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Abstract

This thesis examines consequences of correlation structure in three areas of applied proba-
bility: mathematical population genetics, birth processes, and “exchangeable” measures on
distributive lattices. The first three chapters concern probabilistic models in genetics. Ini-
tially we generalize the Moran model to allow more than one individual to reproduce per
generation, investigating the effect of this on the behaviour of the model. The conclusion is
that while things apparently happen faster, the basic properties are the same. This model also
serves to unify conventional neutral theory, as it links the Moran model to the Wright-Fisher
model.

We then consider aspects of the neutral theory. Commonly a neutral model is supposed
in which successive generations behave independently. This may well be unrealistic. Here we
take the Moran model and adapt it to allow for correlations in offspring numbers between
generations. An analysis of the model shows that the conditional distribution of allele fre-
quencies is unchanged, although the expected number of alleles present decreases. Similar
results are also obtained when correlation is introduced to the more general model with more
than one reproducer per generation. In each case the approach involves a detailed study of
the genealogy of the models.

Next we consider the effect of correlation in Markov Birth Processes. We show that
if the birth rates form a super(sub)-linear sequence then the sizes of its families are posi-
tively(negatively) correlated. From this we prove a conjecture of Faddy which says that if
the birth rates of a process X (t) are super(sub)-linear then the variance ratio V(t) (defined as
VarX(¢)/ (EX(t) [%%1 - 1] )) is greater than (less than) 1.

Finally we study correlation inequalities. The FKG Inequality is a well known result
giving sufficient conditions for positive correlations in probability measures on distributive
lattices. There are few analogous results concerning negative correlation. We give sufficient
conditions for a particular form of negative correlation when the underlying distributions

possess a certain exchangeability property.
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Chapter 1

INTRODUCTION

This thesis seemingly contains several disparate parts, the chapters concerning
themselves variously with mathematical population genetics, birth processes,
and inequalities on lattices. However, while it was not the motivation for
studying these subjects, a linking theme does emerge: that of ‘correlation’.
Chambers English Dictionary defines correlation as ‘the state or act of being
related to one another’. The interest of course depends on what the correlation
is acting upon.

In chapter 5 we find probably the most natural interpretation. We are ul-
timately interested in the possible correlation occurring between the sizes of
families whose total number is modelled by a birth process. Can we find sets
of transition rates such that the sizes of families are positively (or negatively)
correlated? In chapters 2-4 the correlation is of another type. We model the
evolution of populations of DNA or genes by adapting a popular standard
model to allow for correlation in the choice of parents in consecutive genera-
tions. How does this effect the outcome? Finally, in chapter 6, we investigate
correlation inequalities. The FKG inequality is a well known result which

can be interpreted as a statement of positive correlation. There are very few



analogous results for negative correlation in this context, and we present a
first step in that direction.

Despite the linking theme just outlined, the subject matter of the chapters
varies quite widely. Consequently, there is no attempt here to present a survey
of the relevant existing theory or detailed introduction to the mathematics
involved: it being felt more natural to do this separately for each subject. We
therefore content ourself with an outline of each chapter and the motivation
for that which is within.

As stated before, chapters 2-4 all revolve around the subject of mathemat-
ical population genetics, and as such, form something of a unit. There is a
very large existing body of theory concerning the evolution through time of
a population of individuals. We use the term ‘individual’ loosely here: com-
monly, what we are referring to is a population of sequences of DNA. DNA
can be thought of as a long strand of data which provides essentially all the
information necessary in the construction of living material. Particular sec-
tions of the DNA molecule correspond to different pieces of information. For
instance, one section may define hair colour and another blood group. Alter-
natively it may be size and shape of petals etc. We call a sequence of DNA
which defines a single piece of information (eg. one of the above) a gene, and
often it is a population of such genes that is modelled.

Various simplifying assumptions are made for the purposes of such mod-
els and we interest ourself with the effects of the relaxation of some of these.
Specifically, in chapter 2 we consider the two most popular mathematical mod-
els of evolution: the Moran model, in which there is only one offspring (and
hence death) per generation (population size being fixed); and the Wright-
Fisher model, where the entire population dies and is replaced by offspring

between each generation. The conclusions following from these two models



are similar when the population size is large, the differences being explained
by the effects of time-scaling: in a sense, one model can be viewed as an ac-
celerated version of the other. Consequently we present and analyse a class
of models which can be seen as unifying the two apparently different models
as opposite ends of a single spectrum. As one might hope, we find that all of
this unifying class of models behave in the same way (modulo time-scaling).
While this is not directly related to correlation it provides a useful framework
for extending the results of chapter 3, as well as adding insight to the models
themselves.

In chapter 3 we proceed to relax another of the common assumptions of
mathematical models of genetic evolution, (one that is inherent in both the
Moran and Wright-Fisher models): the assumption that offspring numbers
in different generations are independent. In many circumstances it may be
thought reasonable that if a particular individual has a large number of off-
spring in one generation, it may be likely to have a larger than expected
number of offspring in the next generation. In other words, offspring numbers
in different generations may be correlated. Clearly there are many possible
formulations of a model to allow for such a phenomenon. We propose a simple
adaptation of the Moran model (where there is only one parent per genera-
tion) which says (informally) that there is a probability p, (0 < p < 1), that
the parent in the next generation will be the same as the parent in the imme-
diately previous generation. We note that this is not intended to represent a
situation in which selection is acting although this may indeed have a similar
effect. While our approach is clearly a simplistic one, the subsequent analysis
suggests that for a wider class of models containing this sort of correlation
(cf. chapter 4), the behaviour will remain fundamentally the same. The bulk

of this chapter has appeared in Donnelly and Marjoram (1989).



Chapter 4 represents the final installment of mathematical genetics. Es-
sentially it is an amalgam of the ideas in the preceding two chapters, and to
some extent indicates how our conclusions about models including correlation
may be dependent upon the actual form of the model chosen. We see whether
correlation between parents, of the type just outlined, has any effect on some
of the broader class of models presented in chapter 2. For those we are able
to analyse, we find that the conclusions are substantially the same as before.

For the remaining parts of the thesis we move away from genetics. In
chapter 5 we concern ourself with correlation in birth processes and relate
this to a conjecture due to Faddy (1990). He notes that if the birth rates {);}
of a birth process form a convex sequence, then we find there is more variation
than there would be if the rates were linear (ie. A; = i) for all ¢), and conversely
there is less variation if the {);} form a concave sequence. He reports that
although computer simulations support this conjecture, no proof has yet been
found. We first relate this condition on the variances to a statement about
correlations between family sizes (viewing descendants of a particular initial
individual as belonging to its ‘family’), showing that it is equivalent to the
existence of positive or negative correlation respectively. We then present a
proof of the conjecture showing the existence of the required correlations via a
consideration of the monotonicity of the birth process. Aspects of this chapter
feature in Donnelly, Kurtz and Marjoram (1992).

Chapter 6 relates to correlation inequalities. There already exists a famous
and much used result relating to aspects of positive correlation of measures
on a lattice: namely the FKG inequality. There has been little work on the
subject of negative correlation in this context however. Initially we spend a
little time to determine what might represent a reasonable definition for such

negative correlation by looking at various examples of situations where some



sort of negative correlation is (intuitively) clearly occurring. This leads to a
natural definition, and from this we proceed to prove a result which may be
viewed as a partial converse to the FKG inequality. While there exist related
results giving conditions on a measure p which lead to it having negative
correlations of some sort, their interpretation is far from clear. Our result
has the natural interpretation that the underlying measure u corresponds to
a distribution on an exchangeable set of random variables.

Finally, some comments regarding organisation. In order to keep the
amount of algebra down to manageable levels, and so improve readability,
some of the more routine or lengthy mathematical details are relegated to
separate appendices. There are three of them, corresponding to work in chap-
ters 3,4 and 6. The numbering scheme for equations herein works as follows:
We label definitions theorems etc. with two numbers, the first is the number
of the chapter within which it is found, the second is the number of the re-

sult itself. Important formulae are numbered in the same fashion, but in a

separate sequence.
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Notation

[']

integer part

| -| = the number of elements (or modulus)

z(N)=O(N®%) = Al,im -x—(]\f—zl < ¢ c some positive constant
z(N)=0o(N%*) = Alrl_r,%o fj(\flﬂ)- =0

C = inclusion (not strict)
cAd = greatest lower bound of ¢ and d
cVd = least upper bound of ¢ and d
IR = the real numbers.

11



Chapter 2

POPULATION GENETICS
MODELS

2.1 A Unifying Class of Genetic Models

The subject of population genetics is an old and well established one and
a good tour of it is provided by Ewens (1979). During the course of its
development many models of population behaviour have been proposed and
investigated, but here we will consider only those models which assume a fixed
population size N. This is an assumption which proves not to be as restrictive
as it sounds. As long as the changes in population size are independent of
genetic composition the analysis goes through with very little modification.
Indeed, often we will consider effectively infinite populations anyway. Two
models of a fixed size population stand out as being by far the most popular
and most analysed. The first is due to S.Wright (1931) and R.A.Fisher (1930),
while the second was introduced by P.Moran (1958). Here we will briefly
describe both models and their properties and then move on to consider a

more general class of models which may help unify their separate theories. A
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reader requiring a more detailed investigation of these models should consult
the aforementioned Ewens (1979), or alternatively Kingmaﬁ (1982a).

Firstly though, we will outline the further assumptions made by these
two models and briefly discuss their import and effect. Note that because
of the common applications of this theory we will use the terms ‘genes’ and
‘individuals’ interchangeably, as we will ‘alleles’ and ‘types’.

(i) Haploid/Diploid. We assume the population is haploid rather than
diploid. ie. each individual has only one parent and all individuals are of the
same sex. This somewhat restricts our field of attention! However things
are not as bad as they sound. Many questions of genetic interest can be
answered by considering the haploid gametes which transmit information be-
tween generations. Alternatively we can consider the mitochondrial DNA
present in most cells which is also truly haploid. Thus we avoid overly re-
stricting ourselves, although naturally the development of similar theory for
diploid populations would still be of much interest.

(i1) Neutrality. We assume that no type of individual is at a selective
advantage. In other words, no individual is more likely to reproduce than
another and the distribution of offspring numbers is the same for all genetic
types. This is obviously a major assumption. While most everyone would
now agree that some neutral loci exist, the extent of neutrality has been a
cause of hot debate for many years now (see Ewens (1977) or Kimura (1983)
for example). We have little to say on the matter here, but hope to add to
the discussion in the two chapters following this one by introducing models
which weaken the assumption of neutrality.

(iii) Exchangeability. This is closely related to neutrality. We assume that
all individuals are probabilistically the same and that any labelling/ordering

we care to give them is of no significance in the analysis. In particular, we
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assume

Plvi=n;i=1,2,...,n)=P(y;=n3i=1,2,...,n)

where the {n;} are any permutation of the {n;} and v; is the number of
offspring of the :th individual in our population.

(iv) Single locus. When considering genetic populations we commonly
consider only single loci. For example, if we are modelling a sequence of
DNA we consider only one gene or alternatively one base (the simplest unit
of genetic information). It was common to then allow this unit to be one of
a finite number of types. It is easy to see that this is not very restrictive at
all. If for example we model the behaviour of a population of single bases of
DNA we have four possible types (corresponding to the four base types). To
model a population of sequenées of DNA of length ! we can simply consider
this to be a collection of (single locus) individuals which each has 4' possible
types and conduct the analysis as before. Clearly for large [ we quite quickly
begin to have an unmanageable number of possible types and this has led
to the introduction of ‘infinite alleles’ models, which unsurprisingly allow an
individual to be any one of an infinite number of types. These models have
proved of much use recently.

A further consideration is that of linkage. This is the phenomenon whereby
the fate of one allele is affected by that of a physically nearby allele which
may be at a selective advantage say. This may cause the first allele to be more
successful than might otherwise be expected and so its frequency would tend
to be higher than might ordinarily have been the case. This requires separate
treatment and we investigate it further in subsequent chapters.

(v) Spatial effects. We will assume there are none. So there is no tendency
for related individuals to be found geographically closer to one another. This

is of no consequence unless spatial considerations are likely to be particularly
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important, in which case the sort of models discussed here are not really the
right ones to be using anyway.

So, given the assumptions just outlined, we now detail the two models most
often used.

The Wright-Fisher model assumes the existence of discrete non-overlapping
generations Go, Gy, G, ... which each contain a fixed number of individuals
N. The members of generation G,,; are the offspring of the members of G,
where, as before, the number of offspring of the jth member of G, is a random
variable v;, where Zj-\;l v; = N. The v; are assumed to have a symmetric
multinomial distribution with the behaviour of successive generations being

independent, so

nm+---+ny=N
n; =0,1,--- N
j=1a2a"'9N

N!

P(VJ= ng;(.] =1,2,---,N))= nl!nzl"'nN!NN

Notice that this means the model has a particularly appealing structure when
looked at with time running backwards: each member of G,,; simply chooses
a parent at random, independently and uniformly, from the N individuals of
G,.

