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A B S T R A C T   

Hypoxia commonly occurs within tumours and is a major cause of radiotherapy resistance. Clinical outcomes 
could be improved by locating and selectively increasing the dose delivered to hypoxic regions. Here we describe 
a miniature implantable sensor for real-time monitoring of tissue oxygenation that could enable this novel 
treatment approach to be implemented. The sensor uses a solid-state electrochemical cell that was micro
fabricated at wafer level on a silicon substrate, and includes an integrated reference electrode and electrolyte 
membrane. It gave a linear response to oxygen concentration, and was unaffected by sterilisation and irradiation, 
but showed susceptibility to biofouling. Oxygen selectivity was also evaluated against various clinically relevant 
electroactive compounds. We investigated its robustness and functionality under realistic clinical conditions 
using a sheep model of lung cancer. The sensor remained functional following CT-guided tumour implantation, 
and was sufficiently sensitive to track acute changes in oxygenation within tumour tissue.   

1. Introduction 

Hypoxia commonly occurs within solid tumours due to disorganised 
growth of blood vessels. It is often spatially heterogeneous and can 
change with time [1,2]. Unfortunately hypoxia also causes resistance to 
radiotherapy, with cancer cells in low oxygen environments able to 
withstand radiation doses 2–3 times higher than aerobic cells [3]. Hy
poxia is also associated with malignant progression and poor clinical 
outcome [4]. Knowledge of the location and degree of hypoxia within a 
tumour could therefore be used to personalise and improve radio
therapy by matching the dose distribution to treatment sensitivity – a 
concept known as “dose painting” [5]. This has the potential to improve 
cancer treatment by optimising its effectiveness while minimising side 
effects. Advanced techniques for achieving the necessary precise dose 

delivery such as Intensity Modulated Radiotherapy are already in 
widespread use [6], but there is no clinically applicable technique for 
continuous real-time measurement of tumour hypoxia. 

Existing medical imaging techniques that can measure tumour hy
poxia, such as positron emission tomography (PET) and magnetic re
sonance imaging, provide only qualitative measurements, have limited 
spatial resolution, and give only a single time-point, limiting their 
usefulness [7]. In addition, PET scans result in radiation exposure, 
limiting the frequency with which they can be safely used. Quantitative 
imaging of hypoxia using electron paramagnetic resonance imaging is 
under development, but will require advances in readout technologies 
and the use of probe compounds that are not currently approved for use 
in humans [8]. Direct measurement of oxygen within tumours is pos
sible using the Eppendorf polarographic needle electrode. This is a 
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transcutaneous electrochemical sensor that can be mechanically 
stepped through tissue along a linear track to measure hypoxia. It has 
been used extensively in research settings [9], but is not clinically ap
plicable as it requires an invasive procedure for each measurement and 
again only gives single time-point measurements. 

To overcome these limitations and deliver continuous real-time 
sensing for personalised radiotherapy treatment, we have developed 
and tested a miniature implantable sensor that could be inserted into 
multiple regions of a tumour. This would enable the construction of a 
real-time hypoxia map, allowing personalised adaptations to radio
therapy dose distribution during a course of treatment (Fig. 1) [10]. 
This type of implantable sensor was seen as acceptable by the majority 
cancer patients we recently surveyed [11]. 

The sensor is based on electrochemical oxygen detection. This is the 
simplest method of measuring oxygen concentration and was first de
scribed in 1897 by Danneel and Nernst [12]. Following their discovery, 
a series of innovations culminated in the “Clark electrode” oxygen 
sensor in 1956, which can reliably operate in biological media [13]. 
The Clark electrode is an amperometric sensor, detecting oxygen at a 
platinum electrode via a reduction reaction that produces a current 
proportional to the oxygen concentration [14]. A key development was 
separation of its bare electrodes and their liquid electrolyte from ex
ternal biological media using a gas permeable membrane. This prevents 
dissolved proteins and metabolites from interfering with the electrode 
and impairing its ability to sense oxygen [15]. However, conventional 
Clark electrode sensors are still typically unsuitable for implantation as 
they are bulky and contain a liquid electrolyte. To overcome these 
problems, we have developed a miniature Clark-type oxygen sensor 
that is specifically designed for implantation. Silicon based micro
fabrication techniques were used throughout the sensor fabrication 
process, as they allow straightforward miniaturisation, excellent re
producibility, and low manufacturing cost in volume. Crucially, they 
also open the possibility of future integration with complementary 
metal-oxide-semiconductor (CMOS) instrumentation electronics. 

The miniature sensor is based on a three-electrode cell, with a 
platinum working electrode (WE) at which oxygen reduction occurs, a 

Ag/AgCl reference electrode (RE) that provides a fixed electrochemical 
potential against which the WE potential can be accurately set, and a 
platinum counter electrode (CE). We selected a Ag/AgCl RE because it 
is well tested in biosensing applications and is more straightforward to 
miniaturise than other standard REs [16]. The sensor surface is coated 
with a thin-film of the porous ionomer Nafion that allows transport of 
water and protons [17], combining the functions of both an electrolyte 
matrix and membrane into a single layer. This enables the device to be 
fully solid-state. Several other designs of microfabricated electro
chemical oxygen sensors have previously been described [18–31], 
highlighting the broad interest in this technology. However, to date no 
design has been reported that is not only amenable to wafer-level CMOS 
post-processing, and integrated with a stable on-chip RE and mem
brane, but also successfully validated in an implantable application. 
Here we describe the microfabrication and testing of a sensor platform 
that meets all these criteria, and show proof-of-principle operation 
within an ovine lung tumour. 

