or at the end of (whichever applicable) the kth

time sub-period (k = 1, 2, —, p) 
r denotes the random component 
u denotes the uniform component 
e denotes equilibrium 
o denotes oversaturation 
0 denotes initial 
max denotes maximum value 
min denotes minimum value

And the stage matrix can be defined as

A = (aij) (j = 1, 2, •••, n; i = 1, 2, •••, m)

aoj = proportion of the lost time that is effectively green for

Where
1 if stream j has green in stage i

0 if not

Also define

stream j. (j = 1, 2, - ,  n)

fa = total lost time over the cycle time, i.e. fa) = L/c
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In the stage-based method (definition given below in §1.7), the proportion 
of the effective green time for stream j in the junction can then be 
expressed as:

m
Aj = £  aijXi (j = 1, 2, n; i = 1, 2, —, m)

i =o
( 1. 1)

§1.5 EVALUATION OF JUNCTION PERFORMANCE

To evaluate the performance of a signalised junction, a number of different 
criteria can be applied. One criterion is known as the reserve capacity 
denoted by a, and can be given by:

Where p is a common factor which can be defined as the maximum positive 
multiplier that can be applied to the arrival rate in each stream whilst 
satisfactory operation can be assured. If p > 1 (i.e. o>0), then the
junction is said to be within capacity; If p < l(i.e. a<0), then the 
junction is overloaded. For known signal settings, a  can also be given by:

a  = 100-(p-l)% (1.1a)

=Min(aj) (1.1b)

where (1.2)

and aj is called the reserve capacity for stream j.

In most cases, however, the total rate of delay is the most commonly used 
criterion. This is the sum over all streams of the delay per unit time,



Or alternatively, the total delay over a certain period of time for a 
stream can be defined as:

Wj = DjT (1.4)

Hence the total delay over T for the junction can be defined as:

n
w = l  Wj (1.5a)

j= i

or W= DT (1.5b)

Where D is defined by (1.3).

Formula (1.5b) shows that to set traffic signals for a single time period T
during which all the q are constant, whether to use the total rate of delay 
D or to use the total delay over the period, W, as a performance index,
will make no difference in the resulting signal settings.

In addition, other criteria may include:

(a) The degree of saturation, which is defined as the ratio of flow rate to 
capacity for a particular stream, i.e. X = q/Q. If X < 1, then the stream
is undersaturated; whereas if X > 1, then the stream is oversaturated.
Therefore for a junction, if all the streams are undersaturated, then the
junction is undersaturated; However, if at least one of the streams is
oversaturated, the the junction is oversaturated.

It should be pointed out that the terms oversaturated and overloaded are
related but not necessarily the same. If the maximum acceptable degree of
saturation P = 1, then they are the same, i.e. an oversaturated junction 
can also be said to be an overloaded junction; But if P < 1 (e.g. P=0.9), 
then they are different: a junction may for certain arrival rates be
overloaded but also be undersaturated.

(b) The critical cycle time, which is the shortest cycle time that will 
ensure each stream operates within its practical capacity;

(c) Stop rate, i.e. average number of vehicles that have to stop per unit 
time;

18



(d) Fuel consumption;

(e) Queue lengths.

§1.6 TASKS INVOLVED IN CALCULATING SIGNAL SETTINGS

Generally, the ' following factors should be considered when calculating 
signal settings either for a given signalised road junction or in the case 
of designing such a junction:

(a) Determination of the clearance times required for the 
conflicting groups;

(b) Choice of stage composition;
(c) Choice of stage sequence and interstages;
(d) Calculation of cycle time and green times with respect to one

or more of the performance criteria in §1.5;
(e) Performance evaluation of the junction as a consequence of the 

timings calculated in (d).

§1.7 TWO KINDS OF CONTROL

Two kinds of control have been used at single road junctions. In 
stage-based control, the duration of stages are considered as the main
variables, and only (d) and (e) are involved in the calculation process, 
whereas (a), (b) and (c) are supposed to be predetermined. Hence it has
some disadvantages, e.g. it requires the user to specify the stage
sequence, the stage composition and the duration and details of the
transition periods. In the more flexible approach called phase-based
control, however, all the above factors ((a)-(e)) are considered and 
calculated together, so that the control efficiency can be enhanced.

The new methods described in this thesis are equally relevant to both 
approaches, but have been developed and tested using the stage-based 
approach to signal optimisation because methods based on it are better 
established and easier to implement and adapt. The literature review given 
in the next Chapter also extends to the phase-based approach, which has
been fully implemented only concurrently with the work described here.
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§1.8 ORGANISATION OF THE THESIS

Chapter 1 gives a brief introduction to the fundamentals of traffic signals
and the basic definitions and notation.

Chapter 2 reviews the existing methods of setting traffic signals for a
single junction, most of which are stage-based, but a survey is also made 
for the more advanced phase-based method. The literature review suggests 
that to set traffic signals for a single time period with respect to 
minimum total delay, these methods are unsatisfactory especially when the 
junctions may be oversaturated. When traffic demands are different in 
successive periods, only the program OS CADY can model the situation but 
even this can only optimise for each periods individually.

Chapter 3 studies the various formulae available for estimating queues and 
delays. Those formulae that are appropriate in different situations are 
identified. The results suggest that the formulae for estimating queues 
and delays used in OS CADY have some deficiencies, although they will be
used for evaluation in the subsequent chapters for the convenience of 
comparing the outputs of the present method with OSCADY.

Chapter 4 discusses the problem of setting traffic signals for a single 
time period. The limitations of the existing methods and the difficulties 
of further improvement are identified. A new delay expression is 
established to overcome these difficulties. Some example calculations show 
that this approach is appropriate for optimising traffic signals for a
single period.

Chapter 5 focuses on the problem where there is more than one time period 
to be modelled during each of which the traffic flow for each stream is 
regarded as constant. A sequential optimisation technique taking into 
account the subsequent delays after the end of the whole time periods is 
developed which will in most cases finds the global optimum of the signal 
settings. A few example illustrations suggest that such a method can give 
somewhat better results than the previous methods like OSCADY.

Chapter 6 gives some concluding remarks and some suggestions for further 
work, followed by a list of References.
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CHAPTER 2 EXISTING METHODS OF SETTING TRAFFIC SIGNALS 
FOR A SINGLE JUNCTION

§2.1 INTRODUCTION

The traditional methods of calculating the optimal signal settings for an 
isolated junction are mostly stage-based. As mentioned above, this kind of
control needs the predetermination of the stage composition and the stage 
sequence according to the junction layout and the requirements for safety
and convenience. The optimisation process only involves the calculation of 
cycle time and the allocation of green times to each stage, therefore to
each traffic stream.

There are different criteria that can be used as a performance index in the 
calculation of optimal signal timings, e.g. average total rate of delay, 
total delay, the reserve capacity of the junction, the stop rate, or fuel
consumption. Very often delay minimisation is performed, but sometimes 
other criteria are also needed, and combinations of them may be used in
some cases.

According to the assumptions made and the range of application, the 
theoretical background for the various approaches could until the last ten 
years or so be divided into two categories: the steady-state stochastic
theory and the deterministic theory. The former is conventional and can
be used to solve the problems of setting traffic signals for undersaturated
junctions where an equilibrium condition usually exists. The deterministic
queueing theory, on the other hand, can deal with the situations when the
junctions are substantially overloaded. But when the junction operates 
nearly at or just over their capacity, which is the most important region 
of operation during the peak period or even for normal traffic condition, 
both of the above theories fail to give satisfactory results. A relatively
recent approach, based on an idea proposed by P.D. Whiting, has been
developed by various authors to establish a so-called sheared delay formula 
to treat the whole range of traffic demand for estimating the random delay, 
including variation over time. But so far there has been no single 
comprehensive formula available for estimating the total delay (random +
uniform) for the whole range of the degree of saturation.

21



The literature on the fixed-time control of a single junction with the more 
advanced phase-based approach is also reviewed in this thesis, although the 
framework for this thesis is set up under the stage-based approach.

§2.2 STEADY-STATE THEORETICAL MODELS FOR ESTIMATING DELAYS

§2.2.1 Introduction

For an undersaturated junction, the traffic will reach a steady state or 
equilibrium. Theoretical studies of fixed-time control for a single 
junction that is undersaturated have been made by a lot of researchers 
(e.g. Clayton 1941, Wardrop 1952, Webster 1958, Miller 1963, 1968, Webster 
and Cobbe 1966, Allsop 1970, 1971, 1972, 1976, Ohno 1978, etc). Different 
expressions for vehicular arrival model, departure model and delay have 
been derived. Mainly there are three kinds of arrival models: Regular 
Arrivals, Binomial Arrivals and Poisson Arrivals. A detailed analysis of 
these expressions has been given by Allsop (1972) and numerical 
comparisons has also been made by Hutchinson (1972). However, it is a 
common practice to assume that the arrival process is Poisson, and the 
departure of the vehicles happens at equal time intervals 5t=l/s (s is the 
saturation flow rate) so long as there is still a queue, and the departure 
time of the first vehicle coincides with the start of the effective green

§2.2.2 Various Models For Estimating The Delay Per Pcu

In the past a number of formulae have been derived for the calculation of 
delay, capacity and queue length, and the theoretical results have been in 
many cases compared with field data. Among the different expressions for 
estimating delay at a signalised junction, the most important ones are 
those of Webster (1958), Miller (1963), Newell(1965) and Ohno (1978). 
Webster's full expression based on a Poisson arrival model for the average 
delay per pcu in seconds is:

time.

c \ 1/3X(2+5A) (2.1)
2(1-AX) 2q( 1 -X)

Here the subscript e stands for 'equilibrium'.
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By making a digital simulation and regression analysis, Webster pointed out 
that the third term in the above expression represented between 5% and 15% 
of the total d, hence a simplified formula (known as Webster's two-term 
delay formula) can be given by:

de— c( l -A) +
10 v 2(1-AX) 2q( 1 -X)

X *  i
1-X) /

(2.2)

Miller (1963) also used the Poisson arrival model to obtain the following 
expression:

de— i

( 1 - A ) 

2(1-AX)

(1-A)
2(1-AX)

fc(l-A) + ■(2 X -1 )  j  + I+AX-1 ] 
L q ( 1-X) s

X > 0.5

(2.3)

c(l-A) + I+AX-1 X < 0.5

variance of the number of arrivals per cycle
where I = --------------------------------------------------------------------

mean number of arrivals per cycle

Newell (1965) considered a more general arrival and departure process, 
derived the formula which also contains the ratio I:

c ( l - A ) IH(£)X 1(1 - A )
d e =  ------ + --------------+ -----------------

2(1-AX) 2q (l-X ) 2s(l-A X )2

where % = (sg-qc)/(Isg) is a dimensionless measure of the spare capacity 
of the stream, and H(^) is a function, obtained by numerical integration, 
ranging from 1 to zero as £ varies from zero to infinity.

Ohno (1978) made a stochastic analysis to adapt the formulae by earlier 
researchers such as Miller to obtain several delay formulae, e.g. the 
modified Miller's expression is:

de= - ± A _  / C(l-A) +—?—Nm + - L  + - 1 ----  )  (2.5)
2 (1 -y) I 1 s s(l-y) >
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where

Nm =the average overflow queue, which is the average queue at the 
beginning of the red periods.

It has been shown (Hutchinson 1972) that Webster's and Miller's formulae 
agree quite closely, but Webster's expression has the advantage of 
algebraic simplicity over the other expressions, and it has been shown to 
be quite consistent with observed data, it requires only the measurement of 
arrival rate and saturation flow rate and hence avoids the difficulty of 
measuring the I ratio. Since a model should be kept as simple as possible, 
but should also provide a adequate level of accuracy for the estimation of 
delay, Webster's formula has been widely used both in theoretical analysis 
and practical work. Webster's two-term delay formula is also convex, which 
has been proved by Allsop (1971) and Murchland (1977), both of whom use the 
positive matrix method, and later by Gallivan (1982) who uses the geometric 
approach.

§2.2.3 The General Model For Estimating The Delay Per Unit Time

As stated above, of all the above mentioned models, the expression (2.1) by 
Webster is the most popular one, but it is established in terms of the 
delay per pcu, de. However, it can also be expressed in terms of delay per 
unit time, Dc. Corresponding to (2.1), De can be expressed as:

9
De — qde = ----- (Dre + Due (2.6)

10

where

(2.7a)

(2.7b)
2 (l-y )

However, it has since become usual practice to estimate the delay as the 
sum of Dre and Due, i.e.



Generally, as pointed out by Kimber & Hollis (1979), the random delay per 
unit time, Dre, can be expressed as:

C X  2Dre = -■* (2.8b)
1 -X

Where Dre is derived from the classical queueing theory, and Due is the 
same as in (2.7).

In (2.8b) C is a parameter depending on the departure pattern; for traffic 
signals usually C = 0.5 ~ 0.6. Clearly (2.7a) is a special case of (2.8) 
when C=0.5.

In this thesis, C is taken as 0.6 (for the reason given in §3.4 in Chapter 

3)-

§2.3 DETERMINISTIC THEORY AND THE COORDINATE TRANSFORMATION 

§2.3.1 Introduction

The basic assumption for the steady-state theory is that the junction is 
operating within capacity and an equilibrium always exists, so that there 
are no queues accumulating continuously. However, congestion often happens 
in real life, particularly during peak periods, and in this case the demand 
will often exceed capacity. Hence formulae such as Webster's cannot be 
used to treat the oversaturation problems, since as the degree of 
saturation approaches one they predict infinite delay, which is not 
realistic, and if it is greater than one no steady-state result exists. 
Although congestion is a complicated problem associated with not only the 
operation of traffic signals but also many other factors such as the 
junction layout, proper signalisation may still reduce the oversaturation 
and even to a minimum: that is the optimal design problem for oversaturated 
junctions. Deterministic queueing theory can be used to treat this kind of 
problem, but will seriously underestimate delay when demand and capacity 
are nearly equal.

The steady-state models involve the estimation of both the random delay and 
the uniform delay. Since the random delay is the only source for the delay 
at non-signalised junctions, and is the dominating component of the delays 
in streams with high degrees of saturation at signalised junctions, in

25



relation to the estimation of random delay a lot of progress has been 
achieved in the past in both theoretical analysis and practical operation. 
For example, the coordinate transformation technique makes it possible to 
establish an approximate model which can be used to estimate the random 
delay to solve the problems ranging from undersaturation to oversaturation. 
So far there has been no similar model for estimating the uniform delay or
the sum of random and uniform delay.

§2.3.2 Determinstic Models

These models estimate the queues and delays by assuming that the traffic in 
a stream will arrive uniformly at a constant rate q and departs at a rate Q 
(Q is the capacity of the stream). For example, the random delay per unit
time in a stream can be estimated by the time-dependent expression:

Dro = Lio + 0.5(q - Q)t (2.9)

And the uniform delay is (see §3.3.2):

Duo = 0.5Qc(l-A) (2.10)

Here the subscript o stands for 'oversaturation', since the determinstic
expressions are used for oversaturated streams.

Expressions such as (2.9) are quite useful for estimating the random delay 
when X > 1, but they are not applicable to undersaturated situations, due 
to the limitations of their assumptions and that of their models. For 
example, the assumption that the random queues grow at a rate determined 
only by the excess of demand over capacity, i.e. (q-Q), and decay when the 
demand has fallen below capacity at a rate given by the difference of Q and 
q ignores the important effects of random fluctuations in arrivals and
departures, hence may underestimate delay.

§2.3.3 The Development of Comprehensive Formulae

The limitations of both the steady-state models and the determinstic models 
raise the need for more powerful models that can be used to treat the full 
range of the degree of saturation. As a first step, a lot of efforts have 
been devoted to establishing comprehensive models for estimating the random 
delay and random queue length, which will be outlined below.
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Mayne (1976, 1979) used some results on the transient queueing theory (e.g. 
De Smit 1971) and transformed the existing formulae into formulae using 
binomial distribution and Poisson distribution, then applied statistical 
distribution approximations and other techniques of numerical analysis to 
give comprehensive queue and delay formulae suitable for all degrees of 
saturation. In this model, a non-zero initial queue length was considered.

Kimber et al (1977) assessed the delays occurring at major/minor priority 
junctions during peak periods by using the queue length and delay functions 
developed by applying the coordinate transformation on the basis of zero 
initial queue lengths. The random arrival/random service model (M/M/1) is 
employed for the calculations. The transformation was originally suggested 
by P. D. Whiting and is used in calculating delays at traffic signals in 
TRANSYT 6.

Catling (1977) adapted equations of classical queueing theory (e.g.
POLLACZEK-KHINTCHINE equation) to oversaturated traffic conditions and gave 
time-dependent expressions for delay and queue length which cover the case
when there are non-zero initial queues at the start of the time period
considered. In Catling's model a parameter C is introduced which is a 
constant depending on the service time patterns. Branston (1978) compared 
the estimated queue lengths given by Mayne and Catling with those actually 
observed during three peak periods in London for different divisions of the 
peak period. He analysed the sensitivity of estimated queue lengths and 
delays at oversaturated signal junctions to the methods of making the 
division. He concluded that both formulae can give good representations of 
observed data, but they are dependent on the saturation flow. The peak 
period can normally be divided into a series of about 10 -  15 minute time 
intervals and C = 0.55 can be used as a most appropriate choice for traffic 
signals.

Kimber and Hollis (1978, 1979) extended the previous results given by 
different authors and generalised them into formulae suitable for a number 
of more common cases. They gave detailed derivations of queue length and 
delay formulae, and the resulting formulae can be applied to treat not only 
signalised junctions but also roundabouts, priority junctions and motorway 
merges. Two approaches are used, i.e. high-definition representation which
has applications in engineering design and low-definition representation 
which is applicable to the economic assessment of junction performance.
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Akcelik (1982) presented new approximate expressions for predicting delay, 
stop rate and queue length at signalised junctions in terms of the overflow 
queue concept. Each expression consists of two parts: the uniform
component and the overflow component. His method differs from the 
previous ones in that he transforms Miller's steady-state equation instead 
of Webster's into a time-dependent expression. Cronje (1983) treated the 
traffic flow through a fixed-time signal as a Markov process and developed 
equations for estimating delay, queue length and stops. Later he (Cronje 
1986) compared the formulae given by himself and Mayne and Catling by 
simulation method, and concluded that his formula is better than the other 
two.

Kimber and Hollis's expressions for random delay and random queue length, 
currently the most widely-used in British practice, are based on the
so-called coordinate transformation technique. For example, to obtain the
comprehensive formula for estimating the random delay per unit time, first
consider the random delay expressions by the steady-state theory and
the determinstic theory:

cxl
f Dre = Xe<l (S teady-state theory) (2.11a)

Dr = I
1 - X c

Dro = L r o +0.5Q t(X o-1) Xo>l (Determinstic theory) (2.11b)

From (2.11b) we have:

Xo = ,2D ;  ° ~2Lr0 , + 1 (2.12)
Qt

In Fig. 2.1, let the line segments AA' and BB' be equal, i.e. let

1 - Xe = Xo - X (2.13)

Where X is the degree of saturation in the expression for Dr.

Hence

Xe = X + 1 - Xo = qH' 2 L ,0 ~2D r° (2.14)
Qt
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Dro
LrO

Xe X Xo

Fig 2.1 The Coordinate Transformation

Substituting Xe into (2.11a), and let Dre = Dro = Dr, by solving a quadratic 
equation, we have

Dr = 0.5 ( / A + B - A (2.15)

where

A = (Qt) + ( 4 C - Q  t )(qt+2Lro) 

2 ( Q t - 2 C )

B = 2 C ( q t + 2 L r o ) i

Q t - 2 C

However, this formula only gives an estimation for the random delay, and in 
the case of traffic signals, the uniform delay should also be considered. 
This thesis solves this problem in Chapter 4, where the idea of coordinate 
transformation is adopted to develop a new comprehensive formula which can 
be used for estimating the total delay (random + uniform).
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§2.4 TRAFFIC SIGNAL SETTINGS FOR A SINGLE JUNCTION

§2.4.1 The Undersaturated Junctions

The calculation of signal timings, i.e. the cycle time and green times 
which yield satisfactory operating conditions, is determined by a selection
of a performance index to represent the effect of the signal settings on
the traffic conditions. For a junction that is undersaturated, the 
commonly accepted criterion is that of minimising the average total rate 
of delay to the traffic in all streams at this junction, since the delay
expressions are relatively simple and easy to calculate, and the reduction 
in delay usually results in a reduction in fuel consumption, queue length
and the probability of vehicular stops. Research on delay-minimising has 
been done, for example, by Webster (1958, — and Cobbe, 1966), Miller 
(1963, 1968) and AIIsop (1971).

Webster (1958) used his two-term expression for average delay per vehicle
to calculate the total rate of delay at the junction. He assumed the
selection of representative stream for each stage, that is, the stream
which has the highest flow ratio (y values) in each stage. To deduce an
expression for the cycle time which gives the least average delay to all
traffic, he differentiated the equation for the overall delay at the
junction with respect to the cycle time, and found that the cycle time with
the minimum delay could be represented approximately by

CO = --------1--5-L -+ 5------------ = Vi-L + 5 seconds (2.16)
i - yi - y z  ym 1 - y

where yi, y2, —, ym are the maximum ratios of flow to saturation flow for
stages 1, 2, —, m, Y = Zyi and L is the total lost time per cycle in
seconds. This formula applies as stated only if each representative stream
has green only in the stage it represents. In other cases it can still be
used but there are further steps in the calculation.

The green times can also be decided by letting the ratio of the effective
green times be equal to the ratio of the y values, i.e.

gi yi
-  = —  (2.17)
g2 y2
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This is the case for the two stage situation, and can be extended to 3 or
more stage operation. In (2.17) gi and g2 are the effective green times of 
stage 1 and 2 respectively.

Miller (1963, 1968) considered the case of a two-stage intersection, and
derived the cycle time that yields the least total delay:

L + 2(1 i L/Si)1/2
c = ------------------------  (2.18)

1 -  ( y i / 7 t i )

where i is the direction that has the highest flow, and m denotes the
proportion of the available green time allocated to stream i, i.e.
gi = 7ti(c-L), and is given by

( y i I i ) 1/2+  1 - 2 ( y i y j ) 1 / 2 { ( y i I j ) 1 / 2  -  ( y j l i ) 172}
7Ci =  -----------------------------------------------------------------------------------------------, r  \  1 / 2  . /  j  x l / 2(y il i )  + (yJIj)

(2.19)
where i=l and j=2 or vice versa.

For three or more stages, the allocation of green time is found by solving
a set of equations. This method is similar to Webster's in that it also 
requires the selection of a representative stream for each stage, and the 
two methods give very similar results.

Although Webster's method is quite straightforward and gives satisfactory 
results for simple junctions, it may just give the signal settings which 
would be no more than a reasonable approximation to the optimum when the 
junctions are more complicated. Both Webster's and Miller's methods are 
limited by the selection of a representative stream in each stage.

Allsop (1970, 1971) began the systematic application of optimization
techniques to solve the problem. His method uses the same criterion of 
minimising the estimated average total rate of delay, but differs from
previous methods in that it considers all the streams to the junction
rather than only the representative streams so that it is easily applicable 
to complicated situations.
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He shows that the optimisation problem can be solved by a convex 
programming approach. Mathematically, the problem can be expressed as:

Minimise De(X) = X {—!— fj(Aj) + gj(Aj)} (2.20)
~~ j = 1 Xo

where X  = (Xo,  Xi, —, Xm)

fj(Aj) = L qj(1' Aj) 0=1. 2, n)
2( l -y  j )

gj(Aj) =  U —  0=1. 2, n)
2Aj(Aj-yj)

Aj =Xaijfa (j=1> 2, •••, n) (2.21)
i = 0

and 0 < aoj < 1 (j=l, 2, •••, n) (2.22)

subject to the constraints

S(X) = X Xi = 1 (i=l, 2, m) (2.23)
i = 0

X aiĵ i >  yj/Pj (j=l, 2, n) (2.24)
i = 0

where Pj is the maximum acceptable degree of saturation for stream j.

(capacity constraints)

Xo = ko or Xo > ko (cycle-time constraint) (2.25)

and X\ > kAo (i=l, 2, —, m) (2.26)

(minimum green constraints) 

where 0 < ki < 1 (i=l, 2, •••, m) (2.27)

and if ko;*0, X ki < 1/ko - 1 (2.28)
i = 0
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where m = the number of stages in the signal cycle
n = the number of streams 
Xo= L/c
aoj = proportion of the total lost time that is effectively green 

for stream j

L/cm if it is required that c < Cm

Then the vector X will completely determine the signal settings, and the X 
that minimises D(^) is the optimal solution, which can be obtained by a 
steep descent method. As a result of this method, a well known computer 
program SIGSET was developed (Allsop 1971b).

There is very little difference between the methods of Webster's and 
AIIsop's when they are used for simple junctions, but Allsop's method gives 
more reduction in delay than that of Webster's when the junctions are 
complicated.

The stage-based modelling method by Allsop is used as the framework for 
this thesis.

The above introduced methods can be used for delay-minimising signal 
settings for an undersaturated junction. When it is possible that the 
junction becomes oversaturated, they cannot be used directly due to the 
deficiencies of their models. The next section §2.4.2 introduces methods 
that may be used for the potentially oversaturated junctions.

L/cs if it is required that c = Cs

(2.29)

where Cm = maximum cycle time 
Cs = specified cycle time 
ki — gim/L (i=l, 2, - ,  m)
gim= minimum effective green time for stage i

(i=l, 2, •••, m)
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§2.4.2 Junctions That May Be Oversaturated

Although formulae like (2.15) are available for estimating the random delay 
per unit time for any X, different expressions for the uniform delay Du 
have to be used when X<1 and X>1. For example, when X < 1, the delay per 
unit time can be expressed as:

D — De — Dr + Due (2.30a)

where Dr is given by (2.15), and Due by (2.7b).

When X > 1, D becomes:

D — Do — Dr + Duo (2.30b)

where Dr is still given by (15), but Duo is given by (2.10).

The different expressions for Du in the different range of X will cause 
difficulties when we minimise the delay for a junction at which some or all 
of the streams in the junction may be oversaturated, since in this case Du 

is non-convex in A and non-differentiable (therefore D = Dr + Du is
non-convex and non-differentiable), and analytical methods that have to use 
the derivatives such as aD/aA will fail. This problem will be discussed 
further in §4.2 in the next Chapter.

Generally, the current methods of setting traffic signals for a junction 
that may be oversaturated can be divided into three categories:

(1) Methods that use the total rate of delay or total delay as the
objective function, but when X > 1, still use Due instead of Duo, i.e. the
traffic signal settings are obtained through minimising (2.30a) for any X, 
therefore give an inaccurate estimate of the uniform delay when X > 1,
since Duo and Due are different. However, by such a treatment, the 
difficulties arising from non-convexity and non-differentiablity can be 
avoided, since Due becomes convex and differentiable.

(2) Methods that find the optimum traffic signal settings with respect to 
other objective functions rather than delay.
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(3) Methods that use different objective functions for different X. i.e. 
when X < 1, minimising the delay, when X > 1, maximising the junction 
capacity.

It should be pointed out that some computer programs are capable of finding 
the optimum traffic signal settings with respect to different alternative 
objective functions, therefore they may belong to more than one of the 
three classes above.

Examples of (1) are the TRAFSIG method (Reljic 1988) and SIGSIGN (Sang and 
Silcock 1989). The latter is a phase-based program. The phase-based 
approach is reviewed in §2.5.

Examples of (2) are :

(a) Maximising the junction capacity, e.g. the SIGCAP method (Allsop 1972, 
1976), the TRAFSIG method and the SIDRA-2 method (Akcelik and Besley 1984);

(b) Minimising the degree of saturation (Ohno and Mine 1973).

(c) Minimising the stop rate or fuel consumption, e.g. the TRAFSIG method.

An example of (3) is the program OSCADY (Burrow 1987).

The next part §2.5 gives a brief review on the phase-based approach. 
Although it is not going to be employed in establishing the framework for 
the research in this thesis, it does provide the possibility for further 
improvements, as a more flexible technique, and the new methods developed 
in this thesis are applicable to it.

§2.5. THE PHASE-BASED CONTROL METHOD

§2.5.1 Introduction

Almost all of the above-mentioned methods are stage-based. However, the 
development of modern microprocessor controllers has made it possible to 
achieve a new type of control — the phase-based control approach to meet 
the increasing complexity of signalised junctions. To illustrate the 
differences between the two methods, first we need to review some important 
terminology. A phase is the sequence of signal conditions given to one or
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more vehicle or pedestrian streams of traffic so that each stream allocated
to the phase receives identical signal indications. A stage is a part of 
the signal cycle during which a particular set of phases gets green. Each 
stage is usually separated in the signal cycle by a stage intergreen period 
which is calculated from the clearance times required between streams
losing green and streams gaining green. A stage sequence is the order in 
which the stages occur in a signal cycle.