In contrast, the Moran model posits that we have a population of size N
evolving through continuous time (say) where generational events occurs as
points of a Poisson process of rate 1. At each of these generational time-points,
one individual only is chosen uniformly and at random to die and simulta-
neously another individual (also chosen at random, and independently from
the first choice) gives birth to a single offspring, (all choices in one generation
being independent of events in other generations). This second (parent) indi-
vidual, may or may not be allowed to be the first (dying) individual, according

to the context of the model, but the subsequent analysis and results are sub-
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stantially the same in either case. The Moran model also has a convenient
structure when looked at backwards in time.

Both of these two models can be set in either discrete or continuous time.
In the first case t simply counts the generations (which are labelled 0,1,2....),
and in the latter ¢ is continuous and generational events happen at rate 1.
The analysis is fundamentally the same in either setting.

Essentially these models are concerned simply with reproduction. However
most analysis is performed when we have the additional concern of random
mutations affecting offspring individuals. The early versions of such models
allowed an offspring gene to be one of only a finite collection of allelic types and
work was then undertaken to find the stationary or transient distribution for
the frequency of a particular allele. However subsequent advances in biological
theory led to the realisation that it would be more realistic to allow for an
infinite number of allelic types. So now, when a parent gives birth to an
offspring, there is a probability u that the offspring mutates to a completely
new type never before seen in the population, otherwise with probability
(1 — u) its type is the same as that of its parent.

These new types of model (ie. the infinite alleles models) differ markedly
from the others in that eventually any particular allelic type will vanish from
the population, to be replaced by new types which have arrived via mutation.
Hence, although we are still interested in behaviour at stationarity, there
are no longer any stationary distributions for the frequency of a particular
allelic type. So instead we concentrate on investigating allelic patterns: the
distribution of the number of different allelic types present at a particular
moment in time, and the number of individuals of each type found.

This sort of analysis was initially performed by looking at the development

of the models forward in time. Indeed the Ewens Sampling Formula was de-
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rived at length in such a manner. However analysis is much quicker and easier
when one studies the structure of the family tree of the process backwards
through time, and this is how much current theory is obtained. In what follows
we will continually use ideas and terminology from the recently popularized
genealogical approach to neutral models. For detailed background the reader
is refered to Tavaré (1984), Donnelly and Tavaré (1987), or Kingman (1982a).
For our purposes the following outline will suffice.

Initially we suppose no mutation is occurring and take a sample of size
n say from a population at equilibrium. We arbitrarily label the generation
from which we have sampled to be generation 0 (ie. Go). We now define

equivalence relations Ry on the set {1,2,...,n} as follows:
Ro = {(3,2);: =1,2,...,n}

and R, contains the pair (2, ) if the ith and jth individuals in our sample

share a common ancestor in G_,. So
Rs g R.H—l-

Thus, for either of the two models mentioned previously, the sequence (R;)
is a Markov Chain which describes the family tree of our sample going back-
ward through time. Each equivalence class in R, corresponds to an individual
in G_; and changes of state in (R,) occur when two equivalence classes are

combined, ultimately terminating at time T (say) as
Rr={(¢,5): 5,7 =1,2,...,n}

Thus far the description applies to either model but they now diverge
slightly. For the Wright-Fisher model we define a new process R; by changing
the time-scale of R, viz;

R; = R[Nt]a

17



(where [-] represents the integer part). We now find that, in the limit as
N — oo, R; converges in distribution to a process called the n-coalescent

(which will be described later).

For the Moran model we need a slightly different time-scaling, so we define
R; = RN?t/z-

Here the result is exact: R, is an n-coalescent for all N.

The formal definition of an n-coalescent is as follows. An n-coalescent is
a Markov chain with statespace E,, the set of all equivalence relations on
{1,2,...,n}. It starts in state {(7,7); ¢ = 1,2,...,n} and terminates in the

absorbing state {(i,7); 7,7 =1,2,...,n}. The transition rates are

—3k(k—1) f{=nand k=|¢|
gn=141 if{<n

0 otherwise
where £ < 71 denotes that 7 is formed from £ by amalgamating two of its equiv-
alence classes. Many properties of the n-coalescent are known, and for more
details of these the reader is referred to Kingman (1982a) or Kingman (1982b).

If we now suppose there is a non-zero probability u that an offspring,

when born, is a mutant (where u is O(N~!) in order to achieve a balance be-
tween mutation and random genetic drift), we obtain similar behaviour. An
n-coalescent still arises but now random mutations occur among the equiv-
alence classes of the coalescent as it evolves. Results are possible for many
sorts of conceivable mutation structures, but matters simplify somewhat if we
suppose that each mutation is to a unique new allelic type. We proceed as
follows:
As before we take a sample of n from a population of size N and define an

equivalence class valued Markov process R, in an analogous manner. Specif-
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ically we declare two individuals to be in the same old equivalence class at
time s if they share a common ancestor s generations into the past and there
have been no intervening mutations. We label the old equivalence classes
as &, &,...,€p,, where D, is the number of old equivalence classes at time
s. Next we declare two individuals to be in the same new equivalence class
at time s (counting time in discrete generational units) if, for some r with
1 < r < s, they have a common ancestor r generations ago, where this ances-
tor is itself a mutant, and there has been no subsequent intervening mutation.
We label the new equivalence classes as 91, 12, . . . , 7F,, where F is the number
of new equivalence classes at time s. This description follows Donnelly and
Tavaré (1986), where they show that it is now also possible to keep track of
the ages of the types of individuals with a coalescent and subsequently derive
many useful results.

In fact Kingman, and Donnelly and Tavaré, show that it is true that for a
broad class of exchangeable models, where family sizes in different generations
are independent, we get convergence to the n-coalescent. This result does not
apply to the Moran model however, but a similar result can be proved using
different methods, (a different time-scaling is needed).

It is worth noting at this point that if two models for reproduction have
the same genealogical structure, then the processes of genetic interest which
count gene frequencies or partitions will behave similarly (Donnelly (1985),
Donnelly and Tavaré (1987)). This is reflected in the fact that with suitable
normalization and the above time scalings, both of the aforementioned mod-
els converge (forward in time) to the same diffusions (Ewens (1979)). This
result and other related diffusion results are a consequence of genealogical
robustness.

So we see that in some sense, in the limit, the Wright-Fisher model is

19



like a speeded up Moran model. But in the Wright-Fisher model there are
N offspring per generation, whereas in the Moran model there is only 1 . So
what would happen if 2 or 3 individuals were born per generation? Or if some
proportion of the population size N* were born? Do we get effectively the
same behaviour with a gradual transition of the time-scaling as the number
of offspring increases, or does the population behave in an entirely different
fashion? Also, will we still be able to use genealogical approaches to derive
results? Finally, can we prescribe a natural class of models which includes
and explains the behaviour of both the Wright-Fisher and Moran models as
particular cases of a unifying whole rather than having, as at present, to
consider them as two separate models which have similar properties? It is the

purpose of this chapter to investigate exactly these questions.

2.2 Model Specification and Analysis

In this section we will consider models of a population of size N where between
1 and N offspring are born at a time. We could state the model in either
discrete or continuous time without fundamentally changing its properties.

We will set the model in continuous time by supposing that generational
events occur at rate 1 in a population of fixed size N (the individuals of which
we arbitrarily label 1,2,...N for convenience). When such an event occurs
¢N* (0 < a £1, ¢ > 0) offspring are born, and each independently picks a
parent uniformly and at random from the existing population. Hence if the
number of offspring born to individual i is a random variable v;, i = 1,2,..., N
then the joint distribution of offspring numbers is as follows:

cN*!
NeNap In,!l.oony

N
7
_ o
T where E v, =cN*?,

i=1

7 ! 7
P(vy, =n,,v, =ng,...,Uy =nN) =

20



and 0 otherwise. Note that we are assuming here that ¢ and a have been
chosen so that ¢N* is a positive integer less than or equal to N. This is
merely of notational convenience. Note also that the v; are exchangeable
and independent of offspring numbers in other generations. The offspring
may be subject to mutation, (each offspring mutating to a unique new type,
independently and with probability u), but this aspect of the model does
not effect our immediate analysis. After generating the offspring, we then
independently pick (uniformly and at random) ¢N* members of the previously
existing individuals to die. Thus the population is of a constant size.

Note that there is an alternative construction of this model, and it is this
version we will use in the analysis. In this version we break down the gener-
ational event into three steps:

Step 1. The cN* offspring choose their parents, independently, uniformly, and
at random, from the original population.

Step 2. N — cN“® of the original population are chosen, uniformly, without
replacement, to each have an additional offspring (independently of step 1),
which is an identical copy of itself, (ie. not subject to mutation).

Step 3. All of the original population of N die.

This version clearly gives us a model with exactly the same behaviour as be-
fore, but the offspring number distribution has changed We denote these new

offspring numbers by {v;} and note that

N
ZV; = N
=1

Again the v; are exchangeable and independent of offspring numbers in other

generations.
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2.2.1 The Analysis

To analyse this model we shall look at the genealogy of the process. Firstly we
sample n individuals at random from the population in equilibrium. We label
this generation as generation 0. We now define an equivalence relation R, on
the set of integers 1,2,..., N which contains the pair (¢, ) if and only if the
ith and jth individuals in the sample have a common ancestor in generation
—t. So (R,) tracks the ancestry back through time (ie. the genealogy). Note
that Ro = {(¢,7): i =1,2,...,n} and R, C R,4;. We then seek the conditions
under which the Markov process (R, : s = 0,1,2,...) converges (after time
scaling) to the n-coalescent.

This approach closely follows the analysis of the general class of exchange-

able models in (Kingman (1982c)), so we start by proving an extension of his

Theorem 1.

Theorem 2.1 Suppose that as the population size N tends to infinity, the
variance o? of v; (the offspring number distribution) converges in the following

way

]\}im o*NI@) = g2 (0<a<1, someS>0)

(where f(a) is some function of o) and that
sng(uf) < oo forallk>1
Then the finite dimensional distributions of the process
Rt = R[N1+f(a)s—2t]
converge to those of the n-coalescent.

Note that the fact that the v; are exchangeable means that the variance of v;
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is identical for all ¢ (denote it by o) and so we can write
Ni@g? = lim Nf(®s? = 52,
N=co
Hence we can write R, as
R, = R[No;;,’t]-

Proof:

We follow the logic of Kingman’s proof. Firstly we need to find
Pen=P(Ryy1=n|R,=¢§) for{,n€ E,

where E,, is the set of equivalence classes on {1,2,...,n}. This probability is
zero except for the case n C ¢ when we label the equivalence classes in 7 as
C,(y=1,2,...,a) and those in £ as
Cu(y=1,2,...,a; f=1,2,...,b,)
where _ b
Cy= U Cys

B=1

and the C,4 correspond to
oS5,

=1
particular individuals in the offspring generation. p,¢ is the probability that
if k£ individuals are selected at random from this generation and labelled as

C.,p, then all the C,4 for each fixed v have the same parent, and that these

parents for different values of 4 are distinct. This leads to the conclusion that

Pen = E[(N)e" 2o(vi)es (i )ba -~ - (V3 )1 (2.1)
when ¢ C 7, and zero otherwise, and we define
(N)ip=NN-1)---(N—-k+1)
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and the summation is over all distinct j;,7j2,...,7,iIn 1 < 7, < N.
Considering first the case where 7 is formed from ¢ by amalgamating two
of its equivalence classes (written { < 1) we get an upper bound on p;,

Pen < E{(N)ZlNk’zf:Vi(Vi—l)}

=1
= (NP N*1E{n(m1 - D},
Hence

s? Nios
Pon = NIONWN-1)---(N—Fk+1)

.

52 Nk—z
N Nk=1 f¢; oNk-24...4¢;N +co

for constants cx_2, Ck-3,...,Co

(in fact, the c; are Stirling numbers.)

S2/N7()
N4cot+caN 14 _oN-2+...

S? S?

_ -1
= N+ 7o

O(N-?)

S2
N1+f(a)

+ O(N G+, (2.2)

We also get the lower bound
-1 -2 3 k—2 -2
Pen > NT'E{tn(vy — 1)} = (k= 2)N"°E(v;) — ) N°E{vv,},

and so we have

2 2
P&nZNIS 5

- -2
vi@ T @)
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52
N1+f(e) +

O(N—(2+f(a))) . (2.3)

asymptotically.
So combining (2.2) and (2.3) we get

52

Pen = Frirry T O EHEN)),

(or alternatively, pe, = N™'o% + O(N~(2+()y),

for £ < n.
Now consider the case where £ < n but £ < n is false. We havea < k — 2
and so (2.2) gives

Pen < (N)l:l(N)aE{Vf}
as before. Thus we see that
Den = O(N-(2+f(a)))
And so, since we can write Py = I+ ¢+ o( N11/(®)) we conclude in a similar
manner to Kingman that the stochastic matrix Py = (P,) satisfies

1\}13010 PI[VNG;2t] =

for all ¢t > 0, where 2 is the infinitesimal generator of the n-coalescent. O
Note that we can now apply this result to our model with ¢ N offspring

per generation so conclude that it behaves as an n-coalescent in the limit

provided we scale time via the map
t— Noy't

and show that the following two properties are satisfied:
(i) supy E(v¥) < 00, for all K > 1;

(ii) imy—e 02N#®) = §2? for some S > 0).
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To show (i), let 71, 7m2,...,nn be the offspring numbers for a Wright-Fisher
model with population size N. Then it is known (see Kingman (1982c) for

example), that
sup Enf < oo forall K > 1.
N

There is an obvious coupling of the processes for which v; — 1 < 7; and hence

it follows that
E@WK) < E((n + DF) < o0,

as required.