2. Material and methods 

2.1. Electrode fabrication 

Sensors were fabricated on 100 mm diameter, n-type, < 100 > 
orientation silicon wafers (Si-Mat). A bottom insulator layer of 500 nm 
silicon dioxide was grown by thermal oxidation. Electrodes and inter
connect were fabricated from a layer of 50 nm Pt on top of a 10 nm Ti 
adhesion layer, both deposited by electron beam evaporation, patterned 
using photolithography, and etched in Ar plasma. A 1000 nm layer of 
aluminium was sputtered onto the surface and patterned using a lift-off 
process to form bond pads. The wafer surface was passivated with 
500 nm of silicon nitride, followed by 250 nm of silicon dioxide to 
promote adhesion of the Nafion membrane [32]. Both passivation 
layers were deposited using high-frequency plasma enhanced chemical 
vapour deposition. Openings to the electrode and bond pad areas were 
then defined in the passivation by photolithography and subsequent 
processing in a CHF3 / Ar plasma (to etch silicon dioxide) followed by 
CF4 / O2 plasma (to etch silicon nitride). For the RE, early testing 
showed that bare platinum did not produce a sufficiently consistent 
potential, so instead we used an additional Ag/AgCl layer on the RE 
surface to provide a fixed and stable electrochemical potential. A 
500 nm layer of silver was deposited by electron beam evaporation and 
patterned over the RE area using a lift-off process. To chloridise the 
silver, a protective layer of photoresist was first deposited over the 
aluminium bond pads to prevent their oxidation, and then the wafer 
was dipped in 50 mM aqueous FeCl3 for 60 s at room temperature, 
which deposited a solid layer of AgCl on the RE surface. After chlor
idisation the protective photoresist was removed by wet stripping. 

2.2. Nafion membrane stack fabrication 

The Nafion membrane was designed to cover all three electrodes, as 
it has previously been shown to generally reduce electrode biofouling 
[33,34] and to extend Ag/AgCl RE lifetime [35]. We found that mi
crofabrication of Nafion structures was challenging, as the layer was 
easily damaged during wafer processing and packaging. We therefore 
developed a novel method to deposit and protect it during these steps. 
The wafer surface was first treated in a solution of 2% Silane A174 (3- 
(Trimethoxysilyl)propyl methacrylate) in ethanol for 5 min at room 
temperature to promote Nafion adhesion [23,28], then dried at 60 °C 
for 30 min. A solution of 5% Nafion in lower aliphatic alcohols and 
water (274704, Sigma-Aldrich) was then spin coated onto the wafer at 
150 rpm for 10 s, followed by 500 rpm for a further 30 s. The layer was 
air dried at room temperature and annealed at 120 °C for 5 min on a 
hotplate. SPR350 photoresist (Dow) was deposited by spin coating at 
1000 rpm for 60 s, soft-baked at 90 °C for 90 s, patterned using pho
tolithography to define the membrane area, and then developed for 

Fig. 1. Personalised radiotherapy treatment concept. Miniature implantable 
tissue oxygen sensors (green) are implanted into a tumour (grey) containing 
hypoxic regions (red). Real-time data from an array of implanted sensors is then 
used to generate a 3D map of hypoxia within the tumour. This map can inform 
radiotherapy (RT) dose planning and delivery, with a greater dose (blue) being 
directed to the hypoxic areas that are more resistant to treatment. The mea
surement process is then repeated using the same sensors prior to each radio
therapy fraction, enabling the treatment to be continuously personalised. 
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1 min. An MF-26A developer solution (Dow) diluted to 2:1 (developer : 
water) was used to prevent attack of the Nafion surface [32]. The Na
fion was etched in O2 plasma, and the photoresist was left in place 
following etching as an over-etch buffer for later steps (Fig. S1a). Fi
nally, to provide solvent resistance, a temporary protective layer of 
500 nm Parylene-C was deposited by chemical vapour deposition, 
patterned using photolithography to cover the Nafion layer, and etched 
in O2 plasma (Fig. S1b). Together these layers protected the Nafion 
from vigorous cleaning processes during packaging. The final mem
brane was characterised using a DektakXT surface profiler on test dies 
from which the protective layers had been stripped. 

2.3. Sensor packaging 

Sensors were diced into 2 mm × 3 mm chips and mounted on the 
end of a custom six-track flexible PCB (Merlin Flex Ltd) using Loctite 
4014 biocompatible adhesive. The flexible PCB had dimensions of 
1.7 mm × 200 mm (for bench testing) or 1.7 mm × 500 mm (for sheep 
implantation). Connections from the sensor bond pads to the flexible 
PCB were made using gold wire bonds. Bonds were made from each pad 
to two adjacent tracks on the PCB, allowing verification of the pad 
connection after implantation by testing electrical continuity between 
the tracks. The sensor assembly was encapsulated in OG116–31 pho
tocurable biocompatible epoxy (Epoxy Technology, Inc.) that was se
lectively cured by exposure to ultraviolet (UV) light to form a hermetic 
package around the die and bonds. The external dimensions were ap
proximately 2.8 mm × 5.1 mm × 1.4 mm (W × L × H), and an un
exposed region approximately 1.4 mm × 1.8 mm was left over the 
sensor active area. The packaging dimensions were designed to be 
compatible with delivery through an 8G Jamshidi needle. Unexposed 
epoxy was manually removed from the outside of the package and in
ternal sensor area using acetone. Epoxy was then deposited on the back 
of the sensor and cured by flood UV exposure. Following encapsulation, 
the protective Parylene-C layer on the sensor die surface was removed 
using O2 plasma etching, and the photoresist layer on the Nafion was 
removed by dipping in MF-26A developer for 10–15 s, followed by 
immersion in water (Fig. S1c). Finally, the epoxy encapsulation was 
heat cured at 80 °C for 2 h to ensure biocompatibility and maximum 
mechanical strength. The flexible PCB was connected to potentiostat 
instrumentation through a miniature edge connector (XF3M-0615-1B- 
R100, Omron). 