In stage-based control methods, the interstage structure and sequence is 
determined as an initial step; only the cycle time and the green timings
are regarded as variables, and calculated to optimise a certain objective
function, e.g. delay, number of stops, or capacity. For each stage the 
calculation of the clearance times must be made for all the pairs of
streams which could conflict, but the duration of the stage intergreen will 
usually be the maximum of the results. Even if a more complicated
interstage structure is used, this has to be chosen manally and not as part 
of the optimisation process. Since the stage composition and sequence are
externally fixed, the stage-based approach cannot assure a globally optimal
control system design. Whereas in phase-based control, the phase-to-phase 
intergreens can be set directly in the signal controller rather than
grouped into stages. Thus when changing the stages, the starts and ends of 
each phase can be staggered according to the intergreen time required 
between conflicting phases instead of all the phase greens starting and
ending simultaneously. The stage sequence and interstage structure, 
together with the cycle time and green times, are all considered as
variables, so a global optimum can be attained, at least in principle.

§2.5.2 Previous Work

The first important work was done by Stoffers (1968), who develops the idea 
of joint optimisation of stage composition, stage sequence, cycle time and 
green times. He defines the stage matrix, then subdivides the problem into 
three separate steps: (i) find all the stages that agree with the
compatibility matrix; (ii) construct all maximal stage sequences which 
yield one green interval per cycle for each of these phases; (iii) find the 
optimal schedule for each possible stage sequence.

Tully (1977) continued Stoffers's work in her PhD thesis. She develops the 
computer program SQGN which determines all possible stages and maximal 
stage sequences. Each such sequence and their subsequences need to be
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evaluated. However, when the number of sequences generated is big,
evaluation is very difficult, and also in this case the computer cost is 
not negligible.

Tully and Murchland (1978) use the critical cycle time as an evaluation
parameter to reduce the number of sequences. Only those sequences that have 
a good value of the critical time would be further explored, hence the
computation time could be reduced to some extent. The above procedures 
give every phase only a single green interval, thus limiting their use.
Improvements have been made to introduce double green facilities in a 
modified version of SQGN (Heydecker 1982, Morton 1987).

Improta and Cantarella (1984) propose an approach to the problem which 
allows all the control variables to be incorporated into a binary
mixed-integer linear programming model. They use binary variables to
represent the order in which each pair of incompatible groups receive green 
and the mixed-integer optimisation is performed by a Branch-and-Bound
method.

Gallivan and Heydecker (1988) use the maximal sequences generated by SQGN 
as a basis to solve the optimisation problem. They consider the signal 
timings for each group directly instead of through the stages, and this 
makes it convenient to express the control variables. As a result, the
optimization problems are either linear or convex, depending on the form of 
objective functions and the type of constraints, and can be solved by
mathematical programming approach. However, the stage sequence is
difficult to optimise when the number of sequences generated by SQGN is 
big.

MOIler (1987) developed an approach which minimises the number of 
constraints by considering the constraints on clearance times; some of 
those constraints can be omitted under practical conditions. The resulting 
optimization problems are linear for the minimum cycle time and maximum 
capacity, and a convex objective function can be used for the minimum 
delay. Finally, an event-based approach can be used in the case of 
coordinating traffic signals.
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§2.5.3 The Variables and Constraints

In the phase-based control method, the main variables are the time during a 
cycle at which each phase first gets green and the duration of that green
interval. The signal cycle is represented by the interval (0,c), where c
is the cycle time. If N is the number of phases and M is the number of 
stages required to appear, then

0i = the proportion of the start of the green for phase i in the
cycle time (l<i<N)

<j)i = the proportion of the duration of the green for phase i in
the cycle time (l<i<N)

Qi = the proportion of the start of the minimum or core green for
stage i in the cycle time, where stage i is the ith stage
required to appear (l<i<M)

The cycle time is represented indirectly by using the variable T = 1/c

By definition, the Variables & and <|>i should satisfy the
constraints:

0<9i (l<i<N) (2.31a)
and

0<<J)i< 1 (l<i<N) (2.31b)

The optimisation of these variables is also subject to a number of
practical engineering constraints for the sake of safety and efficiency.
One important constraint is the intergreen time requirement to ensure that
the start of phase i is at least one intergreen time later than the end of
phase j. If 0j+<J)j-i-Iji<l, Then the constraint would be:

0j -K>j + Iji < 0i (l<i,j<N) (2.32)

and if 0j+<|>j+lji>l, then

0j -Kb + Iji - 1 < 0i (l<i,j<N) (2.33)

Iji = the proportion of the intergreen time in the cycle time from phase j
to phase i, which depends on the geometric layout of the junctions.
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The reason for the correction of -1 in (2.33) is that both 0i and 0j are 
measured from the start of the same cycle in both (2.32) and (2.33), 
whereas the right hand side of (2.33) would, if the -1 were not 
substracted, relate to the next occurance of green for phase v.

In practice the cycle time can be either specified or subject to a maximum 
value. In the former case the cycle time should satisfy

T <  1/cs (2.34a)
and

T >  1/cs (2.34b)

In the latter case, however, the constraint becomes

T >  1/C m  ( 2 . 3 5 )

where

cs = specified cycle time 
Cm = maximum cycle time

Similarly, the green time for each phase is subject to the following 
constraint:

4>im <  <l>i (l<i<N) (2.36a)

if there is a minimum green time (})im for phase i, and

({)is <  <t>i <  <{>is (l<i<N) (2.36b)

If the green time for phase i is specified as (|)is.

Further constraints are needed to specify that particular stages should 
appear in the solution with some minimum duration and that they should 
occur in a particular order. First define pi as the minimum or core green 
for the ith stage required to appear (l<i<M, M is the number of stages 
required to appear). If there is just one stage which is required to 
appear, then its core green is set to start at the origin; if there is more 
than one stage required to appear, then the core green of the first

39



specified stage is set to start at the origin. For each phase in a
required stage, there are two constraints. The two constraints need only 
be specified once for each phase, even when the phase appears in more than 
one required stage. Let Fi be the first stage required to appear in which 
phase i gets green and Li the last. Firstly, for each phase appearing in 
such a stage, the phase green should start either before the start of the 
core green for the stage or at the same time:

0i < where Fi & 1 (2.37a)r i
or

0i < 1 where Fi = 1 (2.37b)

In addition, the stage core green for stage Li must end either before the 
end of the phase green or at the same time. In other words, the start plus 
the duration of the stage core, green for stage Li should be less than or
equal to the start plus the duration of the phase:

0i + (J)i > 1 + Pĵ . when Li = 1 (2.38a)
or

0i + (J)i > Qt .+ pT . when Li ^ 1, Li > Fi (2.38b)
L  i i - j

or
0i + 6i > 1 + Qt + pT when Li * 1, Li < Fi (2.38c)U L>i

In the situation where there is no stage required to appear, however, the
starts of the phase greens as calculated by solving optimisation problems 
are not all within the range 0 to 1 in the initial solution, and multiples
of 1 should be subtracted to obtain the final solution. It is sufficient
to apply (2.31a), and (2.37) and (2.38) are omitted.

The final constraint is the capacity constraint which is necessary to 
ensure that if possibile each traffic stream gets enough green time for 
traffic in the stream to pass the junction. Let

g(j) = the index of the phase which controls stream j (l^j^n)

The capacity constraints are

qj < Pj[(J)g(j) + ejfjsj (l<j<n) (2.39a)
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where, as usual

n = the number of streams at the junction
qj = the mean arrival rate of vehicles in stream j (l<j<n)
sj = the saturation departure rate for stream j (l<j<n)
ej = the amount of extra effective green time that stream j has due to 

start and end lags caused by acceleration of vehicles (l<j<n)

and Pj = the maximum acceptable degree of saturation in stream j (l<j<n)

If the arrival rates in all the streams is multiplied by a common factor ji,
then in order to accommodate the new flows, the following constraint must 
be satisfied:

|iqj< Pj[(J)g0  + ejtjsj (l<j<n) (2.39b)

§2.5.4 Optimisation of Signal Timings

The problem of applying the phase-based approach to optimal signal timings 
for a single junction has been discussed by Heydecker and Dudgeon (1987) 
and Morton and Silcock (1987). Optimisation is carried out for each 
relevant set of choices of the alternative constraints (2.32) and (2.33).

(a) Minimising the cycle time

This is especially important in the situation of linked traffic signals 
where all junctions operate on the same cycle time. The shortest cycle 
time can be obtained by solving the linear programming problem:

Maximise t = 1/c (2.40)

subject to constraints (2.31)-(2.39).

(b) Maximising the junction capacity

Here the objective function is the common factor by which the arrival rates 
in all of the streams can be increased before any of the capacity 
constraints is violated. This is also a linear programming problem:

Maximise fi (2.41)



subject to the constraints (2.31)-(2.39).

(c) Minimising the junction delay

The estimated average total rate of delay for a junction can be expressed
as:

D = I  qjdj (2.42)
j = 1

where dj is the mean delay for each stream. Using Webster's two term delay
formula, dj can be expressed as:

dj = _2 + .--------aj--------1 ( i<j<n)
10 I 2(sj-qj)x 2sjAj(AjSj-qj) J

where Aj = eji + (j)g(j) (l<j<n) (2.43)

The optimisation problem can then be expressed as:

Minimise D (2.44)

subject to constraints (2.31)-(2.39), (2.42), (2.43).

§2.6. COMPUTER PROGRAMS FOR FIXED-TIME TRAFFIC SIGNALS 

§2.6.1 Introduction

There are already many computer programs available for fixed-time traffic 
signal settings at an individual junction, some of which employ the 
comprehensive formulae that can model the situations where the junction is 
oversaturated. Widely acailable stage-based computer programs include: 
SIGSET (Allsop 1971b), SIGCAP(Allsop 1976), SIDRA-2(AkceIik & Besley 1984), 
SOAP84 (Federal Highway Administration 1985), OSCADY (Burrow 1987). 
Another such program that has been described for practioners is TRAFSIG 
(Reljic 1988). Since the work in this thesis is most closely related to 
the program OSCADY, a description of it is given in the next section 
§2.6.2. There are two widely available phase-based computer programs: 
SIGSIGN (Sang and Silcock 1989) and LINSIG (Simmonite 1985). Table 2.1
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gives a summary of these programs. The method of Improta and Cantarella 
and of MoIIer have also been implemented in computer programs but these 
have not been publicisied among practioners.

It can be seen from Table 2.1 that these programs are very useful for 
setting traffic signals either for equilibrium conditions or for a certain 
period of time, with respect to some choices of objective functions.

§2.6.2 Program OSCADY

The program OSCADY (Burrow 1987) can model capacities, queues and delays 
at isolated signal-controlled junctions. It can model 3-arm junctions and 
4-arm layouts controlled by traffic signals. OSCADY uses time-dependent 
queueing theory (Kimber and Hollis 1979) to model the growth and decay of 
queues. This is achieved by considering the modelled period as a sequence 
of short time segments. During each segment the demand flow, capacity and 
signal timings are considered constant. Usually each such segment is about 
5 to 15 minutes long. The program then allows the calculation of the queue 
length at the end of each segment and the delay occurring during the 
segment.

The optimisation techniques employed to derive the best signal timings are 
based on methods developed by Allsop (1971, 1972). First, the optimisation 
routines seek to derive settings such that all traffic streams operate
within their practical capacity. The optimiser uses linear programming 
techniques to obtain signal settings which maximise the reserve capacity of 
the junction. If the settings obtained in this way produce a zero or 
negative reserve capacity then the junction is oversaturated and the signal 
settings which maximise the reserve capacity will be adopted, and no 
further calculations are needed. On the other hand, if the reserve
capacity for these settings is positive, the junction is operating within
capacity. In this case the optimiser then derives delay minimising 
settings.
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Table 2.1 Computer Programs For Setting Traffic Signals

PROGRAM
O b j e c t i v e  

F u n c t i o n

M e t h o d  o f  
S p e c i  f y i  ng 

T h e  
J u n c t i o n  

La y o u t

Ab i 1 i t y 
To  G i ve 
Pe  n a 1 t y  

T o 
Qu e u e s

Ab i 1 i t y t o  
M o d e l  

P e  r i o d s o f  
T i m e  - V a r yi ng 

D e m a n d

S I G S E T I f  X <  1 
T o t a l  D e l a y

S t r e a m  By 
S t r e am

No No

S I G C A P C a p a c i t y
S t r e a m  By 

S t r e a m
No No

S I G S I G N

C r i t i c a l
C y c l e
T i m e ;
T o t a l
D e l a y ;

C a p a c i t y

S t r e a m  By 
. S t r e am

No No

L I N S  IG J u n c t i o n  

C a p a c i  t y

S t r e a m  By 
S t r e a m

No No

S I D R A - 2

S t o p  r a t e ;  
J u n c t  i o n  
C a p a c i  t y ; 
C r i t i c a l  

C y c l e  T i me

L a n e

B y

L a n e

No No

SOAP - 8 4

W e i g h t e d  
S u m  o f  

De  1 a y 
A n d  

N u m b e r  o f  
S t o p s

S t r e a m  By 
St  r ear n

No No

OSCADY

I f  X <  1 
T o t a l  
Delay ; 
I f  X >  1 

J u n c t  i o n  
C a p a c i  t y

L a n e

By

L a n e

No Y e s

T R A F S I G

To  t a 1 D e l a y ;  

T o t a l  N u m b e r  
O f  S t o p s ;  

T o t a l  P e r s o n  
De  l a y ,  

e t c .

St  r e a m 

By  

St  r e a m

Y e s No
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§2.7 CONCLUSION

Although the programs discussed above are very useful, they leave something 
to be desired. The following points set out the reasons for carrying out 
the work described in this thesis:

(a) Only the programs TRAFSIG and SIGSIGN can conduct delay minimisation 
when the junction is oversaturated, and in these programs the formula for 
estimating the uniform delay in such a case is still given by Due as 
expressed by (2.7b), which is correct only for undersaturated situations.

(b) Only OSCADY can deal with periods of time-varying demand, but the 
resulting signal settings are only local solutions since they are obtained 
through the optimisation for each single time period. Moreover, the 
program can only perform capacity maximisation for those periods that are 
oversaturated, rather than delay minimisation. In addition, it can only 
model 3-arm junctions or 4-arm layouts.

This thesis therefore aims to make improvements with respect to (a) and
(b), by

(i) developing an new comprehensive delay formula that can be used for 
minimising total delay for an isolated junction for a single time period 
for the whole range of values of X, and

(ii) developing an optimisation method that can be used for minimising 
total delay for periods of time-varying demand for a general junction.

Ways of carrying out tasks (i) and (ii) will be described in Chapter 4 and 
Chapter 5 respectively.
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CHAPTER 3. ESTIMATION OF QUEUE LENGTHS AND DELAYS
AT TRAFFIC SIGNALS

§3.1 INTRODUCTION

As mentioned in the earlier chapters, there are many performance indices 
that can be used in the process of calculating traffic signal settings,
e.g. delay, queue lengths, stops, fuel consumption, etc. However, it is
common practice to use total rate of delay D, or the total delay W for the
junction, over a period T as the criterion for optimising traffic signal
settings. If the value of D is the average over the period T, then W can
be expressed as:

W  = D T = T I  Dj (3.1)
j = i

where Dj is the delay per unit time for stream j. Hence with this 
calculation of D there is no difference between the signals settings when D 
or W is used as the objective function.

Dj can be expressed as:

Dj = Duj + Drj (3.2)

Where Duj and Drj are the uniform delay per unit time and random delay per 
unit time respectively.

Apart from delay estimation, queue length estimation is also necessary, 
since it is important to know the evolution of the queues, and when more
than one time period is considered, queue length estimation becomes
essential because the queues at the end of one time period will be the 
initial queue lengths for the subsequent time period.

Although some expressions for delay have already been given in the
preceding chapter, further discussion is still necessary, since it is
important to investigate these expressions in more detail before making the 
attempt to fulfill the tasks stated in §2.8.
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The availability of various formulae developed so far for estimating queues 
and delays can be summarised in Table 3.1.

Table 3.1 Availability Of Formulae For Estimating Queues and Delays

Equilibrium Oversaturation Comprehensive
(X < 1) (X > 1) (for all X)

Q
u
E

Uniform Due

Lue

Duo

Luo

Does not 
exist

U
E
S Random

Dre Dro
TRRL Sheared

& Lre Lro Delay Formula
D
E
L
A
Y
S

Random
+

Uniform

e.g.

Webster’s

formula

Determinstic 
formulae 
Duo + Dro; 

Luo + Lro;

Not yet 

available

In this chapter, the formulae whose availability is summarised in Table 3.1 
are reviewed, and some methods of improving the accuracy of estimation are 
discussed. A method to fill the vacancy in the bottom right comer
in Table 3.1 will be given in §4.4.2, where a comprehensive formula for 
total delay is developed.

§3.2 QUEUE LENGTH ESTIMATION

§3.2.1 Random Queue Length Estimation

1. A Commonly Accepted Geometrical Approximation

When X < 1, and arrivals are Poisson, the equilibrium expression is:

Lre — cx
1 -X

(3.3)

However, when X > 1, the determinstic expression is: 

Lro — LrO + (q-Q)t (3.4)
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According to the coordinate transformation method as described by Kimber
and Hollis (1979), the random queue length for a stream can be expressed by
the following comprehensive formula:

Lr(t) = 0 .5 ( /  A2+B - A) (3.5a)
Where

■ _ ( l -X) (Qt ) 2-QtL,o+2C(Lro+XQt) _ (Qt)2 + (2C-Qt)(XQt+L,o) 
Qt-C Qt-C

b _4C ( Li-o+XQt)2 
Q t- C

However, since the denominators of A and B contain (Qt-C), which becomes 
zero when t=C/Q, this expression must be modified in numerical calculation, 
so that (Qt-C) is removed from the denominator of the expression for Lr(t). 

This can be achieved by rearranging (3.5a):

L,(t) = 0 .5 ( /  A2+B - A) = ° - 5B-----
i/ a 2+B + A

= ______________2C(XQt+L,o)2_______________________________

( Q t ) 2+ ( 2 C - Q t ) ( X Q t + L r o ) + Q t /  [ ( X - l ) Q t + L r o ] 2+4C(XQt+Lro)

(3.5b)

When Lio^O, expression (3.5b) can normally be used to evaluate Lr(t), for 
all t>0, in which case the denominator of (3.5b) is always greater than 
zero. However, when LrO=0, (3.5b) has to be modified further so that Lr(t) 

can be evaluated for very small or zero t.

When LiO=0, expression (3.5b) for Lr(t) can be rearranged as:

Lr(t) = ----------- 2CX 2 Q t   (3.5c)

( l-X )Q t+ 2 C X + /[( l-X )Q t]2+4CXQt

From (3.5c) it is clear that for all t>0, Lr(t) can be evaluated since the 
denominator is always positive. When t=0, Lr(0)=0=Lio.
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2. Use of The Formula In Practice

A formula such as (3.5) for estimating the random queue length is 
approximate and not transitive with respect to time. For example, if
(3.5a) is regarded as a function of both Lro and t, i.e.

does not hold if Lr is calculated by (3.5a). However, the property 
expressed by (3.5d) must be true for the queue itself and therefore should 
hold for a formula to be used in practice. To get such a formula, the time 
origin can be shifted so that the expression (3.5a) is transitive with 
respect to time in any particular application. The. resulting method as used 
in OSCADY is introduced below. To illustrate such a method, some numerical 
calculations are made. The notations used in the graphs are:

Lr(DIRECT):Lr given directly by (3.5).
Lr(OSCADY):Lr given by the OSCADY formulae introduced below.

And in all the examples in this chapter, the arrival rate for the example 
stream is q = 1500 pcu/hour.

The OSCADY method is: define the function

Lr = Lr(LiO, t)

Then the following relationship

Lr(LrO,tl) = Lr(Lr(LiO,t2),tl-t2) (0<t2<tl) (3.5d)

L(t,X,Q,C) =■ (3.6)
( l - X ) Q t + 2 C X + / [ ( l - X ) Q t ] 2+4CXQt

Obviously (3.6) is a special case of (3.5a) when Lio = 0.

(1) If X>1, or X<1 and 0<LiO<Lre, then

Lr(t)=L(t+to,X,Q,C) (3.7a)
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Lio LiO+2CX+/  L r O +4CLrO
to =

2Q (C X  + LrOX-LrO )

is chosen so that a queue growing according to (3.6) from a length of zero 
at time t=-to would on average have length Lio at time t=0.

Example la: X = 1.10, LrO = 15.0 pcu, T = 10 minutes, C=0.6 (Fig 3.1a). 
Example lb: X = 0.95, LrO = 5.0 pcu, T =20 minutes, C=0.6, Lre=10.8
(Fig 3.1b).

(2) If X<1 and LiO=Lre, then

Lr(t)—Lre (3.7b)

Example 2: X = 0.95, LrO = Lre = 10.83 pcu, T = 10 minutes, C=0.6 (Fig 3.2)

(3) If X<1 and Lre<Lro<2Lre, then

Lr(t)—2Lre-L(t+tO,X,Q,C)

where
(3.7c)

*
L r O

to =
_L*o + 2 C X + /(L  7 0 ) 2+4CL*o

2 Q (C X  +Lr oX-LrO )

*
L r O — 2Lre - LrO

The resulting graph of Lr decreasing from L k) is the reflection in Lr=Lre 

of the graph of Lr increasing from 2Lre-LrO that would be given by (3.7a).

Example 3: X = 0.95, LrO = 15.0 > Lre=10.83 pcu, T = 30 minutes, C=0.6 
(Fig 3.3).

(4) If X<1 and Lro>2Lrc, then suppose that Lio was previously an 
equilibrium random queue length under the degree of saturation 
Xo = Lre*1 (Lro), i.e.

LrO = CX 0 

1 - Xo
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Comparison of Formulae for Lr
X = 1.10, Li0=15.0, T=10 minutes, C=0.6

—1—  Lr (DIRECT)

~f" Asymptote(DIRECT) 

- B -  Lr (OSCADY)

“X  - Asymptote(OSCADY)

8 124 6 100 2

Fig 3.1a

Comparison of Formulae for Lr
X = 0.95, Lr0=5.0, T=20 minutes, C=0.6

Lr(pcu)

Lr (OSCADY) Lr (DIRECT) A  Asymptote

0 5 10 15 20 25
Time (Minutes)

Fig 3.1b 
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Comparison of Formulae for Lr
X = 0.95, Lr0=10.83, T=10 minutes, C=0.6

12
Lr(pcu)

10

Lr  (OSCADY) Lr (DIRECT)

Time (Minutes)

Fig 3.2

10 12

Comparison of Formulae for Lr
X = 0.95, Li0=15.0, T=30 minutes, C=0.6

Lr(pcu)

L r (OSCADY) Lr (DIRECT) Asymptote

0 5 10 15 20 25 30 35
Time (Minutes)

Fig 3.3
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t t  v  "J LrO+4CLrO -LrOHence Xo = ----------------------------
2C

Then starting from Lro, Lr is considered as decreasing at a constant rate 
Q(Xo-X) until Lr = 2Lre after time tc, after which Lr is considered as 
decreasing from 2Lre according to (3.7c).

Let

Then

2Lre-LrO = -  Q(Xo-X)tc, then tc can be given by

2C(2Lre -LrO  )
tc —

2CX+LrO - /  LrO +4CLrO '

T f ~ \  f  V * L  r 0 + 4CLrO -LrO)f L r 0 + Q< X ------------------------------------ Vt, t—tc
I 2 C j

Lr(t)=-

>■ 2Lre - L (  t- tc  , X,Q , C ) ,

(3.7d)

t>tc

Example 4: X=0.7, Lio = 100.0 >2Lrc = 1.96 pcu, T = 30minutes, C=0.6 
(Fig 3.4).

According to Kimber and Hollis (1979), comparison of the random queue 
lengths given by (3.5a) and (3.7) with exact numerical calculations 
suggests that method as used in OSCADY does improve the accuracy of the 
geometric approximation. However, in case (4), the treatment introduced 
above is unrealistic, since the assumption that when t<tc, Lr decreases at 
a rate Q(Xo-X) will overestimate Lr. This is because according to the 
definition of capacity Q, Lr should on average decrease at a constant rate 
Q(l-X) > Q(Xo-X) until the queues first clears, which will not usually 
happen before tc. QXo is the average discharge rate over long periods in 
equilibrium, during which the queue has time to be empty for the average 
proportion (1-Xo) of the period considered.

Although the two curves for Lr(DIRECT) and Lr(OSCADY) are different except 
in the rare case LrO=Lre, they are all approximate and the differences are 
probably of limited importance provided that the same set of expressions is 
used for all streams and junctions being considered on any analysis or 
comparison between alternatives. For this reason and for the sake of 
comparability with other work, the formula used in OSCADY is retained for 
estimating Lr in this thesis.
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Comparison of Formulae for Lr
X = 0.70, LrO= 100.0, T=30 minutes, C=0.6

Lr(pcu)
120

L r (DIRECT)x  (OSCADY)
100

250 15 20 30 355 10
Time (Minutes)

Fig 3.4

§3.2.2 Uniform Queue Length Estimation

The uniform queue and delay are the queue and delay that would occur due to 
the alternation of red and green at traffic signals if the traffic arrived 
at a uniform rate. During the red time a queue forms and this queue 
discharges at a constant rate s during the effective green time g. The 
uniform queue length Lu is then defined as the average uniform queue length 
over T, where T is the length of the time period considered.

1. Commonly Accepted Expressions

When X < 1, an equilibrium exists for the random queue length, and the 
average uniform queue length, Lu, can be expressed by:

qc(l  - A)2
Lu = Lue — ----------------  (3.8)

2(1-AX)

This is the uniform delay term in Webster's formula, which can be 
illustrated by Fig 3.5a, in which the shaded area contributes to the
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N cumulative number o f pcus

uniform arrivals 
slope q

unsaturated
cycles

departures at saturation flow

Fig 3.5a The approximate calculation of the uniform delay
in the case o f a equilibrium queue

N cumulative number of pcus

uniform arrivals 
slope q

capacity 
slope Q

overload
queue-length

f  saturated
<------- departures at cycles
saturation flow

Fig 3.5b The calculation of the uniform delay in the case of 
a increasing queue

55



uniform queue length, and (3.8) can be obtained by calculating the average 
uniform queue length over a certain time period.

However, when X > 1, Lu can be expressed as:

(3.9)
2

This can be illustrated by Fig 3.5b, in which the shaded area contributes 
to the uniform queue length, and (3.9) can be obtained by calculating the 
average uniform queue length over a certain time period.

2. Calculating Luc For More Accuracy When X < 1

Although (3.8) is widely accepted as the expression for estimating the 
uniform queue length when X < 1, it is only a rough formula, since it is 
based on the assumption that the random queue length Lr has reached the 
equilibrium, i.e. Lr = Lre. However, this assumption ignores the fact that
if the initial random queue length Lro is much greater than Lre, it will
take some time, te, for L k> to approach Lre (Fig 3.5c), therefore during 
this period Lu will be different from Lue. Hence (3.8) is only suitable to 
use when Lrf) is not much greater than Lre.

Therefore, for more accurate estimation of Lu, Lu will have different
expressions when the degree of saturation X and the initial queue length
Lrt) are within different ranges.

(1) If  X>1

(3.10a)

Where Luo is given by (3.9).

(2) If X<1, there are two possibilities.

(i) If L rO ^L re (criterion (a))

then

Lu = Lue (3.10b)

where Lue is given by (3.8).
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N
cumulative number o f pcus

saturated
cycles

unsaturated
cycles

\

Lio - L
slope Q

Simplified diagram: 

the last part of the 

approach to equilibrium 

acturally follows a curve

Fig 3.5c The calculation of the uniform delay in the case of 
a queue decreasing towards equilibrium

(ii) If LrO>Lre (criterion (b))

let tc = ^r0 ~ *"re (Fig 3.5c), as an approximation to the time at which
Qd -X)

Lr approaches Lre.

If tc>T then

Lu — Luo 

If te<T then

(3.10c)

Qc( l - A)  , X( l - A)  (T -te ) .
L u =  J tc + ----------------------- 1 (3.10d)

2T I 1-AX J

Criteria (a) and (b) proposed here are different from those used in OSCADY. 
In OSCADY, when X < 1, whether to use (3.10b) or (3.10c) or (3.10d) is 
judged by examining the degree of saturation of the stream in the previous 
period, rather than by examining the difference between Lio and Lre, i.e.
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when X<1, criterion (a) becomes:

(a') If the stream was undersaturated during the previous period;

And criterion (b) becomes:

(b') If the stream was oversaturated during the previous period.