To show (ii), note that
Var(v;) = Var(A) + Var(B),
where A and B are the following random variables:

{ 0 with prob. cN®/N

1 with prob. =g~

1
~ Binomial(cN%, —).
B inomial(cN®, N)

Now E(A) = ¢cN®/N and E(A?) = (1 — £¥7) gives:

N
o ay 2
o) = (-2~ (%)
< c?
T Nl-o  N20-0)°
And
1N-1
Va,r(B) =cN N_N—
So
2c c? c
Var(v;) = N({-o) ~ N2(-a)  N2z-o
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Thus, if @ < 1 we define f(a) = 1 — a, to get S = 2¢, and if @ = 1 we define
f(a) =0, (recall we must have ¢ < 1,) to get S? = ¢(2 —c). In either case, we
have satisfied property (ii), and so we can apply the theorem to our model to
conclude that we do indeed get convergence to the n-coalescent, as N — oo.

Therefore we conclude that the genealogy of this new class of model be-
haves, asymptotically as N — oo, as an n-coalescent. We note that if we set
¢ =1 and a = 1, our model is in fact the Wright-Fisher model. Conversely, if
we set ¢ = 1 and a = 0 we have the Moran model, (in the form which allows
the parent of two offspring to itself die), although the general result is true for
the Moran model for any N. Other values of ¢ and a give a variety of models
which may be thought of as intermediate, and show that their behaviour is
as one might have hoped.

Note that in most models of this type it is common to include mutation
effects (cf. chapters 3 and 4). The usual form for this is to introduce a prob-
ability 6 that any given offspring is of a new unique type (independently for
each offspring), otherwise the offspring is of the same type as its parent. While
we have not considered this here, we note that the action of mutation operates
independently of the subjects studied here and so the results herein will be

uneffected if mutation is introduced.
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Chapter 3

MORAN MODEL WITH
CORRELATION

3.1 Introduction

Two of the features common to all neutral models of reproduction are the
fact that in a particular generation the number of offspring born to a given
individual is independent of the genetic type of the individual, and the fact
that the offspring numbers in different generations are independent. Indeed,
the existence of such a complete neutral theory, and in particular the recent
success in studying such models via their genealogy, depends crucially on
the symmetry which results from these two assumptions. There has been
considerable recent interest in comparing the predictions of neutrality with
those which might be appropriate for models in which selection is acting, with
a view to using data to test the applicability of the neutral theory. (See, for
example, Watterson (1977) or Ewens (1990).) The introduction of selection
destroys the symmetry of neutrality. Neither of the above assumptions obtain,

and analysis of the model becomes substantially more difficult.
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Our purpose here is to study a model in which the second assumption is
relaxed while the first is retained. Imagine following the genes at a selectively
neutral locus which is in linkage disequilibrium with a locus at which selection
is acting. Individuals with a large number of offspring in one generation may
have been so lucky because they possess a particular gene at the selected locus
and consequently they (or their offspring) will have a tendency to have more
offspring (than average) in the following generation. If the existence of the
second (selected) locus is unknown, the effect of watching the neutral locus
will be to observe correlations in offspring numbers in successive generations,
while the offspring numbers themselves are still independent of the actual
allele at the neutral locus. Other situations, for example varying environ-
mental conditions acting either on the “neutral” locus itself or an associated
locus, may have the same kind of effect. We must stress that we are not sug-
gesting that exactly these scenarios will give rise to correlation in precisely
the form we discuss, but rather that possible scenarios might exist, and so
the phenomenon of inter-generational correlation in reproductive mechanisms
warrants consideration.

Our principle interest is in examining the effect of this sort of departure
from the usual assumptions of neutrality on the testing and estimation proce-
dures which have been developed and applied in this context. The approach,
as in recent work throughout the neutral setting, is to focus attention on the
genealogy induced by the model. The existence of selection has proved a ma-
jor stumbling block for genealogical methods. A further novelty of the current
study, then, is that the use of genealogy, in spite of the relaxation of one of
the key assumptions, may represent a (small) first step towards the solution
of more general problems.

First of all we introduce the model we will be considering, (a variant of the
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Moran model), and proceed to examine the line of descent process and the
distribution of the number of alleles in a sample taken from the population at
equilibrium. We then extend this to a study of the distribution of allele fre-
quencies, in age order, in the sample. Finally we discuss the robustness of the
results and the consequences for the use of statistical procedures appropriate

to the neutral theory.

3.2 The Model

Consider a population of fixed size N haploid individuals (or genes) evolving
through discrete generations.. In each generation one individual is chosen
to have a single offspring and one individual is chosen at random (from the
remaining N — 1 individuals) to die. The population in the next generation
consists of the surviving individuals and the new offspring. We introduce
correlation by supposing that the individual chosen to reproduce will be the
reproducing individual in the previous generation with probability p, 0 < p <
1, and otherwise will be chosen at random from among all the N members of
the population. Formally we define a Markov chain {X, : r = 0,1,...}, with

statespace Ey x Ey, where Exy = {1,2,...,N}, and transition probabilities
P(X,41=(¢,7) | Xr = (i,k))
(p+(1—p)/N)/(N—1) il,j € EN’ il = ia .756 il

= (1—p)/éN(N—1)) {,j€EN, i #i, j#i

0 otherwise

and the initial distribution

P(Xo = (i,5)) = 1N(N = 1), i,j € En, i # j.
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Label the individuals in the initial generation from the set Ey and give off-
spring the label of the individual they replace. The interpretation is that
if X, = (¢,7), then in generation r the individual labelled ¢ will reproduce
and the individual labelled j will die. (The assumption that these two indi-
viduals are distinct is common to many versions of the model, but is of no
consequence.) The offspring individual will be of the same allelic type as the
parent with probability 1 — u, or with probability u (> 0) will be of a novel
type, never before seen in the population. Our process is thus a modified ver-
sion of the discrete-time, infinite alleles, Moran model. (Note that the case
p = 0 corresponds exactly to the Moran model.)

Our interest lies in studying the genetic composition of samples taken from
the population at equilibrium. In this section we focus attention on L(t), the
number of lines of descent of the sample: L(t) is the number of individuals,
t generations into the past, who have descendants, without intervening mu-
tations, in the sample. In the uncorrelated case the behaviour of L(t) is well
understood (Griffiths (1980); Tavaré (1984)): call the generation in which
the sample was taken 0, and label the preceding generations —1,—2,...; the
process L(t) behaves as a death process (set in discrete time in this context)
with lines of descent being lost either because two of the individuals in gen-
eration t with non-mutant descendants in the sample (such individuals will
be said to be in the line of descent at time t) share a common ancestor in
generation —t — 1, or because one of these individuals is the mutant offspring
of an individual in generation —t — 1.

The introduction of correlation means that the process L(?) is no longer
Markov: however, when it changes it will still decrease by exactly one, for one
of the two reasons above. The probabilities of the above events, though, will

now depend on whether or not the reproducing individual in generation —t
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was in the line of descent. Consider instead the process
A(t) = (L(t),a(t)); t=0,1,2,...

where L(t) is the number of lines of descent of the sample at time —t and
a(t) =1 if the reproducing individual in generation —t is in the line of descent
and 0 otherwise.

Before proceeding we note the chain {X,,r =0,1,2,...} is time reversible.

It is easy to check that the equilibrium distribution places mass
5 =1/N(N -1)

on each pair (¢,j) € Ey X Ey with i # j, and hence that, with the given
initial distribution, the chain is stationary. Reversibility is guaranteed (Kelly

(1979)) by the fact that
i) P( X1 = (k, 1) | X7 = (2,5)) = D) P(Xr1 = (5,5) | X; = (K, 1))
for each pair (¢, ), (k,!) € Ex X Ey, which follows easily in this case, since
P(Xrp = (kD) | X, = (4,5)) = P(Xe41 = (4,5) | X, = (K, 1))

As a consequence, the behaviour of the process when viewed backwards in
time is (stochastically) equivalent to its behaviour forward in time. In par-
ticular, when viewed backwards in time the sequence of labels of reproducing

individuals is Markov, and

P(t reproduces in generation r | j reproduces in generation r + 1)

(1-p)/N,  ifi#].
It is thus evident that the process {A(t) : t =0,1,2,...} is Markov and that

_{p+<1—p)/N, ifi=j

the transition probabilities follow from the definition of the model. Suppose
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that A(t) = (k,1) and recall that this has the interpretation that there are k
lines of descent at ¢ (that is, exactly k individuals in generation —t with non-
mutant descendants in the sample) and that one of these is the reproducing
individual in that generation. With probability p + (1 — p)/N this same
individual will have been the one who reproduced in the previous generation
(=t — 1), in which case a line of descent will be lost if the individual (in
generation —t) who is chosen to die is one of the remaining k —1 in the line of
descent (regardless of whether or not the offspring is a mutant), and not lost
if it is one of the N — k individuals outside the line of descent. Conditional on
this choice of individual to reproduce, these two possibilities have probability
(k—1)/(N —1) and (N —k)/(N —1), respectively. In either case, a(t+1) = 1.
If the reproducing individual in generation —t — 1 is different from that in
generation —t, then we may still have A(t+1) = (k—1,1), if (and only if) the
reproducing individual in generation —¢ — 1 and the individual in generation

—t who is to die, both belong to the line of descent at t. Thus

P(A(t+1) = (k- 1,1) | A(t) = (k, 1))

k-1 k—-1k-1
=(+Q-p/N g +0-—F7—3
LT R T
“PN PNN-T

With probability (1 —p)(N —k)/N, the reproducing individual will be outside
the line of descent at ¢ + 1 (so a(t 4+ 1) = 0) in which case a line of descent
will be lost if the individual chosen to die at —t is one of the k in the line
of descent at t and the offspring is a mutant, and not lost otherwise. Similar

arguments in the case A(t) = (k,0) give the other transition probabilities,
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which for convenience we now collect together and rename:

k—1 k k-1
T S O v

p(k) = P(A(t+1)=(k—1,1) | A®t) = (k,1) = p

pa(k) = P(A(t+1)= (k= 1,0) | A() = (k1)) = (1 - )t E
po(k) = P(A(t+1)=(k0) | A®) = (k1)) = (1 - p BN k]
pu(k) = P(A(t+1)= (k1) | AQ) = (k,1)
= px:’;+(1—p)—N];k—Nk_1(1—u)+(1—P)%JA\;:;c (8.1)
k k-1
po(k) = P(AGt+1) = (k= L1) | A() = (k,0) = (1 - P s
po(k) = P(A(t+1)=(k—1,0) | A(t) = (k,0)
= ka—1u+(1_p)NJ;ka—1”
pr(k) = P(A(t+1) = (k,0) | A(H) = (k,0)
N—-k-1 N—-kN—-k-1
= ry—7 tA-PF T 3
po(k) = P(AGt+1) = (k1) ] A) = (k,0)
kN—-k k N-k &k

—_p)— (1 — - -
A-Pgy—g Py -w+0-p—F—7—=1-v

All other transition probabilities are zero, and
P(A(0) = (n,1)) = 1-P(A(0) = (n,0)) = n/N.
The number of lines of descent will decrease from L(0) = n to L(co) = 0,
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in steps of one. Each of these steps will be the result of either a coalescence
(sharing of ancestors) or a mutation. Focus attention on K, the (random)
number of steps which were due to a mutation. by standard genealogical
arguments (Tavaré (1984) for example), K will be the number of different
alleles in the original sample.

We now ask about the conditional probability that in the transition from k
to k —1 lines of descent, the line will be lost through mutation or alternatively
through coalescence. It follows from the description of the model, and in par-
ticular from arguments similar to those given above, that the state (k — 1,1)
(rather than (k — 1,0)) will be first entered from the states (k,1) or (k,0)
exactly because both the individual chosen to die and the reproducing indi-
vidual in the previous generation belong to the line of descent. Furthermore,
the loss of a line of descent will be due to a mutation when the offspring is a
mutant and to coalescence otherwise. For the state (k — 1,0) to be entered

first, a mutation must have occurred. Thus in an obvious notation,

P(line lost through mutation | (k,1) — (k —1,1))

_pN 1u+(1—p)NN11
pN 1+(1—p)k k= 11

P(line lost through mutation | (k,0) — (k —1,1)) =

(1 -Pwn
= u (3.3)
P(line lost through mutation | (k,1) —» (k—1,0)) = 1 (3.4)
P(line lost through mutation | (k,0) — (k¥ —1,0)) = 1 (3.5)

Furthermore, the Markov structure of the process A(:) guarantees that these
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conditional probabilities are independent of the values of A(:) other than those
immediately before a line of descent is lost. In particular they are independent
of the events associated with the loss of the preceding (n — k) lines of descent.