2.4. Scanning electron microscopy and focused ion beam milling 

The RE surface was inspected during fabrication using a Tescan 
Vega3 XMU scanning electron microscope. Surface composition was 
characterised using an energy dispersive X-ray spectroscopy detector at 
12.5 kV beam energy over a 10 μm × 7.5 μm field. For each sampled 
area, 1 × 105 counts were analysed using Bruker EDS software. Die 
cross-sections were milled using a FEI Strata 200XP focussed ion beam 
system with a 30 kV gallium beam. Milled die samples were coated in a 
thin layer of evaporated gold to protect the polymer layers prior to 
imaging. 

2.5. Electrochemical characterisation 

An Autolab PGSTAT12 bench potentiostat (Metrohm AG), con
trolled using Nova software, was used for sensor characterisation. For 
stability and lifetime testing a MUX.MULTI4 multiplexer (Metrohm AG) 
was also used to allow sequential measurement of the sensor RE po
tential and WE current. CV measurements were performed using a 2 mV 
step size and 100 mV/s scan rate. All reagents used for electrochemical 
characterisation of sensors were obtained from Sigma-Aldrich, and 
were used as received. Chemical permeability testing of the Nafion 
membrane was performed in a solution of 1 mM K3[Fe(CN)6], 
1 mM K4[Fe(CN)6], and 100 mM KCl. Sensor performance was 

measured in phosphate buffered saline (PBS) containing 154 mM NaCl 
and 10 mM phosphate buffer at pH 7.4. The RE response to changing 
pH was characterised in PBS at the same constant NaCl concentration, 
but with different pH values set by adjusting the ratio of monobasic to 
dibasic sodium phosphate. To characterise the RE response to chloride, 
aqueous NaCl was varied in concentration between 10 mM and 
300 mM, while holding the total ionic strength constant at 300 mM 
using NaNO3. On-chip RE potentials were measured relative to a 
commercial Ag|AgCl|KCl (3 M) reference electrode (Sigma-Aldrich). 
Linearity and sensitivity of the oxygen response were measured at at
mospheric pressure in PBS that was bubbled with different mixtures of 
oxygen and nitrogen. The gas composition was set using a custom gas 
mixing rig that was manually adjusted to achieve specific dissolved 
oxygen concentrations, which were directly measured in solution using 
a Seven2Go S9 meter with an InLab OptiOx probe (Mettler Toledo). 
Biofouling experiments were performed in air-saturated PBS containing 
35 mg/mL BSA, and interference experiments were performed in air- 
saturated PBS containing either 3 μM hydrogen peroxide, 375 μM uric 
acid, 45 μM ascorbic acid, or 100 μM paracetamol. 

2.6. Sensor sterilisation and irradiation 

Sensors were sterilised in ethylene oxide gas produced using an 
Anprolene AN-73 EtO gas ampoule (Andersen Products) at room tem
perature and pressure for 12 h, then left to degas for at least 2 h before 
use. For irradiation testing, sensors were immersed in 1.5 cm of PBS to 
provide a build-up region, and then exposed to a total radiotherapy 
dose of 24 Gy, delivered in four fractions of 6 Gy at 3 min intervals, 
under a 6 MV beam from a Varian Clinac 2100C/D linear accelerator 
(Varian Medical Systems). 

2.7. Lung tumour implantation 

Sheep studies were performed under a UK Home Office Project 
Licence in accordance with the Animals (Scientific Procedures) Act 
1986 and approval from the University of Edinburgh Animal Welfare 
and Ethical Review Boards. Three adult female sheep (Highlander, 
n = 1; Scottish blackface, n = 2), weighing 52–65 kg and diagnosed 
with naturally occurring pre-clinical ovine pulmonary adenocarcinoma, 
were obtained through an on-farm ultrasound eradication programme 
[36,37]. Sheep were housed in groups of at least two animals, bedded 
on straw, with ad libitum access to food and water. Anaesthesia and 
analgesia were managed by a team of specialist veterinary anaes
thetists. The clinical management and surgery of these cases has pre
viously been described [38]. All animals received a central venous 
cannula placed in the jugular vein which was used for administering 
drugs and crystalloid fluids. An arterial cannula was also placed in the 
central auricular artery for monitoring arterial blood pressure and to 
obtain arterial blood samples. Intermittent blood-gas, biochemical, and 
haematological analysis was performed with an Epoc portable blood 
gas electrolyte and critical care analyser (Woodley Equipment Com
pany). Pulse rate and blood pressure along with pulse oximetry, cap
nography, temperature, spirometry, electrocardiography and inspired 
and expired gases (O2, CO2, and inhalant anaesthetic agent) were 
continuously monitored using a Datex-Ohmeda S/5 multiparameter 
patient monitoring device (SOMA Technology). All animals were eu
thanised with intravenous sodium pentobarbitone (Animalcare). CT 
imaging procedures were performed using a single-section SOMATOM 
Definition AS 64 slice helical CT machine (Siemens Healthcare) [38]. 

All experiments were conducted on anaesthetised, non-recovery 
animals. Sensors were inserted using a trans-thoracic percutaneous 
technique under CT guidance using an 8G × 15 cm Jamshidi biopsy 
needle (Carefusion). An initial CT scan was used to select an OPA lesion 
and plan the needle path trajectory for sensor implantation. Non-me
tallic, radiopaque grid lines (GuideLines, Oncology Imaging Systems) 
placed on the thoracic wall skin surface and intercostal spaces aided 
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lesion localisation and determined the site for percutaneous sensor 
placement. Implantation was performed as previously described [38]. 
Briefly, a small skin incision was made approximately 1–2 intercostal 
spaces caudal to the desired entry point into the thoracic cavity through 
which the biopsy needle with its stylet in place was inserted. The needle 
was advanced cranially through subcutaneous tissues, then pushed 
through the chest wall at the desired intercostal space. A CT scan 
confirmed correct needle positioning before it was seated into the OPA 
tumour. Serial CT scans and needle advancements were made until the 
needle was positioned centrally within the tumour. Once positioned the 
stylet was removed, and a sterilised sensor and lead were introduced 
down the bore of the needle and pushed past the tip of the needle into 
OPA tissue. The implantation needle was withdrawn, leaving the sensor 
and lead wire in situ which was then sutured in place. A CT scan was 
performed to evaluate sensor positioning prior to testing, and a final 
scan was performed post-mortem to ensure the sensor had remained in 
place. 

