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To Vassili Mikhailovich Babich on occasion of his 90-th birthday

Abstract. We consider an inner problem for whispering gallery high-
frequency asymptotic mode’s scattering by a boundary inflection. The
related boundary-value problem for a Schrödinger equation on a half-
line with a potential linear in both space and time appears fundamental
for describing transitions from modal to scattered asymptotic patterns,
and despite having been intensively studied over several decades remains
largely unsolved. We prove that the solution past the inflection point
has a “searchlight” asymptotics corresponding to a beam concentrated
near the limit ray, and establish certain decay and smoothness properties
of the related searchlight amplitude. We also discuss further interpre-
tations of the above result: the existence of associated generalised wave
operator, and of a version of a unitary scattering operator connecting
the modal and scattered asymptotic regimes.

1. Introduction

This work is dedicated to Prof V.M. Babich on occasion of his 90-th birth-
day, and is devoted to a long-standing canonical problem of high frequency
diffraction, to which area Prof Babich has made many groundbreaking con-
tributions. The particular problem is an inner problem for a whispering
gallery high-frequency asymptotic mode propagating along a concave part
of a boundary and then scattering at a boundary inflection point. Like
Airy equation and associated Airy function are fundamental for describing
transition from oscillatory to exponentially decaying asymptotic behaviors,
the boundary inflection problem leads to an arguably equally fundamental
canonical boundary-value problem for a special partial differential equation
(PDE) describing transition from a “modal” to a “scattered” high-frequency
asymptotic behavior.

Mathematically, the problem is for a Schrödinger equation on a half-line
with a potential linear in both space and time, which was first formulated
and analysed by M.M. Popov starting from [15] in the 1970-s. The associated
solutions have asymptotic behaviors with a discrete spectrum at one end and
with a continuous spectrum at the other end, and of central interest is to
find the map connecting the above two asymptotic regimes. The problem

Key words and phrases. diffraction, whispering gallery, boundary inflection, wave
operator.
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Figure 1. Whispering gallery wave near a boundary inflection

however lacks separation of variables, except in the asymptotical sense at
both of the above ends. Nevertheless, as we essentially argue in the present
work, a non-standard perturbation analysis at the continuous spectrum end
can be performed, ultimately describing the desired map connecting the two
asymptotic representations.

Specifically, the problem is for a high-frequency wave process near a
boundary containing a simple inflection point, as displayed on Fig. 1. Let
the wave process be described by Helmholtz equation ∆U+k2U = 0 over the
boundary S and let (s, n) be a local system of coordinates associated with
the boundary, so that s is the arclength along S and n is the normal distance
to S. So the boundary corresponds to n = 0, with (say) Dirichlet boundary
conditions U(s, 0) = 0. The inflection point corresponds to s = 0 and so the
curvature κ(s) is positive for s < 0 where the boundary is (locally) concave
and negative for s > 0 where the boundary becomes convex.

For the concave part of the boundary, i.e. for s < 0 away from the
inflection, whispering gallery asymptotic solutions are known to exist for
large k (i.e for high frequencies) propagating along S in a thin “boundary-

layer” n = O
(
k−2/3

)
. To the main order, these are of the form, see e.g. [1]

and [2],
(1)

U ∼ Cκ1/6(s)eiks exp

{
−i2−1/3k1/3νj

∫ s

s0

κ2/3(s′)ds′
}

Ai
(

(2κ(s))1/3 k2/3n− νj
)
,

where Ai(z) is the Airy function, solution to Airy equation Ai
′′ − zAi = 0

exponentially decaying as z → +∞; −νj , j = 1, 2, 3, ..., is any of its zeros,
0 < ν1 < ν2 < ... < νj < νj+1 < ..., νj → +∞ as j → ∞; s0 < 0 is any
reference point, and C is a constant.

For the curvature κ(s) = −βs + O(s2) near the inflection point s = 0,
β > 0, Popov has shown in [15] that the incoming whispering gallery wave
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(1) has to be matched with a solution of an inner problem near s = 0,

which in stretched coordinates x = β1/5k3/5n, t = β2/5k1/5s, with U(s, n) ∼
eiksψ(x, t) is stated in (2)–(5) below.

Since Popov’s pioneering work the problem has attracted a sustained at-
tention over the last several decades. Without attempting a comprehensive
review, we discuss in the next section in some detail a number of contribu-
tions particularly relevant to our present purposes. Additionally, Kazakov
has introduced and analysed asymptotically certain integral solutions to (2)
in [9], and most recently proposed in [10] another approach for constructing
a class of particular solutions to (2) obeying boundary conditions (3).

In the present work, we aim at rigorously establishing the structure of
a “searchlight” formed past the inflection point, which corresponds to the
asymptotics of the solution to (2)–(5) as t → +∞ near the limit ray corre-
sponding to the straight line tangent to S at s = 0, see Fig. 1. Our new
result is stated in Theorem 1, which justifies to the main order a related
asymptotic ansatz (12) and establishes some properties of the searchlight
amplitude G0(η).

It appears that mathematically the searchlight asymptotics corresponds
to a perturbation analysis as t→ +∞ of an appropriately transformed prob-
lem. The underlying key transformation, first discovered in [3], turns out to
be closely related to a “pseudoconformal symmetry” of a free Schrödinger
equation, see e.g. [23, 22, 24]. The related unperturbed problem appears
to be one with a continuous spectrum, corresponding to a “free scattering”
without a boundary. This can be compared with Popov’s asymptotic analy-
sis as t→ −∞ in [16], where another transformed problem is a perturbation
to an operator with a discrete spectrum corresponding to the whispering
gallery modes. Wave operators appear to exist at both “ends” t → ±∞,
and hence so does a version of a scattering operator connecting the two
asymptotic regimes, see Theorem 2 and Corollary 1. We remark that the
general idea of transforming an operator consistently with the form of the
solutions’ asymptotic expansion appears to resonate with that of generalised
wave operators, cf [6]. Notice also that other scenarios connecting asymp-
totic regimes with discrete and continuous spectra are found in the literature,
see e.g. [20].

In the next section, we formulate the inner problem for ψ(x, t), discuss
related background and state our main result, Theorem 1. In Section 3 we
discuss interpretations for the searchlight wave operator and for a version of
a scattering operator. Section 4 provides a detailed proof of Theorem 1.