In most cases this makes no difference between the two methods of choosing 
the expression for Lu, but the OSCADY method can sometimes be misleading. 
Even if the stream was undersaturated during the previous period, it does 
not necessarily mean that in this period Lio < Lre. If there was a very 
long random queue at the beginning of the previous period, then this queue 
might not be able to be cleared to its equilibrium length before the end of 
that period. And even if it was nearly at its equilibrium, this 
equilibrium may be bigger than that in the current period.

Suppose that Lro>Lrc, then Lu should be estimated by (3.10c) or (3.10d). 
Let this be Lui. However, since in the previous period the stream was 
undersaturated, then OSCADY method estimates Lu by Lu2 = Lue. Hence the 
absolute error in Lu2 is:

Lu c-L u o —

8Lu = Lu2 - Lui — <

X - l

1-A X
L u o T<te

(Lue - Luo) t e  ( X - l ) t e  T
--------------------------  =   Luo 1 >Le

T ( 1 - A X )T

The error in Lu2 relative to Lui is:

,  1 0 0 -
X - 1

100— % 
L u i

-%
1 - AX

10 0 (X  - 1 ) t e 

X ( T -  t e ) - A X T+te
-%

T<te

T>te

Example 1: in period 1, Xi=0.95, Lioi=100 pcu, Ti=30 minutes, at the end of 
Ti the queue length is 65.2 pcu. In period 2, X2=0.7, Li02=65.2 pcu, T2=10 
minutes. Hence although during Ti the stream was undersaturated, in T2 it 
still holds that Lk)2 > Lre2 = 0.98 pcu. The errors in the estimate given 
by the OSCADY method can then be seen in Table 3.2.

58



Table 3.2 Errors in Lu2 compared with Lui: Example 1

C ycle T im e
(second s )

A bsolu te Error
8Lu (pcu)

R e la t  ive Error
100 5 L u /L u  1 (per cent)

20 -0.80 -35.62

40 -1.59 -35.62

60 -2.37 -35.62

80 -3.18 -35.62

100 -3.98 -35.62

120 -4.77 -35.62

Example 2: in period 1, Xi=0.95, Lrf)i=0.2 pcu, Ti=30 minutes, at the end of 
Ti the queue length is 8.7 pcu. In period 2, X2=0.7, Lr02=8.7 pcu, T2=10 

minutes. Hence although during Ti the stream was undersaturated, in T2 it 
still holds that Lk)2 > Lre2 = 0.98 pcu. The errors in the estimate given 
by the OSCADY method can then be seen in Table 3.3.

Table 3.3 Errors in Lu2 compared with Lui: Example 2

C ycle Tim e
(second s )

A bsolute Error
8Lu (pcu)

R e la t  ive Error
100S L u/L u  1 (per cent)

20 -0.10 -6.22

40 -0.19 -6.22

60 -0.29 -6.22

80 -0.38 -6.22

100 -0.48 -6.22

120 -0.57 -6.22

Therefore whether the initial random queue length Lro is bigger than the 
equilibrium random queue length Lre in the current period cannot simply be 
deduced by just examining the degree of saturation in the previous period. 
Instead, it should be judged by the direct calculation of Lio, which 
usually has to be done anyway when successive periods with different levels 
of demand need to be modelled.
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Therefore, when estimating the uniform delay, modifications to the formulae 
used in OSCADY are desirable, i.e. criteria (a') and (b') should be 
replaced by criteria (a) and (b). However, in many cases the two methods 
will give the same results, and for the sake of comparability with other 
work the OSCADY method is used in this thesis.

§3.3 DELAY ESTIMATION

Theoretically, the delay per unit time during a time period (0, t), can be 
obtained by the definition:

Where the subscript I stands for 'integral', and L(t) can be one of the 
following:

when the corresponding D(t) needs to be calculated.

§3.3.1 Random Delay Estimation

The steady-state and determinstic expressions for the random delay per unit 
time are given by (2.11a) and (2.11b) in Chapter 2. The comprehensive 
formula can also be obtained. According to (3.11a), Dr(t) can be 
calculated by:

Di(t) =  f L(x)dr
t Jo

(3.11a)

L r ( x ) ;

L u( t ) ;

Lr(x)+Lu(i:)

(3.11b)
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However, the direct calculation of Dr by this method would be complicated 
and slow, so that an approximate method is useful. Two approaches are 
available, which are introduced as follows:

(1) TRRL method -  The Sheared Delay Formula

Kimber and Hollis (1979) derive a formula for estimating Dr(t) (known as 
the Sheared Delay Formula), which was introduced as formula (2.15) in 
Chapter 2. It is rewritten again here as Drs(t), where the subscript s 
stands for 'sheared':

D rs(t)=0 .5(/ E 2+F - E) (3.12)

Where

E.  (Qt)2+( 4 C-Q t )(XQt+2Lro)
2(Q t - 2 C)

F_  2C ( X Q t + 2 L r o ) 2 

Q t - 2C

(2) Choice Of time-origin to make estimates transtive with respect to time

By methods involving choice of time-origin similar to those used for the 
estimation of the random queue length Lr(t) when Lk) * 0, improvement can 
be made on Drs(t). The resulting formula is referred to as Dro(t), where 
the subscript 0 stands for 'time origin'. The first step is to define the 
function

2CX 2 Q t
D(t,X,Q,C) =-------------------------—— — — — —

(l-X )Q t + 4 C X + / [(l-X )Q t]2+8CXQt

(1) If X>1, or X<1 and 0<LK)<Lre, then

Dro(t)=D(t+to,X,Q,C) (3.13a)
where

Lio Lk)+2CX + 'J LrO+4CL \

Q (C X Z+LrOX-LrO )
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(2) If X<1 and Lio=Lre, then

D rO (t)=Lre (3.13b)

(3) If X<1 and Lre<LiO<2Lre, then

where
DrO(t)=2Lre - D(t+to,X,Q,C)

* 
L  rO

to=
L?o +2CX +/(l To)2 +4CL*o )

Q(CX2+LroX-Lro)

*  
L  rO — 2Lre - LrO

(3.13c)

(4)If X<1 and Lk) > 2Lre, then

L r o+O. 5Q-IX- /  L2o + 4CL

Difl(t) = -

2C

rO -L r 0 ^
t< tc

(3.13d)

i i l l ^ = k l i J ± + [2L rc-D ( t-tc,X ,Q ,C )]t±, t>tc

where

2C(2Lre-LrO)
tc —

2C X +L roV  L?0+4CLr0

To choose which of these two methods should be the one to be used as an 
alternative to Dri for estimating random delay when accuracy is concerned, 
some numerical calculation in terms of the errors of these methods are 
necessary, and the one that gives smaller error should be employed. In the 
following examples, the data are:

q=1500 pcu/hour, Lro=5.0 pcu, T=30 minutes, and C=0.6

In Fig 3.6-3.8, X=1.2, 0.95 and 0.7 respectively and the following
notation is used to illustrate the results:

Dri=The Delay calculated through the integration of Lr(t) by using the 
Romberg Algorithm (Burden and Faires 1985), which is used for approximating 
the integral of a function f(x) over an interval [a,b] within a specified
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tolerance. The trapezoid rule is used to generate a preliminary
approximation, and Richardson extrapolation (Burden and Faires 1985) is 
subsequently used to improve the approximation. Extrapolation continues 
until the fractional difference between successive approximations of the 
integral is less than the tolerance. Dri is actually calculated by calling 
a standard Turbo PASCAL subroutine based on the above algorithm.

Drs=The delay calculated by TRRL method;

Dio=The delay calculated by the choice of time-origin.

The relative errors are given by:

The results show that when Lro * 0, Dro is closer to Dri than Drs. Hence 
when accuracy becomes important, a time-origin should be chosen to estimate 
the random delay per unit time.

However, in the program OSCADY, Drs is used for estimating the random 
delay. For the sake of comparability with other work, Drs is used in this 
thesis for Dr, although Dro can give more accurate results when Lio 0.

§3.3.2 Uniform Delay Estimation

According to (3.11a), the average uniform delay per unit time over (0,t) 

can be calculated by:

Referring back to §3.2.2, it follows by definition that numerically, the 
uniform delay per unit time and the uniform queue length for each stream 
are equal for the period (0,t), since by definition, Lu is the average 
uniform queue length over that period.

RDrs = 1QQ( Drs,-.P rf). per cem
Dr I

RDk) = 1QQ-1 P —— il per cent
Dr I

(3.11c)
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Comparison of Formulae For Dr
X = 1.20, LrO=5.0, T=30 minutes, C=0.6

(pcu)

Dri DiO - B -  Drs

10 15 20 250 5 30 35
Time (Minutes)

Fig 3.6a

Relative Errors of Formulae For Dr
X = 1.20, Lr0=5.0, T=30 minutes, C=0.6

Relative Error(%)
8

X RDrO 0 RDrs

6

4

2

0
10 15 20 250 5 3530

Time (Minutes)

Fig 3.6b 
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Comparison of Formulae For Dr
X = 0.95, Lr0=5.0, T=30 minutes, C=0.6

(pcu)

a A A A A A

Dri DiO - B -  Drs Asymptote

20 3015 25 350 105
Time (Minutes)

Fig 3.7a

Relative Errors of Formulae For Dr
X = 0.95, Lr0=5.0, T=30 minutes, C=0.6

Relative Error(%)

- X -  RDrO 

~ 0 — RDrs

10 15 20 25 30 350 5
Time (Minutes)

Fig 3.7b 
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Comparison of Formulae For Dr
X = 0.70, Lr0=5.0, T=30 minutes, C=0.6

(pcu)

•a—Drs

200 10 15 25 30 355
Time (Minutes)

Fig 3.8a

Relative Errors of Formulae For Dr
X = 0.70, Lr0=5.0, T=30 minutes, C=0.6

Relative Error(%)

RDrs- X -  RDrO

0 10 15 20 355 25 30
Time (Minutes)

Fig 3.8b 
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3.4 CONCLUSION

Although the formulae for estimating queues and delays used in OSCADY are 
not preferable in terms of accuracy, they will still be used in this 
thesis, since OSCADY is well known, and it it easier to use the same 
formulae as those used in OSCADY to compare the results given by OSCADY and 
other methods, when queue length and delay calculations are needed. For 
the same reason, the parameter C will be taken as 0.6 in this thesis as 
used in OSCADY.

The formulae used in OSCADY can be summarised as follows, which will be 
used in this thesis for estimating queues and delays when signal settings 
are known:

(1) To estimate queue length:

L = Lu + Lr (3.14)

Where Lu is the uniform queue length given by (3.10);
Lr is the random queue length given by (3.7).

(2) To estimate delay per unit time:

D = Du + Dr (3.15)

Where Du is the uniform delay per unit time given by (3.10);
Dr is the random delay per unit time given by (3.12).

It should be pointed out that, although some formulae give more accuracy, 
they cannot be used in the optimatisation process when the gradients with 
respect to signal timings variables (e.g. A) need to be calculated,, since 
usually these formulae are either non-differentiable or difficult to 
differentiate. For example, Lr(t) given by (3.7) can be used for
estimating the random queue length when the signal settings are known, but 
when derivatives such as aLr/sA are needed, only (3.5a) can be used. On 
the other hand, although formulae such as (3.5a) are easy to differentiate, 
they are inferior to those like (3.7) with respect to accuracy. Hence that
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in the process of designing signalised road junctions, the formulae for 
estimation and those for optimisation may be different, although they might 
be expected to be the same.
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CHAPTER 4. TRAFFIC SIGNAL SETTINGS FOR A SINGLE PERIOD

§4.1 INTRODUCTION

The calculation of signal timings, i.e. the cycle time and green times 
which yield satisfactory operating conditions, is based on the selection of
a performance index to represent the effect of the signal settings on the
traffic conditions. To calculate traffic signal settings at a junction for 
a single period in which the arrival rate in each traffic stream is given, 
the most widely accepted criterion is that of minimising the total delay to 
the traffic in all streams at the junction.

In this chapter, the difficulties in optimisation when using the delay 
formulae introduced in Chapter 3 are first identified. The approximate
method, as used in the program TRAFSIG, which avoids those difficulties is 
then introduced. A new approach, based on the idea of coordinate 
transformation, gives a new extended sheared delay formula which leads to 
an objective function that is differentiable throughout the range of
feasible timings and can be used to calculate the derivatives of the 
objective function. A stage-based approach is used to optimising the 
traffic signal settings for a single junction, applying Allsop's 
minimisation routine OPTIM in SIGSET, adapted to the new form of the 
objective function. Finally, some examples are discussed.

Mathematically, using a stage-based approach as described by AIIsop (1971), 
the problem can be stated as follows:

Choose a vector X to minimise the objective function

n
W 0 = T  I  Dj(Aj) (4.1)

j = i

Where n is the number of streams in the junction.

Dj is the delay per unit time for stream j. (j=l,2,—,n)

X = (Ao, An)

Dj(A) = Duj(A) + Drj(A) (4.2)
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Equation (4.2) is the same as (3.15) except that the subscript j is 
introduced.

The effective green time for stream j can be expressed as:

m
Aj =  X  aijta

i =o
(j= l,2 ,-,n )

Where m is the number of stages in the signal cycle.

And 0 < aij <1 (j= l,2 ,-,n )

0 £  Xi £ 1 (i= l,2 ,-,m )

0 < Aj < 1 (j= l,2 ,-,n )

Xo = L/c

where L is the total lost time for the junction

c is the cycle time.

Subject to constraints (2.23) -  (2.28) as introduced in Chapter 2.

The vector X will completely determine the signal settings, and the X that 
minimises D(A,) is the optimal solution.

§4.2 DIFFICULTIES IN OPTIMISATION

After the mathematical formulation, Dj(Aj) should be specified so as to 
evaluate the gradients of the objective function for use in the 
optimisation process. In the earlier methods of setting traffic signals, 
e.g. Webster's method and the SIGSET method, only undersaturated junctions 
are modelled, where equilibrium expressions such as Due and Dre can be used 
for estimating delay to the traffic.

In order to model the traffic conditions for the whole range of degrees of 
saturation and, as mentioned in Chapter 3, to be consistent with the 
program OSCADY, formulae (3.10) and (3.12) should be used to estimate Duj
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and Drj in (4.2) when the signal settings are known, and it would be ideal 
to use those formulae in the optimisation process as well. However, since
there is more than one expression for uniform delay Duj when the degree of 
saturation Xj and the initial queue length LrOj are within different
ranges, it would be too complicated to apply (3.10) in the optimisation
process when derivatives of the objective function Dj(Aj) with respect to
Aj need to be evaluated, although Dij given by (3.12) does not cause any
problem in optimisation. So far no optimisation technique is available to 
solve the problem, except a tedious grid search, which is not practical in
terms of computing time.

To optimise signal settings by analytical methods that require the
calculation of the derivatives, formulae such as (2.7b) and (2.10) for
estimating the uniform delay, which are simpler than (3.10) and widely 
accepted, are used in the expressions of uniform delay and random delay for 
optimisation purposes. After optimisation is completed, more accurate 
expressions can then be employed to evaluate the consequences of the signal 
settings. Hence Duj can be expressed by the commonly accepted formulae
(3.8) and (3.9) introduced in §3.2.2:

fDoej(Aj)= X j Q jc(1 ' Aj)2 When 0< Xj < 1 
2 (1-A j Xj )

Duj(Aj) = j (4.3)

Duoj(Aj)=— Q j c ( l - A j )  When Xj > 1

However, a problem still exists after the simplification, since Duj(Aj) is 
non-convex and is non-differentiable with respect to Aj at Aj=yj (i.e. 
X j=l), Dj(Aj) has the same property (Fig 4.1). This leads to problems in 
optimisation when gradient methods are employed. Methods are therefore 
needed to overcome this difficulty.

§4.3 AVOIDING THE DIFFICULTIES USING EXISTING DELAY EXPRESSIONS

As stated in §2.4.2, one solution to solve the problem outlined above is to 
use Duej as the expression for estimating uniform delay for the whole range 
of degrees of saturation. i.e. let Duj(Aj)=Duej(Aj) for any Xj. This is 
obviously an overestimation of Duj(Aj) when Aj<yj, but since Duj(Aj) is 
convex and differentiable now, gradient methods can come into force. The 
program TRAFSIG uses this approach when total delay is used as the
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D r

(sheared delay formula)

Ao ly

Fig 4.1a The Random Delay

D u

Duo

A10 y

Fig 4.1b The Uniform Delay

po-bentially 
not convex

D u

discontinuous derivative

convex

Alo y

Fig 4.1c The (Random + Uniform) Delay 
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objective function. However, this method may bring errors into the signal 
settings obtained, especially when Duoj(Aj) and Duej(Aj) differ 
substantially. However, it gives an approximation to the signal timings 
that a more accurate method would produce, and the difference between 
Duoj(Aj) and Duej(Aj) though substantial compared with Duoj(Aj), will often 
be small compared with Drj(Aj) when Aj<yj. The validity of this method 
will be discussed in the examples at the end of this chapter.

§4.4 A NEW APPROACH

§4.4.1 Introduction

In Table 3.1 it was shown that so far no comprehensive formula has been 
available for estimating Du or (Du+Dr). However, the difficulty of 
non-differentiablity can be overcome if we can find a comprehensive formula 
for estimating (Du+Dr).

In this thesis we aim to develop a comprehensive delay formula for 
estimating (Du+Dr), so that the optimisation can be implemented and the
vacancy in Table 3.1 can be filled. The approach is based on the 
coordinate transformation technique developed by Kimber and Hollis (1979).

§4.4.2. New Expression For Delay

Enlightened by Kimber & Hollis's approach of shearing the random delay 
formula, we try to establish a comprehensive delay formula, taking into 
account both the random delay and the uniform delay.

In the following part, for each stream j, the subscript j is omitted from
the relevant notation and the argument (Aj) from the various delay
functions. For example, A stands for Aj, Due for Duej(Aj), etc.

Before introducing the method, further to Table 3.1, we first summarise the 
formulae available for estimating the delays by steady-state theory and 
deterministic theory in Table 4.1, where those formulae are explicitly 
given.
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Dr and Du are plotted against X with A regarded as fixed and q as variable 
in Fig 4.2a and Fig 4.2b respectively, with arrivals regarded as uniform
when X>1 in Fig 4.2a, so that Dro represents only the overload delay,
without allowance for randomness of arrivals. Then in Fig 4.2c, when
X=Xo>l, the arrivals are regarded as uniform so that the delay D can be
expressed as:

D=Do=Dro+ Duo= L kh 0 . 5 QT( Xo - 1 ) +  Q c(1 ~A) (4.4)
2

Table 4.1 Expressions For Estimating Delays

E q u  i 1 i b  r i u m O ve r l o a d
( X  < 1 ) ( X  >  1 )

D
E
L

U n  i f  o r m

D u
D u  e - ^  1 "

2 ( 1  - y )
D u o  =  Q c ( l - A )  

2

A
Y

D
R a n  d o m D r c  -  C X '

D r o = L  r 0 +  0  . 5 Q T  ( X o - 1  )

D r 1 - X e
i f  a r r i v a l s  are  
r e g a r d e d  as  u n i f o r m

Hence we have

Xo = 2 D ° -2Lr° - Q c ( 1-A ) + i (4.5)
QT

On the other hand, when X=Xe<l and the randomness of arrivals is allowed
for, the delay D can be expressed as:

D=Dc=Drc + Due= + q c (1 ' A)2 (4.6)
1- Xe  2( 1 - y )

Therefore D can be expressed differently when X>1 and X<1, and according as 
the randomness in arrivals is or is not allowed for.

The coordinate transformation is then illustrated by Fig 4.2d. Let
AA' = BB' as a typical line of constant D, where B is the intersection with 
the desired sheared curve expressing D as a function of the abscissa X of 
B, i.e. let

l-Xc=Xo-X
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D r

Dre

Dro

LrO

X0 1

Fig 4.2a The Random Delay

Du

Duo

Due

X10

Fig 4.2b The Uniform Delay
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Do = Dro + D uo

L rO  + Duo

X0 1

Fig 4.2c The Random Delay + Uniform Delay 

Over A Time Period T

A '

L rO  + Duo

Xo

Fig 4.2d The Development Of The New Delay Formula
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This relationship is used together with (4.5) to express D in terms of Xe 
as follows:

X e = l-X o + X  =  A  - - ^ 5 -  (4 .7 b )
Q T

where A = q T + 2 Lr0+ Q c ( 1 - A) (4 .8 )
Q T

and q = X Q

Hence D  = 0 .5 Q T (A -X e) (4 .9 )

Substituting this expression for D , y= A X e and q = X eQ  into (4.6), we get a 
cubic equation:

aoX e+aiX ?+a2X e+a3=0 (4.10a)

where:

ao=QTA-2CA (4.11a)

ai =2C-Qc( 1 - A)2-QT(AA+A+1) ( 4 .1 lb)

a2=Qc(l-A)2+QT(AA+A+l) (4.11c)

a3=-QTA (4.1 Id)

According to the theory of equations (see eg Lovitt 1939, Appendix 1), the 
solution for Xe can be discussed as follows:

1. When T/2C/Q, then aô tO, and equation (4.10) becomes:

Xe+b i Xe+b2Xc+b3=0 (4.12a)

where bi=ai/ao, i= l,2,3 (4.12b)

Let Xe=Z-bi/3 (4.13)
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we have

Z +piZ+p2=0 (4.14a)

2
where pi=b2-bi/3, (4.14b)

p 2 = b 3 -b  i b 2 /3 + 2 b  i/27 (4.14c)

The discriminate A=pi/27+p2/4 was investigated. Attempts to show
algebraically that it is less than zero for relevant values were 
unsuccessful, but it was found to be negative when tested by numerical 
evaluation for a wide range of curves with C=0.6, LrO>0, 500<s<7000, X>0, 
0<c<120, 0<A<1 and T>0. Hence it appears that there are three distinct 
real roots of equation (4.14a) in Z, and so is the case for the equation 
(4.12a) in Xe.

Let \j= - SI + i / - A  (4.15a)
2

V= - _H  - i /T Z (4.15b)
2

U can also be expressed as:

U = Ri0 (4.15c)

Where R = / (-pz/2)2+{ f l T  }2

0=ArcCos

Then let U1/3=Ui + iU2 (4.16a)

Where

U i = y r  Cos(0/3) (4.16b)

U 2 = /1 T  Sin(0/3) (4.16c)
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The three roots for Z are:

Zi=2Ui= 2 / I T  Cos(0/3) (4.17a)

Z2=-Ui-U2/3= -i / r ' Sin(0/3 + 7t/6) (4 .1 7 b )

Z3=-Ui+U2/3= i V r  ̂ Sin(0/3 - n/6) (4 .1 7 c )

Since O<0<7t, we have O<0/3<7t/3, hence U2AJi=tg(0/3)<tg(7t/3)=v^3~^, i.e. 

Uk U iS ^ ,  hence 2Ui>-Ui+U2v/r3~", therefore Z2<Z3<Zi, i.e. Z2 is the
smallest root, Z 3 is the middle root, and Zi is the biggest root.

By calculating the corresponding Xe it was found that:

(i) When T > 2C/Q, only Z2 gives a value of Xe satisfying the condition:
0 < Xe < 1. Hence when T > 2C/Q, we take Z = Z2 as the solution for Z.
This is the usual case since 2C/Q is very small and normally T is within
the range 10-15 minutes, which far exceeds 2C/Q.

(ii)When T < 2C/Q, only Z3 gives a value of Xe satisfying the condition
0 < Xe < 1. Hence when T < 2C/Q, we take Z = Z3 as the solution for Z.
This solution is also useful when delay needs to be evaluated for very
small time intervals, as in the case of making a time-shift to be
introduced in the next chapter.

Thus when T ^ 2C/Q, Z can be given either by Z2 or by Z3, and the
corresponding Xe can then be obtained from the relationship (4.13a).

2. However, When T = 2C/Q, then ao=0, therefore (4.10a) becomes a quadratic 
equation:

ai x l  + a2Xc + a3 = 0 (4.18)

And the solution for Xe will simply be:

-a2+- a5-4aia3 (4.19)
2ai
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Some of these numerical results can also be proved algebraically. Define 
f(X) = aoX3+aiX2+a2X+a3, then

f(X) = 3aoX2+2aiX+a2 

f " ( X )  = 2(3aoX+ai)

And since f(0)=a3<0, f(l)=ao+ai+a2+a3=2C(l-A)>0, hence there is either
only one real root for X in (0,1) or there are three.

When ao=0 (i.e. QT=2C), ai<0, and f(X) -* -«> as X ±°o, but f(l)>0, hence
f(X) must cross the line f(X)=0 at least once in (1, <»). Since there are 
only two real roots in this case, there is only one real root in (0, 1), 
and this should be the smaller root.

When ao<0 (i.e. QT<2C), f(X)-*« as X->-®o, and f(X)->-°o as X-*>o, but f(0) <0 and 
f( 1 )>0, hence f(X) must cross the line f(X)=0 at least once each in the 
regions (-<», 0) and (1, °o), hence there is only one real root in (0,1), and 
this is the middle root corresponding to Z3.

When ao>0 (i.e. QT>2C), f (X )^ -o o  as X -> -~  and f(X)-*>o as X^o, f(X)->~.as
X -̂oo, and f '(X )^ > o  as X->°o, f(0)=a2>0, f"(0)=2ai<0 and as before f(0)<0 and 
f ( l ) > 0 .

1) If f"(l)=2-(3ao+ai) <0, then 3aoX+ai<0 for all 0<X<1, i.e. f"(X)<0 in 
(0,1), hence f(X) is concave in (0,1). Therefore there is only one root in 
(0,1) and this is the smallest root corresponding to Z2.

2) If f"(l)=2-(3ao+ai) >0, then consider the zeros of f'(X). These are:

0< Xi-  - a i - /  ai-3aoa2 < y-2_ - a i+ /  a?-3aoa2 
3ao 3ao

i) If f(l)=3ao+2ai+a2<0, then Xi<l and X2>1, and the largest two 
roots of f(X) >1, hence there is only one root in (0,1), and this 
is the smallest root corresponding to Z2.

ii) If f'(l)=3ao+2ai+a2^0, then there may be three real roots in (0,1), 
and by continuity the relevant one must be the one corresponding to 
Z2.
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Hence Xe can be obtained whatever the difference (T-2C/Q) is. Then by the 
relationship

D = 0.5QT(A-Xe) (4.20)

We have the final expression for D in terms of LrO, Q, T, A and q. This 
expression is derived from a diagram in which D is plotted against X =q/Q 
for fixed A and hence fixed Q with q regarded as variable. It will, 
however, be used as an expression for D in terms of A for fixed q and with 
Q = As.

§4.4.3 Acceptability And Convexity

The acceptability of the extended sheared delay formula as an approximation 
to delay can be evaluated by calculating the difference between this 
formula and the formula which is used in OS CADY for estimating (but not for 
minimising) delay. Extensive calculations for different values of the 
parameters have shown that the differences are usually very small, 
especially when A is near to y, where the optimum is often located. An 
example of comparing the two formulae is given in Fig 4.3, where the data 
for the stream is: q=900 pcu/hour, s=2000 pcu/hour, LrO=0.0 pcu, and T=5 

minutes. The notation is:

Dy = OS CADY formula, where the uniform component Dyu is given by 
(3.10), and the random component Dyr is given by Kimber & 
Hollis's (1979) sheared delay formula (3.12);

Dn =The new sheared delay formula (4.20); and

Ds = The formula whose uniform component Dsu is given by the 
simplified uniform delay expression (4.3), and the random 
component Dsr=Dyr.

Ds is plotted here together with Dy and Dn since it is closely related to 
Dn. It can be seen from Fig 4.3 that the absolute difference between those 
formulae is rather small. The extensive calculations show that in most 
cases the absolute differences are less than 1 pcu, although the relative
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Comparison of Delay Formulae
q=900 pcu/h, s=2000pcu/h, c=120s, T=5min

LjO=0

Delay (pcu)80
□•(SIMPLIFIED)—  Dy(OSCADY)

40 "

0.80.4 0.6 10.20
Proportion of Effective Green Time

Fig 4.3a

Comparison of Delay Formulae
q=900 pcu/h, s=2000pcu/h, c=120s, T=5min

Lr0=0

Delay(pcu)
0.6
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Fig 4.3b Absolute Differences Between 
Dn and Dy, Ds

Comparison of Delay Formulae
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Fig 4.3c Relative Differences Between 
Dn and Dy, Ds

82



difference can be big when the delay is very small. This means that the 
extended sheared delay formula can be used for optimisation when gradient 
methods are necessary, so that the difficulty of discontinues derivatives 
can be overcome.