To assess the ability of the implanted sensors to detect changes in 
intratumoral pO2 through changes in blood oxygenation, a series of 
alterations in target fraction of inspired oxygen (FiO2) was performed. 
The cycle of FiO2 alterations was: 1.00 (baseline), 0.50 (inducing mild 
hypoxaemia), 0.21 (inducing moderate hypoxaemia) before finally re
turning to 1.00. Each FiO2 step was performed for approximately 
20 min (exact timings varied slightly according to clinical need, and are 
shown in Fig. S5). Arterial blood samples were taken at the end of each 
step. 

2.8. Statistical analysis 

Data were tested for normality using the Shapiro-Wilk test. 
Parametric testing on normally distributed data was performed using 
two-tailed paired t-tests to compare between two groups, and a re
peated measures one-way ANOVA followed by Dunnett’s post-hoc test 
to compare between three or more groups. For non-normally dis
tributed data, a two-tailed Wilcoxon matched-pairs signed rank test was 
used to compare between two groups. Non-linear regression with a 
semi-log line was used to fit the RE response to chloride concentration, 
and linear regression was used to fit the RE response to pH and the 
sensor response to oxygen partial pressure. Fitted parameters were 
compared to theoretical values using an extra sum-of-squares F-test. 
Statistical analysis was carried out using Prism 8 (GraphPad). Values in 
the text and figures are presented as mean  ±  standard deviation (SD). 

3. Results 

3.1. Sensor fabrication 

Each sensor consists of a three-electrode electrochemical cell con
taining a 50 μm diameter circular WE, surrounded by a RE and CE with 
a WE:RE:CE area ratio of 1:3:10. The sensors were microfabricated on a 
silicon wafer, using conventional thin-film techniques to create pla
tinum electrodes and external aluminium bond pads, followed by pro
duction of a Ag/AgCl layer on the RE by chemical oxidation of a thin- 
film of silver (Fig. 2a,b). Formation of AgCl was monitored using 
scanning electron microscopy with energy dispersive X-ray spectro
scopy (SEM/EDX). X-ray peaks corresponding to silver were readily 
identified on the RE area prior to chloridisation, and additional ele
mental chlorine peaks corresponding to chloride were evident following 
chloridisation (Fig. 2c). Inspection of the surface using SEM showed 
that the initially smooth evaporated silver surface was modified by 
chloridisation, with granular structured AgCl growing on and into the 
electrode surface (Fig. 2d i-iii). The Ag/AgCl layer was also examined in 
cross-section using focussed ion beam milling followed by SEM. This 
showed a clearly visible layer of Ag/AgCl over the RE area, although 
there was no distinct division between the two materials, suggesting 
either a diffuse interfacial boundary or that little metallic silver 

remained (Fig. 2d iv). Separate investigation of the chloridisation 
process using a series of microfabricated silver thickness test structures 
confirmed that the latter was the case [39]. Since the Ag/AgCl layer 
was fabricated on an underlying layer of platinum, an electrically 
conductive path to the RE was maintained despite the highly efficient 
chloridisation. 

The Nafion membrane was then fabricated over the electrodes. To 
integrate this layer with subsequent wafer processing and packaging, 
we developed a novel series of processes in which Nafion was spin- 
coated on the wafer, thermally annealed, patterned using photo
lithography and plasma etched at wafer level, and then temporarily 
protected using sacrificial layers of photoresist and Parylene-C (Fig. 2a 
and Fig. S1a,b). Fabricated sensor dies were wire bonded to a flexible 
printed circuit board (PCB) lead for connection to external in
strumentation, and photocurable epoxy was used to selectively en
capsulate the die edges, leaving an uncured window over the sensor 
active area (Fig. 2e,f) [40]. Finally, the protective layers were removed 
from the Nafion membrane prior to use (Fig. S1c). The final Nafion 
layer thickness was 518  ±  32 nm (n = 10 devices, from two wafers), 
measured by profilometry. 

3.2. Sensor characterisation 

Performance of the on-chip Ag/AgCl RE in packaged sensors was 
characterised in PBS against a commercial Ag/AgCl RE with an internal 
3 M KCl filling solution. The median on-chip RE potential was 
+74.0 mV (inter-quartile range: +71.7 to +76.4 mV, n = 81 sensors, 
from two wafers), confirming that the fabrication process had produced 
a functional and reproducible RE. We hypothesised that the small po
sitive potential difference was due to the lower chloride activity in PBS 
contacting the on-chip RE compared to the concentrated KCl filling 
solution of the commercial RE, rather than a Donnan membrane po
tential [41]. To confirm this, the concentration of sodium chloride in 
solution bathing the sensor was varied while holding the ionic strength 
constant using sodium nitrate to maintain constant activity. The on- 
chip RE potential changed with the logarithm of chloride concentration, 
giving a slope of −58.6 mV/dec (Fig. S2a). This was not significantly 
different to an ideal Nernstian response of −58.2 mV/dec, supporting 
the hypothesis. The response of the RE to changing pH was also eval
uated in PBS over a physiological range of pH 6.2–7.8, and showed no 
significant variation, as expected (Fig. S2b). 