2. Formulation, background, and the main result

The inner problem for whispering gallery wave scattering near a simple
boundary inflection point was formulated by Popov [15] as follows. In the
half-plane domain Ω := {(x, t) ; x > 0, −∞ < t < +∞}, find a solution
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ψ(x, t) to the Schrödinger-type equation

(2) i
∂ψ

∂t
= − 1

2

∂2ψ

∂x2
− xtψ,

subject to Dirichlet boundary condition at x = 0

(3) ψ(0, t) = 0,

and with a prescribed asymptotic behaviour for large negative t:

(4)
∥∥ψ(·, t) − ψ−0 (·, t)

∥∥
L2(0,+∞)

→ 0, as t→ −∞,

where

(5) ψ−0 (x, t) = Dj(−2t)1/6 exp

(
iνj

3

20
(−2t)5/3

)
Ai
(
x(−2t)1/3 − νj

)
.

Here Ai(z) is the Airy function and Dj is a constant. Formula (5) emerges in
[15] as a result of matching as t→ −∞ with the principal part of asymptotics
of the incoming whispering gallery wave (1).

PDE (2) when regarded on the whole real line R (−∞ < x < +∞) is
known to be reducible to a separable one, see e.g. [5]. However the boundary
condition (3) makes it non-separable, which is a source of major challenges
for its analysis.

In [16] Popov studied well-posedness of (2)–(5), whose solution ψ(·, t) was
a priori understood as a function from the domain of a self-adjoint operator
A(t) in Hilbert space H = L2(0,+∞) determined by the right hand side of
(2) with zero boundary condition at x = 0. Function ψ(·, t) is required to be
strongly differentiable in t in H with the left hand side of (2) understood as
the strong derivative. The existence (and uniqueness) was then established
in [16] by means of wave operator methods as t→ −∞. (For an introduction
to as well as for more advanced properties of wave operators, see e.g. [8],
[25].)

To that end, Popov used in [16] the following natural transformation of
(2)–(3) for identifying an “unperturbed” problem as t→ −∞, for which (5)
is an exact solution. For t < 0, introduce new variables (ξ, τ) and function

ψ̃ by

(6) ξ = (−2t)1/3x, τ = − 3

20
(−2t)5/3, ψ(x, t) = (−2t)1/6ψ̃(ξ, τ).

This transforms (2) into

(7) i
∂ψ̃

∂τ
= − ∂2ψ̃

∂ξ2
+ ξ ψ − i

5τ

(
ξ
∂ψ̃

∂ξ
+

1

2
ψ̃

)
, ξ > 0, τ < 0,

with similar to (3) boundary condition ψ̃(0, τ) = 0.
The asymptotics ψ−0 (x, t) in (5) then transforms into

(8) ψ̃−0 (ξ, τ) = Dj exp (−iνjτ) Ai(ξ − νj),
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which is an exact solution of the unperturbed version of (7) as τ → −∞
i.e. of the one with the last term on the right hand side of (7) (the pertur-
bation) omitted. Transformation (6)–(7) also helps to recover an all-order
formal asymptotic expansion to the solution of (2)–(5) as t→ −∞, initially
constructed in [15]:
(9)

ψ(x, t) ∼ (−2t)1/6e−iνjτ
∞∑
n=0

τ−n
[
P2n(ξ)Ai (ξ − νj) +Q2n−1(ξ)Ai′ (ξ − νj)

]
,

where ξ and τ are given by (6); Ai′ is the derivative of the Airy function, and
P2n and Q2n−1 are polynomials in ξ of degrees 2n and 2n − 1 respectively,
Q2n−1(0) = 0 (Q−1 ≡ 0). Indeed, substitution of (9) into (7) using (6) and
the Airy equation leads to straightforward recurrence relations for P2n and
Q2n−1.

Popov’s well-posedness analysis in [16] used in fact a further transforma-

tion of (7) via ψ̃(ξ, τ) = exp
{
−i ξ

2

20τ

}
v(ξ, τ) resulting in

(10) i
∂v

∂τ
= − ∂

2v

∂ξ2
+ ξ v +

1

25

ξ2

τ2
v, τ < 0; ξ > 0, v(0, τ) = 0,

for which the existence of a wave operator was established. We emphasise
that the transformed problem (10) recasts the original problem as a pertur-
bation, when τ → −∞, of related unperturbed problem with (self-adjoint)

“Airy” operator A−0 v(ξ) = −v′′ + ξv, ξ > 0, v(0) = 0, having a discrete
spectrum and eigenfunctions (8) associated with the incoming whispering
gallery modes.

In [4], V.M. Babich and the first author have proved that the solution
of (2)–(5) is in fact classical, using bootstrap-type techniques based on the
asymptotic expansion (9), which has allowed to justify (9) with proved error
estimates. Moreover, [4] also proved that ψ(x, t) is infinitely differentiable
in Ω, and together with all its derivatives decays super-algebraically as x→
+∞ uniformly at any bounded interval in t. Namely, for all non-negative
integers α, β and γ, and for any real A1 < A2, with ∂ denoting appropriate
partial derivatives,

(11) sup
A16t6A2

∣∣∣xα∂βt ∂γxψ(x, t)
∣∣∣ → 0, as x→ +∞.

Similar results and some generalisations were soon thereafter obtained by
different methods in [11].

The problem of fundamental interest is to determine asymptotic behaviour
of the solution ψ(x, t) of (2)–(5) as t→ +∞, which would correspond to the
scattered wave field past the inflection point. In [3] a formal asymptotic so-
lution matching to the incoming whispering gallery wave (5) was constructed
in the shadow zone above the limit ray x = t3/6, which curve corresponds
to the straight line tangent to the physical boundary at the inflection point
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(Fig. 1). The constructed asymptotics was observed to remain an asymp-
totic expansion as t→ +∞ as long as x/t3−1/6 =: µ� t−2, breaking down
when µ ∼ t−2. Following general boundary-layer recipes, it was suggested
in [3], see formula (4.3) of [3], to seek the asymptotic expansion to the solu-
tion ψ(x, t) as t → +∞ in the vicinity of the limit ray, with respect to the
stretched variable η := µt2 = x/t− t2/6, in the form
(12)

ψ(x, t) ∼ t−1/2 exp

{
i

7

120
t5 +

i

2
ηt3 +

i

2
η2t

} ∞∑
m=0

t−mGm(η), η :=
x

t
− 1

6
t2.

The form (12) was interpreted in [3] as a “searchlight” ansatz, for a beam
anticipated to concentrate near the limit ray. The unknown functions Gm(η)
are required to have a prescribed (exponentially small) asymptotics as η →
+∞, to match with the shadow asymptotics over the limit ray constructed
in [3].