Although the extended sheared delay formula is not strictly convex for all
the ranges of A and Xo = 1/c (where c is the cycle time), it is nearly 
convex in most cases and is usually convex when A is around y. Extensive 
calculations for Dn for a wide range of T, s, Y and c were made and the 
results show that in most cases Dn is well behaved (Fig 4.4a), and even if 
Dn is non-convex, the non-convexity only occurs when A is much less than 
y, i.e. Dn is non-convex only when X is very big (Fig 4.4b). In rare cases 
Dn is just slightly non-convex when A > y (Fig 4.4c). This will rarely 
lead to problems because the objective function is the sum of the rates of 
delay for a number of streams. and not all the delay curves are likely to be 
non-convex in the same region, so the likelihood that a non-convex surface 
will result is small.

§4.5 THE OPTIMISATION METHOD

The optimisation technique is based on the optimisation subroutine OPTIM 
that was used in SIGSET (AIlsop 1971) and is modified for the current 
objective function. The derivatives of the objective function with respect
to A and Xo are given in Appendix 2. Derivatives with respect to the Xi
(l<i<m) follow by the chain rule because each Aj is a known linear
combination of the X\ (2.21). OPTIM is used here because all the
variables, constraints and the framework of signal timing requirements are
the same as in SIGSET, except the change in the objective functions, where 
in SIGSET Webster's two term delay expression (2.2) is used, and the 
objective function is convex; here the new time-dependent delay expression
(4.20) is used and the objective function may be non-convex but is likely 
to be convex in most cases. The example calculations introduced below in 
§4.6 suggest that the possibility of non-convexity will not cause problems 
in practice and the optimiser can be used for optimising traffic signal
settings for a single time period.
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Convexity of Delay Formulae
y=0.5, s=2960 pcu/h, c=120s, T=5 min

LiO=0

Delay(pcu)

Dn(NEW)——  Dy(OSCADY)50 “
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Fig 4.4a

Convexity of Delay Formulae
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Convexity of Delay Formulae
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§4.6 EXAMPLES

§4.6.1 Introduction

The aim of developing a new delay expression is to overcome the 
difficulties in optimising traffic signals when considering the full range 
of the degree of saturation rather than merely the unsaturated situations. 
As mentioned earlier, the existing method SIGSET, although it can optimise 
signal settings for undersaturated junctions, cannot be used for 
oversaturated cases due to the formula used for estimating delay. The 
method that avoids the difficulties by using existing delay expression, can 
only give approximate solutions, therefore the signal settings resulting 
from it should be evaluated. OSCADY calculates settings on the basis of 
capacity maximisation when the junction is overloaded by the given arrival 
rates.

In order to illustrate the applicability of the present method, 
calculations of signal settings are made for three example junctions using:

(1) The NEW method using the new delay expression;
(2) The SIGSET method (when the junction is undersaturated);
(3) The OSCADY method; and
(4) The SIMPLE method that avoids the optimisation difficulties in the 

manners described in §4.3.

Except in OSCADY when the junction is overloaded, the subroutine OPTIM in 
SIGSET is used in all the methods to optimise the signal settings. 
However, the calculations of the derivatives of the objective function 
(4.1) with respect to Xi (i=l,2,---,m) are based on different formulae:

(1) The NEW method: using (4.20);

(2) The SIGSET method .
I using Webster’s two term delay expression (2.2);

(3) The OSCADY method I

(4) The SIMPLE method: using Kimber & Hollis's (1979) sheared delay
formula (3.12) and the equilibrium uniform delay expression (3.8).
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It should be noted that since the OSCADY output gives rounded signal 
timings, some discrepancies can occur when making the comparison. 
Nevertheless, a good general idea of differences between results given by 
the four methods can be obtained.

The first two junctions are simple crossroads, the third one is a complex 
junction. The cases that each Xj < 1, and that some Xj < 1 and some Xj > 1 
are considered for each junction, so that the full range of degrees of
saturation can be modelled. In every case, a maximum cycle time of 120 
seconds is assumed. The length of time period, T, is chosen as 30 minutes 
for all the examples in every case.

When each stream in the junction is undersaturated, i.e. Xj<l, j=l,2,---,n, 
where n is the number of streams, calculations are made for all four 
methods. However, when at least one of the streams is oversaturated, i.e.
there exists at least one j, such that Xj>l, j= l,2,—,n, then calculations 
are only made for three methods, since in this case the SIGSET method
cannot be applied.

After obtaining the signal timings by each method, in order to compare
those methods, total delay, i.e. delay per unit time multiplied by T 
minutes, can be used as a performance index. Since these methods use 
different expressions for calculating the derivatives of delay per unit 
time with respect to X, there is no common expression to evaluate the delay 
as a result of the signal settings for each method. In this case the 
expressions used in OSCADY method are taken to estimate the total delay W 
and queue lengths. Another important factor in comparing the results is 
the junction reserve capacity a. The maximum acceptable degree of 
saturation for each stream, Pj (j=l,2,—,n) is taken as 0.9. Other 
auxiliary indications of performance of the junctions are the Xj, the 
degrees of saturation for each stream, and the Lfj (=Lrfj+Lufj), the final 
queue length for each stream.

§4.6.2 Junction 1 — Symmetrical Crossroads of Two One-way Streets

This junction is the simplest to start with. It has only two streams, 
therefore there are only two stages in the signal cycle. Each stream has a 
saturation flow of 2000 pcu/h as shown in Fig 4.5.
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J
 Si = 2000 

pcu/h

1

2
S2= 2000 

pcu/h

n r
Fig 4.5 Junction 1 

Other parameters for this junction are:
Table 4.2

S t age 1 2

Mi n i mu m Green (Seconds) 6.00 6.00

Los t T i me a  \  
A f t e r  S t a g e  (Seconds) 4.00 4.00
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Case 1: each Xj < 1

Flow ratios yi= 0.45, yi  = 0.3

Table 4.3

METHOD SIGSET SIMPLE NEW OSCADY

Cycle Tim e ( S e c o n d s ) 70 .3  5 6 3 . 0 7 64 . 8 7 70 . 4  0

P r o p o r  t i o n  o f C y c l e 1 0 . 5 2 6  8 0 . 5 2 0 0 0 . 5 2  2 0 0 . 5 2 5  6
E f f e c t  i 
F o r

v e 1 y G r e e n
S t a g e 2 0 . 3 5 9  5 0 . 3  53  2 0 . 3  5 4 7 0 . 3 5 9 4

P r o p  o r t i o n  o f C y c l e 1 0 . 5 2 6  8 0 . 5 2 0 0 0 . 5 2  2 0 0 . 5 2 5  6
E f f e c t  i 
F o r

v e 1 y G r e e n  
S t r e a m 2 0 . 3 5 9  5 0 . 3 5 3  2 0 . 3  5 4 7 0 . 3 5 9  4

D e g r e e o f 1 85 . 4 2 86  . 5  4 86 2 1 85  . 6 2
S a

I n
t u r a t 

S t r e
i o n
a m  ( % ) 2 83 . 4 6 84 . 9  5 84 5 8 83 . 4  8

T o t a l Q u e u e L e n g t h 1 6 . 4 4 6 . 4  5 6 4 3 6 . 5 1
I n  S t r e a m ( p c u ) 2 5 . 8  3 5 . 8  3 5 8 3 5 . 8 3

D e l a y  P c r U n i t T i m e 1 6 . 3  2 6 . 3  0 6 2 8 6 . 3 8
I n  S t r e a m ( p c u ) 2 5 . 7 1 5 . 6 8 5 . 6 9 5 . 7 2

Total De 1 a y ( p c u ’ m i n i ) 3 6 0 .  8 3 5 9 . 3 3 5 9 . 1 3 6 3  . 0

Reserve C apac i ty 5 . 3 6 % 4 . 00% 4 . 4 0 % 5 . 1 1 %

It can be seen from Table 4.3 that the SIGSET method and OSCADY method give 
longer cycle times and more reserve capacity than the SIMPLE and NEW 
method, but just slightly higher total delay. The NEW method gives
fractionally less delay and a little more reserve capacity compared with 
the SIMPLE method. The ratio of the green times for the two streams is 
very similar with all four methods.

88



Case 2: some Xj > 1

Flow ratios yi= 0.6, y2= 0.45

Table 4.4

METHOD SIMPLE NEW OSCADY

Cycle Time ( S e c o n d ) 120  . 0  0 120 0 0 120  . 0 0

P r o p o r t  i o n  o f C y c l e 1 0 . 5 6 5  9 0 . 5 6  5 7 0 . 5 6 0  0
E f f e c t  i v e  1 y 
F o r

G r e e n
S t a g e 2 0 . 3  67  4 0. 3  6 7 6 0 . 3 7 3  3

P r o p o r t  i o n  o f C y c l e 1 0 . 5  65  9 0 . 5 6  5 7 0 . 5 6 0  0
E f f e c t  i v e  1 y 
F o r

G r e e n  
S t r e a m 2 0 . 3 6 7 4 0. 3  6 7 6 0 . 3 7 3  3

D e g r e e o f 1 106  . 0 2 106 0 6 1 0 7 . 1  4
S a t u r a l 

I n  S t r e
i o n
a m  ( % ) 2 108  . 8 7 108 8 1 1 0 7 . 1 4

T o t a l  Q u e u e L e n g t h 1 5 0 . 1 5 50 3 0 5 5 . 1 9
I n  S t r e a m ( p c u ) 2 45  . 9  3 45 7 7 40  . 9 8

D e l a y  P e r  U n i t T i m e 1 32  . 0 2 32 0 9 34  . 3  6
I n  S t r e a m ( p c u ) 2 2 8 . 9  6 28  . 8 9 26  . 7  1

Total De 1 a y ( p c u ' m i  n ! ) 1 8 2 9 . 3 1829 . 3 1 8 3 2 . 0

Reserv e C apac i ty -17 . 33% -17 . 2 9 % - 1 6 . 0 0 %

In this case since the junction is oversaturated, all the three methods 
applied result in a maximum 120 second cycle time. The SIMPLE and NEW 
methods perform delay minimisation, and give very similar signal settings, 
but OSCADY calculates the signal timings by capacity maximisation, so that 
the junction is somewhat less oversaturated with its settings. The 
resulting extra delay with the OSCADY settings is, however, marginal.

§4.6.3 Junction 2 — Asymmetrical Crossroads of Two One-way Streets

In this case, one of the streams has a saturation flow of 4000 pcu/h as 
shown in Fig 4.6.
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Si = 4000 
pcu/h

S2 = 2000 
pcu/h

Fig 4.6 Junction 2

Other parameters for this junction are:

Table 4.5

S t age 1 2

Mi n i mum Green (Seconds) 6.00 6.00

Los t T i me , v 
A f t e r  S t a g e  (Seconds) 4.00 4.00
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Case 1: each Xj < 1

(1) Flow ratios: yi=0.3, y2=0.45

Table 4.6

METHOD SIGSET SIMPLE NEW OSCADY

Cycle Time ( S e c o n d s ) 63 .2  9 5 8 . 3  8 5 9  . 7 2 63 . 5 0

P r o p o r t i o n  o f C y c l e 1 0 . 3 5 6  6 0 . 3 5 3 0 0 . 3  5 4 5 0 . 3  5 6 7
E f f e c t  i 
F o r

v e 1 y G r e e n
S t a g e 2 0 . 5 1 7  0 0 . 5 1 0 0 0 . 5 1 1 5 0 . 5 1 7  3

P r o p o r  t i o n  o f C y c l e 1 0 . 3 5 6  6 0 . 3 5 3  0 0 . 3  5 4 5 0 . 3 5  6 7
E f f e c t  i 
F o r

v e 1 y G r e e n  
S t r e a m 2 0 . 5 1 7  0 0 . 5 1 0 0 0 . 5 1 1 5 0 . 5 1 7  3

D e g r e e o f 1 84 . 1 2 84 . 9  8 84 6 2 84 . 1  I
S a

I n
l u r a t i 

S t r e a
o n
m ( %) 2 87 . 0  5 8 8 . 2 4 87 9 8 86 . 9 9

T o t a l Q u e u e L e n g t h 1 8 . 8  3 8 . 6 0 8 6 2 8 . 8 5
I n  S t r e a m ( p c u ) 2 6 . 6  5 6 . 8 7 6 8 3 6 . 6 4

D e l a y  P c r U n i t T i m e 1 8 . 7 5 8 . 5  2 8 5 4 8 . 7 7
I n  S t r e a m ( p c u ) 2 6 . 4  8 6 . 6 4 6 . 6 2 6 . 4 7

Total De 1 a y ( p c u • m i n s ) 45 7  . 0 4 5 4 . 7 4 5 4 . 1 4 5 7  . 2

Reserve C apac i ty 3 . 39% 1 . 99% 2 . 3 0 % 3 . 4 6 %
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(2) Flow ratios yi=0.45, y2=0.3

Table 4.7

METHOD SIGSET SIMPLE NEW OSCADY

Cycle Time ( s e c o n d s ) 64 . 1 5 5 9  . 0 3 60 . 3  7 64 . 0 0

P r o p o r t  i o n  o f  C y c l e  
E f f e c t i v e l y  G r e e n  
F o r  S t a g e

1

2

0 . 5 2 3  4 

0 . 3 5 1 9

0 . 5 2 0 3  

0 . 3 4 4  1

0 . 5 2  2 0 

0 . 3 4  5 5

0 . 5 2 3  4 

0 . 3 5 1 6

P r o p o r t  i o n  o f  C y c l e  
E f f e c t i v e l y  G r e e n  
F o r  S t r e a m

1

2

0 . 5 2 3  4 

0 . 3 5 1  9

0 . 5 2 0  3 

0 . 3 4 4  1

0 . 5 2  2 0 

0 . 3 4  5 5

0 . 5 2 3  4 

0 . 3 5 1 6

D e g r e e  o f  
S a t u r a t i o n  

I n  S t r e a m  ( % )

1

2

85 . 9  8 

85 . 2 4

86  . 4 8

8 7  . 1 7

86 . 2  1 

86 . 8 4

85 . 9 7  

85 . 3 3

T o t a l  Q u e u e  L e n g t h  

I n  S t r e a m  ( p c u )

1
2

9 . 7  0 
5 . 9 6

9 . 4 0  
6 . 2  6

9 . 4 1
6 . 2 3

9 . 6 8
5 . 9 8

D e l a y  P e r  U n i t  T i m e  

I n  S t r e a m  ( p c u )

1
2

9 . 6 2
5 . 8 0

9 . 3  1
6 . 0  3

9 . 3 3
6 . 0 1

9 . 6 0
5 . 8 2

Total D e l  a y ( p c u ' m i  n s ) 4 6 2  . 8 4 6 0 .  1 4 6 0  . 0 4 6 2  . 6

Reserve C a p a c i t y 4.  67% 3 . 24% 3 . 6 4 % 4 . 6 9 %

In both combinations of the flow ratio yi and yi, again the SIMPLE and NEW 
methods give shorter cycle times, and less reserve capacity compared with 
the SIGSET and OSCADY methods. The NEW method gives slightly longer cycle 
time and more reserve capacity than the SIMPLE method, and each gives just 
slightly lower total delay than SIGSET and OSCADY.
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Case 2: some Xj > 1

(1) Flow ratios yi= 0.4, y2= 0.6

Table 4.8

METHOD SIMPLE NEW OSCADY

Cycle Time ( s e c o n d s ) 120  . 0  0 12 0 . 0 0 120  . 0 0

P r o p o r t  i o n  o f  C y c l e  
E f f e c t i v e l y  G r e e n  
F o r  S t a g e

1

2

0 . 4 0 3  9 

0 . 5 2 9  4

0 . 4 0  4 3 

0 . 5 2  9 0

0 . 3 7 3  3 

0 . 5  6 0  0

P r o p o r t  i o n  o f  C y c l e  
E f f e c t i v e l y  G r e e n  
F o r  S t r e a m

1

2

0 . 4 0 3  9 

0 . 5 2 9  4

0 . 4 0  4 3 

0 . 5 2  9 0

0 . 3 7 3  3 

0 . 5  6 0  0

D e g r e e  o f  
S a t u r a t i o n  

I n  S t r e a m  ( %)

1

2

99  . 0 4  

1 1 3 . 3  3

98  . 9 2  

113 . 4 3

1 0 7 . 1 4  

107  . 1 4

T o t a l  Q u e u e  L e n g t h  

I n  S t r e a m  ( p c u )

1
2

3 3 . 5 7  
83  . 0  5

3 3 . 1 7  
83  . 4 8

76  .  18  
55  . 1 9

D e l a y  P e r  U n i t  T i m e  

I n  S t r e a m  ( p c u )

1
2

2 8 . 8 9  
4 7  . 5  2

28  . 6 6 
47  . 7  2

48  . 7 8  
34  . 3 6

T o t a l  D e l a y ( p c u ' m i n s ) 22 9 2 .  0 229 1 . 6 2 4 9 4  . 2

Reserv e C apac i ty -20 . 58% -20 . 6 5 % - 1 6 . 0 0 %
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(2) Flow ratios yi= 0.6, y2= 0.4

Table 4.9

METHOD SIMPLE NEW OSCADY

Cycle Time ( s e c o n d s ) 120  . 0  0 120 . 0 0 120  . 0 0

P r o p o r t  i o n  o f  C y c l e  
E f f e c t i v e l y  G r e e n  
F o r  S t a g e

1

2

0 . 6 0 6 9

0 . 3 2 6 4

0 . 6 0  7 4 

0 . 3 2  5 9

0 . 5 6 0 0  

0 . 3 7 3  3

P r o p o r t  i o n  o f  C y c l e  
E f f e c t i v e l y  G r e e n  
F o r  S t r e a m

1

2

0 . 6 0 6 9

0 . 3 2 6 4

0 . 6 0  7 4 

0 . 3 2  5 9

0 . 5  6 0  0 

0 . 3 7 3 3

D e g r e e  o f  
S a  t u r  a t  i o n  

I n  S t r e a m  ( % )

1

2

9 8 . 8  6 

122 . 5  4

98  . 7  8 

122 . 7  3

1 0 7 . 14

1 0 7 . 14

T o t a l  Q u e u e  L e n g t h  

I n  S t r e a m  ( p c u )

1
2

3 5 . 6 7  
8 3 . 4  4

35  . 2  6 
83  . 9  1

104  . 0 0  
40  . 9 8

D e l a y  P e r  U n i t  T i m e  

I n  S t r e a m  ( p c u )

1
2

30  . 7 0  
46  . 5  4

30  . 4 6 
46  . 7  7

63 . 4 0  
26  . 7  1

Total D e l a y  ( p c u * m i n s ) 23 1 7 . 4 23 1 6 . 9 2 7 0 3  . 3

Reserve C a p a c i t y -26 . 56% -26 . 6 7 % - 1 6 . 0 0 %

All the three methods give a maximum cycle time of 120 seconds. As 
expected, the SIMPLE and NEW methods give less delay, but OSCADY timings 
makes the junction less oversaturated. From Table 4.8 and Table 4.9 it can 
also be seen that the NEW method gives fractionally less delay and makes 
the junction a little more oversaturated than the SIMPLE method. Whereas 
for the symmetrical junction the differences between the performance with 
OSCADY timings and with those given by the other two methods were small, in 
the asymmetrical case they are substantial. The signal settings given by 
SIMPLE and NEW methods tend to favour the wider road, which becomes less 
overloaded and has shorter final queue lengths. However, the OSCADY method 
equalises the degrees of saturation between streams 1 and 2, and gives a 
longer queue in the wider road.
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§4.6.4 Junction 3 — Chapel Hill Junction

This is a real junction in Chapel Hill (Huddersfield, England). It has 4 
arms, and has 8 vehicular streams and a pedestrian stream. The delay to 
the pedestrians is not considered in the optimisation process in this 
thesis. This junction was first used by TuIIy (1976), as an example 
junction to illustrate the generation of stage sequences and the 
calculation of signal timings using AIIsop's stage-based method. Later 
Heydecker and Dudgeon (1987) use this junction to calculating signal 
settings using the phase-based method. The data for saturation flows and 
arrival rates (when Xj<l, j=l,2,--, 9), and the junction diagram (Fig 
4.7a) and stage diagram (Fig 4.7b) are based on that in Heydecker and 
Dudgeon (1987). However, when some Xj>l (j=l,2,—, 9), the arrival rates 
are artificial. The Stage information is listed below in Table 4.10.

Table 4.10

S t age 1 2  3 4
M i n i m u m  Green (Seconds) 6.00 6.00 6.00 6.00

L o s t  T i m e  (Seconds) 
A f t e r  S t a g e  v ' 5.00 1.50 5.00 5.00

Stream data: 

Table 4.11
S t ream Number

1 2 3 4 5 6 1 8 9

S a t u r a t i o n  

F I o w ( p c u / h  )
3763 3997 2622 3494 2978 18 3 5 3360 2965 9000

Ex t r a 
E f f e c t i v e  

G r e e n  T i m e  
( S e c o n d  s )

7.00 0.00 0.00 6 .50 0.00 0 . 0 0 1.30 0.50 0.00

F i r s t  S t a g e  I n  
Wh i c h S t r e a m  
R e c e i v e s  G r e e n

4 3 4 2 4 4 2 1 3

Littst; S t a g e  I n  
Wh i c h  S t r e a m  
R e c e  i v c s  G r e e n

4 3 2 2 1 2 3 1 3
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S 9 = 9000 pcu/h 
9

3 S 3 = 2622 pcu/h

2 S2= 3997 pcu/h

1 Si =3763 pcu/h

Si = 2965 pcu/h S 7 = 3360 pcu/h

Fig 4.7a Junction 3 - the Chapel Hill junction

S«= 3494 pcu/h 
Ss= 2978 pcu/h 
S6 = 1835 pcu/h

Stage 2Stage 1

Stage 4Stage 3

Fig 4.7b The Stage Diagram 
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Case 1: each Xj < 1

The arrival rate in each stream is as follows: 

Table 4.12

Stream Number

1 2 3 4 5 6 7 8 9

Arrival Rate 
(pcu/h) 123 260 250 633 871 722 925  655 7*

*
This small arrival rate is introduced to exclude the influence of the 

pedestrian stream on the optimisation process.
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Table 4.13

METHOD SIGSET SIMPLE NEW OSCADY

Cy c 1 e T i me 53 . 7  1 5 3 . 1 1 52 5 0 60  . 1 0( s e c o n d s )

P r op o r t i o n O f 1 0. 2 78 6 0. 2 76 1 0. 2 7  4 0 0 . 2 9 6 2
C y c l e 2 0. 1 9 0 7 0. 1 8 7  3 0. 1 8  3 1 0 . 2 2 4  6

Ef  f e c t i u p 1 vV I 1 Y v 1 /
Gr e e n 3 0 1 1 1 7 0. 1 1 3 0 0. 1 1 4  3 0 . 1 0 4  8

f o r S t a g e 4 0 1 1 1 7 0. 1 1 3  0 0. 1 1 4  3 0 . 0 9 9  8
l o . 2 4 2 1 o . 2 4 4 8 o . 2 4 7 6 o . 2 16 3

P r o po  r t i o n O f 2 o . 1 117 o . 1 1 3 0 o . 1 1 4 3 o . 10 4 8
C v r* 1 P 3 0 . 7 6 7 3 0 . 7 6 4 6 0 . 7 6 1 9 0 . 7 8 7 0
^ y t 1 C 4 0 . 3 117 0 . 3 0 9 7 0 . 3 0 6 9 0 . 3 3 2 8

Ef  f e c t i v e 1 y 5 0 . 4 8 3 5 0 . 4 8 3 2 0 . 4 8 3 6 0 . 4 7 9 2
Ct r f * p n 6 0 • 7 6 7 3 0 . 7 6 4 6 0 . 7 6 1 9 0 . 7 8 7 0VJ 1 C C II 7 0 . 3 5 4 6 0 . 3 5 3 0 0 . 3 5 0 7 0 . 3 7 6 0

f o r S t r e am 8 0 . 2 8 7 9 0 . 2 8 5 5 0 . 2 8 3 6 0 . 3 0 4 5
9 0 . 1117 0 . 1 1 3 0 0 . 1 1 4 3 0 . 10 4 8
1 1 3 . 5 0 1 3 . 3 5 1 3 . 2 0 1 5 . 1 1

De  gr e e O f 2 5 8 . 2 3 5 7 . 5 7 56 . 9 2 6 2 . 0 5
3 1 2 . 4 3 1 2 . 4 7 1 2 . 5 1 1 2 . 1 1
4 5 8 . 1 2 5 8 . 5 0 59 . 0 3 5 4 . 4 4

S a t u r a t i o n 5 6 0 . 5 0 60 . 5 3 60 . 4 8 6 1 . 0 3
6 5 1 . 2 8 5 1 . 4 6 5 1 . 6 4 4 9 . 9 9
7 7 7 . 6 4 7 7 . 9 9 78 . 5 0 7 3 . 2 1

I n S t r e am ( %) 8 7 6 . 7 2 7 7 . 3 9 77 . 9 1 7 2 . 5 5
9 0 . 1 0 0 . 1 0 0 . 0 1 0 . 1 1
1 0 . 5 6 0 . 5 5 0 . 5 4 0 . 6 7

To t a 1 2 2 . 1 2 2 . 0 8 2 . 0 4 2 . 4 6
3 0 . 1 2 0 . 1 2 0 . 1 2 0 . 1 1

Qu eu e L e n g t h 4 3 . 2 1 3 . 2 1 3 . 2 2 3 . 2 6
5 3 . 0 0 2 . 9 8 2 . 9 5 3 . 3 6

I n S t r e am 6 0 . 8 0 0 . 8 1 0 . 8 2 0 . 7 5
7 5 . 5 5 5 . 5 7 5 . 6 1 5 . 3 3

( p c u ) 8 4 . 6 6 4 . 7 1 4 . 7 5 4 . 5 3
9 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1
1 0 . 5 6 0 . 5 5 0 . 5 4 0 . 6 7

D e 1 a y 2 2 . 1 1 2 . 0 7 2 . 0 3 2 . 4 5
3 0 . 1 2 0 . 1 2 0 . 1 2 0 . 1 1

P e r  U n i t  T i m e 4 3 . 2 1 3 . 2 1 3 . 2 1 3 . 2 6
5 3 . 0 0 2 . 9 8 2 . 9 4 3 . 3 6

T n  . 6 0 . 8 0 0 . 8 1 0 . 8 2 0 . 7 5I n S t r e am 7 5 . 5 3 5 . 5 4 5 . 5 8 5 . 3 2
( p c u ) 8 4 . 6 3 4 . 6 8 4 . 7 1 4 . 5 1

9 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1
T o t a l D e 1 ay

/ 5 9 9 .  0 5 9 8  . 8 5 9 8 9 6 1 3 . 0( p c u m i n u t e s  ;

R e s e r v e C a p a c i ty 15 . 91% 15 . 40% 14 . 6  6% 22 . 9  3%
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Table 4.13 suggests that for this complicated situation the SIGSET, SIMPLE 
and NEW method gives nearly the same signal settings and performance. They 
each give slightly less delay but noticeably less reserve capacity than 
OSCADY.