To establish whether the Nafion layer was acting as a protective 
sensor membrane in the packaged sensors, we performed cyclic vol
tammetry (CV) at the WE in a solution of potassium ferricyanide and 
potassium ferrocyanide. The ferri/ferrocyanide anions should be ex
cluded from Nafion (due to their size and/or charge), and thus blocked 
from reacting at the WE. Consistent with this, no redox processes were 
visible in the cyclic voltammograms from Nafion coated sensors. In 
contrast, control devices lacking a Nafion membrane showed clear 
peaks corresponding to the reduction and oxidation of the ferro/ferri
cyanide in solution, indicating their presence at the electrode surface 
(Fig. 3a). These results show that the fabricated Nafion membrane fully 
covered the WE surface and that no defects were introduced into the 
layer during packaging. In addition, they confirm that the epoxy 
packaging was effective at hermetically sealing the bond pads and wire 
bonds from contact with external solutions. 

To characterise the electrochemical performance of the complete 
sensor system we performed CV in PBS using the on-chip WE, RE and 
CE. The WE potential was swept between −0.7 V and +0.9 V (vs the 
on-chip Ag/AgCl RE), remaining within the electrochemical potential 
window of the system. An initial slight peak then pronounced wave at 
approximately −0.5 V was visible, and was absent after purging oxygen 
from the PBS solution using nitrogen (Fig. 3b). This indicates that the 
peak was caused by oxygen reduction at the WE surface, and the wave 
by diffusion limited oxygen reduction through the Nafion membrane. 
These results confirmed that the annealed Nafion membrane was 
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capable of permitting oxygen and small ion transport. Additional peaks 
were frequently evident in the PBS CV at approximately +0.07 V 
and −0.15 V, which are characteristic of silver chloride and may in
dicate some mechanical transfer from the RE onto the WE surface 
during fabrication. However, these were well separated in potential 
from the oxygen reduction reaction, and were not observed to interfere 
with its position or magnitude. 

We next performed chronoamperometry (CA) at −0.5 V (vs the on- 

chip Ag/AgCl RE) for 20 s. In air-saturated PBS the WE current showed 
an expected initial transient related to capacitive charging, reduction of 
oxygen, and formation of oxygen diffusion gradients at its surface 
(consistent with the CV peak). This was followed by the development of 
an approximately steady-state current caused by diffusion-controlled 
oxygen reduction (consistent with the CV wave). In nitrogen purged 
PBS the steady-state current was markedly decreased, again consistent 
with the CV results and identifying the current as oxygen reduction 

Fig. 2. Sensor electrodes and packaging. (a) Schematic cross-section through the sensor active area showing the electrode layer stack and Nafion membrane, with 
protective sacrificial Parylene-C and photoresist layers (dashed outline) in place prior to packaging (not to scale). (b) Photograph of a microfabricated sensor die, 
after removal of protective layers, showing the physical arrangement of the WE (centre disc), RE (dark middle ring), CE (outer ring), and Nafion membrane (darker 
circle covering electrodes). (c) Typical EDX spectra of the RE surface obtained before and after chloridisation. Characteristic X-ray energy peaks corresponding to Ag 
and Cl are indicated. Spectra shown are the mean of three areas on the same device. Similar results were obtained from four devices. (d) SEM images of the RE surface 
before (i), and after (ii) chloridisation, at higher magnification after chloridisation (iii), and in cross-section (iv) after deposition of Nafion and protective layers 
(asterisk indicates Ag/AgCl layer, with layers of Nafion above and silicon below). (e) Schematic cross-section through the assembled sensor packaging showing the 
sensor connected to a flexible PCB and encapsulated in UV cured epoxy (not to scale). (f) Photograph of a packaged sensor and its flexible PCB lead. 
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(Fig. 3c). To investigate the linearity of the oxygen response, its partial 
pressure (pO2) in solution was varied from 0.1 to 25.3 kPa (equivalent 
to 0.1 to 25.0% of atmospheric pressure) by sparging with a range of 
oxygen/nitrogen mixtures. A greater sampling resolution was used in 
the lower range relevant to biological tissue. The sensor response to 
oxygen was quantified using the mean current over the final 5 s of a 20 s 
CA recording, as the steady-state was well established by this point. 
Linear regression showed a proportional relationship between the 
steady-state current and oxygen concentration (r2 = 0.991), with a 
fitted sensitivity of −0.595  ±  0.009 nA/kPa and a statistically 

insignificant offset of −0.143  ±  0.100 nA (Fig. 3d). Quantification of 
oxygen concentration as the mean steady-state CA current at −0.5 V 
(vs on-chip Ag/AgCl RE), averaged over the final 5 s of a 20 s recording, 
was therefore adopted for all further measurements. Together these 
results show that the sensor output varies directly with oxygen con
centration as expected, with insignificant offset due to unrelated cur
rents at the WE. 

To investigate the performance of the packaged sensors over time, 
oxygen measurements using CA were repeatedly performed in air-sa
turated PBS. The RE potential was also recorded from the same devices 