An accompanying curious observation made in [3] was that changing in
(2) the variables from (x, t) to (η, t) and introducing new unknown function
G(η, t) by

(13) ψ(x, t) = t−1/2 exp

{
i

7

120
t5 +

i

2
ηt3 +

i

2
η2t

}
G(η, t), η =

x

t
− 1

6
t2

results in the following simple PDE for G, see formula (4.4) of [3]:

(14) i t2
∂G

∂t
+

1

2

∂G

∂η2
= 0.

Comparing (12) with (13)–(14), one concludes that all one needs is to
determine the main-order searchlight amplitudes G0(η) for

(15) G(η, t) ∼
∞∑
m=0

t−mGm(η), as t→ +∞,

specifying all the higher-order amplitudes via recurrence relations

(16) Gm+1(η) = − i

2m+ 2
G
′′
m(η), j = 0, 1, ....

Determination of G0 however requires additional information about the
unknown solution ψ(x, t). In [17] Popov, using a Green’s function represen-
tation for (2), has expressed searchlight amplitudes equivalent to G0(η) up
to a change of relevant variables in terms of certain integrals involving still
unknown solution’s Neumann data ∂xψ(0, t) =: f(t) at the boundary x = 0.
The formulas derived in [17] were implemented in [18] for computing the
searchlight amplitudes numerically (where f(t) was in turn computed via a
finite difference method previously developed in [19]).

The derivation in [17] was made under an assumption that the surface
“flux” f(t) decays fast as t→ +∞, more precisely

(17)

∫ ∞
1
|f(t)| tp dt < +∞, p = 1, 2, 3, ... .
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The assumption (17), yet unproven, appeared to be partially supported by
numerical evidence, [19]. Still, it was proved thereafter by the first author
in [21] that

(18)

∫ ∞
1
|f(t)|2 t2 dt < +∞.

Some ideas of [21], as well as those of [3] and [4], serve as important
ingredients for the present work. One of the main results of the present
work is the following theorem on the searchlight amplitude G0, which we
state in a slightly more general form.

Theorem 1. Let ψ(x, t) ∈ C∞(Ω) be an infinitely smooth solution to (2)
satisfying boundary condition (3) and decay condition (11); in particular
ψ(x, t can be the solution to problem (2)–(5).

Then there exists (unique) G0(η) ∈ H1(R) with ηG0(η) ∈ L2(R), and with
the following properties. Let, for t > 0,
(19)

ψ+
0 (x, t) := t−1/2 exp

{
i

7

120
t5 +

i

2
ηt3 +

i

2
η2t

}
G0(η), η :=

x

t
− 1

6
t2.

Then

(20)
∥∥ψ(·, t) − ψ+

0 (·, t)
∥∥
L2(0,+∞)

(t) → 0, as t→ +∞.

Moreover, for G(η, t) introduced for t > 0 by (13) when η > −t2/6 and
extended by zero for η < −t2/6, as t→ +∞,
(21)
G(η, t) ⇀ G0(η) weakly in H1(R), ηG(η, t) ⇀ ηG0(η) weakly in L2(R).

Theorem 1 provides a rigorous justification for the main-order term in
the searchlight ansatz (12) formally constructed in [4], and establishes some
properties of the amplitude G0(η) as well as some convergence properties as
t→ +∞.

Remark 1. The transformation (13) leading to (14) and then to (15) and
(16), as discovered in [3], plays a key role for the purposes of the present
work. Notice that a simple further change of variable τ = 1/t immediately
transforms (14) into a free Schrödinger equation on R:

(22) i
∂G

∂τ
− 1

2

∂2G

∂η2
= 0, τ = t−1 > 0.

This appears to be closely related to a “pseudoconformal symmetry” of a
free Schrödinger equation, see e.g. [23, 22, 24]. Indeed, as observed in
[12], see also [7] p.92, an inner problem for the boundary inflection could be
derived directly in (stretched) Cartesian rather than curvilinear coordinates.
The former yields a potential-free Schrödinger equation (i.e. as (2) but with
no xtψ term) but in a domain bounded by a cubic parabola. That can
then be transformed to (2) by “straightening” the boundary. Using that
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transformation “in reverse” in (2), i.e. introducing new variable ζ = x− 1
6 t

3

and new function ϕ by

(23) ψ(x, t) = exp

{
i

2
ζt2 + i

7

120
t5
}
ϕ(ζ, t)

results in ϕ solving

(24) i
∂ϕ

∂t
+

1

2

∂2ϕ

∂ζ2
= 0,

which is a “parabolic wave equation” as in [12]. Then the transformation of
(24) leading to (22) is:

(25) η =
ζ

t
, τ =

1

t
, ϕ(ζ, t) = τ1/2 exp

(
i
η2

2τ

)
G(η, τ).

Therefore the free Schrödinger equation is invariant under transformation
(25) (with τ replaced by −τ or G by its complex conjugate), cf. eg. [24]. See
also [13] with further reference to [14] for some further invariance properties
of (24).

Combining the transformation (23) with (25) is easily seen to yield (13)
with (22). These transformations imply in particular that (19)–(20) is held
for the analogous problem on the whole line, x ∈ R. A major technical
challenge, resolved in the present work, is to prove that (19)–(20) is still
held in the presence of the boundary condition (3). �

Remark 2. Similarly to (10), the transformed problem (24) in domain
{(ζ, t) : ζ > −t3/6} can be viewed as a perturbation, when t → +∞, of
the unperturbed problem on the whole of the (ζ, t)-plane with related (self-

adjoint) operatorA+
0 ϕ(ξ) = − 1

2ϕ
′′
, having a continuous spectrum associated

with a “free scattering” i.e. with no boundary.

A detailed proof of Theorem 1 will be given in Section 4. In the next
section we give some further interpretations of Theorem 1, in the light of
Remark 2.

3. Further interpretations of Theorem 1: searchlight wave
operator and inflection scattering operator

In this section we give a less formal sketch, avoiding fine technical details,
of how Theorem 1 leads to further implications and interpretations in terms
of a “searchlight” wave operator as t→ +∞ and of an inflection scattering
operator.