Case 2: Some Xj > 1

The arrival rate in each stream is as follows:

Table 4.14

Stream Number

1 2 3 4 5 6 7 8 9

Arrival Rate 
(pcu/h) 369 1500 950 1600 1700 1250 1000 700 1*

*
This small arrival rate is introduced to exclude the influence of the 

pedestrian stream on the optimisation process.
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Table 4.15

METHOD SIMPLE NEW OSCADY

Cyc 1 e
( s e c o n d s

T i me
)

89 .5  0 102 6 6 1 2 0 . 0 0

P r o p o  r t i o n O f 1 0 . 2 5 8  8 0 . 2 5  8 8 0 . 3 2 2  5
C y c l e

2 0 . 2 8 2  7 0 . 3 1  1 6 0 . 2 4 5  0
Ef  f e c 

G r e
t i v e 1 
e n

vy
3 0 . 2 0 7 1 0 . 2 1  0 4 0 . 2 4 5 0

f o r S t a g e 4 0 . 0 6 7  0 0 . 0 5  8 4 0 . 0 5 0 0
i 0 . 1 4 5 3 0 . 1 2 6 6 0 . 1 0 8 3

P r o p o  r t i o n O f 2 0 . 2 0 7 1 0 . 2 1 0 4 0 . 2 4 5 0

C y c l e 3 0 . 7 2 0 3 0 . 7 2 6 3 0 . 7 0 0 8
4 0 . 3 5 5 3 0 . 3 7 4 9 0 . 2 9 9 2

Ef  f e e t i v e 1 y 5 0 . 3 8 1 7 0 . 3 6 6 0 0 . 4 1 4 2

G r e e n 6
7

0 . 7 
0 . 5

2 0 3 
2 1 0

0 . 7 2
0 . 5 4

6
9

3
3

0 . 7 
0 . 5

0 0 8 
1 3 3

f o r S t r e a r n 8 0 . 2 6 4 4 0 . 2 6 3 7 0 . 3 2 6 7
9 0 . 2 0 7 1 0 . 2 1 0 4 0 . 2 4 5 0
1 67  . 5 1 77  . 4 3 9 0 . 5 2

D  e  g  r  e  e O f 2 18  1 . 2 1 17 8  . 3 8 1 5  3 . 1 8
3 5 0  . 3 0 49 . 8 9 5 1 . 7 0
4 12 8 . 8 9 1 2 2  . 1 4 1 5  3 . 0 7

S a t  u r a t  i o n 5 14 9 . 5 4 155  . 9 8 1 3  7 . 8 3
6 9 4  . 5 8 93 . 7 9 9 7 . 2 0
7 57  . 1 2 54  . 1 8 5 7 . 9 8

I n  S  t r e  a m ( %) 8 89 . 2 8 89 . 5 3 7 2 . 2 7
9 0 . 0 5 0 . 0 5 0 . 0 5
1 4 . 5 4 5 . 9 7 9 . 5 1

T o t  a  1 2 3 4 5 . 0 0 3 3 9  . 9 8 2 7 3 . 8 1
3 1 . 7 5 1 . 8 9 2 . 5 5

Q u e u e L  e  n g t h 4 19 1 . 3 0 1 5 9 . 3 2 2 9 0 . 6 9
5 2 9 1 . 5 2 3 1 5 . 9 7 2 4 6 . 9 2

I  n S  t  r e  a m 6 1 1 . 7 2 1 1 . 2 8 1 7 . 6 3
7 4 . 5 1 4 . 5 1 6 . 1 0

( p c u  ) 8 1 0 . 1 5 1 1 . 1 6 8 . 0 4
9 0 . 0 1 0 . 0 1 0 . 0 1
1 4 . 5 3 5 . 9 1 8 . 9 4

D e 1 a  y 2 17 6 . 9 4 17 5  . 0 0 1 4  3 . 6 1
3 1 . 7 5 1 . 8 9 2 . 5 5

P e r  U  n i t  T i m e 4 10 1 . 6 1 86 . 7 5 1 5  2 . 0 0
5 15 0 . 7 2 1 6 3 . 4 4 1 3  0 . 2 5

I n S t r e  a m
6
7

1 0 . 
4 .

6 6 
5 1

10 . 4 
4 . 5

5
1

1 5 . 
6 .

1 9 
1 0

( p c u ) 8 9 . 8 1 10 . 8 1 8 . 0 2
9 0 . 0 1 0 . 0 1 0 . 0 1

T o t a l  
( p c u  •

D  e  1 a y  

m i n u t e s ) 138 1 6.  0 137 6 2 • 0 1 4 0 0 0  . 2

R e  s e  r  v  e C a p a  c  i  t y -50 . 33% -49 . 5 5 % - 4 1  . 2 4%
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Clearly the three methods give quite different cycle times ----  the NEW
method has a cycle time which is about 13 seconds longer than that by the 
SIMPLE method and about 17 seconds shorter than that by OSCADY. The fact 
that the SIMPLE method gives a shorter cycle time than the NEW method in 
the overloaded case whereas they give very similar cycle times when there 
was reserve capacity is probably due to the overestimation of uniform delay 
by the SIMPLE method in oversaturated streams. The NEW method also gives 
the least total delay of the three methods, though only marginally less 
than the SIMPLE method, and makes the junction just slightly less 
oversaturated than the SIMPLE method. Because of capacity maximisation, 
the signal settings given by OSCADY make the junction least oversaturated, 
by a margin of 8-9 per cent of the given arrival rates, but as a result the 
delay is a little greater. The balance between streams is also 
substantially different, with OSCADY favouring streams 2 and 5 at the 
expense of stream 4.

4.7 CONCLUSION

These examples suggest that in the simple cases, i.e. for crossroads with 
simple stage structure, the NEW and SIMPLE methods give similar signal 
timings, i.e. less delay and just slightly less reserve capacity and
noticeably shorter cycle time compared with the SIGSET and OSCADY methods 
when the junction is undersaturated or oversaturated and symmetrical. When 
the junction is oversaturated and asymmetrical, however, they give
appreciably less delay and more overloading. However, when those methods 
are applied to the more complicated Chapel Hill Junction, when the 
junction is undersaturated, the NEW and SIMPLE methods give similar signal 
timings and similar junction performance to the SIGSET method and give a 
shorter cycle time and somewhat less delay than OSCADY. When the junction 
is overloaded, similar results were found for the NEW and SIMPLE methods 
relative to OSCADY. In both cases, OSCADY gives noticeably more capacity. 
Hence the new approach is shown to be a practicable alternative to the 
existing methods, giving results similar to the best of these, and it has
the advantage of not relying on an incorrect delay term for oversaturated
streams.
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In the next chapter, the NEW method will be used to generate optimal signal 
timings for each of a successive of time periods. These three example 
junctions will be used again to investigate the problem of settings traffic 
signals for periods of time-varying demand.
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CHAPTER 5. TRAFFIC SIGNAL SETTINGS FOR PERIODS OF
TIME-VARYING DEMAND

§5.1 INTRODUCTION

In last chapter the problem of setting traffic signals for an isolated 
junction during a single time period with steady demand was discussed. As 
mentioned earlier, the conventional methods of calculating traffic signal
settings (e.g. WEBSTER 1958, MILLER 1963) always assume that the demand 
flow is time-stationary, and usually one hour is the basic period for 
calculations. However, practical observations show that traffic demand is
time-varying; it can change substantially even within one hour, 
particularly during peak periods. The way in which flow varies in time has 
a great influence on the vehicular delays in practical operations and this 
is reflected in theoretical analyses. Hence it is important to consider
the flow change pattern. In most cases the one hour peak period is divided 
into a sequence of sub-periods (usually 5 — 15 minutes) during each of 
which the demand flow for each stream is assumed to be constant. The use 
of time periods shorter than 5 minutes is undesirable because it is 
difficult to model the flow profile to that detailed level and to evaluate 
the true demand trends; on the other hand, longer time periods than 15 
minutes should be avoided otherwise real flow changes could be missed. 
Outside peak periods, however, these sub-periods may be longer since the 
traffic is then usually more stable.

The literature on setting traffic signals for periods of time-varying 
demand is rather limited. In fact, the only example so far available is 
the program OSCADY, which can model such a situation, but it gives the
signal settings which are in certain cases only local optimal solutions, 
and optimises with respect to capacity instead of delay during periods of 
overload. Hence new development is needed to tackle this problem.

In this Chapter, some basic definitions and notation are first introduced, 
followed by mathematical formulation of the problem. A sequential 
optimisation method, using the total delay over the whole time period as 
the performance index, is then established, which adapts the OPTIM 
subroutine in SIGSET into the process of optimising the effective green 
times and cycle times in different periods. To prevent longer queue 
lengths at the end of the last period which will cause unnecessarily bigger
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delays to the subsequent periods that may follow, the optimiser can 
re-optimise the objective function by extending the length of the last 
period so that the effects of the final queues are taken into account. The
example calculations show that the new approach can give somewhat better
results than OSCADY.

§5.2 STATEMENT OF THE PROBLEM

Fixed-time signal control methods are based on the historical data such as 
arrival rates, saturation flow rates obtained from traffic survey and 
traffic counts. A typical pattern of changing flow in one stream over a 
peak period at a junction is described in Fig 5.1, where T is the length of
the peak period, and Ti, T2, —, TP = (Tk) are the time segments during
each of which the flow can be regarded as constant.

T2

0 t 1 12 tp-i tp

Fig 5.1

A straightforward method of dealing with this kind of problem is to set the 
traffic signals correspondingly with the variation of traffic flow levels, 
i.e. to find the optimal signal settings that give the best value of a 
performance index for each time period. The random queue length of each 
stream at the end of each time period is treated as the initial random 
queue length for that stream in the next period. An optimisation technique 
can then be employed to optimise the traffic signal settings for each 
single time period, thus a sequence of signal settings X̂ , X2 ,---, Xp can 
be obtained. The program OSCADY is a example of such a method.

However, due to the substantial changes in these traffic characteristics at 
different times of day, the control strategy should be such that the signal
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settings can give the best junction performance index taking into account 
the effects of timings in any one period and conditions in subsequent 
periods. Since the random queue length for each stream at the end of one 
segment will be the initial random queue length for that stream in the next 
segment, the signal settings for each segment are not independent of each 
other. A control policy that treats them as such will not be optimal when 
considering different time segments all together and can only be locally
optimal in each time interval. There are some ways of making improvements
such as vehicle-actuated control methods that will change the traffic 
signal settings according to the change of flow conditions. However, to 
investigate the potential use of fixed-time traffic signals, improvements
may be made if the signal settings are re-adjusted and subject to time 
shifts, i.e. if the cycle time and green splits are re-adjusted for each
segment but the times at which signal settings are changed for each segment 
are different from those at . which the flow changes, as illustrated in
Fig 5.2. Suppose that (>j /, ta', —, Xp') = {A-k'} are the new signal
settings after re-adjustment that are in force for each period
OV, T2', TP') = {Tk'} respectively.

T 2

T 2

Fig 5.2

Now we have two sequence of time-periods: the one corresponding to the flow 
changes {Tk} = (Ti, T2, —, TP) and the one corresponding to the signal 
settings {Tk'} = (Ti', T2', —, TP'). For the purpose of practical
operations let p' = p, i.e. the number of changes in signal settings is the
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same as that in flows. The optimisation problem now becomes how to find 
the signal settings (AY, AY, —, AY) = {AY} and the sequence of 
time-periods {Tk'} that gives a optimal performance index subject to 
suitable constraints.

§5.3 NOTATION

Since considerable number of mathematical expressions and operations are 
involved in this chapter, it is necessary to clarify the notation before 
further discussion. The following notation will be used in this part of 
the thesis.

Time Periods

(1) Whole Time: T (to, tp) (T is divided into p time periods)

(2) The End Of The kth Time Period: tk (k = 1, 2, —, p)

(3) The Length Of The kth Time Period: Tk

The symbol Tk will be used to denote both time period and its duration, so
that Tk = tk - tk-i.

Tk

tk-l tk

Fig 5.3

(4) Array of p Time Periods

array of p time periods of demand Ti, T2, —, TP: {Tk}
array of p time periods of signal settings Ti'/lV, -,Tp': {Tk'}

{Tk} = (Ti, T2, TP)
{Tk'} = (Ti', T2', TP')
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Time-shifts

(1) The Shift Of Time Tk: Stk

8tk is defined as the difference between the end of Tk and that of Tk',
i.e. the amount by which the kth signal settings Xk̂ _ end ealier or later 
than Xk.

Stk = tk'-tk
> 0,  i f  tk'> t k

< 0 ,  i f  tk'< t k

Tk___________
A.k

tk -1 tk

Stk< >

Tk'
Xk'

tk-i tk

Fig 5 . 4

(2) Array For Time-shifts In p Time Periods: {Stk}

{Stk} =(8to, Sti, —, Stp), where Sto = Stp = 0.

Flow In A Stream

flow in stream j: qj

flow in stream j during Tk: qjk

Saturation Flow In A Stream

saturation flow in stream j: sj 
saturation flow in stream j during Tk: sjk
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Traffic Signal Settings

(1) Cycle Time: c

cycle time during Tk: Ck
cycle time during Tk': ck'

(2) Effective Green Time For A Stage

effective green time for stage i in period Tk: taik-ck i=l, 2, —, m
effective green time for stage i in period Tk':taik'-ck' i=l, 2, —, m

(3) Effective Green Time For A Stream

proportion of effective green time for stream j: Aj

effective green time for stream j during Tk : Ajk-ck
effective green time for stream j during Tk': Ajk'-ck

(4) Array of Traffic Signal Settings

vector for traffic signal settings for a single period Tk : tak
vector for traffic signal settings for a single period Tk': tak'

tak=(taok, talk, •••, tank) 

tak'=(taok', talk', t a n k ')

array for traffic signal settings for p time periods {Tk} : {tak}
array for traffic signal settings for p time periods {Tk'}: {tak'}

{tak} = (tal, ta2, •••, tap)

{tak'} = (tal_', X l \  tap')
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Queue Lengths For Stream j: Lj

(1) Uniform Queue Length: Luj

average uniform queue length during the time period Tk: Lujk

average uniform queue length during the time period Tk': Lujk'

(2) Random Queue Length: Lij

random queue length at time tk: Lrjk 

random queue length at time tk': Lrjk'

Then Lrjk is the initial random queue length for period Tk+i and the final
random queue length for period Tk, and similarly Lrjk' for Tk+i' and Tk'.

(3) Total Queue Length for Stream j at tk: Ljk

Total Queue Length for Stream j at tk': Ljk'

Ljk = Lrjk + Lujk

Therefore Ljk is the initial total queue length for period Tk+i and the
final total queue length for period Tk, and similarly Ljk' for Tk+i' and Tk'.

Delays

(1) Delay per unit time: D

delay per unit time in stream j: Dj

If the signal settings are the same throughout Tk it is useful to define 

delay per unit time during Tk in stream j: Djk

And if the arrival rates are the same throughout Tk' it is useful to
define:

delay per unit time during Tk' in stream j: Djk'
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(2) Total delay at the junction: W

total delay at the junction over Tk: Wk 

If the signal settings are the same throughout Tk, then

Wk = Tk-I Djk 
j =  i

total delay at the junction over Tk': Wk'

If the arrival rates are the same throughout Tk', then

Wk'= Tk'- £  Djk'
j = i

Where Tk and TV overlap, total delay at the junction over TknTV = Wkk*

(3) Total delay at the junction over the whole time (p time periods):

W = £  Wk = £  Wk'
k = 1 k = 1

§5.4 MATHEMATICAL FORMULATION

§5.4.1 Basic Assumptions On Signal Settings 

In this chapter the following assumptions are made:

1. There are p time periods.

2. The traffic conditions, (e.g. flow and saturation flow) in each time
period are constant;

3. There are n streams in the junction and m stages in the signal cycle.

4. The constraints on the signal timings (i.e. the stage order, the stage
matrix and the minimum green time for each stage, etc) are the same in
all the time periods.
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Under these assumptions, traffic signal settings for an isolated junction
are to be calculated by a stage-based method.

§5.4.2 The Calculation Of The Performance Index

In the following discussions we use the total delay over all the time
periods for the junction as a performance index, and the problem can then
be expressed as:

To find the signal sequence (Â ', Ta', •••, A.P') = {A*'} and a series of
time periods (Ti', T2', —, TP') = {Tk'} to minimise

W = £  Wk' (5.1)
k = 1

where Wk' = total delay in time period Tk' (k=l,2,---,p), subject to the 
constraints

Sti = 0 (5.2)
- Tk < Stk < Tk+i (k= 2, 3, —, p) (5.3)

and constraints (2.21 - 2.28).

The constraints (5.3) are introduced to make sure that a certain set of 
signal settings A.k will be implemented in no more than three time periods, 
i.e. only in extreme cases will Xk be implemented in Tk-i, Tk and Tk+i.
Under such constraints the following relationship exists:

Tk' = Tk - Stk-i + Stk (k=l,2,-,p) (5.4)

By the relationship (5.4), the problem can be restated as follows:

To find the succession of signal settings (Aj', A2', —, A.P') = {^k'} and 
time-shifts (5ti, St2, —, StP) = {Stk} to minimise W as defined in
(5.1), subject to the constraints (5.2) , (5.3) and (2.21)-(2.28).
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The initial settings (Ai, A2, —, Ap) = {Ak} are such that {Tk'} = {Tk},
i.e. the initial settings correspond to the flow level in each time 
segment. The signal settings obtained through the method using the new
sheared delay formula introduced in Chapter 4 will be used as such
settings. The performance index W corresponding to {A*}, when {Tk'} =
{Tk}, can be easily calculated by:

Suppose, that, through some optimisation techniques, we have found the 
signal settings (AY, AY, •••, Ap') = {AY} and a series of time periods 
(Ti', T2', •••, Tp') = {Tk'}, then the next problem is how to evaluate the 
performance index W when {AY} are implemented. Obviously W cannot be 
evaluated according to (5.5), since there can be more than one set of 
signal settings in each time period in which the flow is constant. The 
calculation of the performance index must therefore be conducted in more 
detail, even within one period. In fact, each time period can be 
sub-divided into up to three time intervals, in each of which there is only 
one combination of flow levels and signal settings. If the total number of 
time periods is p (p>2), then the delay in each of these time periods 
should be considered as follows:

1) Intermediate period Tk

No period of this type exists if p<3, and period k is this type for

(5.5)

where Djk = Dujk + Drjk

and D ujk=  D ujk(q jk , A jk, ck)

and according to the sheared delay formula,

Drjk — Drjk(qjk, Ajk, Lrjfl<-|)}

k=2,
k=2, • • •, p-1,

if p=3. 
if p>3
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a. 5tk-i < 0, 5tk < 0

Tk-l Tk Tk+1

i-----------1-------- ;------- 1— ;—A,k-1 A,k A.k+1

- Stk-1 -Stk
!< !< >:

Tk-i' Tk' Tk+i'

Xk.i' W 7

Fig 5.5

There are two sets of signal timings during Tk: Xk' and A.k+i', which are in
force for the intervals TknTk' and TknTk+i' respectively. Total delay in
the interval TknTk' is:

Wkk = |  £  Dj(qjk, Sjk, Ajk', Ck', Lrj(k-1), Tk + 5tk)|-(Tk + Stk)

The random queue length for stream j at the end of the interval
TknTk' is:

Lrjk' = Lrjk (qjk, Sjk, Ajk , Lrj(k-1), Tk + Stk)

Then the total delay in the interval TknTk+i' is:

Wk(k+1) =  |  £  Dj(qjk, Sjk, Aj(k+1)', Ck+l', Lrjk', -8 tk )|-(-8 tk )

Hence the total delay in period Tk is:

Wk = Wkk + Wk(k+1)

The random queue length for stream j at the end of period Tk is:

Lrjk =  L rjk (q jk , Sjk, Aj(k+1) , Lrjk , -Stk)
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b. Stk-i < 0, Stk > 0

Tk-l Tk Tk+1

A.k-1 Xk ‘ Xk+i

-Stk -1 Stk
: <------>\ !<-------> j

Tk-i'
I

Tk' Tk+i
I

A.k-i' ' Xk' ' Xk+i

Fig 5.6

In this case there is only one set of signal settings Xk in 
total delay in Tk is:

W k  = j z  D j(q jk , Sjk, A jk ', Ck', Lrj(k-1), T k ) |- T k

The random queue length for stream j at the end of Tk is:

Lrjk =  L rjk (q jk , Sjk, A jk ', Lrj(k-1), T k )

C. 8tk-l > 0, Stk < 0

T k - i T k T k + l

A.k-1 X k A.k+1

Tk-i'

Stk-1 
< >

Tk '

-Stk 
<---->

Tk+l'

Xk-i' h ' x,k+l'

Fig 5.7

There are three different sets of signal settings: Xk-i\  
which are in force in three intervals: TknTk-i', Tk'
respectively. The total delay in the first interval TknTk-i' is:

Wk(k-1) = Z D j(q jk , Sjk, A j(k-1)', C k -l',  Lrj(k-1), Stk-l) l-Stk-1 
q = i  j
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The random queue length for stream j at the end of this interval is: 

Lrj(k-1)' = Lrj(k-l)'(qjk, Sjk, Aj(k-1)', Lrj(k-1), 5tk-l)

Then the total delay in the second interval Tk' is:

Wkk =  j x  Dj(qjk,Sjk,Ajk',Ck',Lrj(k-l)',Tk-5tk-l+5tk)|-(Tk-5tk-l+8tk)

The random queue length for stream j at the end of this interval is: 

Lrjk = Lrjk (q jk , Sjk, Ajk , Lrj(k-l) , Tk-8tk-l+Stk)

Hence the total delay in the interval TknTk+i' is:

Wk(K+l) = |  X Dj(qjk,Sjk, Aj(k+l)',Ck+l',Lrjk',-5tk)|-(-Stk)

Therefore the total delay in period Tk can be given by:

Wk = Wk(k-l) + Wkk + Wk(K+l)

The random queue length for stream j at the end of period Tk is: 

Lrjk = Lrjk(qjk, Sjk, Aj(k+1) , Lrjk , -Stk)

d. 5tk-i > 0, Stk > 0

Tk-l Tk Tk + 1

A . k - 1 Xk Xk + 1

T k-i'

S t k  - 1 

< >
Tk'

Stk 
< »

Tk+l'

A . k - 1 ' A . k ' A . k + i '

Fig 5.8
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As in case a), there are two sets of signal timings Xk-/ and Xk' in the 
intervals TknTk-i' and TknTk' respectively. The total delay in the first 
interval TknTk-i' is:

W k(k-1) =  j x  D j(q jk , Sjk, A j(k-1)', C k-l', Lrj(k-1), S tk - l) |* 8 tk - l

The random queue length for stream j at the end of this interval is:

Lrj(k-1)' =  L rj(k -l) '(q jk , Sjk, A j(k-1)', Lrj(k-1), Stk-l)

Then the total delay in the second interval TknTk' is:

Wkk = j x  Dj(qjk,Sjk,Ajk',Ck',Lrj(k-l)',Tk-5tk-l)|-(Tk-5tk-l)

Therefore the total delay in period Tk can be given by:

Wk = Wk(k-l) + Wkk 

The random queue length for stream j at the end of period Tk is:

Lrjk = Lrjk(qjk, Sjk, Ajk , Lrj(k-1) , Tk-Stk-l)

2) First period Ti 

By definition 8to = 0.

a. If Sti < 0.

The total delay in Ti can be calculated by putting k=l and Stk-i=0 in case
(c) for the intermediate period.

b. If Sti > 0.

The total delay in Ti can be calculated by putting k=l and Stk-i=0 in case
(d) for the intermediate period.



3) Last period TP

By definition 8tp = 0.

a. If 8tp-i < 0

The total delay in TP can be calculated by putting k=p and 8tk=0 in case
(b) for the intermediate period.

b. If Stp-i > 0

The total delay in TP can be calculated by putting k=p and 8tk=0 in case
(d) for the intermediate period.

§5.4.3 Evaluation Of The Effects Of {Xk'} and {8tk} On
The Peformance Index

After the two performance indices W and W' corresponding to two successions
of signal settings {^k} and {^k'} have been calculated, it is important to
compare W and W ' so that the effects of re-adjusting the signal timings and 
making time-shifts can be evaluated. The criterion that will be used for 
this purpose is the percentage reduction in total delay:

5W/W = (W-WO/W (5.6)

The criterion 8W/W will be used in example calculations.
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§5.5 OPTIMISATION OF {Xk'} FOR FIXED {5tk}

§5.5.1 Introduction

The discussions in this Chapter have not yet considered the problem of how 
to find {Xk'} and {8tk'J, but only the evaluation of the Performance Index 
once {Xk'} and {5tk'} are found. In fact, it is difficult to solve the 
problem of simultaneous optimisation of {Xk} and {Stk}, since the number of 
variables involved is very large and no existing technique is available 
except exhaustive grid search. However, the problem can be solved by the 
sequential optimisation of {Xk'} and {8tk} iteratively. This section
introduces the optimisation of {Xk'} without changing {8tk}, and the next 
section §5.6 discusses the problem of optimising {Stk} under fixed {Xk'}. 
An iterative algorithm of sequential optimising {Xk'} and {Stk} is given in
§5.7.

When {8tk} are fixed, to optimise {Xk'}, we must first consider the factors
affecting the choice of {Xk'}. First consider the problem of optimising a 
particular Xk', k = 1, 2,---, p. Since the random queue lengths at the end
of Tk' will be the initial queue lengths at the beginning of Tk+i', any
change in Xk' will directly influence the delay in the subsequent periods 
after Tk'. On the other hand, such a change will also indirectly influence
the delay in the periods before Tk', since the change in Xk' will
eventually cause changes in Xh' and hence Wh', h = 1, 2, —, k-1.
Therefore the signal settings in one period will be determined not only by
the traffic conditions in this period, but also by the traffic conditions 
and signal settings in the periods before and after this period, i.e. Xk'
must be treated as global variables, and such influences must be considered
in order to get the global optimal signal settings.

§5.5.2 The Calculation Of The Derivatives With Respect To Xk'

To optimise Xk' (k=l, 2, —, p), it is important to evaluate the
derivatives of W with respect to Xk', i.e. 3W/sXik' (i= l,2,•••,/?!,
k=l,2,*",p) should be known. At each step in the iterative process of 
optimisation to be introduced in §5.5.3 below, we optimise Xk' under 
existing Xh', h = 1, 2,**;k-l, k+1 p. In doing so we only consider the
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direct effect of changing W  on the delay in periods after Tk', and the 
indirect effect of changing A*' on the delay in periods before Tk' is taken 
into account later in the iterative optimisation process.

Now W = £  { S  Wjh'l (5.7)
j = 1 1 h = l J

Where Wjh' is the delay in stream j during Th', and the change in Xk' will 
only have direct effect on Wh', h=k,k+l,---,p. Wk' itself is influenced 
through changes in the Ajk' (j=l,2,—,n) (in accordance with the 
relationship (2.21)); and the Wh' (h=k+l, k+2, p) are influenced
through changes in the initial queue lengths Lrj(h-i)' 
(j = 1, 2, - ,  n; h = k+1, k+2, •••, p).

Hence

aW = £ j £ aWl = £ j £ £W.aA4 = £ J  £ aWV
a A. i k j = l [ h  = l d ^ i k l  j = l l h  = kaAjkaA. i kl  j = 1 I h = k 3 A jk

£ a i j t e +- aLr j k
=  Ia i.

j = i  [a A jk ' aA jk'

a w  j (k+i)' + £

a Lr j k h = k +2

aWjh' aLrj(v-i)'
n

aL  r j ( h-1) v=k+2 a L r j (v -2 ) '

(5.8)

a w
=  £  j  % dw ihi  I I  dWjh' ah]k' + a W j k '

a A. ok '  j=i [h = iaAok J j=i [h = k aAjk'aA,ok' a A, ok'

= S   ̂aoj 
j= i

£  aWjh'

h = k 3 Ajk
+ aWjk' 

a A. ok ,
(5.9)

The derivatives aWjk'/aAjk', aWjk'/aA.ok' and aWjk/aUj(k-i)' are multiples 
of the corresponding derivatives of Djk, which are given in Appendix 2. 
The derivatives aLrjk'/aAjk' and aLrjk'/aLrj(k-i)' are given in Appendix 3. 
And when {8tk}*{0}, by analogy with the discussion in §5.4.2, there are
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further steps in the calculation, i.e. the period Tk' may be sub-divided 
into up to three time-intervals according to the number of different set of 
demand flow levels. For example, when k=l, to calculate aWji'/dAji':

a. If 8ti<0, since there is no change in the flow qji during TT, 
dWji'/dAji' can be calculated directly by

aWjiVaAji' =
a A j i '

Wji'(qji, sji, Aji', ci', L rjo , T i ' )

b. If 8ti>0, since Ti' = Ti + Sti, the flow qji is changed to qj2 at the 
end of Ti, hence a W j i ' / a A j i '  consists of two components corresponding to 
periods Ti and T2P1T1', and given by

a A j i '
W ji  1 ( q j i , Sji, A ji' ,  c i ' ,  Lrjo, T i )

and

a A j i '
Wj2l(t]j2, Sj2, A ji ' ,  Cl', L r j l ,  S t i )

+ a W j 2 i a

a L  r j 1 a A j i
L rji ( q j i , s j i ,A j i ' ,L r jo ,T i ) |

where Wjkk' is the delay in stream j during TknTk'.

Hence aW/aXik' ( i = l k = l , 2 , - - - , p )  can be evaluated according to the 
above formulation using the new sheared delay formula (4.20).