Fig. 3. Sensor characterisation. (a) Typical CV scans of bare and Nafion coated sensors in a solution of 1 mM potassium ferricyanide and 1 mM potassium ferro
cyanide, in a 100 mM potassium chloride supporting electrolyte. Similar results were obtained from six sensors with an intact Nafion membrane, and two sensors 
with bare electrodes. WE potential was set against an external Ag|AgCl|KCl (3 M) RE for both types of sensor. (b) Typical CV scans of a sensor in PBS saturated with 
air or after purging with nitrogen. The WE potential was set against the on-chip Ag/AgCl RE. Similar results were obtained from three sensors. (c) Typical CA traces 
from a sensor in PBS saturated with air or after purging with nitrogen, following a potential step to −0.5 V (vs on-chip Ag/AgCl RE). Similar results were obtained 
from four sensors. (d) Mean WE steady-state current at −0.5 V (vs on-chip Ag/AgCl RE) in PBS, measured over a range of dissolved oxygen concentrations. At each 
oxygen concentration 4 repeat measurements were made from each sensor (n = 4 sensors). Error bars show SD between sensors. (e) Stability of the mean WE steady- 
state current, measured by CA at −0.5 V (vs on-chip Ag/AgCl) in air saturated PBS. Measurements were made for 20 s, with 20 s gaps between recordings, repeated 
continuously (n = 8 sensors). (f) Stability of the mean on-chip RE potential (vs external Ag/AgCl) of the same sensors, measured after every tenth CA cycle for 10 s 
(n = 8 sensors). In both e & f the mean measurement is shown in red, and the black bands represent SD between sensors. 
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against an external Ag/AgCl RE in the rest periods between CA mea
surements. Over 4 h the sensors gave an average steady-state current of 
−11.4  ±  0.8 nA (n = 8 sensors) in air-saturated PBS (Fig. 3e). To 
quantify individual sensor stability, the coefficient of variance (CoV, 
defined as [SD / Mean] × 100%) of the output from each sensor was 
also calculated, and gave a mean CoV of 12.2% over the 4 h mea
surement period (n = 8 sensors). The RE potential remained very stable 
over the same period (Fig. 3f), with an average value of 
+74.8  ±  1.5 mV (n = 8 sensors), and a mean CoV of only 0.33% 
(n = 8 sensors). The measurements were then continued until sensor 
failure to investigate their lifetime. Ultimately the first element of the 
sensor to fail was the RE. A change in RE potential typically occurred 
quite suddenly, leading in turn to unreliable CA oxygen measurements 
as the WE bias could not be accurately set (Fig. S3). A difference in RE 
potential of more than ± 50 mV from its initial value was defined as the 
failure point, and gave a mean time-to-failure of 23.3 h (range 
5.1–64.5 h, n = 8 sensors). 

We next systematically explored how sensor performance may be 
affected by exposure to the in vivo environment. To test whether the 
sensor was susceptible to protein biofouling, we recorded oxygen 
measurements from sensors in air-saturated PBS containing bovine 
serum albumin (BSA). This is a well characterised, water soluble pro
tein, commonly used as a surrogate to model biofouling. Air-saturated 
PBS alone was used as a control. Sensors exposed to BSA showed a 
significant decrease in steady-state WE current after 24 h (Fig. 4a), 
suggesting that biofouling due to non-specific protein adsorption may 
lower the sensitivity of the Nafion coated sensors. We then tested the 

interference effect of common electroactive compounds (hydrogen 
peroxide, urate, ascorbate, and paracetamol) that are found in vivo and 
known to affect electrochemical measurements. Compounds were dis
solved in air-saturated PBS, and oxygen measurements were sequen
tially performed in each solution in a randomised order. When com
pared to PBS alone, we found that physiological concentrations of 
hydrogen peroxide (3 μM), ascorbate (45 μM), and paracetamol 
(100 μM) all had no significant effect on the steady-state WE current, 
while urate (375 μM) caused a significant decrease in the magnitude of 
the current (Fig. 4b). 

As the sensor was designed to be surgically implanted and remain in 
place during a course of radiotherapy, we finally tested whether it was 
adversely affected by sterilisation or irradiation. Ethylene oxide gas was 
used to sterilise the sensors as it is routinely used to sterilise medical 
equipment. Irradiation was performed under a clinical radiotherapy 
beam, using a dose of four fractions of 6 Gy. This fraction size is within 
the upper range typically delivered in human clinical use [42], and 
matches that used in previous work involving a sheep lung cancer 
model [43]. Following these treatments, the on-chip RE potential was 
unchanged (Fig. 5a), and the Nafion membrane was still impermeable 
to ferri/ferrocyanide anions (Fig. 5b), indicating that its physical in
tegrity and selectivity had not been compromised. Using CV in PBS we 
observed that the expected oxygen reduction features were still evident 
(Fig. 5c), and that the corresponding CA steady-state oxygen current at 
−0.5 V (vs the on-chip Ag/AgCl RE) was also unchanged (Fig. 5d), 
showing that the electrodes were undamaged. 

3.3. In vivo validation 

Bench characterisation showed that the sensor could report oxygen 
concentration in solution effectively over many hours. We therefore 
next tested whether the sensor was sufficiently robust to operate in vivo 
and detect dynamic changes in tissue oxygenation. We used a novel 
clinically relevant ovine model of lung cancer [38], developed specifi
cally for this project. Tumours in three sheep with naturally occurring 
pre-clinical ovine pulmonary adenocarcinoma were implanted with 
either one sensor (Cases F1 & F2) or two sensors (Case F3). Each sensor 
was implanted under anaesthesia using a Jamshidi needle using CT 
guidance (Fig. 6a,b). The sheep were initially maintained at a target 
FiO2 of 1.00, then exposed to a protocol of mild graded tissue hypoxia 
by stepping their FiO2 down to 0.50 and then 0.21, before being re
turned to an FiO2 of 1.00 (Fig. 6c). Arterial blood analysis showed the 
expected changes in oxygenation (Fig. 6d and Fig. S4a), while other 
relevant physiological variables did not change significantly (Fig. S4b- 
e). During the protocol, measurements were repeatedly made from the 
sensors using CA and all gave measurable real-time outputs (Fig. S5). 
Interestingly, there was substantial variability between cases and so 
readings from each sensor were analysed independently. Both sensors 
in Case F3 showed low initial currents which did not respond to 
changes in FiO2, while the sensors in Cases F1 and F2 showed a rela
tively higher initial current with partially reversible decreases at lower 
FiO2 values and a decrease following euthanasia (Fig. 6e). These dif
ferences reflect the expected heterogeneity of tumour hypoxia and 
oxygen responsiveness. 