Theorem 1 applies for every incoming whispering gallery wave (5), i.e. for
j = 1, 2, 3, .... Notice that it also holds for any classical solution of (2)–(3)
which is infinitely smooth, ψ(x, t) ∈ C∞(Ω), and decays as x → +∞ as in
(11). It immediately follows from [4], cf. Theorem 2.1 of [4], that the latter
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properties are satisfied by solutions to a Cauchy problem to (2)–(3) with
initial data from for example C∞0 (0,+∞) at t1 = +1:

(26) ψ(x, t1) = Ψ1(x), Ψ1 ∈ C∞0 (0,+∞).

This determines a linear mapping U : C∞0 (0,+∞) → L2(R), by UΨ1 :=
G0(η), where function G0 is associated with the solution of (2), (3), (26)
according to Theorem 1.

It is easy to see that U is an L2-isometry, namely

(27) ‖G0‖L2(R) = ‖Ψ1‖L2(0,+∞) .

Indeed, denoting henceforth R+ := (0,+∞), and using the fact that a solu-
tion to (2)–(3) has a t-independent L2(R+)-norm, given Ψ1 ∈ C∞0 (R+),

(28) ‖ψ(·, t)‖L2(R+) = ‖Ψ1‖L2(R+), ∀t ∈ R.

On the other hand, from (19),

‖ψ+
0 (·, t)‖2L2(R+) =

∫ +∞

0
t−1
∣∣∣∣G0

(
x

t
− 1

6
t2
)∣∣∣∣2 dx =∫ +∞

− 1
6
t2
|G0(η)|2dη −→ ‖G0‖2L2(R), as t→ +∞.(29)

Hence, via passing to the limit as t→ +∞ and using (20) and (28),

‖G0‖L2(R) = lim
t→+∞

‖ψ+
0 (·, t)‖L2(R+) = lim

t→+∞
‖ψ−(ψ−ψ+

0 )(·, t)‖L2(R+) = ‖Ψ1‖L2(R+),

yielding (27).
In a standard way, as C∞0 (R+) is dense in L2(R+), the above isometry

is uniquely extended by continuity from C∞0 (R+) to L2(R+). Moreover,
as immediately follows from the proof of Theorem 1, see Lemma 3 below,
the range of this extension is actually the whole of L2(R). Hence the so
constructed U is in fact a unitary operator, U : L2(R+)→ L2(R).

This all can be interpreted in terms of existence of a wave operator as t→
+∞ as follows. Fixing t1 > 0, e.g. t1 = +1, consider the Cauchy problem
for (2)–(3) with initial condition (26). Its solution ψ(x, t) determines for
any t ∈ R an L2(R+)-isometric “propagator” operator U(t, t1), by ψ(·, t) =
U(t, t1)Ψ1. Hence U(t, t1) is uniquely extended by density to a unitary
operator in L2(R+), whose inverse U−1(t, t1) = U(t1, t) is similarly related
to solution to the Cauchy problem with initial data at t.

A physical interpretation of the searchlight ansatz (12)–(14) is that, for
large positive t, the effect of the boundary x = 0 becomes increasingly
insignificant: the wave energy tends to concentrate in a neighbourhood of
the limit ray x = 1

6 t
3 away from the boundary, so further propagation of the

wave beyond the inflection point i.e. for t→ +∞, to a good approximation,
is such as if there were no boundary. This intuition suggests that for t > 0
one can take as an unperturbed problem simply the problem for PDE (2) on
the whole line x ∈ R with a similar initial condition at t = t1 as (26) but for
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x ∈ R. The latter problem is equivalently reformulated via transformation
(13) as a Cauchy problem for (14) for t > 0.

Notice that transformation (13) leading further to (22) similarly deter-

mines, for any τ, τ1 > 0, a unitary propagator Ũ0(τ, τ1) in L2(R) for (22).
Importantly the point τ = 0, corresponding to t → +∞, remains a regular
point for (22) hence with a well-defined (strong) limit of Ũ0(τ, τ1) as τ → 0+.
Using now the transformation (13) in reverse, determines the unitary prop-
agator U0(t, t1) for the unperturbed (i.e. with no boundary) problem for (2)
with the above described asymptotic behaviour as t→ +∞.

All this can be interpreted in terms of existence of a unitary analogue of
wave operator W+ : L2(R)→ L2(R+) as t→ +∞, which can be defined as

(30) W+ := s- lim
t→+∞

U−1(t, t1)χ+U0(t, t1).

Here χ+ denotes restriction of a function to positive semi-axis R+, and
s- lim stands for a strong limit in L2(R). Notice the role of χ+ in (30)
for approximating for large positive t the solutions to the problem with
boundary (x = 0) in terms of solutions of the unperturbed problem without
boundary, cf e.g. (48) in the proof of Lemma 3 below.

We state the above as the following theorem.

Theorem 2. There exists wave operator W+ defined by (30), which is a
unitary operator from L2(R) into L2(R+).

As was shown in [16], and in fact also follows from [4], there exists also
a “whispering gallery” wave operator W− when t → −∞ for a reformu-
lated Cauchy problem (10) for t < 0 in L2(R+). Taken together, this de-
termines an analogue of a scattering operator for the inflection problem,
via determining the searchlight amplitudes corresponding to each incoming
whispering gallery wave (5), j = 1, 2, ... . One way for such a construc-
tion is to notice that for any fixed j and constant Dj the L2(R+)-norm of
ψ−0 (x, t) given by (5) is t-independent for t < 0. Normalize Dj in (5) so

that ‖ψ−0 (·, t)‖L2(R+) ≡ 1 for all t < 0, and let G
(j)
0 (η) be related searchlight

amplitudes for the solution ψ(j)(x, t) as t → +∞ according to Theorem 1.

Then, because of (4), the L2(R+)-norm t-independence of ψ(j)(x, t), and

(27), ‖G(j)
0 ‖L2(R+) = 1.

Let H− = l2 be the standard Hilbert space of complex-valued square-
summable sequences a = (aj)

∞
j=1,

‖a‖H− :=

+∞∑
j=1

|aj |2
1/2

.
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Then it is natural to define a scattering operator as the map S : l2 → L2(R)
by

Sa :=
∞∑
j=1

ajG
(j)
0 (η).

All the above implies the following

Corollary 1. The above analogue of a scattering operator S is a well-defined
unitary operator from l2 to L2(R).

The physical meaning of the scattering operator S is in specifying how the
intensities of the incoming whispering gallery modes at t→ −∞ transform
into the searchlight amplitudes as t→ +∞.