Consider the embedded process {a*(k) : k = n,n —1,...,0} defined by
a*(n) = a(0), and for k =n,n—-1,n-2,...,0,

o™ (k) = ()
where
. = inf{t: L(t) = k}

is the time at which the number of lines of descent in the sample first be-
comes equal to k. The sequence {a*(n),a*(n — 1),...,a*(0)} inherits the
Markov property from A(t), but its transition probabilities are not time-
homogeneous. Denote by W the number of zeros in the sequence {a*(n —

1),a*(n—2),...,a*(0)}. It follows from (3.2) to (3.5) that we can write
K=W4+Y, _ (3.6)

where, conditional on W, Y has a binomial distribution with parameters n— W

and u. Thus we focus attention on the distribution of W.

Let
ar =Pla®(k-1)=1|a*(k)=1)
and
by = P(a*(k—1)=1|a*(k) =0).
In diagrammatic form the transition probabilities p;(k),..., ps(k) can be rep-

resented as in Figure 3.1. From this we can see that a standard first step

analysis of the Markov chain A(%) gives (in the notation of (3.1))

a; = pi(k) + pa(k)ax + ps(k)by
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be = ps(k) + ps(k)ax + pr(k)be.

Hence
1—py(k) —ps(k) | _
(ak, bk) ( —polk) 1= pr(k) ) = (p1(k), ps(k)).
So
(ax,be) = (pa(k), ps(k)) 1= pi(k) (k)
) = T = pr) - 2P | palk) 1 pulk) |

Which gives the solution |
ar = [p1(k)(1 — pr(k)) + ps(k)ps(R))/[(1 — pa(k))(1 — pr(k)) — p3(k)ps(k)]

b = [P1(k)ps(k) + ps(k)(1 — pa(k)))/[(1 — pa(k))(1 — pr(k)) — ps(k)ps(k)]-

We now substitute in from (3.1) and after considerable algebraic manipu-

lation (details of which can be found in Appendix I) we obtain
a = (k=1)(N+p—-1)/[1-p)(N = k)N - Du+ (k- 1)(N+p-1)]
b = (k=1)(N+p—1-pNu)/[(1-p)(N —k)(N - 1Du+ (k- 1)(N +p-1)].
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These forms do not lend themselves to explicit calculation. Instead we
consider the usual limiting regime of fixed sample size n; large population

size (N — o0); and mutation probabilities of order N~1: specifically we write

u=6/(N + 6) in the usual way. Then

L E—1
@ = Jim o= Gy — a5 = (3.7

The distribution of W may be written as a sum of (finite) products involv-

ing the ax’s and b;’s which will converge as N — oo to the same sum of the

identical products of the ax’s. In fact, since a}, = b},

I%EI;O P(W = m) Zatl 12 :n_m(l - a;)(l - ) (1 - aJm_l)
where the summation runs over all subsets {i;,...,i,-m} of {2,...,n} and we

have written {j1,...,Jm-1} for {2,...,n}\{¢1,...,%p-m}. Thus from (3.7)

; _ (1 —p)o)"
A POV =) = i 5

where the summation extends over all subsets I;,...,l,_m of1,...,n —1 and

n—m,

here and below we have written z(y) for z(z+1)---(z+n—1). But (Donnelly
and Tavaré (1986), Eq. A.2) this summation equals | S{™ |, where S{™ is a
Stirling number of the first kind (Abramowitz and Stegun (1972)). So

((1-p)o)™
lim P(W = _— S,(l"‘) , m=1,2,...,n
v m) = ((1 = p)8)(ny | |

Note that since W is bounded and v - 0 as N — oo, P(Y = 0) — 1 as
N — o0, so from (3.6), the (asymptotic) distribution of the number of types

in the sample is

im POK = 1) = (1-p8) | <o _ n
dm P(K =) = (=B | S0, 1=12,00m (3.8)

This has exactly the same form as the distribution of K in the uncorrelated
(neutral) case (Ewens (1972)), the only difference being that in the uncorre-
lated case the factor (1 — p)d is replaced by 6. That is, at least under this
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limiting regime, the only effect of the correlation on the distribution of K is
to change it to the distribution appropriate to an uncorrelated model with
mutation rate (1 — p)6 instead of 6.

In the light of the observation that as N — oo, ¥ — 0 in probability in
(3.6), lines of descent are lost through mutation (in this limit) exactly when
L(t) jumps down by one in such a way that the a component of A(t) takes
the value 0, ie. exactly when a*(k) takes the value 0 (k=n—1,n—2,...,0).
The key to the form of the distribution (3.8) is the form of aj, and b}, (in fact
1—aj and 1 —b}) and the fact that these are equal: in the uncorrelated case,
the probability that the change from %k to k¥ — 1 lines of descent is due to a

coalescence is exactly (for example Donnelly and Tavaré (1986))
k—1

T

that is (3.7) with (1 — p)8 replaced by 6.

k=nn-1,...,1,

3.3 Allele Frequencies at Equilibrium

As well as studying the distribution of the number of alleles in the sample at
equilibrium, it is natural to ask, in the spirit of the Ewens sampling formula
(Ewens (1972)), about the distribution of allele frequencies, or in the spirit of
Donnelly and Tavaré (1986), about the frequency distribution of age ordered
alleles. Such questions are naturally studied in the context of an examination
of the genealogy of the sample. As in Watterson (1984) or Donnelly and
Tavaré (1986) one could introduce an equivalence-relation valued coalescent
process. In the uncorrelated case the behaviour of this process (and certainly
the fact that it gives rise to the Ewens or age-ordered sampling formulae)
follows from that of the line of descent process and the fact that when two

lines of descent coalesce it is equally likely to involve any of the existing lines.
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We shall show that, in the limit as the population size tends to infinity, this
is still true in the correlated case.

Suppose the process A(-) takes the value (k,0) at some time s. At some
later time, ¢, say, the number of lines of descent will decrease to k — 1 because

(i) an individual outside the line of descent will have a mutant offspring
who is in the line of descent;

(ii) an individual in the line of descent will have a mutant offspring who is
in the line of descent; or

(iii) an individual in the line of descent will have a non-mutant offspring
who is also in the line of descent.
In the case of (i) it is clear that the offspring, and so the line lost, is equally
likely to be any of the k available. For either (ii) or (iii) to occur, at some
time r, (s < r < t), the appropriate parent in the line of descent will have
been chosen. As this parent is obviously not the parent at time s (that
parent, by definition, being outside the line of descent) it will have been
chosen at random from among the population, and conditional upon it being
one of the individuals in the line of descent, it is equally likely to be any such
individual. Conditional on its offspring also being in the line of descent the
parent-offspring pair is then equally likely to be any of the (%) possible such
pairs. Thus if a coalescence (event of type (iii)) occurs, the coalescing lines are
equally likely to be any of the possible pairs, while in an event of type (ii), the
mutant offspring is equally likely to be any of the k possible individuals. All
of the above choices are independent of the entire history of the process prior
to time s, and in particular of its behaviour at each of the previous occasions
on which lines of descent are lost.

Thus for some given k € {1,2,...,n — 1}, conditional on the fact that the

process A(-) visits the state (k,0) at least once between the transition from
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L()=ktoL(:)=k—1,

¢k = P(a particular pair of lines coalesce | one of the k lines is lost)
-1
k
= bk(l - u)
2
and
dr = P(a particular line of descent is lost through mutation

| one of the k lines is lost)

= (1 — by + bku)k‘l.

Note that

-1
=1 = b} : = 2
Cr = lIMN_oo Ck = 0 0 = H(O-p)e+k-1)

and

di = limyoo di = (1 — bk = gty

(3.9)
In view of the symmetry inherent in the initial distribution of A, we also have

(in an obvious notation)

2 1-p)8

regardless of whether or not the process A(-) ever visits (n,0). The distribution
of allele frequencies at equilibrium (with or without age ordering) is completely
determined by conditional probabilities of the above form.

Fork=n-1,n-2,...,1, denote by A; the event
{A(t) visits (k,0) between the transition of L(t) from k to k — 1}.
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Now, trivially _
P(Ax | a*(k) =0) =1, (3.11)

and a standard first-step argument (using the notation of (3.1)) gives
P(Ay | (k) = 1) = ps(k) + pa(k) P(Ax | o™(k) = 1).

Thus

Pl a"(h) =1) = 72200

and it is easily checked that
A}im P(Ax |a®(k)=1)=1. (3.12)

Now let A = N7Z] Ax and we have (using B° to denote the complement of a
set B)
n—1 n—1
P(A9) =P (U A;) <> P(A;)—0 (3.13)
k=1 k=1
as N — oo from (3.11) and (3.12).
Thus if By,,,,..... denotes the event that the sample of n taken from the
population at equilibrium contains k types, with u; of the oldest type, u,
of the second oldest, ...,u; of the youngest type (and we note that as a

consequence of the Moran model formulation, each type in the population

has a unique age),

P(Bk;m ----- uk) = P(Bk;ul ----- Kk ﬂA) +P(Bk;u1 ----- 7y nAC)

= P(A)P(Biys,..ur | A) + P(A°)P(Biyyy,...pw | A%,
and in the light of (3.13) we have

1\}1_{20 P(Biyy,sx) = ]3}_{20 P(Brypy,...opn IA)
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This last, however, involves a calculation using the ¢ and di, k =1,2,...,n,
exhibited at (3.9) and (3.10) identical to the related calculation of, for exam-
ple, Donnelly and Tavaré (1986). It follows that

(01— p)o)* n!

im P(Brpyy.op) = - , (3.14
A, P(Briss ) (1 = p)O)(m) papir + pi-1) -+ (i + - + 1) (3:14)
and
I\}im P(k types in the sample,
u of one type, p, of another, ..., ux of the kth)
—_ k |
(1 —p)b) n ' (3.15)
((1 = p)8)(n) papt2 - - pPr! B2} - - - Bi!
where (; is the number of alleles represented j times, j = 1,2,...,n. Again,

these are ezactly the formulae appropriate to the uncorrelated neutral models
with mutation rates (1 — p)f: the age ordered sampling formula ((4.2) of
Donnelly and Tavaré (1986) and the Ewens sampling formula Ewens (1972))

respectively.

3.4 Discussion

The motivation for this analysis stems from interest in the neutralist-selection-
ist controversy. Observed “departures” from neutrality in the gene frequencies
might initially, without knowledge of the above results, be thought to be
due not to selective forces but to a reproductive mechanism involving some
form of correlation, perhaps because of linkage disequilibrium with a locus at
which selection is operating, or a variable environment, or some other cause.
While perhaps surprising, these results suggest that (for this particular model)

correlation cannot explain departures from neutrality.
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Tests for neutrality are usually performed conditional on K, the number of
types in the sample (since in the uncorrelated case K is a sufficient statistic
for the nuisance parameter #). In the uncorrelated case the distribution of
allele frequencies (with, and hence without, age ordering) conditional on K
is tdentical to its distribution in the uncorrelated case, so in the presence of
correlation the distribution of any test statistic will be identical to its dis-
tribution in the uncorrelated, neutral, model. This has two consequences.
First, observed departures from neutrality cannot be attributed to this form
of correlation. Second, any data which cause rejection of the neutral hypoth-
esis at a given level would also result in rejection of the “correlated neutral”
hypothesis at the same level.

If the sample data are used to estimate the mutation rate 8, the appropriate
course in the uncorrelated neutral case is to base such estimates on K. (See
Ewens (1972), for the form of the estimator.) The use of this estimator in the
more general setting will give asymptotically unbiased estimation of (1 — p)d,
and hence underestimation of 8, if p > 0. (Of course, it may be possible to
detect correlation, and possibly to estimate p separately by direct observation
of the population and so correctly estimate 6.)

A priori one might expect the introduction of correlation to result in fewer
alleles in the sample, with a more diverse range of frequencies, than in the
neutral case: intuitively, correlation should encourage relatively more coa-
lescences and those coalescences should affect classes which themselves were
recently the result of coalescences. It seems that the correct (after the fact!)
intuition is that coalescences are relatively more frequent and so the number
of types in the sample is (stochastically) smaller (this expresses itself in a
lower “mutation” rate), but that the times between losses of lines of descent

are sufficiently long to ensure that the particular correlation present at one
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such loss will have been “forgotten” by the next loss, and so actual class sizes
(conditional on K) are unaffected. On one level then, these results provide
yet further evidence for the very general applicability of the Ewens sampling
formula: the form of the distribution still applies, and the conditional dis-
tribution of allele frequencies is exactly as it should be. It is worth noting
at this point that in this sense the results here are similar to other work
(Gillespie (1977); Sawyer and Hartl (1985), for example) which shows that
the Ewens sampling formula is also valid in various non-neutral situations.