To confirm that the sensors survived the tumour implantation pro
cedure they were recovered following euthanasia, gently rinsed in 
water, and tested. Their surfaces showed the presence of some con
tamination (Fig. 7a), likely derived from lung tissue at the implant site. 
CV in air-saturated PBS showed the expected presence of oxygen re
duction at negative potentials for all sensors (Fig. 7b). The mean steady- 
state CA current showed greater variability between sensors post-im
plantation but was not significantly different to its pre-implantation 
value (Fig. 7c). Together these results demonstrate that the packaged 
sensor is sufficiently physically robust to remain functional throughout 
a clinically realistic implantation procedure. 

Fig. 4. Effect of protein biofouling and interferents on sensor performance. (a) 
Mean WE steady-state current at −0.5 V (vs on-chip Ag/AgCl RE) in PBS 
(Control) or 35 mg/mL BSA in PBS (BSA), showing effect of protein biofouling 
at the start (0 h) and end (24 h) of the experiment (n = 3 sensors for each 
condition). Error bars represent SD between sensors. (b) Mean WE steady-state 
current at −0.5 V (vs on-chip Ag/AgCl RE) in PBS (Cont), and PBS containing 
3 μM hydrogen peroxide (HP), 375 μM urate (U), 45 μM ascorbate (A), or 
100 μM paracetamol (P) (n = 4 sensors for each treatment). Error bars re
present SD between sensors. Statistical comparisons were made to the PBS 
(Control) condition. 
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4. Discussion 

Together, this work describes a microfabricated electrochemical 
oxygen sensor that is suitable for implantation, and demonstrates its 
functionality and relevance for real-time measurement in a realistic 
clinical environment. The wafer-level microfabrication approach we 
adopted for producing the sensor has two advantages. Firstly, it enables 
the sensor to be mass manufacturable with high repeatability through 
use of standard industrial tools and tight process control, and minimises 
costly and potentially inconsistent die-level processing. These features 
will be very important for gaining medical regulatory approval, as 
sensor accuracy and repeatability are essential for making safe clinical 
decisions. Secondly, it will enable our future aim of post-processing the 
oxygen sensor architecture on CMOS wafers to produce a device that 
contains integrated potentiostat instrumentation and wireless power 
and communication electronics. This will also allow the volume of the 
device to be minimised by eliminating dependence on the existing as
sembly and packaging elements required for connection to external 
instrumentation. 

The sensor membrane is a defining component of the Clark elec
trode, separating its bare electrodes from the chemically complex sur
rounding fluid. Our membrane was fabricated from Nafion, a per
fluorinated cation exchange resin that is both oxygen permeable and 
can conduct protons between electrodes to support the electrochemical 
reactions [17]. Wafer-level spin coating was used to deposit the Nafion 
membrane, followed by heat annealing. Annealing increases Nafion 
solvent resistance [44], improving integration with standard wet mi
crofabrication processes and improving its stability in aqueous en
vironments. Furthermore, it also improves Nafion proton conductivity 

and electrochemical surface area [45,46], tensile strength [45], and the 
lifetime of implanted Nafion coated Ag/AgCl reference electrodes [35]. 
Photolithographic patterning and dry etching were then used to accu
rately define the membrane areas across the wafer. Together this novel 
combination of processes significantly improved manufacturability 
compared to previously described microfabricated oxygen sensors that 
used die-level drop cast Nafion membranes that were not annealed 
[21,23,28]. 

Selectivity of the Clark sensor membrane is important for sensor 
accuracy. The polymer backbone of Nafion carries negatively charged 
sulphonate groups that can electrostatically exclude anionic species, 
and the nanometer scale of its hydrophillic pores causes size exclusion 
of large ions [17]. Consistent with these effects, we observed that our 
membrane blocked ferricyanide ([Fe(CN)6]3−) and ferrocynanide ([Fe 
(CN)6]4−) ions from reacting at the WE. In addition, no significant in
terference was observed from physiological concentrations of ascor
bate, hydrogen peroxide, or paracetamol. We found that urate de
creased the measured current from the sensor, indicating that it may 
interfere with oxygen measurements. There is conflicting literature 
regarding Nafion permeability to urate, with several reports showing 
that Nafion improves selectivity for catecholamine neurotransmitter 
measurements in the presence of urate [47], while others have shown 
that it can be used to block ascorbate and allow selective measurement 
of urate [48–50]. Our data suggest that the Nafion sensor membrane is 
permeable to urate, likely in its protonated uric acid form as it would 
otherwise be electrostatically excluded, and may become deposited 
within the hydrated pores limiting mass transport. 

An additional function of the membrane was to prevent electrode 
biofouling. Nafion is generally thought to reduce biofouling [33,34], 

Fig. 5. Robustness to sterilisation and irradiation. Sensors were either (i) sterilised with ethylene oxide, or (ii) exposed to four radiotherapy fractions of 6 Gy. 
Measurements are shown pre- and post-treatment. (a) Sensor RE potential measured against an external Ag|AgCl|KCl (3 M) RE (n = 3 sensors for each treatment). 
Error bars represent SD between sensors. (b) Typical CV scans in a solution of 1 mM potassium ferricyanide and 1 mM potassium ferrocyanide, in a 100 mM 
potassium chloride supporting electrolyte. Similar results were obtained from three sensors for each treatment. WE potential was set against an external Ag|AgCl|KCl 
(3 M) RE. (c) Typical CV scans in PBS saturated with air. Similar results were obtained from three sensors for each treatment. The WE potential was set against the on- 
chip Ag/AgCl RE. (d) Mean WE steady-state current at −0.5 V (vs on-chip Ag/AgCl RE) in PBS (n = 4 sensors for each treatment). Error bars represent SD between 
sensors. 
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however we observed that exposure of the sensor to a solution of BSA 
caused a significant decrease in its oxygen sensitivity over 24 h. This is 
likely to be due to surface adsorption of protein, since BSA will be size 
excluded from the Nafion membrane pores. Biofouling may partly 

account for the measured variability in the performance of sensors that 
were recovered at post-mortem following tumour implantation, and it 
will need to be addressed before translation to human clinical trials. 