4. Proof of Theorem 1

It is more convenient to work with an equivalently transformed via (13)
problem for G(η, τ) solving (22), which we re-write as

(31) iGτ −
1

2
Gηη = 0, τ = t−1 > 0,

using henceforth subscripts as shorthands for relevant partial derivatives.
Equation (31) holds in domain Ω̃ =

{
(η, τ) : τ > 0, η > − 1

6τ
−2} with bound-

ary condition on a curve l as follows

(32) G(η, τ) = 0, (η, τ) ∈ l :=

{
(η, τ) : η = − 1

6
τ−2, τ > 0

}
.

By [4] G ∈ C∞(Ω̃ ∪ l), and the decay property (11) immediately translates
into: for all non-negative integers α, β and γ, and for any 0 < δ < τ1 < +∞,

(33) sup
δ6τ6τ1

∣∣∣ηα∂βτ ∂γηG(η, τ)
∣∣∣ → 0, as η → +∞.

For proving (21), and then (20), we aim at establishing the limit behaviour
of the above solution G(η, τ) as τ → +0. The following lemma establishes
necessary a priori estimates for G for 0 < τ < τ1. Below, all the norms ‖ · ‖
are the L2-norms for η above the boundary curve l, i.e. in L2

(
−1

6τ
−2,+∞

)
.

Lemma 1. Let a smooth function G(η, τ) solve (31) in Ω̃, so that G ∈
C∞(Ω̃∪ l) and (32) and (33) hold, and let τ1 > 0. Then there exist positive
constants C0, C1 and C2, such that for all 0 < τ < τ1,

(i)

(34) ‖G‖(τ) ≡ C0 > 0;

(ii)

(35)

∫ τ1

0
τ−3

∣∣∣∣Gη (− 1

6
τ−2, τ

)∣∣∣∣2 dτ < +∞;

(iii)

(36) ‖Gη(η, τ)‖ (τ) 6 C1;
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(iv)

(37) ‖ηG(η, τ)‖ (τ) 6 C2;

Proof. Fix τ1 > 0, e.g. τ1 = 1.
(i): (34) is standard. Multiplying (31) by G (with the overbar denoting

the complex conjugate) and integrating in η from−τ−2/6 to +∞, integration
by parts using (32) and (33) and then taking the imaginary part results in
d
dτ

(
‖G‖2

)
= 0, which yields (34).

(ii) & (iii): This follows a similar proof of (18) in [21]. Multiplying (31)
by Gηη and taking the imaginary part results in GηηGτ + GηηGτ = 0, or
equivalently (

GηGτ +GηGτ
)
η
−
(
|Gη|2

)
τ

= 0.

Integrate the latter in η from −τ−2/6 to +∞ using (33), and notice that(
‖Gη‖2

)
τ

=
d

dτ

(∫ +∞

−τ−2/6
|Gη(η, τ)|2 dη

)
=

∫ +∞

−τ−2/6

(
|Gη|2

)
τ
dη−1

3
τ−3

(
|Gη|2

)
l
,

where (·)l denotes the value of the expression in the brackets on the curve l
i.e. for η = −τ−2/6. As a result,

(38) −
(
GηGτ +GηGτ

)
l
−
(
‖Gη‖2

)
τ
− 1

3
τ−3

(
|Gη|2

)
l

= 0.

Now as (G)l = 0 for all τ , the tangential derivative of G along l is zero,
implying Gτ + 1

3τ
−3Gη = 0 on l or Gτ = −1

3τ
−3Gη. Using the latter

in the first term of (38) results in 1
3τ
−3 (GηGη +GηGη

)
l
−
(
‖Gη‖2

)
τ
−

1
3τ
−3
(
|Gη|2

)
l

= 0 or

(39) τ−3
(
|Gη|2

)
l

= 3
(
‖Gη‖2

)
τ
.

Denoting g(τ) := (Gη)l = Gη(−τ−2/6, τ), and integrating (39) from some
τ > 0 to τ1, τ < τ1, results in

(40)

∫ τ1

τ
τ ′
−3|g(τ ′)|2dτ ′ + 3 ‖Gη‖2 (τ) = 3 ‖Gη‖2 (τ1).

For fixed τ1 > 0, the right hand side of (40) is constant, which immediately
yields (36) for 0 < τ < τ1. For (35), it only remains to pass to the limit in
(40) as τ → +0.

(iv): Multiply now (31) by η2G and take the imaginary part, giving

η2
(
GGτ +GGτ

)
− 1

2i
η2
(
GGηη −GGηη

)
= 0,

which can be equivalently rewritten as

(41)
(
η2|G|2

)
τ

+
i

2

[
η2
(
GGη −GGη

)]
η
− iη

(
GGη −GGη

)
= 0.
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Integrating (41) over η, the middle term vanished due to (32) and (33), and
as a result

(42)
(
‖ηG‖2

)
τ

= i

∫ +∞

− 1
6
τ−2

(
ηGGη − ηGGη

)
dη.

Denoting, for 0 < τ 6 τ1, I(τ) := ‖ηG‖ (τ) =
(∫ +∞
− 1

6
τ−2 η

2|G(η, τ)|2dη
)1/2

,

and applying Cauchy-Schwartz inequality to the right hand side of (42)
results in |2IIτ | 6 2I‖Gη‖. As a result, via (36), |Iτ (τ)| 6 ‖Gη‖(τ) 6 C1,
and hence

‖ηG‖(τ) = I(τ) 6 I(τ1) + C1τ1 =: C2,

yielding (37). �

We regard, for 0 < τ 6 τ1, G(·, τ) as defined on the whole of the real line R
by extending it by zero for η < −τ−2/6. Lemma 1 provides boundedness of
G(η, τ) in the H1(R) norm (via (34) and (36)), and of ηG(η, τ) in the L2(R)
norm, via (37). The following well-known lemma establishes analogues of
compactness results under these conditions. As it plays an important role for
our proof of Theorem 1 we give its short proof for the readers’ convenience.

Lemma 2. Let, for all 0 < τ < τ1, G(η, τ) ∈ H1(R) with ηG(η, τ) ∈ L2(R)
be such that that the respective H1 and L2 norms are bounded, i.e. (34), (36)
and (37) hold. Then there exists a subsequence τn → +0 and G0 ∈ H1(R)
with ηG0(η) ∈ L2(R), such that

(i)
(43)
G(η, τn) ⇀ G0(η) weakly in H1(R), ηG(η, τn) ⇀ ηG0(η) weakly in L2(R).

(ii)

(44) G(η, τn) → G0(η) strongly in L2(R).