§5.5.3 The Sequential Optimisation Of {Xk'}

To optimise Xk', k = 1, 2, •••, p, the SIGSET optimisation subroutine OPTIM 
that was used to calculate the optimal signal settings for a single period 
can still be used here, since the signal timing requirements (e.g. the 
definition of the stage matrix) and the constraints (2.21)-(2.28) are 
unchanged and the variables are the same. The only difference is in the 
objective function, which is reflected in the difference . in the 
derivatives.
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Hence {X*'} can be optimised for given {Stk} by the following sequential 
algorithm:

Step 0: ALGORITHM 0 (Initial Signal Settings)

Find the initial solution {Xk'}={Xk}, where {Ajc} is the sequence of traffic 
signal settings that give the optimal performance index for each single 
time period Tk, k=l, 2, •••, p.

ALGORITHM 1 (Sequential Optimisation of {Xk'}:

Choose a small ei (e.g. ei =0.0001) for use in the criterion for stopping 
the algorithm.

Step 1: Let the current Performance Index be Wc. For given {Stk'}, 
optimise (XL, Xi\  •••, Xp')={Xk'}.

Step 1.1 Optimise XL.
Step 1.2 Optimise Xi'.

Step I.p Optimise Xf.

Steps 1.1 - l.p are realised by implementing OPTIM, which uses the
derivatives given by (5.8) and (5.9). Then a new value of the Performance 
Index is obtained, which is denoted by Wncw.

Step 2. If (Wc-Wncw) > ei-Wc, go to step 1.1. Otherwise stop.

Hence {Xk'} is optimised with respect to the total delay W in the whole
period T rather than each Xk' being optimised individually with respect to
the total delay Wk' in period Tk'. i.e. the effects of each setting Xk' on 
W are considered.

§5.5.4 An Example Calculation

To illustrate the practicability of the above algorithm, we consider the
symmetric crossroads -  junction 1, which was introduced in §4.6.2. This 
example junction will be used throughout this chapter to illustrate the 
various algorithms. The additional data to Table 4.2 are given in 
Table 5.1.
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Table 5.1 Additional Data For Example Junction 1

P e r i o d  Ti P e r i o d  T 2

Le n g t h Of  
T i m e  P e r i o d

T i =10 mi nu te s T 2=10 m i n u t e s
F l o w  R a t i o  
I n  S t r e  am 1

y i i = 0 .6 y  1 2 = 0 .4 5
F l o w  R a t i o  

I n  S t r e am 2
y 2 1  = 0 .4 y 22 = 0 .3

I n i t i a l  
Q u e u e  L e n g t h  
I n  S t r e am 1

L t io = 0 .0

I n i t i a l  
Qu e u c  L e n g t h  
I n  S t r e am 2

L r 2 0  = 0 .0

The initial signal settings obtained from Algorithm 0 are summarised in 
Table 5.2, where the total delay in period 1 and 2, W i and W 2 , are 
estimated by the new delay formula (4.20), since this is the formula used 
in the optimisation process. However, the total delay for the whole period
(Ti and T2 together) is estimated by both the new delay expression and the 
OSCADY formula, the results being denoted by Wnew and Wosc respectively. 
The latter value is calculated to enable subsequent direct comparison with 
timings calculated by OSCADY. The evolution of the queues is plotted in 
Fig 5.9.

Table 5.2 The Initial Signal Settings (Xk) for Example Junction 1

P e r i o d  Ti P er i o d  T 2

Cy c l e  Ti me 
( S e c o n d s  ) c i  = 8 7 . 49 c 2 = 85 . 38

A l l o c a t i o n s  
of  Gr e e n
Ti mes  A, 1 , A.2

X i i = 0 . 5583 

X 2 i = 0 . 3502

X 1 2 = 0 .5 2 9 1  

X 2 2  =  0 . 3 7 7 2

F i n a 1 
Ran d om 

Queue  Le n g t h

L r i i = 1 9 . 3 3  
L r 21 = 1 9 .91

L r 12 = 6 .61  
L r 22 = 5 .51

F i n a 1 
Un i f o r m 

Queue  Le n g t h

L u i i  = 5 . 9 9  
L u i i  = 5 .5 3

L u 12 = 4 . 3 0  
L u 2 2  = 3 .94

T ota l D e la y

( p c u • m i n u t c s )

Wi  = 3 3 8  . 30 W 2 = 321.85

Wn e w = 660  .15  
Wo s c  = 6 5 4  .00

Starting from this initial solution, the signal settings are re-optimised
using the Algorithm 1. The results are summarised in Table 5.3. The 
evolution of the queues in this case can be seen in Fig 5.10.
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Fig 5.9 Queue Lengths 
With Initial Signal Settings

Queue Length (pcu)
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Fig 5.9 Queue Lengths 
With Initial Signal Settings
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Fig 5.10 Queue Lengths
With Re-optimised Signal Settings
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From Table 5.2 and Table 5.3 it can be seen that the initial settings are 
only a local solution to the problem, since they are only optimal in each 
single period, and even though the delay in each of these single periods is 
minimal, the queues at the end of each period are not taken into account, 
which may cause bigger delay to the subsequent periods than the case where 
these queues are considered in the optimisation process. In this example 
the initial settings result in a delay of Wi = 338.30 pcu-minutes in Ti and 
W2 = 321.85 pcu-minutes in T2. By implementing Algorithm 1, although the 
delay in Ti is increased to Wi = 350.96 pcu-minutes, the delay in T2 is 
substantially reduced to W2 = 273.11 pcu-minutes, hence the total delay in 
the whole period, W = Wi + W2 is less than before, i.e. the overall 
performance index is improved. This can be explained by comparing Fig 5.9 
and Fig 5.10, from which it can be seen that, at the end of Ti, the 
initial settings give a total queue length of L11 = 25.32 pcu for stream 1 
and L21 = 25.44 pcu for stream 2. However, the re-optimised signal 
settings give a total queue length of L11 =26.05 pcu and L2i=22.65 pcu, and 
although L11 becomes bigger, L11+L21 becomes smaller. The queues at the 
end of Ti are thus shorter in total, so that the delays in T2 are smaller 
than before. As a result, an appreciable decrease in total delay of about 
5.5% are obtained by the re-optimisation. Moreover, the queues remaining 
at the end of T2 are shorter in total after optimisation.

Table 5.3 The Signal Settings After Re-optimising {A*'}
for Example Junction 1

P e r  i o d  T i Per io d  T 2

Cy c l e  Ti me 
( S e c o n d  s ) c i  =  1 2  0 . 0 0 c 2 =  8 1 . 7 8

A 1 1 o c a t i o n s  
of  Gr e e n
Ti mes  A, 1 , A. 2

A 1 1 ' =  0  . 5 6 4 2  

\ 2 i ' =  0  . 3 6 9 1

X  \ 2 ' =  0 . 5 3 8 0  

X  2 2 ' — 0 . 3 6 4 1

F i n a l  
Random 

Queue  Le n g t h

L m  = 1 7 . 8 5  
L r i \  =  1 4 . 8 9

L r l 2 =  5 . 2 8  
L  r 2 2 =  5 . 12

F i n a l  
U n i f o r m  

Queue  Le n g t h

L< u i i = 8 . 2 0  
L  u 2 i = 7 . 7 6

L u 1 2  = 3 - 9 7
L . 2 2  = 3 . 9 4 .

T ota l D e la y

( p c u - m i n u t e s )

W i = 3 5 0 . 9 6 W  2 = 2 7 3 . 1 1

W  n e w  = 6 2 4 .  0*7 
W o s c  = 6 1 8 . 4 7

P c r c e n  t a g e  
R e d u c t i o n  In 
T o t a l  D e l a y

1 0 0 •S w /W

5 . 4 7  % b y  t h e  n e w  f o r m u l a  

5 . 4 3  % b y  t h e  O S C A D Y  f o r m u l a

'fc* compared with initial settings (Table 5.2)
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§5.6 OPTIMISATION OF {8tk} FOR FIXED {Xk'}

§5.6.1 Introduction

In the above algorithm, although the total delay for the whole periods can 
be decreased by re-optimising {Xk'}, it may be decreased further if the
signal settings are subject to time-shift, i.e. if the change of signal 
settings from one period to the next is not necessarily simultaneous with
the change of the flows but can be earlier or later. To investigate this
possibility, calculations are made using the same example as in §5.5, where 
the initial signal settings {Xk} and the re-optimised settings {Xk'} are
both tested, i.e. by continuing Xi (or Xi') into the second period (in
which case 8ti>0), or by starting X2 (or X2') before the end of the first
period (in which case 8ti<0).

§5.6.2 The Example Calculations

The effects on the total delay for the whole periods of making the
time-shift to the initial settings {Xk} and the re-optimised settings {Xk'}
can be seen in Fig 5.11a and Fig 5.12a, where the delays are estimated by 
the new delay expression, and in Fig 5.11b and Fig 5.12b, where the delays 
are estimated by the OS CADY formula. From these curves it can be seen
that, for the initial signal settings {Xk} the time-shift for minimum total
delay is 8ti=36 seconds, i.e. W is minimised if the signal settings are
changed 36 seconds later than the change of flows; and for the
re-optimised signal settings {Xk'} the time-shift which yields minimum 
total delay is 8ti=72 seconds.

Figures similar to Fig 5.11 were plotted for the cases listed in Table 5.4
and Table 5.5 (for all these cases, Ti and T2 were also reversed), and the
following characteristics were found:

1. The curve for the total delay W as a function of the time shift Stk
(k=l, 2, ••', p), W = W(8tk), is non-convex, and non-differentiable at Stk
= 0 (k = 1, 2,  — ,JH) under fixed {Xk'}.
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Table 5.4 Cases Studied For Example Junction 1

Period 1 (Ti=10 minutes) Period 2 (T2=10 minutes)

y n y 2 i yi 2 y 22

0 .6 0 .4 0.45 0 .3

0 .6 0 .4 0.3 0 .2

0.75 0.5 0.5 0.33

0.75 0.5 0.375 0.25

0.75 0.5 0.3 0 .2

Table 5.5 Cases Studied For Example Junction 2

Period 1 (Ti=10 minutes) Period 2 (T2=10 minutes)

y n y21 yi 2 y22

0.6 0 .4 0.3 0 .2

0 .6 0 .4 0.2 0.3

0 .4 0 .6 0.2 0.3

0 .4 0 .6 0.3 0 .2

2. W = W(5tk) has only one turning value, a minimum, in a neighbourhood of 
zero which is very often as large as the largest range (-Tk, Tk+i) of 
values of Stk that can need to be considered within the constraints (5.3). 
In least favorable cases like this example, there are other turning values 
towards the extremities of the range. In such cases, as Stk increases from 
-Tk, W(8tk) may pass through another turning value before decreasing into 
the neighbourhood of zero that contains a minimum. Again as Stk increases 
towards Tk+i, W(5tk) may pass through another turning value. In the 
example shown here, there is one local maximum point for W(8tk) near 
Sti = -Ti = -10 minutes.

3. Where there are other local maximum or local minimum points for W(8tk) 
in the cases studied the Stk such that W = W(5tk) attains its lowest value 
is always the one minimum point in the neighbourhood of zero.
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Delay As a Function of Time-shift
With Initial Signal Settings

Delay (pcu-minutes)
715

Total Delay Wnew
705

695

685

675

665

-10 8 6 ■2 0 2 6 8 10-4 4
Time-shift (minutes)

Fig 5.1 la  Delay Estimated By The New Delay Formula

Delay As a Function o f Time-shift 
With Initial Signal Settings
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Fig 5.11b Delay Estimated By The OSCADY Delay Formula
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Delay As a Function of Time-shift
With Re-optimised Signal Settings
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Fig 5.12a Delay Estimated By The New Delay Formula
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Fig 5.12b Delay Estimated By The OSCADY Delay Formula
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These findings suggest that it is difficult to apply analytical methods
(methods that require the derivatives dW(Stk)/35ik to search the optimal 
Stk. The fact that any change in the signal settings or time-shift for one 
period will result in changes in the delays in the subsequent periods 
implies that it is also difficult to optimise the elements of {Stk}
simultaneously, especially when the number of time periods p is large, and 
the amount of computation required to evaluate any changes in the 8tk is 
big. Hence it is only practical to optimise {Stk} sequentially. An
optimisation algorithm for this purpose using the Golden Section method is 
introduced in §5.6.3.

§5.6.3 The Optimisation Method -  Golden Section Method

To optimise {5tk} sequentially under fixed {AV}, first we consider the 
optimisation of Stk, k=l, 2, ,•••, p-1. The initial feasible region for
8tk is defined according to the current Stk-i, Stk+i and the constraints
(5.3), and will be denoted by the interval (ak, bk).

, -Tk if Stk-i <0
Then ak = J (5.10a)

 ̂ -Tk+Stk-l if Stk-l>0

, Tk+l-hStk+l if Stk+1<0
Then bk = J (5.10b)

V Tk+l if Stk+1>0

If W(8tk) has only one turning value, a minimum, in (ak, bk), then the 
optimal Stk can be found by using the Golden Section method. However,
since it is possible that there are other local minimum points in this 
interval for Stk, local optimisation in this interval may give a suboptimal 
Stk. Based on the assumption that the optimal 8tk should be in the 
neighbourhood of the current value Stko, say, the optimal Stk can be found 
by iterative reduction of the interval while optimising Stk using the 
Golden Section method. Such an algorithm for optimising {Stk} can be
described as follows:

ALGORITHM 2 (sequential optimisation of /’Stkj):

Step 0: Define the initial feasible region (ak, bk) for Stk
(k = 1, 2, p-1).
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Step 1: Optimise {Stk} (k = 1, 2, •••, p-1).

step 1.1 Choose a small value £2 for use in a stopping criterion,

step l.k: Optimise Stk (k = 1, 2, •••, p-1).

step l.k.O Evaluate the initial performance index Wo = W(5tko).

step l.k.l Let the current feasible region be (ak|f, bk|f), where f
is the number of times that (ak, bk) is reduced
(f = 0, 1, ).

step l.k.2 Let the current search interval for Stk be (akh, bkh),
where h is the current iteration number (h = 1, 2, •••,
aki =ak |r and bki=bk|f). The length of the interval is ah =
bkh-akh. Then find two trial points ĥi and £h2, which are 
given by

^ h l =  bkh -  x a h  

^ h 2 =  akh +  x a h

— ' 1Where x = --------   ~ 0.618 is the factor by which the
2

interval is reduced.

step l.k.3 Compare W(^hi) and W(^h2).

If W(^hi)<W(^h2), then let ak(h+i) = akh, bk(h+i) = £h2; 
hence £(h+i)2 = (̂h+i)i=bk(h+i)-xa(h+i). Take the
current solution as Stkh = ĥi.

otherwise let ak(h+i) = £i, bk(h+i) = bkh;
hence £(h+i)i = ĥ2, (̂h+i )2=ak(h+i )-i-x(X(h+1), and take the
current solution as Stkh = ĥ2.
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step l.k.4 If {W(^hi)-W(^h2)}/W(^hi) > 82 , go to step l.k.3. 
Otherwise compare Wo and Wh = W(8tkh).

If Wh > Wo, reduce the feasible region by:

If Stkh > Stko, let ak | f+i = ak|f, bk|f+i = Stkh;
If Stkh < StkO, let ak|f+l = Stkh, bk|f+l = bk I f.
Then got to step l.k.l to search Stk again in the revised 
feasible region.

Otherwise stop and take Stkh as the solution.

Such an algorithm will generate a sequence of feasible region (ak|o, bk|o),
(ak11, bk 11), (ak 12, bk 12), •••, which will converge to the neighbourhood
of Stko in which the only turning value is a minimum, and hence a
performance index which is no worse than Wo can be found.

§5.6.4 Results For The Present Example

Using this algorithm for the present example, the resulting W is nearly the 
same as that given by the numerical calculation, and Sti is a little 
different since the curve W(Stk) is almost horizontal around the optimum.
The result can be summarised in Table 5.6, where the percentage reduction 
in delay is still estimated with respect to the total delay W given by the
initial settings {Xk}. By comparing Table 5.6 and Table 5.3 it can be seen 
that only a very small improvement in W is made by shifting Sti in this
example. The queues remaining at the end of the second period are

however reduced
by about 5 per cent. Fig 5.13 shows the evolution of the queue lengths,
from which by careful comparison with Fig 5.10 it can be seen that by
making the time-shift the random queues after Ti are reduced, and the fact
that total delay is reduced shows that these reductions in the random 
queues after Ti overweigh the increase in uniform queues between Ti and
T n-Sti.
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Fig 5.13 Queue Lengths 
After Shifting 1 1 By 68.74 Seconds
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Fig 5.13 Queue Lengths 
After Shifting 1 1 By 68.74 Seconds
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Table 5.6 The Signal Settings After Re-optimising {ta'} and Shifting 8ti

T i m e -  s h i  f t  5 t i = 6 8 . 7 4  seconds

P e r i o d  Ti Per i o d  T 2

C y c l e  T i m e  

( S e c o n d s )
c i  = 1 2  0 .0 0 c 2 = 8 1 . 7 8

A l l o c a t i o n s  

o f  G r e e n  

T i m e s  X 1 , X 2

X \ i ' =  0 . 5642 

X i i ' =  0 . 3691

X 1 2 '=  0 .5 3 8 0  

X u ' — 0 .3 6 4 1

F i n a l  

R a n  d o m 

Q u e u e  L e n g t h

L  r i i = 1 7 . 8 5  
L r  21 = 1 4 . 8 9

L  r 1 2 = 4 . 69 
L r 2 2 = 4 . 80

F i n a l  

U n i f o r m  

Q u e u e  L e n g t h

L u l l  = 8 . 20
L  u 2 i = 7 .76

L u i 2 = 3 . 9 7  
L  u 2 2 = 3 . 94

T ota l D e la y

( p c u • m i n u t  e s )

W i  = 3 5 0  .96 W 2 = 2 7 1 .9 1

W  n e w  = 6 2 2 .£ 1  
W o s c  = 6 1 6 .2 8

P c r c c n  t a g cjU.
R e d u c l i o n I n 

T o t a l  D e l a y

1 0 o • 8w / W

5 . 6 4  % b y  t h e  n e w  f or mul a  

5 . 7 8  % b y  t h e  O S C A D Y  f or mul a

* compared with initial settings (Table 5.2)

§5.7 A SEQUENTIAL OPTIMISATION METHOD 

§5.7.1 Introduction

The discussion so far on the optimisation of traffic signal settings for 
periods of time-varying demand has been confined to optimising {Xkz} 
without changing {5tk}, or optimising {5tk} without changing { .̂k'}. 
However, since {^U} and {Stk} are interrelated, the signal settings given 
by either Algorithm 1 or Algorithm 2 are only local optima and can be 
improved if the two algorithms are combined together. Hence the following 
sequential optimisation method is proposed.

§5.7.2 The Algorithm

ALGORITHM 3 (Sequential Optimisation of (Xk'} and {h'tk})

Step 0: Find the initial solution {7.k'}={^k} and {5tk}={0}, where {^k} is 
the succession of traffic signal settings that give the optimal performance 
index for each single time period Tk, k=l, 2, —, p.

Choose a small value £3 for use in a stopping criterion.
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Step 1: For current {5tk}, optimise ( X i / ,  X 2 ' ,  X p ' ) = { X k ' }  using
Algorithm 1.

Step 2: Let the current Performance Index be Wc.

For the current {Xk'}, optimise {5tk}. Let the resulting Performance Index 
be W new . If (Wc -W new )>G 3’W c , go to step 1. Otherwise stop.

§5.7.3 Results For The Present Example

The results after implementing Algorithm 3 are summarised in Table 5.7 and 
the evolution of the queues is shown in Fig 5.14.

Table 5.7 The Signal Settings After Sequential Optimisation of {Xk'} & 8ti

T i m e -  s h i  f t  St 1 = 1 0 6 . 3  seconds

P e r i o d  Ti Per i od T 2

Cycl e Time 
(Second s ) c i  = 12 0 .00 c 2 = 7 3 .4 8

A 1 1 o c a t i ons  
of Green
Times X 1 , X 2

X 1 i ' = 0 . 5631 

X 2 1 '=  0 . 3702

X 1 2 '=  0 .5298  

X 2 2  ' = 0 .3 6 1 4
Fi nal  
Ran d o m 

Queue Length
L r 1 1 = 1 8.13  
L r 2 1 = 1 4 .62

L r 1 2 = 5 . 05 
L x 22 = 4-. 76

Fi nal  
Uni form 

Queue Length
L u l l  = 8 .20
L u 2 i = 7 .77

L u i 2 = 3 .69 
L u 22 = 3 .57

T ota l De l a y

( p e u • m i nul c s )

Wi  = 35  1 J O W 2 = 2 7 0 .7 8

W new — 6 2 1 .  §§  
Wosc = 6 1 5 .1 9

Pcrcen l agc  
aReduct i on In 

Total  Delay
10 0- Sw/ W

5 . 8 0  % by the new f o r m u l a  

5 . 9 3  % by the O S CADY f o r m u l a

♦compared with initial settings (Table 5.2)

It can be seen from Tables 5.6 and 5.7 that the total delay is reduced very 
slightly further. Moreover, the queues at the end of Tz are
reduced by a further 6 per cent.
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Fig 5.14 Queue Lengths
After Sequential Optimisation
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§5.8 TAKING INTO ACCOUNT THE SUBSEQUENT CONDITIONS

§5.8.1 Introduction

Although in mathematical terms, the traffic signal settings can be 
optimised with respect to total delay for periods of time-varying demand
for any given flow pattern and junction layout by using Algorithm 3, some 
practical factors must also be considered in the optimisation process, one
of which is the queues left at the end of the last period TP. These queues
will influence the delays in the period after Tp, if they are not small 
enough to be neglected. However, Algorithm 3 takes no account of the final 
queues and the delays in the subsequent periods after TP, and it is 
possible that unnecessarily longer final queues will occur as a result of
such an algorithm, especially when the degree of saturation in TP is high, 
which will cause bigger delays than necessary after TP. Hence it is 
necessary to make further improvement to Algorithm 3 so that, whilst
keeping the total delay W as the performance index, some consideration can 
also be given to the delays in the subsequent periods after TP.

In the calculation of signal settings for a succession of periods in
practice, two requirements of the flow data are that the data should be
specified for as many time periods as is practicable, and the flows in the
last period should be low enough for the junction to be undersaturated in
TP, and this period should be long enough for equilibrium to be approached 
during it. This is so that there will not be big delays in the subsequent
periods that could be influenced by the choice of timings for periods Ti
to TP. Hence a good knowledge about the arrival pattern is preferable and
it is reasonable to assume that the last period is always undersaturated
when setting traffic signals for periods of time-varying demand.

Under this assumption, the queue length for each stream will approach an
equilibrium value in TP if TP is long enough. The delay-minimising
algorithm can then be applied to a series of time periods at the end of 
which all the streams are in equilibrium. The resulting signal settings
will be the global optimal solution which can give the minimum estimated 
total delay over such a series of time periods.
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However, in practice, the engineer may have difficulty in specifying the
length of the last period TP so that the queues in each stream are in
equilibrium at the end of TP, or may give a shorter TP than is required for 
this. In the latter case it may be reasonable to assume that the flow
levels for all the streams are the same after Tp as they were during Tp.

Hence when optimising the signal settings for p time periods, if it happens 
that at the end of TP, some streams still have longer queues than their 
equilibrium queue lengths, then TP can be extended to, say, Tpe, and the
signal settings re-optimised for Ti, T2, —, TP-i, TPe. This process can 
be repeated until all the queues are in equilibrium before or at the end of 
TPc. In this way some account is taken of the subsequent delays.

To sum up, the following two assumptions are made to find the signal 
settings that can take account of queues remaining at the end of TP.

(1) In the last period TP the junction is undersaturated;

(2) The flows in TP may last longer than TP.

Based on these two assumptions, an improved algorithm is now proposed.

§5.8.2 A Further Algorithm

To accommodate the delays in the subsequent periods after TP, the following 
algorithm can be implemented.

ALGORITHM 4 (Sequential Optimisation o f  (Xk'J and {d tk}  With Allowance For 
Subsequent Delays)

Step 0: Let TPc = TP. Choose a small number £4 (e.g. 84 = 0.2) for use in 
a stopping criterion.

Step 1: Implement Algorithm 3 to find the solution {^k'} and {6tk} for the 
time periods Ti, T2, •••, Tpe.

Step 2: Calculate the final random queue length LrjP at the end of Tpe for 
each stream j (j = 1, 2, •••, n), and the equilibrium random queue 
length LrcjP.
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Step 3: If for all j (j = 1, 2, •••, n), (Lrjp-Lrejp)<£4-Lrejp, then the
current signal settings are the final solution and go to step 4.
Otherwise extend Tpe by

Step 3.1: Let Tpe = Tpe + 8tpe, where 5tpe is an increment step
(e.g. Stpc = 5 minutes).

Step 3.2: same as step 2.

Step 3.3: If (L rjp-L rcjp) <£4*LrcjP holds for all j 
(j =  1, 2, • • • ,  n), then go to step 1; otherwise go to
step 3.1.

Step 4: evaluate W for periods Ti, T2, •••, TP and stop.

§5.8.3 Results For The Present Example

As shown in Table 5.7, by Algorithm 3, at the end of T2, the random queue 
length for stream 1 and 2 are:

U n  = 5.05 > Lrcii = 2.87

Lr22 = 4.76 > Lrc22 = 2.44

Hence by the end of T2, the queues for both streams are higher than their
equilibrium values, and the signal settings should be modified so that the 
delays after T2 can also be taken into account in the optimisation 
procedure.

When implementing Algorithm 4, in the optimisation process, T2 is extended 
to T2c = 46 minutes, at the end of which the queues are approaching (with a 
maximum error £4 = 0.2) equilibrium. The signal settings optimised for
periods (Ti+ T2c) are summarised in Table 5.8, where the total delay Wnew 

and W osc are evaluated for the periods Ti, T2. The evolution of the queues 
is given in Fig 5.15.

It can be seen from Table 5.8 that the total delay is increased compared
with Table 5.7 as a result of accounting for the subsequent delays. The
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Fig 5.15 Queue Lengths Over TI And T2 
When Optimisation Is Over 56 Minutes
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time-shift is zero which means it is now unnecessary to shift the change in 
signal settings in this example. Because the cycle time in the second 
period is longer than before, the capacity provided is higher,

as a result, the equilibrium queues
become:

Lrel2 — 2.80 < 2.87 
Lre22 = 2.32 < 2.44

i.e. the signal settings given by Algorithm 4 will lead to shorter 
equilibrium queue lengths than those given by Algorithm 3, hence the 
subsequent delays are smaller. The resulting delays are vmmmum for the 
periods Ti+T2c= 56 minutes rather than for only Ti + T2 = 20 minutes.

Table 5.8 The Signal Settings After Sequential Optimisation of {A*'} & 8ti 
Taking Into Account The Subsequent Delays

T i me -  s h i  f t  5 t i = 0 . 0  s  e c o n d s

P e r i o d  Ti Per i o d  T 2

C y c l e  T i m e  
( S e c o n d  s )

c i  = 12  0 . 0 0 c  2 = 7 6 . 7 3

A 1 l o c a  t i o n s  
o f  G r e e n
T i m e s  X 1 , A.2

X 1 1 ' = 0 . 5631 

X 2 1 ' =  0 . 3702

X i 2 ' =  0 . 5 3 1 7  

X i 2 f = 0 . 3 6 4 0

I: i n a 1 
R a n d o m  

Q u e u e  L e n g t h

L  r 1 1 = 1 8 . 1 4  
L r 2  1 =  1 4 . 6 2

L r 1 2 = 5 . 93 
Li T 22 = 5 . 0 4

f; i n a 1 
U n i f o r m  

Q u e u e  L e n g t h

Li U 1 1 = 8 .20 
L u 2 i  = 7 . 7 7

L u 1 2 = 3 .82  
L u 2 2  = 3 .69

T ota l De l a y

( p c u - m i n u t e s )

W 1 = 3 5 1 . 06 W 2 = 2 7 3 . 6 8

W  n e w  = 6 2 4 . 7 4  
W o s c  = 6 2  0 . 3 1

R c r c e n  t a g c  
R e d u c t i o n ^  I n  
T o t a l  D e l a y

1 0 0 •5w/W

5 . 3 6  % b y  t h e  n e w  f o r m u l a  

5 . 1 5  % b y  t h e  O S C A D Y  f o r m u l a

♦compared with initial settings (Table 5.2)

Hence when the subsequent delays after TP need to be considered, the 
resulting signal settings may give higher delays and longer final queues 
for the periods Ti, T2, TP than when such delays are not considered.
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§5.9 MORE EXAMPLE CALCULATIONS FOR TWO-PERIOD CASES

§5.9.1 Introduction

To demonstrate further the optimisation method described above, some more 
example calculations are made for typical two-period cases. The traffic
pattern is that the junction is oversaturated in the first period Ti, and
returns to undersaturation in the second period T2. Apart from ^i' and
X2', only one value of time-shift needs to be decided, which is 8ti (since
5to = 0). The initial settings are A,i/=A.i, and 8ti=0.