It is natural to ask about the robustness of these results: that is, to what
extent they are artifacts of the specific assumptions made. The assumption
of a large population size (and the limiting regime studied) is common and
not unreasonable. (In the uncorrelated case, with the exception of the Moran
model, the Ewens sampling formula itself is an approximate result, for the
validity of which the population size must be large compared to the sample
size.) In fact, it is possible to be exact throughout the analysis about the effect
of this assumption here, in order to show that the error in the expressions
(3.8), (3.14), and (3.15) is of order N~1.

What of the Moran model formulation? In the next section we investigate
a model in which a fixed number T'(> 1) of individuals die and are replaced by
new offspring with a similar mode of correlation, and determine what effect
this has on the conclusions drawn from this section.

We also note that all the conclusions of the model remain valid if it is
changed so that the reproducing individual in the “next” generation will be
the reproducing individual of the current generation with probability p/2, its
offspring with probability p/2, and otherwise an individual randomly chosen
from the (whole) population.

It is less clear how to extend this type of correlation to more general (say
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Wright-Fisher) reproductive mechanisms in a simple (and hence tractable)
way (although Barton (1988) studies related issues). Some general comments
are possible, however. In most formulations of a model with non-overlapping
generations, correlation will not change the rate at which lines of descent are
lost through mutation: in any given generation, a particular line of descent
will be lost with probability u (which is usually assumed to be of order N1
in this context), independently of all other events. Correlation might be ex-
pected to increase the rate at which coalescences occur, in which case, as in the
model studied here, the distribution of the number of types in the sample will
be stochastically smaller than in the uncorrelated case. In the model studied
here, the advantage to a particular individual due to correlation lasts for a ge-
ometrically distributed number of generations, while the times between losses
of lines of descent are of the order of N2 generations, so that for large N, this
advantage is “forgotten” between these events, and we have seen that as a
consequence allele frequency distributions (conditional on K) are unaffected.
In most other models, including the Wright-Fisher model (see for example
Donnelly and Tavaré (1986), for a general formulation), the times between
losses of lines of descent are of order N generations. (For the general model of
Section 2 the times between losses are of order N2~ where 0 < a < 1). If the
advantage of correlation again lasted for a geometrically distributed number
of generations (and this is not inconsistent with linkage to a non-neutral lo-
cus), this would also be “forgotten”, and again allele frequencies, conditional
on K, might be unaffected. There is some hope then that results in the same
spirit as the ones discussed above might remain valid in a considerably more
general setting. That is, correlation should result in a stochastically smaller
number of alleles in the sample (though perhaps not with a distribution of the

form (3.8)), but conditional on the number of alleles present, the distribution
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of allele frequencies will be as predicted by the Ewens sampling formula.

47



Chapter 4

CORRELATION IN MORE
COMPLICATED MODELS

In the spirit of the previous chapter we move on to investigate how similar
correlation may affect more complicated models. In particular in this section
we shall introduce correlation to the model in which T individuals reproduce
in each generation. We shall then see whether the effect of correlation in
this model is similar to that in the conventional Moran model and try to
draw some general conclusions regarding the way in which correlation effects
are likely to manifest themselves in more general models. This represents an
attempt to investigate to what extent the conclusions of the previous chapter
are artifacts of the specific model discussed. We start by giving an exact
specification of the model to be considered in this chapter.

We propose a population of N individuals evolving forward through time in
discrete generations (t = ..., ;-2, —1,0,1,2,...) In the general course of evo-

lution of the population, at each generation, we choose T' existing individuals,

N
uniformly at random, to die (thus all choices are equally likely) and
T
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then we choose T other individuals to be parents, each to have one offspring.
The choice of parents at time ¢ + 1 is according to the following regime:
(i) Label the parents at time ¢: X;,X,,..., X7.
(ii) Independently for each X; (1 < i < T'), there is a probability p that X is
again the parent at time ¢ + 1. Suppose S < T parents are chosen this way.
(iii) Choose the remaining (T — S) parents uniformly at random without re-
placement from the (N — S) individuals who are not already chosen. The
surviving (N — T') individuals and the T new offspring form the population
in the next generation. The offspring individuals may independently, with
probability u, mutate into a novel type which has not been in the popula-
tion before. We will note the usual assumption that u is of order N=1. We
further assume that this correlated reproduction process has been going on
indefinately and is therefore in equilibrium.

Note that this model is slightly different from the similar model in Chapter
2, in that here parents may have only one offspring and the reproducing
individuals are distinct from the individuals that die. We do this as the
algebra, which is already somewhat complicated, is a little more transparent
in this case. But although we do not give the details, exactly the same results
obtain for the earlier model.

More formally, we can define a Markov chain
Z, = {(X,,Y,) : t=0,1,2,...} with statespace E% x EL
where EL, = {AC {1,2,...,N} | |A| = T}. Here
X, ={X¢1,Xt2,..., X7} = {parents at time ¢}

Y,={¥:1,Y:s,...,Yi7} = { dying individuals at time t}.
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The initial distribution places mass

N N-T)\

T T _ (27!
N T RTH*
2T

at each of the points (z,y) € E} x Ef with all components distinct (ie.
T = (xla' . ')mT)ay_= (yl7"°’yT)’xi 7,: TjyYi ?é Yis Ti % Yis Vi 75.7)

To define the transition probabilities between (X,,Y,) and (X;,;,Y,4),
suppose that m is the number of individuals in common between X, = z, and

X¢41 = Zyyq then

P(X = Ty, Yo =Y | X; =z, Y, =Q_t)
((N-i\(N-T
™ m . . T—2 T
= 2| | |Fa-p"y _ 9
=0 1 N —
{ 2T — 1 )

We assume the population has been evolving in this way for an indefinite pe-
riod of time, and take a random sample of n individuals without replacement
from the population at a time which we will call ¢ = 0. We then trace the
composition of the sample with respect to the ancestral population at time
—t (t=0,1,2,...) in a manner akin to that of the previous chapter.

We define “old” and “new” equivalence classes at time ¢ as in Chapter 3,
denoted by €;, (¢t = 1,...,I}) and n;,(7 = 1,..., F}) respectively. We order
the n; by decreasing age, the age of an equivalence class being the number of
generations since the mutation which led to its existence occurred, (ties are

broken at random).
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So we can summarize the state of the sample with respect to the ancestral

population at time —t by

Rt = {617627' --,éK.;Ul, M2, .. "an} = {Qaﬂt} say.

We shall concentrate on the X; component of the Markov chain Z; in order
to investigate the genetic composition of the population at equilibrium. In the
light of this we shall study the behaviour of K;. As in the previous chapter
it is clear that {K,;,t = 0,1,...} is no longer Markov, and again we study a
more informative process.

Hence we define
{A(t) = (I{t, Ct) = 0, 1,2, . .}

where C} is defined to be the number of parents at time —t who are ancestors
of old equivalence classes in the original sample, (ie. the number of parents at
time —t who are in the line of descent), 0 < C; < K,. It is evident that A(?)
is a Markov chain.

Before continuing we shall show that the process X, is time-reversible. It

is easy to check that the equilibrium distribution places mass

-1

N
T

Ty =

on each z € E?\}, and that the process is finite and irreducible. The choice of
initial distribution ensures that it is also stationary.

Once again (Kelly 1979) reversibility will follow if
WE,P()_QH = Z441 | Xy =z,) = WJ:.,HP(—.L =z, | Xy = £t+1)
for all z,,z,,, € E%. But this is clear since
P(Xsp1 =21 | Xy =20) = P(Xy = 25 | Xy = o)
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FIGURE 41

Therefore, as before the behaviour of the process when viewed backwards
in time is (stochastically) equivalent to its behaviour going forwards. In par-
ticular, when viewed backwards X, is Markov.

Note that henceforth we are considering the process X, going backwards in
time, so that if we are currently at time —¢, by “next” is meant time —(¢+1),
and so by “previous” we mean time —(t — 1).

For ease of determining the transition equations we now split the repro-
ductive procedure into two steps:

1. Select the T parents in the next generation,
2. Select the T offspring of the parents just identified.
Figure 4.1 illustrates this pictorially.

Step 1 consists of selecting the individuals marked A (or equivalently those
marked A’).

Step 2 comnsists of selecting those marked B (or equivalently B’).

Define the event P, to be

P; = {d parents are drawn at random from
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the line of descent (at the end of step 1)}.

Let C;_; = ¢ = the number of parents in the line of descent

in the previous generation.

And let K;_; = K = the number of old equivalence classes in

the previous generation.
Then

P(Pdlct—l =C,Kt_1 =K)=

cAd c
2 (p"(l - ) ( i ) (4.1)

T-evd) (1
x > |pPa-pT

=0 J
K—i N—K-—j
d—i T—d—j

N—i—j
T—i—j

To see this, note that we first choose ¢ of the ¢ parents from the line of descent
again. Then we choose j of the (T —¢) parents not in the line of descent again.
Finally we randomly choose the remaining (T — ¢ — j) parents in such a way
that we finish with d parents in the line of descent.

So now we have picked the parents. It remains to select the offspring, and

there are four possible ways of doing this:
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(i) So that we don’t lose any lines of descent (ie. K; = K;_1)

(ii) So that we lose a ling}ldescent via a coalescence of two lines (ie. K;
K;1—1)

(ii1) So that we lose a line of descent via a mutation (again K; = K;_; — 1).
(iv) So that we lose more than one line of descent (ie. Ky = K,y — [, [ > 2).
The probabilities of these events are as follows:

(i) Let Qg denote the event { no line of descent is lost } (ie. K; = K;-1).
Then

P(Qk | Py, K41 = K) = (4.2)
N—K—(T-d) ((K—-d\(N-T-K ]
d (T-d)A(K~d) i T—d—i .
2 (1—w)
N-T =0 N-T-d
d _ T-d J

To see this, notice that the offspring of the d parents in the line of descent
must not be in the line of descent themselves. Having chosen these, the other
(T — d) offspring are picked. We can have i (0 < 7 < T — d) of these drawn
from the line of descent, provided we ensure they do not themselves mutate
and thus cause the loss of a line of descent. The remainder are picked from
individuals not in the line of descent. The number of parents who are in the
line of descent in the next generation is (d + ¢), ie. C; = d + 3.

Note that from the preceding two equations we have
0O(1) ford<c
P(Pd | Ct—l = C7Kt—l = I{) =
O(N—(4=9)) ford>c
and
O(N-(=9) for K>e>d

P(Qk&{Cy=e} | P, K1y = K) = { .

otherwise.
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(ii) Now pick offspring so that we lose a line of descent via a coalescence of

two lines. So:

let Tk = { lose a line of descent via coalescence }.

Then

P(Tk | Py, K1 = K)

(K—d)(N-T—m;@)
1 d—1
(1—-u)x
N-T
")
'(K-d-l)(N—T—K+1) ]
(T-g)A(K-a) i T—d—; |
)3 (1 - uy

i=0 N-T-d
= T—d -

Here we must pick one parent in the line of descent to have an offspring in

(4.3)

the line of descent without a mutation occurring. The remaining offspring of
the (d — 1) parents in the line of descent must not themselves be in the line
of descent. We may then pick 0 < 1 < T — d offspring from the line of descent
and ensure they don’t mutate. Finally, pick the rest of the offspring from
individuals not in the line of descent.

Note that C; =d 41— 1.

Notice also that P(lose [ lines of descent via coalescence) involves choosing
| offspring from the line of descent, an event of probability O(N~!). So we
have, for l > 1,

P(lose I lines of descent via coalescence) = O(N 7).
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(iii) Now we pick offspring so that we lose a line of descent via mutation:
Let My denote the event {lose a line of descent via mutation}.

Then

PMg | Pj, Ky = K) =

'(K—d)(N-T-K+d)
1 d—1
uXx (4.4)
N—T
_ d
'(K-d—l)(N—T—K+1) 17
(T=d)A(K—d) ; T—d—i .
> 1-w)
par N—T—d
. T_d -
N-T-K+d
d
+
N—-T
d
r(K—d)(N-T—K)
(T—d)A(K-d) ; T—d—i : .
) (Z)q1—whl
1

=1 (N—T—d)
L T-d J

Here we can do one of two things

(a) pick one of the offspring of the individuals in the line of descent to itself

be in the line of descent, mutate it, ensure that all other such offspring are
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out of the line of descent, and then pick 0 < ¢ < T — d other offspring in the
line of descent which don’t mutate,

(b) ensure that all offspring of individuals in the line of descent are themselves

outside the line of descent, and then pick at least one other offspring to be in
the line of descent and make sure that one of these other offspring mutates.
Note that P(Mg) = O(N~2).
Notice also that P(lose  lines of descent via mutation) will involve choosing
[ offspring from the line of descent and then mutating each of them. So we

have, for [ > 1
P(lose [ lines of descent via mutation)=0(N~%),

(iv) If we are to lose more than one line of descent between two generations
then a combination of coalescences and/or mutations is needed. From cases
(i1) and (iii) we can see that

P(lose [ lines of descent solely via coalescence)=O(N )

and

P(lose [ lines of descent solely via mutation)=0O(N~%),

Similarly

P(lose ! lines of descent (m of them via mutation))

— O(N—2m—(l—m)) = O(Nl-m).