Proof. (i) By the lemma’s assumptions, for all 0 < τ < τ1, G(·, τ) belongs
to Hilbert space H of functions from H1(R) such that ‖u‖2H := ‖u‖2H1(R) +

‖ηu‖2L2(R) < ∞, which specifies the norm in H. Then it is easy to see that

the theorem on weak compactness of a unit ball implies the existence of
G0 ∈ H and of a subsequence τn → 0+, such that (43) holds.

(ii) For a subsequence chosen in (i), for any N = 1, 2, ..., (43) and the
Rellich compactness theorem ensure that

(45) G(η, τn) → G0(η) strongly in L2(−N,N).

Now, denoting here for brevity Gn(η) := G(η, τn),

‖Gn −G0‖2L2(R) =

∫ N

−N
|Gn −G0|2dη +

∫
η>N
|Gn −G0|2dη 6

(46)∫ N

−N
|Gn−G0|2dη+N−2

∫
|η|>N

η2|Gn−G0|2dη 6
∫ N

−N
|Gn−G0|2dη+CN−2, ∀n,N,
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with a constant C independent of n and N . (With latter inequality following
from (37) and (i) .) Now taking limit-supremum as n → ∞ of inequality
(46) for every N and using (45) results in lim supn→∞ ‖Gn−G0‖2 6 CN−2
for all N ∈ N. Finally, (44) follows from the latter as N is arbitrary. �

To complete the proof of Theorem 1 we essentially need to show that for
the actual solution satisfying (31)–(33) the choice of G0 according to Lemma
2 is actually independent of the subsequence and therefore the convergences
in (43) and (44) actually hold for the whole of t→ +0. The latter is being
achieved below by adapting and refining certain technical arguments from
[4], as follows.

To this end, we first aim at showing that, given a well-behaved function
G0(η), there exists a well-behaved solution to (31)–(32) for τ > 0, such that
G0 is its strong L2-limit as τ → +0. To begin with, we can take as such
G0 ∈ C∞0 (R). The following key lemma holds:

Lemma 3. Let G0 ∈ C∞0 (R). Then there exists unique G(η, τ) ∈ C∞(Ω̃∪ l)
a solution to (31) in Ω̃, satisfying (32) and (33), such that

(47) ‖G(·, τ)−G0‖ → 0 as τ → +0.

Equivalently, there exists a unique solution ψ(x, t) ∈ C∞(Ω) to (2), satisfy-
ing (3), (11), such that (20) holds for ψ+

0 (x, t) defined by (19).

Proof. The proof follows the ideas from Lemmas 3.7–3.9 and Theorem 3.1
of [4], readjusting the argument as necessary from the asymptotic condition
(4) for t → −∞ to (20) as t → +∞. In this respect, it is more convenient
to deal with the latter statement of the lemma, with the stated equivalence
following via the transformation (13), (22). Indeed, let G0(η) ∈ C∞0 (R) with
associated G(η, τ), and related ψ+

0 (x, t) and ψ(x, t) determined by respec-
tively (19) and (13) (with τ = t−1 in the latter). Then, for the left hand
side of (20), for large enough t,

‖ψ(x, t)− ψ+
0 (x, t)‖2L2(R+) =∫ +∞

0
t−1
∣∣∣∣G(xt − 1

6
t2, t

)
−G0

(
x

t
− 1

6
t2
)∣∣∣∣2 dx =∫ +∞

− 1
6
τ−2

|G(η, τ)−G0(η)|2 dη =

∫ +∞

−∞
|G(η, τ)−G0(η)|2 dη =

‖G(·, τ) − G0‖2L2(R) .(48)

(Since the support of G0(η) is finite and G(η, τ) is defined to vanish for
η < −1

6τ
−2, for small enough τ the second integral in (48) could be replaced

by that over the whole of the real line.) Thus (48) establishes the stated
equivalence.

1. Let now G0 ∈ C∞0 (R) have a support in [−Λ,Λ] for some Λ > 0.
Choose some large enough N ∈ N and define an asymptotic solution to (2)



SEARCHLIGHT FOR BOUNDARY INFLECTION 15

as t→ +∞, cf (12),
(49)

ψ(N)(x, t) := t−1/2 exp

{
i

7

120
t5 +

i

2
ηt3 +

i

2
η2t

} N∑
m=0

t−mGm(η), η =
x

t
−1

6
t2,

where Gm, m = 1, 2, ..., N , are determined from G0 by (16). It then follows

that ψ(N)(x, t) ∈ C∞(Ω∗) and the support of ψ(N) in Ω∗ is separated from

the boundary x = 0 of Ω, where Ω∗ := {(x, t) : x > 0, t > (6Λ)1/2+1 =: t∗}.
In particular, as ψ(N)(x, t) vanishes for x

t−
1
6 t

2 < −Λ, i.e. for x < 1
6 t(t

2−6Λ),

ψ(N) satisfies the boundary condition (3) in Ω∗. Moreover, as ψ(N) also
vanishes for x

t −
1
6 t

2 > Λ, the decay condition (11) is trivially satisfied by

ψ(N) for any t∗ < A1 < A2 < +∞.
We aim at constructing solutions to (2)–(3) with Cauchy data given by

(49) at large enough t = T and ultimately showing that these solutions
converge to the sought solution ψ(x, t) as T → +∞. So, following p.1570 of

[4], for all ξ > t∗ we define ψ[N ](x, t; ξ) as solution to the Cauchy problem
for (2)–(3) in Ω∗ with initial data at t = ξ:

(50) Lψ[N ] := iψ
[N ]
t +

1

2
ψ[N ]
xx + xtψ[N ] = 0 in Ω∗,

(51) ψ[N ](0, t; ξ) = 0, ψ[N ](x, ξ; ξ) = ψ(N)(x, ξ).

By Theorem 2.1 of [4] and its proof, for any ξ > t∗, there exists such a unique

function ψ[N ](x, t; ξ) ∈ C∞(Ω∗) satisfying (11) for any t∗ < A1 < A2 < +∞.
2. Following [4] further, we next argue that for any (x, t) ∈ Ω∗ and ξ > t∗,

ψ[N ](x, t; ξ) is continuously differentiable in ξ,

(52)
∂ψ[N ](x, t; ξ)

∂ξ
=: VN (x, t; ξ),

and the derivative VN (x, t; ξ) is a unique solution in Ω∗ to another Cauchy
problem

(53) LVN = 0, VN (0, t; ξ) = 0, VN (x, ξ; ξ) = −iLψ(N).

Again by Theorem 2.1 of [4], as defined by (53), VN ∈ C∞(Ω∗) and satisfies
(11) for any t∗ < A1 < A2 < +∞.