X\_ and X2 are obtained by Algorithm 0, through optimising the total delay
in Ti and T 2 separately. Algorithm 4 introduced in §5.8 is used for the
sequential optimisation of \i_', X2 and Sti, but to reduce the period over 
which calculation is needed, the error limit £4 is set to 0.2, and no
extension is made if the final random queues are shorter than 120% of their 
equilibrium values. However, if an extension for T2 is needed, a maximum 
value for T 2c is imposed, which is (T2e)max = 50 minutes. This constraint 
is introduced to make sure that the sum of Ti and T2e is not going to 
exceed one hour, since it is not likely that the traffic flows will stay
unchanged for more than one hour. After the optimisation, the queues and
delays are estimated by both the OS CADY formulae and the new delay
expression. If an extension for T2 is made, then the total delay are 
evaluated over (Ti+T 2e) as well as over T 1+T2.

The three example junctions introduced in Chapter 4 will again be used here 
for example calculations. All the parameters, such as the maximum cycle
time, the minimum green times for each stage and the lost times after each 
stage, etc, are kept the same here.

In each case for each junction, calculations are also made for the program 
OS CADY and the results are compared by using the criterion 8W/W.

§5.9.2 Junction 1 — Symmetrical Crossroads

The additional data are given in Table 5.9, and the results are given in
Table 5.10.
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Table 5.9 Additional Data For Example Junction 1

P e r i o d  Ti P e r i o d  T 2

Le n g t h O f 
T i m e  P e r i o d

T i =10 m inu te s T 2=10 minutes
F l o w  Ra  t i 0  

I n  S t r e a m 1
y 11 = 0 .6 y 1 2 = 0 .3

F l o w  Ra  t i o 
I n  S t r e a m 2

y 2 i  = 0 .4 y 2 2  = 0 .2
I n i t i a l  

Qu e u c  L e n g t h  
I n  S t r c am 1

L r10 = 0 .0

I n i t i a l  
Qu e u e  L e n g t h  
I n  S t r e am 2

L t 20  = 0 . 0

After the optimisation, 5ti=0.0 seconds. It is clear from Table 5.10 that 
the optimisation method offers about 1% reduction in the total delay 
compared with the case when no sequential optimisation was made, and about 
3% reduction in total delay compared with the OS CADY method, which gives 
very different cycle times because it is maximising capacity in the first 
period and minimising equilibrium delay in the second. However, at the end 
of T2, the queues are higher than 120% of their equilibrium values (with 
Lri2 = 1.15 >Lrci2 = 0.6, Lr22 = 0.94 >Lrc22 = 0.43), hence an extension is 
made for T2 to the maximum value, i.e. T2e = 50 minutes. The signal 
settings and the relevant results for the period (Ti + T2e) are listed in 
Table 5.11.
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Table 5.10 Results for Example Junction 1 Optimised Over Ti and Ti Only

5 11 = 0 .0  seconds 
T2e = T 2

PRESENT METHOD
I n i t i a l  

S e t  t i n g s
O p t i m i  s e d  

S e t t  i n g s

OSCADY

C y c l e  Time ( S e c o n d s ) 8 7 . 4 9 1 0 6  . 3 4 1 2 0  . 0 0

P
E
R
I
O
D

Ti

P r o p o r t i o n  o f
Cycl e  

E f  f c c t  i v e l y  
G r e e n  F o r  S t a g e

0 . 55  8 3 

0 . 3 5  02

0 . 5  6 16  

0 . 3  6 32

0 . 5  6 0  0 

0 . 3 7 3  3
P r o p o r t i o n  o f

C y c 1 e 
E f  f e c t  i v e l y  

G r e e n  F o r  S t r e a m

0 . 5 5 8 3  

0 . 35  02

0 . 5  6 16 

0 . 3  6 32

0 . 5  6 0  0 

0 . 3  7 3  3

F i n a l  U n i f o r m
Q u e u e  L e n g t h
F o r  S t  r e a m  ( p c u )

5 . 9 9

5 . 5 3

7 . 2 7

6 . 8 3

8 . 2  1 

7 . 8 0

F i n a l  R a n d o m
Q u e u e  L e n g t h
F o r  S t  r e a m  ( p c u )

1 9 . 3 3

1 9 . 9 1

1 8 . 5 3

1 6 . 4 1

1 8 . 9  1 

1 3 . 8 6

Cy c l e  Time ( S e c o n d s ) 5 3 . 1 3 5 0 . 2 7 3 6 . 1 0

P
E
R
I
O
D

T 2

P r o p o r t i o n  o f
C y c 1 c 

E f  f c c t  i v e l y  
G r e e n  F o r  S t a g e

0 . 4 7 9  3 

0 . 3 7 0 1

0 . 4  8 53  

0 . 3  5 55

0 . 4 5 9  8 

0 . 3 1 8 6
P r o p o r t i o n  o f

Cycl e  
E f  f c c t  i v e l y  

G r e e n  F o r  S t r e a m

0 . 4 7 9  3 

0 . 3 7 0 1

0 . 4  8 53  

0 . 3  5 55

0 . 4 5 9  8 

0 . 3 1 8 6

F i n a l  U n i f o r m
Q u e u e  L e n g t h
F o r  S t  r e a m  ( p c u )

1 . 71 

1 . 4 6

1 . 5 9

1 . 4 5

1 . 2  5 

1 . 1 6

F i n a l  R a n d o m
Q u e u e  L e n g t h
F o r  S t  r e a m  ( p c u )

1 . 2 6

0 . 9 5

1 . 1 5

0 . 9 4

1 . 5 0

1 . 3 1

Tota  I
(Pcu ’Mi 

E s t i m a t e

D e l a y
n u t e s ) 
d B y

Nr e w 
F o r m u l a

4 4 4 . 8 5 4 3 7  . 79
O S C AD Y
F o r m u l a

4 3 4 . 2 2 4 3 0  . 03

4 4 8 . 6  0

4 4 5 . 0  1
P e r c c n 

R e d u c 
In To 

D e  1 
E s t i m a t e

t a g e 
t i o n 
I a 1 
a y 
d

N c w

Formula 1 . 5 9 %

B y

O S CA DY

F o r m u l a
0 . 9 6 %

2 . 4 1 %

3 . 3 7 %
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Table 5.11 Results for Example Junction 1 Optimised
After Extending T2 To 50 minutes

5 ti = - 4 3 . 0  seconds PRESENT M ETHOD
OSCADYT2 e =  T2 I n i t i a l O p t i m i s e d

S e t  t i n g s S e t t  i n g s

C y c l e  T im e ( S e c o n d s ) 8 7 . 4 9 1 0 0  . 0 4 1 2 0 . 0 0

P P r o p o r t i o n  o f  

C y c l e
1 0 . 55  8 3 0 . 5  5 90 0 . 5  6 0  0

E
R
I

E f f  e c t  i v e l y  

G r e e n  F o r  S t a g e
2 0 . 35  02 0 . 3  6 11 0 . 3  7 3  3

P r o p o r t i o n  o f  

C y c l e
1 0 . 55  8 3 0 . 5  5 90 0 . 5  6 0  0

0 E f f e c t i v e l y  

G r e e n  F o r  S t r e a m
2 0 . 3 5 0 2 0 . 3  6 11 0 . 3  7 3  3

D
F i n a l  U n i f o r m 1 5 . 9 9 2 . 7 2 8 . 2 1
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 5 . 5  3 2 . 4 1 7 . 8 0
Ti

F i n a l  R a n d o m 1 1 9 . 3 3 2 1 . 5 3 1 8 . 9  1
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 1 9 . 9 1 1 7 . 9 1 1 3 . 8 6

C y c l e  T im e ( S c c o ri d s ) 3 8 . 8 1 3 9 . 3 3 3 6 . 1 0

P P r o p o r t i o n  o f  

C y c l e
1 0 . 4 6 3  0 0 . 4  6 79 0 . 4 5 9  8

E
R
I

E f f  c c t  i v e l y  

G r e e n  F o r  S t a g e
2 0 . 3 3 0 8 0 . 3  2 87 0 . 3  1 8 6

P r o p o r t i o n  o f  

C y c l e
1 0 . 4 6 3  0 0 . 4  6 79 0 . 4  5 9  8

O
E f f  e c t  i v e l y  

G r e e n  F o r  S t r e a m
2 0 . 3 3  0 8 0 . 3  2 87 0 . 3 1 8 6

L)
F i n a l  U n i f o r m 1 1 . 3 3 1 . 3 3 1 . 2 5
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 1 . 2  1 1 . 2 3 1 . 1 6
T 2 c

F i n a l  R a n d o m 1 0 . 8 3 0 . 8 1 0 . 8 5
Q u e u e  1 

F o r  S t  r e a m

. e n g  I h 
( p c u  ) 2 0 . 6 8 0 . 6 8 0 . 7 3

T o ta  1 D e l a y
! T> r. „  \

N e w 

F o r m u 1 a
5 7 3 . 5 2 5 7 0  . 58 5 7 8 . 7 4

V  1

E s t m a t e d  B y
O S C A D Y

F o r m u l a
5 6 6 . 7 4 5 6 3  . 96 5 7 5 . 5 4

P e r c e n t a  g e 

R e  d u  c t i o n  

I n  T o t a l  

D e l a y  

E s t i m a t e d  B y

N e w  

F o r m u  l a
0 . 5 1 % 1 . 4 0 %

O S C A D Y

F o r m u l a
0 . 4 9 % 2 . 0 0 %

*Note: The signal timings given in the table apply in the periods Ti' and 
T2' but the final queue lengths for the first period are those at the end 
of Ti.
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It can be seen from Table 5.11 that after extending T2 , the signal settings 
obtained for the second period before and after the optimisation and those 
given by OSCADY are nearly the same and thus they give very similar 
results. This is because in the second period the junction has nearly 
reached its equilibrium condition, and the signal settings are nearly the 
same as the equilibrium settings as given by OSCADY. As T2 becomes longer 
and the signal settings calculated for it change, a negative time-shift is 
obtained, which means that there is some small benefit if are replaced 
by X2' earlier than the change of flows.

§5.9.3 Junction 2 — Asymmetrical Crossroads

(1) case 1: the wider road has a higher y value.

The additional data are given in Table 5.12, and the results are given in 
Table 5.13.

Table 5.12 Additional Data For Example Junction 2

Peri  o d Ti P e r i o d  T 2

L e n g t h  Of  

T i m e  P e r i o d
T i=10 mi nutes T 2 = 10 minutes

F l o w  R a t i o  

I n S t r e a m  1
y l i = 0 . 6 y 1 2 =  0 . 3

F l o w  R a t i o  

I n S t r e a m  2
y 21  = 0 . 4 y 2 2  = 0 . 2

I n i  I i a 1 

Qu e u c  L e n g t h  

I n S t r e a m  1

L r 1 0 = 0. 0

I n i t i a l  

Qu c u e  L e n g t h  

I n S t r e a m  2

L r 20 = 0. 0
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Table 5.13 Results for Example Junction 2 Optimised Over Ti and T2 Only

5 1 1 =  0 . 0  seconds PRESENT METHOD
OSCADY

T2 e  =  T2 I n i t i a l O p t i m i  s e d
S e t  t i n g s S e t t  i n gs

C y c l e  Time ( S e c 0 i ds ) 8 1 . 4 8 1 0 1 . 2 6 1 2 0  . 0 0

P P r o p o r t i o n  o f  
C y  c 1 e

1 0 . 6 2 4 3 0 . 6  0 63 0 . 5  6 0  0
E
R
I

E f f  e c t  i 
G r e e n  F o r

e 1 y 
S t a g e

2 0 . 2 7 7 5 0 . 3  1 4 7 0 . 3  7 3  3
P r o p o r t i o n  o f  

C y c l e
1 0 . 6 2 4 3 0 . 6  0 63 0 . 5  6 0  0

0 E f  f e c t  i v e l y  
G r e e n  F o r  S t r e a m

2 0 . 2 7 7 5 0 . 3  1 4 7 0 . 3  7 3  3
D

F i n a l  U n i f o r m 1 9 . 5 8 1 3 . 0 8 1 6 . 4 3
Q u e u e  L e n g t h  
F o r  S t  r e a m  ( p c u ) 2 4 . 5 4 6 . 0 6 7 . 8 0

T i
F i n a l  R a n d o m 1 8 . 8 2 1 2 . 9 6 3 3 . 1 8
Q u e u e  L e n g t h  
F o r  S t  r e a m  ( p c u ) 2 4 2 . 1 2 3 0 . 4 3 1 3 . 8 6

C y c l e  Time ( S e c 0  ri d s ) 5 4  . 6 2 4 7  . 6 5 3 3 . 6 0

P P r o p o r t i o n  o f  
C y c l e

1 0 . 3 7 3  8 0 . 4  0 52 0 . 4 6 4 3
E

R
I

E f f  c c t  i v e l y  
G r e e n  F o r  S t a g e

2 0 . 4 7 9 7 0 . 4  2 70 0 . 2  9 7 6
P r o p o r t i o n  o f  

C y c 1 e
1 0 . 3 7 3  8 0 . 4  0 52 0 . 4 6 4  3

0 E f  f e e l  i v e l y  
G r e e n  F o r  S t r e a m

2 0 . 4 7 9 7 0 . 4  2 70 0 . 2  9 7  6
D

F i n a l  U n i f o r m 1 5 . 1 0 4 . 0 1 2 . 9 9
Q u e u e  L e n g t h  
F o r  S t  r e a m  ( p c u ) 2 1 . 0 3 1 . 0 9 1 . 4 7

1 2
F i n a l  R a n d o m 1 2 . 4 0 1 . 6 8 1 . 3 4
Q u e u e  L e n g t h  
F o r  S t  r e a m  ( p c u ) 2 0 . 8 4 0 . 8 5 1 . 8 3

Tot a  1 D e l a y N e w 
F o r m u  1 a

5 9 2 . 3 0 5 6  9  . 8 0 6 2 9 . 4  8
( P c u * M i n u  t c s  ) 

E s t i m a t e d  B y
O S C ADY
F o r m u l a

5 7 6 . 7 3 5 6 1 . 6 5 6 2 4 . 0  8

P c r c c n t a  g e  
R e d u c t  i o n  
r -  t  „ . „ 1

N e w

F o r m u l a
3 . 8 0 % 9 . 4 7 %

E s t 1

D e l a y  
m a t e d  B y

O S C AD Y

F o r m u l a
3 . 6 1 % 9 . 9 9 %

Similar to example junction 1, by the end of T2, the queues are still 
longer than 120% of their equilibrium values, hence T2 is extended to the 
maximum limit of 50 minutes. After the extension, the optimisation results 
for the periods Ti and T2e are given in Table 5.14 below.
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Table 5.14 Results for Example Junction 2 Optimised
After Extending T2 To 50 minutes

*
Sti  = - 2 4 . 0  seconds PRESENT METHOD

OSCADYT2e = T2 I n i t i a l O p t i m i s e d

S e t t i n g s S e t t  i  n g s

C y c l e  Tim e ( S e c o n d s ) 8 1 . 4 8 9 3 . 2 9 1 2 0  . 0 0

P P r o p o r t i o n  o f  

C y c l e
1 0 . 6 2 4 3 0 . 6  1 1 2 0 . 5  6 0  0

E
R
I

E f f  e c t  i v e l y  

G r e e n  F o r  S t a g e
2 0 . 2 7 7 5 0 . 3  0 3 0 0 . 3  7 3  3

P r o p o r t i o n  o f  

C y c l e
1 0 . 6 2 4  3 0 . 6  1 1 2 0 . 5  6 0  0

0 E f  f  c c t  i v e l y  

G r e e n  F o r  S t r e a m
2 0 . 2 7 7 5 0 . 3  0 30 0 . 3  7 3 3

D
F i n a l  U n i f o r m 1 9 . 5 8 4 . 9 5 1 6 . 4 3
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 4 . 5 4 2 . 2 3 7 . 8 0
Ti

F i n a l  R a n d o m 1 8 . 8 2 1 5 . 9 7 3 3 . 1 8
Q u e u e  L e n g t h  

F o r  S t r e a m  ( p c u ) 2 4 2 . 1 2 3 3 . 7 2 1 3 . 8 6

C y c 1e Time ( S e c o n d s ) 3 6 . 1 9 3 6 . 0 9 3 3 . 6 0

P
E
R
I

P r o p o r t i o n  o f  

C y c l e  

E f f  c c t  i v e l y  

G r e e n  F o r  S t a g e

1

2

0 . 4 3 5  6 

0 . 3 4 3 3

0 . 4  4 54  

0 . 3  3 28

0 . 4  6 4  3 

0 . 2 9 7 6
P r o p o r t i o n  o f  

C y c l e
1 0 . 43 5 6 0 . 4  4 54 0 . 4 6 4  3

0 E f f  c c t  i v e l y  

G r e e n  F o r  S t r e a m
2 0 . 3 4 3  3 0 . 3  3 28 0 . 2  9 7  6

L>
F i n a l  U n i f o r m 1 2 . 74 2 . 6 4 2 . 3 0
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 1 . 0 8 1 . 1 2 1 . 1 5
T 2 e

F i n a l  R a n d o m 1 0 . 9 5 0 . 8 9 0 . 8 0
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 0 . 7 5 0 . 7 7 0 . 9 7

Tota 1 D e l a y N e w

F o r m u l a
7 4 9 . 4 6 7 4 2  . 86 8 0 4 . 6  4

V *
E s t 1 m a t e d  B y

O S C A D Y

F o r m u l a
7 3 8 . 3 4 7 3 4  . 65 7 9 9 . 7  3

P c r c e n t a  g c  

R c d u c i i  o n

N e w  

F o  r mu  1 a
0 . 88% 7 . 6 8 %

E s t i

D e l a y  

m a t e d  B y

O S C A D Y  

F o r m u 1 a
0 . 5 0 % 8 . 1 3 %

*Note: The signal timings given in the table apply in the periods Ti' and 
T2' but the final queue lengths for the first period are those at the end 
of Ti.

148



It can be seen that even though after the extension, the difference between 
the results before and after the sequential optimisation is small, the 
optimised signal settings still give better results than OSCADY. The 
general pattern of differences between the signal settings given by the new 
method and by OSCADY and the resulting differences in queue-lengths in the 
two streams are as discussed in Chapter 4.

(2) case 2: The narrower road has a higher y value.

The additional data are given in Table 5.15.

Table 5.15 Additional Data For Example Junction 2

Peri  o d Ti P e r i o d  T 2

L e n g t h  Of  

T i m e  P e r i o d
T i =10 mi nutes T 2 = 10 minutes

F l o w  R a t i o  

I n S t r e a m  1
y i l = 0 . 4 y 1 2 =  0 . 2

F l o w  R a t i o  

I n S t r e a m  2
y i \  = 0 . 6 y n  -  0 . 3

I n i t i a l  

Qu c u e  L e n g t h  

I n S i r e  am 1

L r 10  = 0. 0

I n i t i a l  

Qu c u e  L e n g t h  

I n S t r e a m  2

Lr 2 0  = 0 . 0

The results before extending T2 are given below in Table 5.16.
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Table 5.16 Results for Example Junction 2 Optimised Over Ti and T2 Only

5 11 =  0 .0  s econds PRESENT METHOD
OSCADYT2c = T 2 I n i t i a l

S e t t i n g s

O p  t i m i s e d  

S e t t  i n g s

C y c l e  Time ( S e c 0  r d s ) 7 7 . 6 6 96  . 2  9. 1 2 0  . 0 0

P P r o p o r  t i o n  

C y  c I e

0  f
1 0 . 4 1 0 7 0 . 4  0 31 0 . 3  7 3  3

E
R
I

E f  f e c t  i v e l y  

G r e e n  F o r  S t a g e
2 0 . 4 8 6 3 0 . 5  1 39 0 . 5 6 0  0

P r o p o r  t i o n  

Cy  c 1 e

0  f
1 0 . 4 1 0 7 0 . 4  0 31 0 . 3  7 3  3

0
E f f  e c t  i v e l y  

G r e e n  F o r  S t r e a m
2 0 . 4 8 6 3 0 . 5  1 39 0 . 5  6 0  0

D
F i n a l  Ur i f 0  r m 1 9 . 9 9 1 2 . 7 1 15 . 6 0
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 5 . 3 9 6 . 6 8 8 . 2  1
Ti

F i n a l  R a n d o m 1 9 . 02 1 1 . 1 2 23  . 7 6
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 4 0 . 2 4 3 1 . 8 2 1 8 . 9  1

C y c 1e Time ( S e c 0  ri d s ) 5 4 . 9 9 4 8 . 9 4 3 2 . 5 0

P P r o p o r  l i o n  

C y c 1 c

0  f 1 0 . 2 6 7 9 0 . 2  8 55 0 . 3 2  0 0
E
R
I

E f  f e e l  i v e l y  

G r e e n  F o r  S t a g e
2 0 . 5 8 6 6 0 . 5  5 11 0 . 4 3 3 8

P r o p o r  l i o n  

C y c 1 e

0  f 1 0 . 2 6 7 9 0 . 2  8 55 0 . 3 2 0  0

0 E f  f e c t  i v e l y  

G r e e n  F o r  S t r e a m
2 0 . 5 8 6 6 0 . 5  5 11 0 . 4 3  3 8

D
F i n a l  U n i f o r m 1 4 . 0 9 3 . 4 7 2 . 0 9
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 1 . 1 2 1 . 1 7 1 . 2 4
I 2

F i n a l  R a n d o m 1 1 . 75 1 . 3 7 1 . 1 9
Q u e u e  L e n g t h  

F o r  S t  r e a m  ( p c u ) 2 1 . 0 6 1 . 0 6 2 . 0 4

T o t a l  D e l a y
t d .. . \/f ; .. f „ 0 \

N e w

F o r m u l a
5 7 3 . 6 6 5 5 9  . 76 6 0 3 . 6  6

v * 
E s t m a t e d  B y

O S C A D Y

F o r m u l a
5 6  1 . 5 7 5 5 2  . 46 5 9 8 . 8  3

P e r c c n t a  g c  

R e d u c 1 i o n
I n  T . 0 1

N e w 

F 0  r m u 1 a
2 . 4 2 % 7 . 2 8 %

E s t

D e l a y  

m a t e d  B y

O S C A D Y

F o r m u l a
1 . 6 2 % 7 . 7 4 %

In this case T2 also needs to be extended so that the final queues can 
nearly reach equilibrium. The results are given in Table 5.17.
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Table 5.17 Results for Example Junction 2 Optimised
After Extending T2 To 50 minutes

5 11 = - 2 9 . 7  seconds 
T2e = T2

PRESENT M ETHOD
I n i t i a l

S e t t i n g  s
O p t i m i  s e d  

S e t t  i n gs

OSCADY

C y c le  Tim e ( S e c o n d s ) 7 7 . 6 6 8 8 . 7 1 1 2 0 . 0 0

P
E
R
I
O
D

Ti

P r o p o r t i o n  o f

Cyc l e  
E f f  e c t  i v e l y  

G r e e n  F o r  S t a g e

0 . 4 1 0 7  

0 . 4 8 6 3

0 . 4  0 5 7  

0 . 5  0 41

0 . 3  7 3  3 

0 . 5 6 0  0
P r o p o r t i o n  o f

Cyc l e  
E f f  e c t  i v e l y  

G r e e n  F o r  S t r e a m

0 . 4 1 0 7  

0 . 4 8 6 3

0 . 4  0 5 7  

0 . 5  0 41

0 . 3  7 3  3 

0 . 5  6 0  0

F i n a l  U n i f o r m

Q u e u e  L e n g t h

F o r  S t  r e a m  ( p c u )

9 . 9 9

5 . 3 9

4 . 2 4

2 . 4 6

1 5 . 6 0  

8 . 2  1

F i n a l  R a n d o m

Q u e u e  L e n g t h

F o r  S t  r e a m  ( p c u )

9 . 0 2  

4 0 . 2 4

1 3 . 4 5

3 5 . 5 3

23  . 7 8 

1 8 . 9 1

C y c l e  Time ( S e c o n d s ) 3 5 . 6 8 3 5 . 6 4 3 2 . 5 0

P
E
R
I
O
D

T 2

P r o p o r t i o n  o f

Cyc l e  
E f f  e e l  i v e l y  

G r e e n  F o t  S t a g e

0 . 3 0 4 9  

0 . 4 7 0 9

0 . 3  1 03  

0 . 4  6 52

0 . 3 2  0 0 

0 . 4 3  3 8
P r o p o r t i o n  o f

Cyc l e  
E f f e c t i v e l y  

G r e e n  F o r  S t r e a m

0 . 3 0 4  9 

0 . 4 7 0 9

0 . 3 1 03 

0 . 4  6 52

0 . 3 2  0 0

0 . 4 3  3 8

F i n a l  U n i f o r m

Q u e u e  , L e n g t h

F o r  S t  r e a m  ( p c u )

2 . 3 9

1 . 1 9

2 . 3 5

1 . 2 1

2 . 0 9

1 . 2 4

F i n a l  R a n d o m

Q u e u e  L e n g t h

F o r  S t  r e a m  ( p c u )

0 . 7 9

0 . 9 1

0 . 7 5

0 . 9 2

0 . 7 1  

1 . 0 8

Tota 1
( P c u  * M i  

E s t i m a t e

D e l a y
n u l e s ) 

d B y

New
Formula 7 3 3 . 7 8 7 2 9 . 8 4
O S C A D Y

Formula 7 2 6 . 2 0 7 2 3  . 17

7 7 2 . 5  9

7 6 7 . 9  3
P e  r c c n 

R e d u c 

In To 
D e  1 

E s t i m a t e

t a g c 

t i o n  
l a 1 

a y 

d

New
Formula 0 . 5 4 %

B y

O S C A D Y  

F o  rmu1 a
0 . 4 2 %

5 . 5 3 %

5 . 8 2 %

*Note: The signal timings given in the table apply in the periods Ti' and
T2' but the final queue lengths for the first period are those at the end
of Ti.

It can be seen that the pattern of results is quite similar to that in
Tables 5.13 and 5.14. In each case, the new method favours traffic in the
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wider road in the oversaturated period.

§5.9.4 Junction 3 — Chapel Hill Junction

In period 1, the arrival rate for each stream is the same as given by Table 
4.14, and in period 2, it is the same as given by Table 4.12. Other 
parameters are the same as given by Table 4.10 and 4.11. For Ti=10 
minutes, T2=10 minutes, the results are given by Table 5.18a and 5.18b 
below.

Table 5.18a Results for Example Junction 3 Optimised
Over Ti and T2 Only -  Period 1

5  t i  = 0 . 0  s  e  c o n d s PRESENT METHOD
OSCADY

T 2 e  = T  2 I n i t i a l 0  P t i m i s ed
S e t  t i n g s s e t t i n g s

C y c  1 e T i m e 72 .2 9 10 0 . 4 8 1 2 0 . 0 0
( S e c 0 n d s )

P  r o p o r  t i o n 0  f
1 0.  3 449 0 3 4 0  3 0 . 3 2 2 5

C y c  1 e 2 0 . 2  583 0 2 7 5  6 0 . 2 4 5 0
E f f e c t  i v  e  1 y 3 0 . 0 8 5 6 0 1 6 0  1 0 . 2 4 5 0

G r e e n  F o r S t a g e
4 0.  0 8 3 0 0 . 0 5 9 7 0 . 0  5 0 0

P 1 0 . 1 7  9 8 0 . 1 2  9 4 0 . 1 0 8 31
E P r o p o r t i o n 0  f

2
3

0 . 0 8 5 6 
0 . 8 2 4 5

0 . 
0 .

1 6  0 1 
7 7 5 2

0 . 2  4 5 0 
0 . 7  0 0 8

R C y c  1 e 4 0 . 3 4 8 2 0 . 3 4 0 3 0 . 2  9 9 2

I E f f e c t  i v  e  1 y
5
6

0 . 4 9 7 1 
0 . 8 2 4 5

0 . 
0 .