Since there are only a finite number of ways in which these events can occur,

we see that

P(lose ! lines of descent, [ > 2) = O(N~3)

except for the case where we lose two lines of descent via coalescence, which

if there was at least one parent in the line of descent is O(N~2). However, it
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will become clear later that exact expressions for these probabilities are not
required.

Now we can proceed to construct the actual transition probabilities by tak-
ing products of equation (4.1) and one of equations (4.2)-(4.4). We shall write
them out in expanded form as this is necessary for later simplification. Ulti-
mately, conditional on {K;_; = K} and {C;_; = c} it will be seen that we need
only consider terms up to O(N~2?). So with Pk,{K;-; = K} and {C;_; = ¢}
defined as before, and with

Q% = {no line of descent is lost this generation (ie. time ¢) and we finish
with e parents in the line of descent}

= Qg N{Ciy =c} where Qx = {K;_; = K}

we have

P(Q | Kir = K, Cros = ¢) = 3 [P(Pa | &, K) x P(Q% | )]
d=0

i cnd [ P e L .
- E[jg e (1) E

T-c T—j—z:
( j )( - ) (45

K—i K—i-1 K—i—(d—i—1)

N_j—i N—j—i-1 " *N-j—i<(@=:i-1

X X

N-K-j N-K-j-1 = N-K-j-(T-d-j-1)
N—d—j N-d—j—1 Nod—j—(T—-d—j-1)
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N-K-(T-d N-K-(T-d)-1_
N-T N-T-1

N-K-(T-d)—-(d-1) T-d e—d
*TTN-T-@-1 "(e_d)(l‘“)

L K-d K-d-1  K-d-(e—d-1)
N-T-d N-T-d-1 N-T—-d—(e—d—1)

><N—K—T o N-K-T-1 ‘.. ><N—K—T—(T—e—l)]
N-T—-e N-T-e-1 N-T-e—(T—-e-1)

Note that we need only consider e — 2 < d < e if we are just interested in
terms up to O(N~2).

The reader is spared the details of the simplification of this equation here,
but a blow-by-blow account of it, along with that of equations (4.7) and (4.8)
can be found in Appendix II (sections A,B and C respectively).

From (4.6) we have

P@;ug4=mq4=@={ou) esc
O(N-C-9) e>e.

We will also require the probabilities of losing a line of descent. So with
Mg = {lose a line of descent via mutation}

I'x = {lose a line of descent via coalescence}
we have:
P(Mg | Ki-1 = K,Ci1 = ¢)
TAK

= Y [P(Pi] Koy = K,Ciq = ¢) x P(Mk | d)]
d=0
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TAK [end [ | e
dX_% {EO (p'(l -p) i
l:T_fi/d) (pi(l—p)T_c_j ( T-—c ) ( T—3—1 )
=0 J d—1

L K-i K-—i-1 o K-i-(d-i-1)
N—j—i N-—j—i—1 N—j—i—(d—i—1)
JN-K-j N-K-j-1  N-K-j-(T-d—j-1)
N—-d-j N-d—-j-1 N—d—j—(T—-d—j—-1)
5 d)(K-d\ N-K-(T-d)
, J\v=1)" N-T-1
N-KE-(T @—1.HXN-K—@—@-w-m
N—T-— N-T—-(d-1)
xjf.K—d-lx K—-d-2 xu-xK_d_l_“_D
~|N-T-d N-T-d-1 N—T-d-(i—1)

(74 Jamwr BB,

N-K-(T-1)-1 N—BF%T—I%{T—d—%ﬁq}
N-T-d—i—-1 " N-T-d—i-(T-d—-i-1)

N—K—(T-d
+{ N_T

N-K-(T-d) -1 N-K-(T-d)-(d—-1)
T N_-T-1 T N-T-@d-1)
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fo[ K—d K—-d-1 § K—d-(i—1) (4.6)

N-T-d ' N-T—d-1 " “N-T-d-(G-D

=1

(1 — u)! z T-d (N-K-T
XMET 1 ; N-T—d—i

JN-K-T-1 ~ N-K-T—-(T-d-i-1)
N-T—-d-i—-1 N-T—-d-i-(T-d—i-1) '

After some not inconsiderable manipulation (see Appendix II, section B), (4.6)

simplifies to
. T -3
P(Mlet..l=I\,Ct_1=c)=]W[K—Cp]+O(N )

where we define u = 9+LN as is normal. In particular, from (4.6) we have

KoT
N2

P(Mg | Kty = K,Cy_y =0) = + O(N™3).

And in a similar manner for coalescence events we have

P(FK I Kt-—l = K,Ct—l = C)

TAK
= S [P(P;| K;=K,C,=c) x P(Tk | d)]
d=0
TAK cAd ) | c
= ; {X_g Pa-p7 (¢.7)

T—(cVvd) —c — 7 —3
[Z(Pj(l—P)T_C'j(T, )(T 8 )
=0 J d—1

[ E-i o K-i-1  K-i-(d—i-1)
N—j—i N-—j—i-1 Noj—i—(d—i-1)
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N-K-j N-K-j-1 N-K-j-(T-d-j-1)
N—d—j N-d-j-1 N-od—j—(T—d—j—1)

JEK-d[d (1N T K+d
N-T|\| N-T-1
N -

9 T - K-I—d—lx. ><N-T—K+d—(d—2)
N-T-2 N-T—-1-(d-2)
[ T-d ) K-d-1
x —_—
g ( ; )N T-d
(K-d-2 K -d-1-(i-1)
N-T-d—1 N-T-d—(i-1)
. N-T-K+1
X =)' X T
9 N-T-K o >(N—2T—K-{—d-}—i—i—2
N-T—-d—(i+1) N —2T +1 '
We simplify (4.7) to get
K(K-1)T(1 -
P(FKICt—1=0,Kt—1=K)= \( ]32( p)+O(N_3)7
P(Tx | Croy = > 0,Kiy = K) =E[ (;)-(K—Ajd—)d +O(N™2),

In particular

K-1
P(FK I Ct-—l = 1,](1_1 = I{) = ?LJ—V_——)' + O(N—z)

and

2p(1 - p)(K —1) + 2p*(K - 2)

P(FK l Ct—l = 2,K~¢_1 = I{) = N N

+ O(N72).
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By simplifying equation (4.6) (for details see Appendix II, section C) we

find the following probabilities of not losing a line of descent in varying cir-

cumstances:

P(Q(I){ l Ct—l = 2, I{t—l = K) =
PQkx | Ct-1 =2,Ki1=K) =
P(Q%{ | Ct—l = 2, Kt—l = K) =

P(Q?{ I Ct—l = laKt—l = K) =

P(Q}{ I C‘t—l == 1, I{t-l = I{) —

P(Q?K’ | Ct-—l = 1,K1_1 = K) =

P(Q?{ | Ct—l = O,I{t—l = K) =

P(Q}{ l C‘t—l = 0, I{t—l = I{) —

(1-p)?+O(NY)

2p(1 —p) + O(N7)

PP+ O(NT) (4.8)
(1-p)|1- TK(JZV_ p) _ 13{/.{ + O(N~—?)
p+(1- p)TAI,{ + TK(EV" 2y’

LPA=-pK pK-1T(2-p)

N N
G p;éK —Y o)
K -1)(T-1)(2-p) _2
% +O(N-?)

TK(2-p) (T ) KE-1)(2~p)’
1)y

(IEE - 1-p)

_I]_g [Tp(2 - p) — p(1 — p)] + O(N2)

(2-p)TK TKS
N N?
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o T ) EE-DE-p)
2| .

2TK(K —1)(1 - p)
_ =

+%§uﬂ2_m—pu—pn+OMF%

K(K —1)(2 - p)’

e + O(N73).

T
P(Q%|Ci-1=0,K;y =K) = (2)

These represent the relevant transition probabilities and Figure 4.2 shows the
transition diagram.

For any particular state (K;—; = K, C;_; = ¢) we have the situation illus-
trated in Figure 4.3.

Note that

Cc

e

p*(1—-p)F ( ) +O(N™1) fore<ec

O(N-(e=9)) for e > c.

P(Q;’{ | Kt—l - K, Ct—l = C) p—t

Define
?{ern{Ct=6} and M&:MKn{Ctze}

(So I'y = {lose a line of descent via coalescence and finish with e parents in

the line of descent} etc. ). Then,

O(N-+1)) ford >0

P(I¢? | Ky = K,Cooy = ¢) =
O(N-')  for —c<d<0O,

We now have the following result:
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Lemma 4.1 Let
H = max{P((Mf; | Ki-1 = K,Ci_1 = ¢)}vmax{P(Tk | K-y = K,Ciy = 0)},

then H < O(N7Y).

Proof:
Recall P(Mk | K;—y = K,Cyy = ¢) = &5[K — cp] + O(N73).
Hence
o T -3
P(MK th—l =K,Ct_1=c) S ']v—z[K—Cp]+O(N )
and so
PIME | K . T _3
max{P(Mk | Ki-1 = K, Ci1 = ¢)} < 15K — cp] + O(N ™).
Similarly

PTx | K1 = K,Ciy =¢)

K(K-1)T(1-p) K‘}VTI" + O(N-3) forc=0
=1 [Pd(l - p)e ( ; ) %d} +O(N~2) forc>0.
Hence

+O(N2)

PTY | K=K, Coa=0) < 3 |pfa - pyt| ¢ | E=dg
d=1 d N

and so

mg,x{P(Fc'»' | Ki-1 = K,Cyy = ¢)}

- ¢c \K-d
< pi(1 —p)? ——d
d=1 { d N
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Thus

H < [%[K —cp]+0(N‘3)]

drq _ ,\c—d ¢ K-d
Ap(l p) (d) N ¢

+ O(N“’)}

= O(N7YH) 0

Therefore, if we now define Ly to be the event {lose a line of descent before
visiting (K, d), some d # ¢ | currently in (K, c)}, then
P(lose a line of descent before visiting (K, d) some d < ¢ | currently in (K, ¢))
P(Ly)+ O(NTY)
P(Lg)+(1—p°)+ O(N-Y)
Since P(Ly) < 2(K — 1)H = O(N™1!). So now if we follow the same limiting

regime as in the previous chapter and let N — oo we get:

=O(N7),

I\}im P(the process A(t)doesn’t visit(K,0) before K; decreases

from its current value)

= 0.
In the manner of Chapter 3 we now prove the following lemma:

Lemma 4.2 Asymptotically, A(t) will visit (K,0) before K, decreases, for all
K,=K.

Proof:

Define
Ag = {A(2) visits (K,0) before K decreases}.

67



Set A = N}Z1 Ax, and so

n—1
P(A%) = P(UpZiAr) < Y P(A;) - 0as N — oo DO
k=1

We will use this result later on to prove symmetry of equivalence classes.

We now define

o_p ( transition from K to K — 1 lines | there are currently ¢ parents )

of descent occurs via coalescence | in the line of descent

As in the previous chapter we need to determine the probability that a partic-
ular decrease in the number of lines of descent occurs because of coalescence.

So we need to evaluate the II.’s.

A standard first-step analysis of the transition probabilities for A(t) gives

c ¢ c—1 ¢ c—2 2
I, = pHc+(1)p (l—p)Hc_1+(2)p (1—p)’H.g+---

+ ( ‘ . ) p(1 — p)* ' + (1 — p)°Ilo + O(N ). (4.9)

Lemma 4.3

. =Ty + O(N™?) for all ¢ > 0.

Proof:

From (4.9) we have
c ¢ c—1 ¢ c—2 2
(1-p)I. = (l)p (1—p)Hc_1+(2)p (1—p) ey +---
+(1 - p)Tlo+ O(N7Y). (4.10)
So Hl(l—p)= (1—p)H0+O(N'1) = H]_ =H0+O(N—1)
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We now proceed by induction. So suppose the result is true for all d < ¢, then
(4.10) gives

(1-p). = ( i ) P71 = p)lo+ O(NY)]

+ ( ; ) P31 - p)? [l + O(N7Y)) +

o+ (1= p)To+ O(NT).

= (1-pP) = Ho[(i)zf’l(l—pH(;)p°‘2(1—p)2+---

~-+(1 = p)l+ O(NTY).
= (1-p) = Io(1-p7)+ON)
= II, = IIy+ O(N™1) as required 0.
So it is sufficient to evaluate Il, but first we must obtain a more accurate
expression for II;. Once again by a first-step argument on the transition

probabilities for A(:) = (K, 1) we get

I, = p(KN— D pE - 1)(TJ’V— 1)(2-p) 11,

TK TK(-p* p(-pK
N N N

+1I, [p+(1—p)

_pE-D)T@—p) pd-p)(K—1)

N N
+1IIo(1 — p) [1 — Efﬁ%_—ﬁ - ?Nfg] + O(N~?), (4.11)
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After substituting for II, and a little simplification (details of which can
be found in Appendix II, section D), we find

L
Hence
m, — (1-pK(K-1)T (4.13)

N2

+1II,

,_KTC-p) ( T ) K(K - 1)(2 - p)?