The relation (52) between the solutions of (50)–(51) and (53) is proved
in Lemma 3.7 of [4].1 Therefore, for any t∗ < T1 < T2 < +∞ and for any

1Formally, (52)–(53) can be shown by differentiating the Cauchy data in (51) with

respect to ξ: ψ
[N ]
t (x, t; ξ) + ψ

[N ]
ξ (x, t; ξ) = ψ

(N)
ξ (x, ξ) when t = ξ, and then as ψ[N ] solves

(50),

ψ
[N ]
t (x, t; ξ) =

i

2
ψ[N ]
xx (x, t; ξ) + ixtψ[N ](x, t; ξ) =

i

2
ψ(N)
xx (x, ξ) + ixξψ(N)(x, ξ), t = ξ

(having in the last equality used (51) again), which leads to (53). This derivation has

however to be adjusted as the differentiability of ψ[N ] with respect to the parameter ξ is
not known in advance, see proof of Lemma 3.7 of [4] for the details.
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(x, t) ∈ Ω∗,

(54) ψ[N ](x, t;T2) − ψ[N ](x, t;T1) =

∫ T2

T1

VN (x, t; ξ) dξ.

Further following [4], given a function ψ(x, t) ∈ C∞(Ω) obeying (11), for
any non-negative integers α, β and γ, we introduce semi-norms

‖ψ‖αβγ(t) :=

(∫ +∞

0
x2α

∣∣∣∂βt ∂γxψ(x, t)
∣∣∣2 dx)1/2

.

The technical argument in the proof of Lemma 3.7 of [4] ensures that (52)

is infinitely differentiable in x and t with ∂βt ∂
γ
xVN (x, t; ξ) continuous in ξ for

any β and γ. As a result, the identity (54) is also infinitely differentiable in
x and t, and yields Cook’s type estimates, cf. e.g. [8]

(55)
∥∥∥ψ[N ](x, t;T2) − ψ[N ](x, t;T1)

∥∥∥
αβγ

(t) 6
∫ T2

T1

‖VN (x, t; ξ)‖αβγ (t) dξ.

3. As ψ(N) is an asymptotic solution to (2) as t→ +∞, it directly follows
from its construction, see (12), (14)–(16), that for t > t∗

(56)
∥∥∥Lψ(N)

∥∥∥
αβγ

(t) 6 C(α, β, γ,N) t−2+3α+4β+2γ−N

with t-independent constants C(α, β, γ,N).
Next, as problem (53) has initial data satisfying estimates (56) at t = ξ,

[4] implies similar estimate for VN , cf Lemma 3.8 of [4]. Namely, generally for
a function ψ(x, t) solving (2)–(3) and satisfying (11), according to inequality
(3.1) of [4], for any t1, t2 ∈ R,
(57)

‖ψ‖αβγ(t1) 6
∑

|J ′|6|J |,β′=0

CJJ ′
(
|t1||J |−|J

′| + |t2||J |−|J
′| + 1

)
‖ψ‖α′0γ′(t2).

Here for multiindices J = (α, β, γ) and J ′ = (α′, β′, γ), we denote |J | :=
3α+4β+2γ and |J ′| := 3α′+4β′+2γ′. The constants CJJ ′ are independent
of t1 and t2.

Applying (57) to ψ(x, t) = VN (x, t; ξ) with t1 = t and t2 = ξ, for t∗ <
A 6 t 6 B < +∞ and ξ > t∗, we obtain via (53) and (56)

(58) ‖VN (x, t; ξ)‖αβγ (t) 6 C(α, β, γ,A,B,N) ξ−2+3α+4β+2γ−N

with constant C(α, β, γ,A,B,N) independent from ξ and t.
Given N and 1 6 t∗ < A < B < +∞, (55) and (58) imply that, for all α,

β and γ with |J | 6 N , A 6 t 6 B, and t∗ < T1 < T2,∥∥∥ψ[N ](x, t;T2)− ψ[N ](x, t;T1)
∥∥∥
αβγ

(t) 6 C(α, β, γ,A,B,N)

∫ T2

T1

ξ−2dξ −→ 0,

as T1, T2 → +∞. Therefore, as A and B such as t∗ < A < B < +∞ are

arbitrary, there exists a function ψ[N ](x, t) such that xα∂βt ∂
γ
xψ[N ] ∈ L2(R+)
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for all α, β and γ with |J | 6 N and for all t > t∗, and

(59)
∥∥∥ψ[N ](x, t;T ) − ψ[N ](x, t)

∥∥∥
αβγ

(t) → 0 as T → +∞.

4. The rest of the proof follows proof of Lemma 3.9 of [4] and shows

that for large enough N the above constructed ψ[N ](x, t) does not actually
depend on N and is the sought unique smooth solution ψ(x, t).

First, (59) implies via the embedding theorems that, for large enough

N , ψ[N ](x, t) is a classical solution of (2) satisfying boundary condition (3).
Further, since a solution to (2)–(3) has a t-independent L2(R+) norm, the
uniqueness would immediately follow from (20). So all what remains to show

is that, for large enough N , ψ[N ](x, t) obeys (20), i.e. (with ‖ · ‖ denoting
the L2(R+) norm)

(60)
∥∥∥ψ[N ](x, t) − ψ+

0 (x, t)
∥∥∥ (t) → 0, as t→ +∞.

We have, for all t, T > t∗,∥∥∥ψ[N ](x, t) − ψ+
0 (x, t)

∥∥∥ 6 ∥∥∥ψ[N ](x, t)− ψ[N ](x, t;T )
∥∥∥ +∥∥∥ψ[N ](x, t;T )− ψ(N)(x, t)

∥∥∥ +
∥∥∥ψ(N)(x, t)− ψ+

0 (x, t)
∥∥∥ .(61)

Keeping first t > t∗ fixed and passing to the limit as T → +∞, the first
term on the right hand side vanishes due to (59). Next, as the second

term vanishes for t = T by (51) and Lψ[N ] = 0, due to a general estimate∣∣ d
dt‖ϕ‖

∣∣ 6 ‖Lϕ‖, for T > t,∥∥∥ψ[N ](x, t;T )− ψ(N)(x, t)
∥∥∥ 6 ∣∣∣∣∫ T

t

∥∥∥Lψ(N)(x, t′)
∥∥∥ dt′∣∣∣∣ 6

(62)

∫ +∞

t

∥∥∥Lψ(N)(x, t′)
∥∥∥ dt′ 6 CN t

−1−N

with some t-independent constant CN . (The last inequality has used (56)
with α = β = γ = 0.) Passing finally to the limit as t → +∞, the second
term vanishes by (62). Finally, the third term on the right hand side of (61)
vanishes as t → +∞ as the L2-norm of every “higher-order” term in (49),
i.e. for m > 1, vanishes in the limit.