4 5 0 0 
7 7 5 2

0 . 4 1 4 2  
0 . 7  0 0 8

0 G r e e n  F o r S t r  e  a m 7 0 . 3  8 2 6 0 . 4 6 3 6 0 . 5 1 3 3
8 0 . 3 5 1 8 0 . 3 4 5 4 0 . 3  2 6 7

D 9 0 . 0 8 5 6 0 . 1 6  0 1 0 . 2  4 5 0
1 2 . 7 6 4 . 3 3 5 . 4 2

F i n a l  U n i f o r m
2
3

3 . 1 4
0 . 4 6

7
1

. 5 0 

. 0 5
1 1 . 0 4

2 . 2 2
4 7 . 9 6 1 0 . 9 5 1 2 . 2 1

Q u e u e L e n g  t h 5 7 . 4 8 1 0 . 2 9 1 2 . 0 4
6 1 . 2 1 2 . 7 6 5 . 8 5

T i
F o r  S t r e a m ( p c u )

7
8

5 . 4 5
6 . 3 7

5
9

. 7 2 

. 0 2
5 . 6 2

1 0 . 8 7
9 0 . 0 1 0 . 0 1 0 . 0 1
1 0 . 3 8 1 . 2 8 3 . 1 4

F i n a l R a n d o m
2
3

9 3 . 3 4  
0 . 2 1

4 4 
0

. 7 4 

. 2 4
4 . 4 2
0 . 3 3

4 4 9 . 6 4 5 3 . 9 9 7 7 . 1 2
Q u e u e L e n g t  h 5 2 5 . 5 0 4 6 . 2 2 6 3 . 0 2

6 2 . 2 0 1 3 . 3 2 8 . 0 1

F o r  S t r e a m ( p c u )
7
8

1 . 5 5
6 . 4 8

0
7

. 6 8 

. 6 4
0 . 4 8

1 2 . 3 8
9 0 . 0 0 0 . 0 0 0 . 0 0
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Table 5.18b Results for Example Junction 3 Optimised

Over Ti and T2 Only -  Period 2

5 11 = 0 . 0  se  conds  
T2 e = T2

PRESENT METHOD
I n i t i a l

S e t t i n g s
O p t i m i s e d  

S e t t  i n g s

OSCADY

Cy c 1 e T i m e 73 . 94 6 5 . 5 9
( S e c o n d s )

6 0  . 1  0

P ropo r t ion o f 
Cyc 1 e 

Ef  f ect  i v e 1y 
G r e e n  For S t a g e

0 . 2 3 6 6  

0 . 1 6 7 0  

0 . 2 9 2 0  

0.  0 8 1 1

0 .  2 7 1 8  

0 . 2 1 5 7  

0 .  1 6 9  4 

0 . 0 9 1 5

0 . 2 9 6  2 

0 . 2 2 4 6  

0 . 1 0 4  8 

0 . 0 9 9  8

P
E
R
I
O
D

P r o p o r t i o n  o f  
Cyc I e 

Ef  f ect  i v e l y  
G r e e n  For S t r e a m

1 7  5 8 
2 9 2 0 
6 2 0 1
2 5 5 0
3 8 5 4 
6 2 0 1
4 9 6 9 
2 4 3 4 
2 9 2 0

1 9 8
1 6 9 
7 3 1
3 1 4
4 3 9 
7 3 1 
4 2 7 8
2 7 9 5 
1 6  9 4

4 7 
7 8

4 8

T 2

F i n a l

Qu e u e

U n i f o rm

Leng t h

Fo r  St  ream ( pc u)

8 9  

4  8 
4  1

8 2  

7  8
7 6
3  2

9  4  

0 1

7  4  

7  5  

1 8 
3 I 
5 2

9 8 
0 1

6 5 
8 6 
1 0 
8 7
7 9 
4 5 
1 5 
3 9 
0 1

F i n a l Random

Qu e u e  Leng t h

Fo r  St  ream (pcu )

0 0 3 0 0 2 0 0 2
0 9 7 1 5 1 0 8 3
0 0 2 0 0 1 0 0 1

2 9 7 2 9 9 5 7 3
3 6 1 3 2 4 3 2 2
0 6 9 0 4 1 0 3 6
0 4 2 0 7 0 1 1 7
5 7 8 2 4 0 1 8 6
0 0 0 0 0 0 0 0 0

T o t a l  D e l a y
( P c u  ' M i n u t c s )  

E s t i m a t e d  B y

P e r  c e n t  a g c  
R c d u c t  i o n  
In T o t a l  

De l a y  
E s t i m a t e d  B y

N e w 
F o r m u l a

2 3 4 7 . 1 1 2 1 9 7 . 5 3
OSCA DY 
F o r m u l a

227 1 . 4 2 2 1 1 3 .  41
New 

F o r m u l a
6 . 3 7 %

O S C A  DY 

F o r m u l a
6 . 9 6 %

2 4 8 2 . 2 6

2 4 0 6 . 5 5

1 1 . 4 7 %

1 2 . 1 8 %

It can be seen from Table 5.18 that for this complex situation, a greater 
improvement is obtained by sequential optimisation of the signal settings 
even though no time-shift results. The cycle time in Ti is increased (from
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72.3 seconds to 100.5 seconds); but the cycle time in T2 is decreased (from
73.9 seconds to 65.6 seconds). Although the uniform delay in Ti is 
increased, the total random queue length at the end of Ti is decreased 
(from 179.3 pcu to 16&1 pcu), which therefore causes less delay in T2. 
However, since at the end of T2, the queue lengths for some streams are 
still greater than 120% of their equilibrium values, the second period T2 

is extended to T2e=50 minutes. The results are given in Table 5.19a and 
Table 5.19b.

Table 5.19a Results for Example Junction 3 Optimised 
After Extending T2 To 50 minutes -  Period 1

5  t i  = 0 . 0  s e  c o n d s PRESENT METHOD
OSCADY

T  2 j =  T 2 I n i t i a l  
S e t  t i n g s

O p  t i m i s ed 
S e t t  i n gs

C y c  1 e  T i m e 72 .2 9 8 2 . 3 7 1 2 0  . 0 0
( S c c o  n d s  )

P r o p o r t i o n  o f
1 0 . 3  44 9 0 .  3 4 3  8 0 . 3 2 2 5

C y c  1 e 2 0 . 2  583 0 .  2 7 7  2 0 . 2 4 5 0
E f f e c t  i v e l y 3 0.  0 856 0 .  1 5 5  8 0 . 2 4 5 0

G r e e n  F o r  S t a g e
4 0 . 0  830 0 .  0 7 2 8 0 . 0 5 0 0

P 1 0 . 1 7  9 8 0 . 1 5  7 8 0 . 1 0 8 3
X

E P  r o p o r  t i o n  o f
2
3

0 . 0 8 5 6 
0 . 8 2 4 5

0 . 1 5  5 8 
0 . 7 6 5 3

0 . 2  4 5 0 
0 . 7  0 0 8

R C y c  1 e 4 0 . 3 4 8 2 0 . 3 0 6 2 0 . 2  9 9 2

I
E f  f e e t  i v e l y

5
6

0 . 4 9 7 1 
0 . 8 2 4 5

0 . 4 7 7 4 
0 . 7 6 5 3

0 . 4 1 4 2  
0 . 7  0 0 8

O G r e e n  F o r  S t r e a m 7 0 . 3 8 2 6 0 . 4 1 7  0 0 . 5 1 3 3
8 0 . 3 5 1 8 0 . 3 5 0 0 0 . 3  2 6 7

D 9 0 . 0 8 5 6 0 . 1 5  5 8 0 . 2  4 5 0
1 2 . 7 6 3 . 3 2 5 . 4 2

F i n a l  U n i f o r m 2
3

3 . 1 4
0 . 4 6

6 . 0 1
0 . 9 4

1 1 . 0 4
2 . 2 2

4 7 . 9 6 8 . 4 9 1 2 . 2 1
Q u e u e  Le n g t h 5 7 . 4 8 8 . 5 0 1 2 . 0 4

6 1 . 2 1 2 . 4 7 5 . 8 5

Ti F o r  S t r e a m ( pcu) 7
8

5 . 4 5
6 . 3 7

5 . 5 4
7 . 3 0

5 . 6 2
1 0 . 8 7

9 0 . 0 1 0 . 0 1 0 . 0 1
1 0 . 3 8 0 . 5 9 3 . 1 4

F i n a l  Random 2
3

9 3 . 3 4 
0 . 2 1

4 7 . 5 0  
0 . 2 5

4 . 4 2
0 . 3 3

4 4 9 . 6 4 7 3 . 1 6 7 7 . 1 2
Q u e u e  Le n g t h 5 2 5 . 5 0 3 3 . 8 0 6 3 . 0 2

6 2 . 2 0 3 . 6 6 8 . 0 1
F o r  S t r e a m ( pcu) 7

8
1 . 5 5
6 . 4 8

1 . 0 4
6 . 8 0

0 . 4 8
1 2 . 3 8

9 0 . 0 0 0 . 0 0 0 . 0 0
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Table 5.19b Results for Example Junction 3 Optimised
After Extending T2 To 50 minutes -  Period  2

5 t i  = 0 . 0  s e  c o n d s  

T2e = T 2

PRESENT METHOD
I n i t i a l

S e t  t i n g s
O p t i m i  s e d  

S e t t i n gs

OSCADY

Cy c 1 e T i m e 5 4 . 49 5 4 . 0 4
( S e c o n d s )

6 0  . 1 0

P r o p o  r t i o n  o f 

Cyc 1 e 

E f f  e c t  i v e l y  

G r e e n  Fo r  S t a g e

0 . 2  692  

0 . 1 5 8 1  

0 . 1 5 9 8  

0 . 1 1 0 1

0 .  2 7 1 8  

0 .  1 8 2 7  

0 . 1 2 9 2  

0 .  1 1 1 0

0 . 2 9 6  2 

0 . 2 2 4  6

0 . 1 0 4  8

0 . 0 9 9  8

P
E
R
I
O
D

P r o p o  r t i on  o f 

Cyc 1 e 

E f  f e c t  i v e 1y 

G r e e n  Fo r  S t r e am

2 3 8 6 
1 5  9 8 
7 2 0 9
2 7 7 4 
4 7 1 1  
7 2 0 9
3 6 9 3 
2 7 8 4 
1 5  9 8

2 4 0 6 
1 2  9 2 
7 5 0 5
3 0 2 9
4 7 5 3 
7 5 0 5 
3 6 3 7 
2 8 1 0  
1 2  9 2

2 1 
1 0 
7 8

0 4
1 0 4

T 2

F i n a l

Q u e u e

U n  i f o r m

L e n g  t h

F o r  S t r ear n ( p c u )

5 6 
4 9 
1 6 
0 6
6 1
7 0
8 4 
3 1 
0 1

5 5 
5 8 
1 3 
8 2 
5 4 
5 6

2 6 
0 1 0 1

F i n a l R a n d o m

Q u e u e  L e n g t h

F o r  S t  r e a m  ( p c u )

o 1
4 8 
0 1 
0 7 
6 9 
4 0 
3 1 
9 2 
0 0

0 1 
5 8 
0 1 
8 7
7 0
3 5
4 1
8 3 
0 0

Tot a  1 D e l a y
( P c u  • M i n u  t e s )  

E s t i m a t e d  B y

P e r  c e n t  a g e  
R c d u c t i o n  
In To t a l  

De l a y  
E s t i m a t e d  B y

New 
F o r m u l a

2 6 3 5 . 2 3 2 6 0 1 . 7 5

O S C A  DY 
F o r m u l a

2 5 4 2 . 5 5 2 5 1 1 . 0 8

N e w 

F o r m u l a
1 . 2 7 %

O S C A  DY 

F o r m u l a
1 . 2 4 %

0 2
6 5 
0 1 
6 2
7 8 
3 1 
2 0 
2 7 
0 0

2 8 4 4 . 0 5

2 7 3 9 . 2 5

8 . 5 2 %

8 . 3 3 %
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It can be seen from Table 5.19 that after the extension, the benefits
arising from the sequential optimisation of signal settings are small 
(around 1.25%), but the results are still much better than that given by 
OSCADY. The general pattern of differences between the timings given by 
OSCADY and the new method is as discussed in Chapter 4.

§5.9.5 Discussions

From these few examples it can be seen that the new method of calculating 
signal settings for periods of time-varying demand can give somewhat better 
results than the program OSCADY. This can be explained by the fact that: 
(a) when the junction is oversaturated, OSCADY will maximise junction
capacity rather than the total delay; (b) There is no interaction between
the choices of signal settings in different periods in the optimisation 
process in OSCADY. The sequential optimisation method introduced in this 
Chapter, however, can take into account the interaction between successive 
time periods, by carrying forward the queue lengths left at the end of each
time period, by sequential re-optimisation and by shifting the times at
which the settings change. In these ways an improved performance index can
be obtained. The results of the example calculations are consistent with 
the possibility that the new method may offer greater improvements in more 
complicated cases.

The example calculations in this Chapter have shown that it can be
advantageous to optimise the traffic signal settings for periods of 
time-varying demand globally. A simple period-by-period optimisation will 
give only locally optimal solutions, which can be appreciably inferior to
the solutions found by the more global heuristics reported here.
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CHAPTER 6. CONCLUDING REMARKS AND SUGGESTIONS 
FOR FURTHER WORK

§6.1 CONCLUDING REMARKS

The literature review has shown that most of the existing methods of 
calculating settings for traffic signals at a single junction for a single 
time period are confined to equilibrium conditions. If the junction is 
oversaturated, optimisation with respect to delay will involve a 
non-convex, non-differentiable objective function. Even though some of the 
previous methods can deal with oversaturation, they find the signal 
settings either by optimising a different performance index instead of 
total delay, or by making some approximations when total delay is chosen as 
the objective function.

The development of the new delay expression introduced in §4.4 solves the 
difficulty of non-differentiability so that the derivatives can be obtained 
for use with gradient-based optimisation algorithms. The example 
calculations show that such a formula is appropriate for use, and even 
though such a delay formula is not strictly convex in the control 
variables, it is nearly convex and the non-convexity is unlikely to cause 
problems in finding the optimal signal settings.

Only the program OSCADY can model periods of time-varying demand, but it 
has some limitations: (a) when the junction is oversaturated, the program 
optimises the signal settings with respect to maximum junction capacity 
rather then total delay; (b) furthermore, the signal settings given by 
OSCADY are only optimal in each single time period but not for the whole 
succession of time-periods, hence are only local solutions.

In addition to using the new delay expression, the problem of optimisation 
over periods of time-varying demand has been reformulated to allow 
successive re-optimisation of the signal settings for the various periods 
with respect to total delay for the whole succession of time periods, 
together with optimisation of the times at which the settings of the signal 
change. The optimisation method, based on the subroutine OPTIM in the 
earlier procedure SIGSET, is capable of improving the junction control 
performance. The total delay will be reduced to a greater or better extent
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compared with the local solutions such as those given by OSCADY. In 
addition, the algorithm can take some account of delays subsequent to the 
time periods considered. Hence the problem of optimising traffic signals 
for periods of time-varying demand for a junction has partly been solved by 
the work described in this thesis. Further aspects that need to be 
considered are mentioned in the next section.

§6.2 SUGGESTIONS FOR FURTHER WORK

The work described so far in this thesis on the problem of setting traffic 
signals for periods of time-varying demand is only at its early stage and 
is incomplete, in a sense that there are a lot of potential areas to be 
further investigated so that more satisfactory results may be obtained. 
The most important ones are mentioned here.

§6.2.1 Further Investigations of Time-shifts

The algorithm for optimising the times at which the signal settings should 
change is based on the assumption that the optimal time for changing should 
be near to its initial value (often the time at which the level of demand 
is assumed to change, so that a search confined to the neighbourhood of the 
initial value will find the optimal time. Although this has been supported 
by all the example calculations for a two period cases, it is not 
completely clear whether it is possible for there to exist more than one 
minimum point even near the initial value, and more analysis and example 
calculations are necessary.

§6.2.2 Multi-criteria Optimisation

So far all the algorithms are based on minimising the total delay. 
Although this is a usual practice, there might exist some situation where 
optimisation with respect to other performance indices is necessary, or the 
performance index may be a weighted sum of total delay and fuel 
consumption, final queue lengths, total number of stops, or other relevant 
quantities. Such a multi-criteria optimisation method will offer wider 
choice for the users.

158



§6.2.3 Phase-based Optimisation

The methods developed in this thesis have been implemented in the 
stage-based approach. As mentioned in Chapter 1, this requires the 
pre-determination of the clearance times, the stage structure and the stage 
sequences, whereas in the phase-based approach, only the clearance times
need to be specified on the basis of safety requirements; all other
elements of the signal timings can be included in the optimisation 
procedure. Hence the phase-based method offers the potential opportunity 
for a better control performance by proper choice of the stage sequence and 
the interstage structures. The implementation of the present optimisation 
methodology in phase-based framework is therefore desirable. This presents 
no difficulties in principle, but because the number of control variables 
is bigger in the phase-based approach, it may take longer time for the
present algorithms to run. An improved optimisation technique may be an 
alternative solution.

§6.2.4 Wider Experience

The work described here has shown that the differences between the signal 
settings and resulting delays and queue-lengths given by the new method and 
those given by existing methods can sometimes be very small, and in other 
cases substantial. Some basic reasons for such differences have been 
identified in the few examples studied here, but wider experience with the
new method is needed to obtain a clearer understanding of the circumstances 
in which its use will offer appreciable advantages over existing methods.
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APPENDIX 1: THE SOLUTION OF A CUBIC EQUATION

This appendix is based on the book 'Elementary Theory of Equations' (Lovitt 
1939), but some of the notations are different from the original text.

Consider the general cubic with real coefficients:

aoX3 + aiX2 + a2X +a3 = 0 (ao?K)) (A l.l)

Divided by ao, (Al . l )  can be written in the form:

X3 + biX2 + bzX +b3 = 0 (A1.2)

Where bi=ai/ao, i = 1, 2, 3.

Let X = Z - bi/3, then a reduced cubic equation can be obtained:

Z3 + piZ + P 2  = 0 (A1.3)

We will only consider the case where pi?K), p2*0, which is the case for 
equation (4.12a). In other cases such as where at least pi or p2 is zero, 
the solution is straightforward and will therefore not be discussed here.

Introduce two new variables A and B, and their respective cube roots, u,v,
where

u3 = A and v3 = B

Since a number has three cube roots, u and v each has three values. Let

Z = u + v (A 1.4)

Then Z has nine values, but a cubic has only three roots, therefore we must
place some restrictions on u and v so that Z will have three and only three
values. Substitute (A 1.4) in (A 1.3), we have:

u3 + v3 + (3uv + pi)(u+v) + p2 = 0 (A1.5)
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Equation (A 1.5) can be simplified by imposing the condition on u and v that

3uv + pi = 0

Thenu3v3 = - Pi
27

(A 1.6) 

(A 1.7)

And equation (A 1.3) can be reduced to:

3 , 3u + v = -p2 (A1.8)

From (A 1.7) and (A 1.8), u3 and v3 may be considered as the two roots, A and 
B, of the quadratic equation

Y2 + p2Y - -H i- = 0 
27

(A 1.9)

The solution for (A 1.9) is:

Y = - P 2 / 22 ± / a

Where A = p3/27+pi/4

Hence we may set

u -  -p2 /2  + A

v3 = -p2 /2  - y A B

(A 1.10)

Then u3 = / a  ; co 7 a  ; co2 7 a ] 

And v3 = y~B ; cov^B ; co2V^B >
(A 1.11)

where co = -0.5 + 0.5/ and co" = -0.5 - 0.5/.5/ 7 T
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From (A 1.6) the values of u and v in (A 1.4) must be paired in such a way
that uv = -pi/3. There are only three pairs of values in (Al . l l )  satisfy
this condition, these are:

3 , , 3 /    3 j-----, 3 /  . 3-1------ . 3-,------,
v A , v B ; co/ A , co/ B ; cov A , co v B .

Hence from (A 1.4) we get the three roots of (A 1.3), namely

3->------1 3 I 1 3 /------ < 3 /--------- 1 3 /— i 3 /— i
Z i = / A  + / b  ; 7,2 -  co/ A + coV B ; Z3 = co /  A + co/ B

(A1.12a)

These roots can be discussed further according to the discriminate A.

1. If A = 0 all roots are real. Two roots are equal

Zi = 3p2/pi, Z2 = Z3 — -3p2/2pi

2. If A > 0 one root is real and two are imaginary.

From (A 1.10), A and B are real and distinct. Hence from (A1.12a), Zi is
real and Z2 and Z3 are conjugate imaginary numbers.

3. If A < 0 all roots are real and distinct.

From (A 1.10), A and B are conjugate imaginary numbers, Let A = At + Aii and

B = Ai - Aii. Then /  A and /  B will also be conjugate imaginary numbers,
for suitable choice of the cube roots.

2  , 2  ,
Let /  A = Bi + /B2 and /  B = Bi - /B2 (B2;*0)

The three roots will be:

Zi = 2Bi; Z2 = -Bi - B i / T \  Zi = -Bi +• B2/ Y  (A1.12b)
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When A < 0 the equation (A 1.3) can also be solved by trigonometric method. 
Since we have the equality

Cos30 = 4 C o s 30  - 3Cos0

so that

Cos30 - O.75Cos0 - O.25Cos30 = 0 (A1.14)

In (A1.3), put Z = Y/n; then

Y3 + pin2Y + n3p2 = 0 (A1.15)

and (A1.14) and (A 1.15) will be identical if

Y = Cos0; pm 2 = -0.75; n3p2 = -O.25Cos30.

i.e.

n = \ / -3 /(4 p i)

and

Cos30 = -4P2(-0.75/pi)3/2 = -0.5p2(-27/pi)1/2 (Ai. i6)

These equations can always be solved if pi is negative, and

Since A < 0 this condition is satisfied. If 0 is the smallest value 
satisfying (A1.16), then the values 0 + 27t/3 and 0 + 47C/3 also satisfy it, 
so that the roots of the equation (A 1.3) are

Zi__Cos0 z  Cos(0+2jt/3) Cos(0+47t/3)
n n n

It can be proven that these three roots are the same as given by (A 1.12b).
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APPENDIX 2: THE DERIVATIVES OF THE NEW DELAY FORMULA

A2.1 The Expression For The New Delay Formula

Let the delay per unit time for a stream be denoted by D (for simplicity, 
no subscript is used here). Then according to the new delay 
formula (4.20), in terms of practical computing, D can be simplified and 
calculated by the following procedure:

Ro = qT+2LiO+Qc(l-A) (A2.1)

ao = A(QT-2C) (A2.2)

ai = 2C-Qc( 1 -A)2-ARo-QT(A+ 1) (A2.3)

32 = Qc( 1 -A)2+Ro(A+l )+QT (A2.4)

a3 = -Ro (A2.5)

Ri = a?-3aoa2 (A2.6)

R2 = 9aoaia2-2ai-27aoa3 (A2.7)

1 .If aô O:

Bi =0.5R2/ / r ? (A2.8)

( ArcCosBi , ao>0 
0 = ArcCos(±Bi)=J (A2.9)

I ArcCos(-Bi), ao<0

r2\/ Ri Sin(0/3+7t/6)+ai, ao>0
B2 = 2 / R i  Sin(9/3+21/6)+ai =1 (A2.10)

v /  Ri Sin(0/3-jt/6)+ai, ao<0

D =0.5(Ro+QTB2/3ao) (A2.11a)

2. If ao=0:

-a2+ /  a2-4aia3Xc = “J (A2.11b)
2ai

D = 0 .5 (R o -Q T X e) (A2.11c)
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A2.2 The Calculation Of The Derivatives

The delay per unit time defined by (A2.ll) can be regarded as a function of 
A, ?io, and Lro, i.e. D  = D (A ,  Xo, Lro). In this thesis, the derivatives of 
D with respect to these three variables are needed in the various
optimisation routines.

1. a D / a A :

a(QT) = sT
aA

= sc(l-2A )
aA

= 2(QT-C)
aA

=  - s c (  1- 4 A + 3 A 2) - R o- A - ^ 5 ^  -ST (2A + 1)  
aA aA

= sc(l-4A +3A 2) + R n + ( A + l ) - ^  +sT 
aA aA

a ( a 3 )  _  aRo
aA aA

( A 2 . 1 2 )

( A 2 . 1 3 )

( A 2 . 1 4 )

( A 2 . 1 5 )

( A 2 . 1 6 )

( A 2 . 1 7 )

(1) If ao*0:

a ( Ri )   ̂ a ( a i ) o f  a ( a 2 ) , a( ao)—— - = 2ai —— - - j<jao—— - + a2—— -
aA aA I aA aA

( A 2 . 1 8 )

a ( R 2) =  9 | s U o ) (a|a2_3aoa3) 
aA aA

+  a o - 3
aA aA

aoM.Hi +a3M
aA aA

6a
aA

( A 2 . 1 9 )

a ( B i )  _  1 a ( R 2 )

a A 2Ri a A
■ / Ri — Rz/ rT

2 a A
(A2.20)
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a e  = a ( B Q  l_

aA aA
(A2.21)

/  1-B?

a(B2) = £ i i l ) +_ J _ . 8 ( j ^ in(0/ 3 ^ /6)+2 / ^ a 0 Cos(e/3±Jt/6) (A 2.22)
aA aA aA 3 aA

B3 = Q T a o ^ il  + |ao8 (QT) - Q T ^ H 2} b 2
aA I aA aA i

(A2.23)

dD Q 5  ra(Ro) + _ B 3  

aA I aA 3 ao
(A2.24a)

(2) If ao=0:

aXc

aA

0.5 - ^ 1  +
aA “v/ a?-4am

2:i2a ( a 2 )
aA aA aA

ai

X c  a( a i )

a i aA

aD

a A

2. aP/a^o:

0  J a ( R o )  _ r X c a ( Q T )  +  g T a ( X c )  

( aA I aA aA

(A2.24b)

(A2.24c)

a(QT) = 0  

aX o

= -Qc(l-A)Ao
d X o

3(ao)  = () 
d X o

(A2.25)

(A2.26)

(A2.27)

a ( a i) = Q c ( l - A ) “ _ A a(Ro) 

d X o  Xo d X o
(A2.28)
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a( a2) = . .2£ iL :A)2 + (a + i )3(Ro)- (A2.29)
d Xo  Xo d X o

a(a3) = _ a(Ro) (A2.30)
d X o  d X o

Then follow the steps ( A 2 .1 8 ) - (A -2 .2 4 )  except that aA is replaced by dXo.

3. aD/aLro:

a(QT) = O (A2.31)
a Lr r 0

^ 5 2  = 2 (A2.32)
a L  rO

= O (A2.33)
aL rO

= - A = _2A (A2.34)
aL r() aL r 0

= ( A + l ) i ^ M  = 2(A+1)  (A2.35)
aL  ro aL  r 0

d{  ̂ a ( Ro) _ (A2 36)
aL  ro aL  r 0

Then follow the steps (A2.18)-(A-2.24) except that aA is replaced by aLrO.
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APPENDIX 3: THE DERIVATIVES OF 
THE RANDOM QUEUE LENGTH FORMULA

A3.1 The Expression For The Random Queue Length Formula

As pointed out in Chapter 3, when the derivatives of the random queue 
length formula with respect to the control variables need to be evaluated, 
the formula such as (3.7) that can be used to estimate the random queue 
length with more accuracy cannot be used for this purpose, and formula 
(3.5b) should be employed. Numerically, for a traffic stream, the random 
queue length Lr at time T  can be calculated by the following procedure:

Ai = 2C(qT+Li<))2 (A3.1)

A2 = (qT+LrO-AsT)2 + 4C(qT+Lifl) (A3.2)

As = (AsT)2 + (2C-AsT)(qT+Lk>) (A3.3)

Then

Lr = ---------—----------- (A3.4)
AsT v A j + A3

A3.2 The Calculation Of The Derivatives

The random queue length defined by (A3.4) can be regarded as a function of 
A and Lk), i.e. Lr =  L r(A , Lro). In this thesis, the derivatives of Lr 
with respect to these two variables are needed in the various optimisation 
routines.

1. dLr/aA:

= o (A3.5)
aA

= -2(qT+LtO-AsT)sT (A3.6)
aA

= (2AsT-qT-Lro)sT (A3.7)
aA
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Then

d L i

a( AQ 
aA

A sT \/ A 2 + A3
w

; T /  A2 + 0.5AsT-

a ( A 2 ) 
a A

/X T
a(A3)~ 

a A  -

a A ^AsT/ A 2 + Asj

( A 3 . 8 )

2. aLr/aLio:

^ L >  = 4C(qT+Lto)-2A (A3.9)
aL rO

a(A2)  = 2(qT+LiO-AsT) + 4C (A3.10)
aL rO

M A li = 2C-AsT (A3.11)
aL rO

Then

a (  A 2 )

aLr
aLrO

a(Ai)
aL rO

A s t / a X  + A 3] - A i [ o . 5 A s T — a L '° + a ( A3)]
J 1 S7T  aLroJ

As t / A 2 + A3
]

(A3.12)
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