N 2 N®
L TE(K ;Vi)(l —p) _ :ZJ:TIZ([Tp(Z —-p)—p(1- P)]]
[ e 7 =gy
_2TK(K ]—\721)(1 —p) 5’]’\5 [Tp(2 - p) — p(1 — p)]]

Substitution for II; and II, and much simplification (which again can be found

in Appendix II, section D), reveals

K-1
(1-p)f+(K-1)

This is the same as in the uncorrelated case but with 8 replaced by (1—p)6.

o =

+O(N™Y).

It is also identical to the result in Chapter 3. So, informally, we have the

following result:
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Theorem 4.4 As N — oo the conditional distribution of allele frequencies
for the model presented here with parameters p and 8 (representing correlation
between choice of parents and mutation probability respectively) is the same
as for a model in which there is no such correlation (ie. p = 0) and where 6

is replaced by §' = (1 — p)é.

Now recall that we have already shown that the process A(t) will visit
(K¢, 0) before K, decreases, for all K;. Define Bg as the event that the
sample of n taken from the population at equilibrium contains K types, with
pq of the oldest, u, of the second oldest,. .., ux of the youngest type. Then
if A denotes the event that A(?) visits (K, 0) before K; decreases to K;_; for
all K;, then we have:

P(BK;ul,---.uK) = P(BK;M,.--,MK N A) + P(BK;ux,-...ux n Z)

= P(A)P(Biy,...ux | A) + P(A)P(Bxiy..osrc | A)
and so
dm P(Bii,u) = Hm P(Bki,..ux | 4)-
This implies that the distribution of Bg,,,, . ., is identical to that obtained
in Chapter 3 and hence it is the same as for the uncorrelated case with 6
replaced by (1 — p)8 (see for example Donnelly and Tavaré (1986)).
It follows that

(1 —pB)¥ n!

lim P(B

SH1 1'"1”'}'f) =

and

Al,im P(K types in sample;u; of one type,u; of another, ..., ux of the K*h)
—00

_ (-po)¥ n!
B ((1- P)G)(n) pipz - prBiBal - B!
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where f3; is the number of alleles represented j times, j = 1,2,---, K. For a

more detailed look at the consequences of this result please refer to Chapter 3.
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Chapter 5

CORRELATION AND
VARIABILITY IN BIRTH
PROCESSES

5.1 Introduction

Definition 5.1 A birth process {X(t),t > 0} with birth rates Ay, Ay, ..., i3 @
continuous time Markov chain with state space {1,2,3,...} and infinitesimal

transition rates, for i # j

| Ao ifj=i+l
lim P(X(¢ 4+ h) = j | X(¢) = 1) = 13
hio 0  otherwise.
We suppose that the process starts at a value N > 0 at time 0. It is common
to think of X (t) as representing the number of individuals present at time ¢
and so upward jumps in X (-) correspond to births, hence the name.

Throughout this section we will view the birth process X(-) in a particular

way. Specifically, we regard a process which starts at a value N as consisting
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of N individuals. Subsequently, whenever a birth occurs we shall refer to the
new individual as the ‘offspring’ of one of the existing individuals (the parent
being chosen randomly, with the assignment of parents being independent
for each birth). Consequently we refer to the family of the itB individual
(¢=1,2,...,N) as the it1 initial individual and all its (not necessarily direct)
descendants. Birth processes arise as models in a wide variety of settings.

In the most general form of the process we allow the birth rates to take any
value. However, in general, although one can write down explicit expressions
for the probability distributions of X(t), they fall short of being illuminating
and little useful information can be obtained. In particular, expressions for
the moments are far from simple. In order to make further progress one must
make assumptions regarding the form of the transition rates. The simplest

assumption to place is that they are constant, ie.
An = A for all n.

Now things become relatively simple. Specifically, we have a Poisson process.
There are many applications for such a model (we refer those interested to
Karlin and Taylor (1975)).

A common way to allow the birth rates to vary is to suppose that they

depend linearly on the number of individuals present, ie.
An=n\, n=1,2,....

This is usually refered to as the linear birth (or ‘Yule’) process. The common-
est application for this formulation is to model population growth (in bacteria
for instance). Here it is reasonable to suppose that each individual is having
offspring at rate A and this leads naturally to the birth rates just specified.
We can write down specifically the distribution of X(t) (given that we start
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with N individuals) as:

PX(®)=n|X©)=N)=| "~ 11 eNM(1 — ey

Note that this is the Negative Binomial distribution and if we start with 1
individual we get a Geometric distribution. Other applications include the
early stages of an epidemic, where X(t) records the number of people who
have been infected by time ¢.

However it is easy to see why the birth rates of a process might vary non-
linearly. The environment might be such that there is a limit to available
resources (food or space for instance) and so it is natural to suppose that the
birth rates will begin to fall off as the population size increases. Alternatively,
birth rates (per individual) might increase as the population grows due to
improvements in the environment (extra warmth or more mates for instance).

For the remainder of this chapter we will explore the behaviour of non-linear
birth processes. We do this in order to better understand the relationship
between qualitative aspects of the process behaviour and broad features of its
parameter values. In particular we will consider correlations in family sizes
and use this to investigate a conjecture due to Faddy (1990) regarding the

relationship between the variance of linear and non-linear birth processes.

5.2 Correlation in Birth Processes

In the remainder of this chapter we will use the concept of monotonicity. A
full consideration of this can be found within Liggett (1985), so we content
ourself here with a brief summary. Let a stochastic process {W(t), t > 0} be
defined on a partially ordered statespace E; for example E = {0, 1}° where S

is a countable set, whence a natural partial order is set inclusion. A function
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f is then said to be increasing (decreasing) on E if
e1<e; = f(e1) < () f(eq) forall ey <eyin E.

If W(t) and Z(t) are E-valued random variables we then say that X is stochas-
tically greater than Z (written W Szt Z) if

E[f(X())] = E[f(Z(t))] for all increasing functions f on E.

We then define W to be a monotone process if the following is true:

If W'(-) and W"(-) are two versions of W(-) then
W(0)$EW'(0) = W'(t) St W'() forall t > 0.

The most common way of demonstrating monotonicity is via coupling.

We now return to birth processes.

Definition 5.2 A sequence Ay, Mg, ... 18 said to be superlinear if \,/n, n =

1,2,..., i3 non-decreasing and gublinear if A\p/n, n=1,2,..., is non-increas-
ing.
It is easy to show that convexity of the sequence A;, A;, ... implies superlin-

earity and concavity implies sublinearity.

Throughout this section we will take X(0) = N > 1, the initial value of the
birth process, to be fixed. Further we will restrict our attention henceforth
to non-explosive processes (so that we assume Y2, A;! = c0). We augment
the birth process by assigning parents to newly born individuals as described
earlier and label the initial individuals from {1,2,...,N}. We consider the
process {(X1(t),...,Xn(t)), t > 0} where X;(¢) is the number of individuals
present at time ¢t who are descended, possibly via some intermediate individ-
uals, from the ¢th initial individual, with the founding individuals counted as

descendants of themselves. More formally, X(:) = (X1(-), X2(+),..., Xn(+)) is
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Markov with state space E = {1,2,3,...}, X;(0)=1, :=1,2,...,N, and
the non-zero off diagonal elements of its generator matrix are given by

Ty

— . §i=1,2,...,N.
x1+...+xN

(5.1)

We now consider the presence of correlation between the sizes of the N

q(:l:] yeeesZige ey TN Z1yeerZi+ 1,000 TN) = AI] +edzN

families. In particular we prove the following result:

Theorem 5.3 For the family size process {X(t), t > 0} defined above, for
i,j=1,2...,N, i,

(i) Cov(X(t), X;(t)) = O if the birth rates are superlinear,

(i3) Cov(X,(t), X;(t)) < 0 if the birth rates are sublinear.

Remark Note that since X(0) = N the actual values taken by Ay, Az,..., AN-1
have no effect on the behaviour of X(-). Hence, for convenience only, we will
assume that these values are defined such that the super(sub)-linearity of the
sequence Ay, An41,. .. 1S preserved.

Proof:

We first prove the superlinear case. Consider two versions X(:) and X ()
of the Markov chain X(:) with transition rates as in (5.1) with X(0) =
(z1,...,ZN), X’(O) = (%1,...,%n) and suppose &; > z; forall : = 1,...,N.
We aim to demonstrate monotonicity and so we define our statespace to be

E ={1,2,...}". Note that we can define a partial order on E as follows:
(1,---y2n) < (y1,.--,yn) iff z; <y; foralli=1,...,N. (5.2)

Returning to our two versions X(-) and X(-) we see that since the birth rates
are superlinear the rate at which X;(-) jumps is smaller than the rate at
which X;(:) jumps for all i = 1,..., N. We can easily couple X(-) and X(-)

so that families in the latter jump whenever corresponding families in the
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former do (as well as possibly jumping at other times). Thus we ensure that
if X(0) < X(0) then X(t) < X(t) for all ¢t > 0. This implies that our original
process X(+) defined in (5.1) is monotone.

By definition, all transitions of X(+) are to comparable states in the partial
order (5.2). Specifically, if the current state is z = (zy,...,zx) and the process
jumps, it will be to a state z' of the form z' = (z,...,z;+1,... ,zn). It will
always be the case that ' > z in the partial order on E, and in particular z'
and z are certainly comparable. Hence it follows (as in Liggett 1985 I1.2.18)
that if Q is the generator of the process X(-) and f and ¢ are increasing

functions from FE into IR which are in the domain of §2, then
Qfg > fQg + gQf. (5.3)

We now appeal to a correlation inequality due to Harris (1977) (see also
Liggett 1985, Theorem I1.2.14) which effectively says that for a monotone

process X(-) whose generator satisfies (5.3), we have

E[f(X(t)g(X(t)] = E[f(X(£)] E[g(X ()],

whenever f and g are increasing functions on E.

If we could now set f((z1,...,2n)) = z; and g((1,...,2N)) = z; (i #
j) we would have demonstrated the correlation required for the proof. But
unfortunately we need the generator 2 to be bounded. Furthermore we also
require the functions f and g to be bounded. To deal with this problem we
introduce the following approximation argument.

Let E* = {1,2,...,00}" have partial order as in (5.2) but with the ad-
ditional proviso that e < oo for all e € {1,2,...}. Define X(.) to be

the process with jump rates as in (5.1) whenever ¥, z; < M and for
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(yl,“'ayN)?é(mlv--’xN)a Efy_-omzZM

v fyp=-=yy=00

(140N ) (Y150 yN) =
e { 0 otherwise.

While ¥, #; < M (and hence YN, z; < M) we may use the same cou-
pling as before to keep the processes ordered. There are now two additional
cases however. Firstly, if °N, z; < M < TN, %,, then make XM(-) jump to
(00,...,00) no later than the first jump of XM() (recall Ay > Aziﬂi by
assumption). Secondly, if M < ¥N, z; < TN, #;, then make both processes
jump to (00, ..., 00) simultaneously. As before it follows from this that X*(-)
is monotone and since all its jumps are to comparable states in the partial

order, the generator condition (5.3) obtains.

For K > 0 we now define fx,gx : E* =R by
fx((z1,...,zNn)) =2; A K, gk((z1,...,2N)) =z; AK (i # j).

The process XM(-) (with XM(0) =(1,...,1) a.s.) now satisfies the conditions

of (Liggett’s version of) Harris’ theorem. Thus for any ¢t > 0 we have
E(fr(XM()gr(XM(1))) 2 E(fe(XM(O)E(gx(XM(1))  (5.4)

Since the original birth process X(-) is non-explosive,

™ = inf{t : iX,-(t) =M} = o0

i=1
as M — oo (and = denotes weak convergence), from which it follows that

XM()= X(-)as M — oo. Let M — oo in (5.4) to obtain

E(fx(X(1)gx(X(?)) 2 E(fr(X(2)))E(9r(X(2))).

Now let K — oo and use monotone convergence to write
E(X(1)X;(t) = E(f(X(1))g(X(2)))
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2 E(f(X()E(9(X(2)))

= E(X:(t))E(X;(t)) for all i # j.

as required.

We now consider the case of sublinear birth rates. Unfortunately this case is
not so straightforward. We will again wish to demonstrate monotonicity via a
coupling argument, but before we can proceed with this we need to reformulate

our birth process. Firstly note that X;(t),..., Xn(t) are exchangeable, so we

can write
Cov(X;(t), X;(t)) = Cov(X;(t), Xo(2)) 4,5 =1,2,...,N, 1 #j.
Next, define Y(-) = (¥3(-), ¥4(-)) by
Yi(t) = Xu(t), Ya(t) = Xo(t) +--- + Xn(2).