This proves (60), and for completing the proof of the lemma it remains to

observe that by the uniqueness ψ(x, t) := ψ[N ](x, t) is, for large enough

N , independent of N . Therefore, taking N large enough, xα∂βt ∂
γ
xψ =

xα∂βt ∂
γ
xψ[N ] ∈ L2(R+) for all non-negative α, β and γ, and so ψ(x, t) ∈

C∞(Ω∗) with (11) held. As a solution to (2), (3), by e.g. Theorem 2.1 of [4],
it can be uniquely continued for all t ∈ R with all the required properties,
so the lemma is proved. �

Lemma 3 allows to complete the proof of Theorem 1 by implying that the
G0 constructed in Lemma 2 does not actually depend on the choice of the
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subsequence τn and the stated convergences therefore hold for the whole of
τ → +0, as follows.

Lemma 4. Let ψ(x, t) ∈ C∞(Ω) be a solution to (2), satisfying the bound-
ary condition (3) and the decay condition (11), and let function G(η, τ) be
associated with it via the transformation (13), (22).

Then the convergences in (43) and (44) are held for the whole of τ → +0,
and such G0 is therefore unique.

For this G0 assertions (20) and (21) are valid, and therefore Theorem 1
holds.

Proof. Let ψ(x, t) be a solution to (2) satisfying (3) and (11), and let G(η, τ)
be associated with it via (13), (22). Then G(η, τ) satisfies assumptions of
Lemma 1 and therefore of Lemma 2. Applying to G(η, τ) Lemma 2, let
τn → +0 be a related subsequence, and let G0 ∈ H1(R) with ηG0(η) ∈ L2(R)
be the associated limit, see (43) and (44). Using the transformation (13),
(22) in reverse, we conclude that for tn = τ−1n → +∞ as n→∞,

(63)
∥∥ψ(x, tn) − ψ+

0 (x, tn)
∥∥
L2(R+)

(tn) → 0, as n→ +∞,

where ψ+
0 is given by (19). This means that (20) is held for the subsequence

tn → +∞, and we need to show that it actually holds for the whole of
t→ +∞.

Since C∞0 (R) is dense in L2(R), for any ε > 0 choose Gε0 ∈ C∞0 (R)
such that ‖Gε0 − G0‖L2(R) < ε. Applying for every such Gε0 Lemma 3,

let ψε(x, t) ∈ C∞(Ω) be associated solution to (2), satisfying (3) and (11),
so that (20) and (19) read

(64) ‖ψε(x, t) − ψε0(x, t)‖L2(R+) (t) → 0, as t→ +∞,

where

(65) ψε0(x, t) = t−1/2 exp

{
i

7

120
t5 +

i

2
ηt3 +

i

2
η2t

}
Gε0(η), η :=

x

t
− 1

6
t2.

Now (with ‖ · ‖ denoting the L2(R+) norm)∥∥ψ(x, t) − ψ+
0 (x, t)

∥∥ 6 ‖ψ(x, t)− ψε(x, t)‖ +

‖ψε(x, t)− ψε0(x, t)‖ +
∥∥ψε0(x, t)− ψ+

0 (x, t)
∥∥ .(66)

For the first term on the right hand side of (66), notice that ψ̃ε(x, t) :=
ψ(x, t)−ψε(x, t) is a C∞(Ω)-solution of (2) satisfying (3) and (11), as so are

both ψ(x, t) and ψε(x, t). Hence ψ̃ε(x, t) has a t-independent L2(R+)-norm,

‖ψ̃ε(x, t)‖ ≡ cε, ∀t. On the other hand, taking t = tn and passing to the
limit as n→ +∞, via (63) and (64),

‖ψ(x, t)− ψε(x, t)‖ ≡ cε = lim
n→+∞

‖ψ(x, tn)− ψε(x, tn)‖ =

lim
n→+∞

∥∥ψ+
0 (x, tn)− ψε0(x, tn)

∥∥ = ‖G0 −Gε0‖L2(R) < ε.(67)
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The last limit in (67) is evaluated similarly to that in (29), with ψ+
0 (x, t)

replaced by ψ+
0 (x, t) − ψε0(x, t) and G0 by G0 − Gε0. This straightforward

modification of (29) also immediately implies that for the third term on the
right hand side of (66),

(68)
∥∥ψε0(x, t)− ψ+

0 (x, t)
∥∥ 6 ‖G0 −Gε0‖L2(R) = cε < ε.

Hence, employing in (66) estimates (67) and (68),

(69)
∥∥ψ(x, t) − ψ+

0 (x, t)
∥∥ 6 2ε + ‖ψε(x, t)− ψε0(x, t)‖ , ∀t > 0, ∀ε > 0.

Fixing first in (69) ε > 0, and taking the limit-supremum as t→ +∞ using
(64) yields

lim sup
t→+∞

∥∥ψ(x, t) − ψ+
0 (x, t)

∥∥ 6 2ε, ∀ ε > 0.

Finally, (20) follows as ε > 0 is arbitrary.
To complete the proof of the lemma (and with it of Theorem 1) it remains

to notice that via the transformation (13), (22), (20) immediately implies
that (44) does hold for the whole of τ → +0. Hence, by the uniqueness of
the limits, for any other subsequence τ̃n → +0 the application of Lemma 2
must produce the same limit G0 and hence (43) is also held for the whole of
τ → +0, resulting in (21). �

5. Concluding remarks

We have proved that the solution ψ(x, t) to the inner scattering problem
(2)–(5) has a searchlight asymptotics as t→ +∞ in the form (19) with con-
vergences (20) and (21) held. The searchlight amplitude G0(η) has certain
smoothness and decay properties, as also proved in Theorem 1. The re-
sulting analogue of a scattering operator is a well-defined unitary operator,
Corollary 1, and provides a full information of how the intensities of the
incoming whispering gallery modes transform into the outgoing searchlight
amplitudes. Still, the searchlight asymptotics as t→ +∞ is non-uniform in
the sense that an additional effort would be needed for understanding how
exactly the solution behaves for large positive t near the boundary x = 0.
This would require a separate investigation.
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