An essential component of any electrochemical sensor is the RE, 

Fig. 6. Surgical implantation and sensor operation in lung tumour. (a) Photographs showing the procedure for surgical implantation of a sensor. (i) Insertion of a 
Jamshidi needle through the chest wall and into the lung tumour, (ii) introduction of the sensor and lead wire down the bore of the needle, and ejection from the 
needle into tumour tissue using a metal rod. (b) Typical thoracic coronal CT image (Case F1) following implantation showing sensor location (red arrow) within 
tumour tissue (white dashed outline). The tumour is surrounded by areas consistent in appearance with neoplastic foci or secondary pneumonia (blue dashed 
outline). (c) Schematic of sensor implantation and FiO2 sequence. (d) Arterial blood oxygen partial pressure at the end of each FiO2 step (n = 4 protocol repeats, from 
three animals). Error bars represent SD between repeats. (e) Mean sensor output at each FiO2 level, averaged over the final 5 min of the FiO2 step. The output from 
each sensor is plotted independently (one sensor in each of Cases F1 & F2, two sensors in Case F3). 

Fig. 7. Sensor function post-implantation. (a) Photograph showing typical sensor surface contamination following recovery at post-mortem. (b) Typical pre- and 
post-implantation CV scans in PBS saturated with air. Similar results were obtained from four sensors. The WE potential was set against the on-chip Ag/AgCl RE. (c) 
Mean CA steady-state current at −0.5 V (vs on-chip Ag/AgCl RE) in PBS (n = 4 sensors). Error bars represent SD between sensors. 
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necessary to provide the potential against which the WE potential is 
measured or set. Key parameters of RE performance are potential sta
bility, sensitivity to environmental variables, and lifetime. Our Nafion 
coated Ag/AgCl RE successfully provided a sufficiently stable potential 
to enable accurate measurements to be made both in vitro and in vivo. Its 
potential was set by the surrounding chloride concentration in a typical 
Nerstian response, as others have previously observed for reference 
electrodes without a defined internal electrolyte [16]. This is not ex
pected to cause problems in an implanted setting, as chloride con
centration is under tight homeostatic control, with a typical range of 
97–107 mM in human plasma [51]. During long-term testing, we ty
pically saw failure (defined by a sudden large potential change) of the 
RE in less than a day, leading to unreliable measurements. This may 
reflect mechanical instability of the AgCl layer, or exhaustion of either 
Ag or AgCl. The failure origin will be investigated, since the short 
lifetime of our sensor remains a limitation that will need to be improved 
for clinical applications. 

The sensor was designed from the start for implantation, and so all 
the outward facing materials were selected for their established bio
compatibility, including silicon dioxide [52–54], Nafion [55–57], and 
Epotek OG116–31 epoxy resin. We have recently demonstrated that 
implantation of these sensor materials does not cause changes in tu
mour pathology [58], which will be essential for clinical deployment. 
Others have previously shown that a large implanted Ag/AgCl RE can 
cause local toxicity. To minimise this risk, we used a Nafion RE coating 
which is known to reduce the toxicity of implanted Ag/AgCl electrodes 
[35]. The PCB insulation was manufactured from polyimide, which is 
already commonly used for encapsulating and insulating implantable 
medical devices [59]. 

To validate the sensor in tumour tissue we used an ovine pulmonary 
adenocarcinoma model. This model has high translational value, as it 
closely reflects both human lung cancer biology [60], and the surgical 
methods used for tumour management such as trans-thoracic needle 
biopsy [38]. The experiments described here represent the first use of 
this novel preclinical model for validation of an implantable sensor in 
tumour tissue. Oxygen sensor readings obtained from the implanted 
sensors showed substantial variation between cases, consistent with a 
poorly perfused hypoxic tumour environment at both sensor locations 
in Case F3, but better perfusion and responsiveness to changes in blood 
oxygenation at the sensor locations in Cases F1 and F2. This underlines 
the known spatial heterogeneity of hypoxia that is found in solid tu
mours [1]. Interestingly, our results are also consistent with a previous 
human lung cancer study which showed highly variable responsiveness 
of tumour hypoxia to breathing 95% oxygen as a potential radiotherapy 
sensitising technique [61]. 

Hypoxia is also a feature of many other pathological states. These 
include chronic conditions such as non-healing wounds [62], while 
acute disruption occurs in life-threatening conditions such as hypovo
laemic, cardiogenic and septic shock [63], and following traumatic 
brain injury [64]. Our minimally invasive technique for continuously 
measuring tissue oxygenation could therefore also be a valuable tool for 
clinicians involved in the treatment and management of a broad range 
of other medical conditions. We are currently engaged in further im
plantation studies to determine whether the sensor is suitable for post- 
surgical monitoring of intestinal tissue oxygenation following resection 
and anastomosis [65]. 

5. Conclusion 

Hypoxia is distributed heterogeneously within solid tumours, and 
can vary over time. It inhibits the effectiveness of radiotherapy treat
ment, arguing for tumour oxygenation status to be included in radio
therapy planning. Here, we describe a miniature implantable sensor for 
continuous real-time monitoring of tumour hypoxia. The fabrication 
process comprises only CMOS compatible wafer-level processing tech
niques, and produces a novel layer stack suitable for integration with 

biocompatible epoxy encapsulation. The sensor gave a linear response 
to oxygen, although it showed some susceptibility to biofouling and 
interference by urate, and its lifetime was limited to between hours and 
days by failure of the on-chip RE. We showed that the packaged sensor 
was sufficiently robust to function over this timescale within a tumour 
using a translational model of lung cancer, and demonstrated mea
surement of dynamic changes in tissue oxygenation in vivo. Our future 
work will focus on addressing the limitations of sensor lifetime and 
selectivity, alleviating the effects of biofouling, and ultimately 
achieving full integration with on-chip instrumentation and wireless 
power and communications. 
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