Note that Y(-) is a Markov process defined on a state space E' = {1,2,...}%.

Again we now consider two versions Y(-) and Y () of Y(-) with Y(0) =
(y1,92), Y(0) = (ih, i) but now § > y1, 92 < y;. Assume further that
th + %2 = 1 + y2. We define the non-zero off-diagonal entries of the generator
matrix of the process (Y,Y) to be (writing A, = A,/n):

A 2) (i@ +1,02) (i) = Y1lhyten

U 2) (i i) () (n+1,3) = G1hp+n (5.5)
Uv1.2) (i, 0) (w24 ) (i oin#1) = DAt

Uv192)(0n02) (v v+ )i i) = Y2hptwe — BeAjutin

whenever 3y < %, Y22 %, W+ <h+%h Tn <4, 220, n+y =
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#1 + §2 = k say, the generator matrix has non-zero off-diagonal entries

Av1,02) (0 32), (1)1 +1l,d2) = Ak
Ay1.,92) (31, 82)s(v1,92+1) (81, 32+1) = Yo A (5'6)

A(y1,92) (3, 32), (w12 +1) (I +1,32) = Ak(yz - 172) = Ak(@l - yl).

Thus, when y; + y2 < % + ¥ the first components of both processes jump
independently, but Y3(-) jumps whenever f’z() jumps, and at some additional
times. If y; 4+ ¥2 = § + @, the birth processes Y;(-) 4+ Y3(-) and ¥3() + Y3(-)
jump simultaneously and if the additional individual joins the first(second)
component in the Y (-) (respectively }7()) process, it joins the same component
in the Y(+) (respectively Y(-)) process. We construct the coupling like this to

ensure that, with the given initial conditions, we have
Yi(t) S Yi(t), Ya(t) <Yy(t) forallt. (5.7)

If y1 < th, y2 2> §2 but y1 + y2 > % + ¥ use the above construction (ie. (5.5))
with the role of tildes and non-tildes swapped and the roles of components 1
and 2 swapped to obtain the ordering (5.7) once more.

We now wish to invoke Harris’ theorem to draw conclusions about negative

correlations. As it stands this is not possible. The key is to define a partial

order on E' as follows:

(371,372) = (yl,yz) iff z, < Y1, T2 2 Y.

The above construction then ensures that Y(0) < ¥(0) implies that Y (t) <
Y (t) for all ¢, so that with this partial order and sublinear birth rates, the
process Y () with jump rates (5.5 and 5.6) is monotone. Again, all jumps are

to comparable states in the partial order, so the generator condition (5.3) still
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obtains. (With the partial order X, increasing functions are increasing on the
first component and decreasing on the second, in the usual sense.)

We now proceed in a very similar manner to before. First we note that the
generator (5.5 and 5.6) may still be unbounded, so another approximation
argument is used. Denote by YM(.) the process with jump rates (5.5 and 5.6)
with the birth rates \;, ¢ = 1,2,..., replaced by \;A\p, it = 1,2,.... (SoYM
has bounded generator.) This new sequence is still sublinear so that by the
above construction, YM(-) is still monotone, and of course (5.3) still obtains.

Now define fx,gx : E =R by

fe(yi,2) =n AK, gx(y1,¥2) = —(y2 A K).

Since fx and gk are both increasing in the partial order <, Harris’ theorem

gives
E[fx(YM®)gx(YM(1))] = E[fx(Y (1)) Elgr (Y ™(2))).
Let M — oo, multiply through by —1, and then let K — oo to obtain

EM(t)Ya(t)) < E(Yi(t))E(Ya(2))

as required. O

Recall that
Yi(t) = Xa(t), Ya(t) = Xo(t) + - + Xn(2)

and the X;(t) are exchangeable random variables. Hence we have shown the
existence of positive (negative) correlations in family sizes for processes with
super(sub)-linear birth rates. We now aim to use this to provide a proof for

a conjecture due to Faddy (1990).
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5.3 Relative Variation and Faddy’s Conjecture

We will now consider Faddy’s conjecture for birth processes. If a birth process
X(-) has linear birth rates (A, = n)\) then X(t) has a Negative Binomial
distribution and so if X(0) = N we have:

EX(t) = Ne,

VarX(t) = Net(eM — 1) = EX(2) [E‘;(v(t) - 1] :

(see for example Cox and Miller (1965) Chapter 4). As a measure of the
qualitative behaviour of a birth process, Faddy (1990) defines the relative

variation as follows:

VarX(t)

V(t) = .
EX(t)252 - 1]

In his paper Faddy makes some numerical calculations of this quantity for

(5.8)

a class of piece-wise linear forms for ),. He finds that there is always more
(relative to the linear case) variation for convex A, and less for concave \,
and this leads him to conjecture that this may always be the case. However
a proof of the result in this form has remained elusive and so we shall now
spend a little time to obtain more insight into relative variation.

Given a birth process X(t) which starts with N individuals (ie. X(0) = N),

we write X(-) as above, so

X(t) = (Xl(t)a XQ(t)’ R XN(t))

where X;(+) is the process constructed by considering the ith individual and
its descendants. As before we will refer to the component X;(-) as the family
of the ith individual.

Faddy’s conjecture involves a consideration of the relative variation. The
next lemma presents an equivalent condition. (Note that for the rest of this

chapter we shall drop the parameter ¢ whenever convenient.)

83



Lemma 5.4 For a birth process X (t) defined as previously, the following two

conditions are equivalent:

(i) V()2 ()1
.. 2
(i) EEQEO] > (<) (EX) (5.9)
Proof:
EX? - [EX]?
Vit) 21 >
W21 e pxmoy
2
o E[X? - [EX]> % _EX
& E[X?]+EX > (N + 1) [EX]?
2
- E[X(X +1)] > [EX]
N+1 - N
2
o E[X(X +1)] S (EX)
N(N+1) —\N
The reversed inequality is directly analogous. m]

Clearly, the right-hand side of (5.9) (ie. (ETX)z) represents the square of the
expected family size of a single one of the initial individuals (ie. by exchange-
ability (F£X;)?). But is there a more natural representation of the left-hand

side? The next lemma suggests that there is.

Lemma 5.5 As before, write the birth process as X () = (X1(2),...,Xn(1)).

Then
E[X(X +1)]
———( o) = E(X;X3) (5.10)
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The interpretation of this result is illuminating. E(X;X};) is the expected size
of the product of the family size of two distinct initial individuals. Hence, the
relative variation is in fact a consideration of the correlation between family
sizes of initial individuals. The relative variation is greater than one exactly
when the family sizes are positively correlated, and less than one when the
sizes are negatively correlated.

Before we can continue with the proof of Lemma 5.5 we need the result

below:

Lemma 5.6 Let Py, denote the probability that two individuals drawn uni-
formly at random from the population at time t are from different families,
conditional on {X(t) = M}. Then

M+1N-1 ‘
Py = A 5.11
M= M_-1IN+1 (5.11)

Proof:

The result is clear for M = N, since then all families have only one member

and so Py = 1. We proceed by induction on M.

So suppose (5.11) is true for M and note that we can get M + 1 individuals

by adding 1 individual to one of the N existing families, (the new individual

is equally likely to be an offspring of any one of the existing M individuals).
Suppose the family sizes (with M individuals present) are Fy, F3,..., Fy.

Then if we let A denote the event that when we randomly select two individ-

uals from M + 1 we don’t pick the new (ie. M + lth) individual, and B be the

event that when we randomly select two individuals they are from different

families and one of them is the new (M + 1th) individual, we have

Pyuy1 = Py x P(A)+ P(B)
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) )
A2 b4 2| PG, )
(M+1) , M+1) i#]

2

(where P(3, j) denotes the probability that the first individual

is in family ¢ and the second is in family j.)

M-1
AT ST P )
M-1 2
Py + Z Z P(Z]le Fl,
M+1 M+1 5 n i,
XP(X1=F1,...
(in an obvious notation)
M—l
M+1 M M+1§;F12 P(-Xl Fla-"a
M—l X; X; ]
vt et e |
M-1 2 N(N-—

Y eix,x, | M)

Mri MY e

by exchangeability.
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Now note that

Py = z ﬁo'va(Xi='U, XAJl=w IX=M)
(%)
v EXX; | X = M]

s

N
( \ )E[X1X2 | X = M)

8

So continuing from before we find

i<j vw=

(M)
Py
_ M-1 2 NN-1)\ 2

M-1 2(M—1)]
M+l M)

(M+1)+1N-1 )
= 1) -IN+1 as required

We can now return to Lemma 5.5.
Proof(of Lemma 5.5):
Let X(t) = M.
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Then, with Pys defined as before, we have

M=N

(

= N2 ppx =)
v=n [ N

\ 2

[,
_ f: 2 JM+1N-1

M=N(N\ M—-1N+1

2 )

P(X = M)

< M(M+1)
= E ——PX =M
m=n N(N +1) ( :
EX(X +1) .
= —_— a.
NN T 1) as required

So Faddy’s conjecture about relative variation is simply a consideration of
the correlation between the family sizes. If we now combine the lemmas in

this section with theorem 5.3 we have shown the following:

Theorem 5.7 Let X(t) be a non-explosive birth process starting at X(0) =
N > 1 with birth rates {A\, : n = N,N + 1,...}, and define the relative

variation to be

VarX(t)

vy = EX(t) | BQ -1|’

then

(i) 2 increasing as n increases = V(t) > 1.
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(ii) 22 decreasing as n increases = V(t) < 1.

For the sake of completeness we now wish to prove Faddy’s conjecture for
processes starting with N = 1 individual. Once again we will approach this
via a consideration of correlations, but now we have only one family. To get
round this we introduce the somewhat less natural concept of colonies.

We start with our birth process {X(t), ¢t > 0} with transition rates as in
(5.1) and we use this to construct another Markov chain {(Z;(t), Z2(t)), ¢ > 0}
with state space {0,1,2,...}? and Z,(0) = Z;(0) = 0. Again we view transi-
tions in our process as representing births and assign a parent, independently
of all other events, to each new individual born into the birth process by
choosing at random (uniformly) from among all the individuals present when
the birth occurs. Further, we will allocate each individual born into the pro-
cess into one of two colonies: each offspring of the single founding individual
is assigned to a colony at random (each choice having probability %), in-
dependently of all other events, otherwise offspring join the colony of their
parent and Z;(t), Z,(t) denote the number in each colony at time ¢. Thus
the founding individual does not belong to either colony. Formally, the pro-
cess Z(-) = (Z4(-), Z2(+)) is Markov and has generator matrix with non-zero
off-diagonal elements given by

1+1/2

’\i1+i2+1 ntLtl 1T u +1, 32 =19,

A i2+1/2

] o ' (5.12)
Wil 4T J1 =W J2 =12+ 1

A(iy,i2)(51,52) =

Observe that in the linear case, Z;(-) and Z,(-) are independent linear birth

processes with immigration.

We can now prove a companion result to theorem (5.3):

Theorem 5.8 For the process {(Z1(t), Z2(t)), t > 0} defined above, and any
t>0,
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(i) Cov(Z,(t), Z3(t)) = 0 if the birth rates Ay, As, ... are superlinear,
(i1) Cov(Zy(t), Z5(t)) < 0 1if the birth rates Ay, Ay, ... are sublinear.

Proof:
This is analogous to the proof of Theorem 5.3 and so we merely sketch the
outline.

In the superlinear case we use a natural coupling argument and endow E
with the obvious partial order to demonstrate monotonicity of (Z;(-), Za(+)).
Again jumps are to comparable states in the partial order so the generator
condition (5.3) is satisfied. We then simply repeat the approximation argu-
ment from the proof of theorem 5.3, invoke Harris’ theorem and conclude the
result (i).

For the sublinear case we once again reverse part of the partial order and
then a construction very similar to that in the latter half of theorem 5.3’
proof shows that (Z;(-), Z5(-)) is monotone. After an analogous approximation

argument and use of Harris’ theorem we have completed the proof.
O

We will now begin to relate this result to the final part of Faddy’s con-
jecture. Recall that we have constructed our process (Z:(-), Z(+)) from re-
alisations of the original family-valued process X(-). A little thought reveals
that conditional on the value of X(t) the distribution of (Z;(t), Z,(%)) is in-
dependent of the birth rates (and of t), since it is solely dependent on the

assignment of new individuals into colonies.

Lemma 5.9 For the process {(Z:1(t), Z5(t)), t > 0} defined above, with X(t) =
Zy(t)+ Z2(t)+1and M =1,2,...

(i) E(Z:(t) | X() = M) = B(Zy(t) | X(t) = M) = (M ~1)/2,

(1) E(Zy()Za(2) | X(t) = M) = GUM=2)

8
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Proof:

Part (i) follows by symmetry. The second part is clearly true for M =1 and
M = 2 since Z,(t)Z;(t) = 0 a.s. unless X(¢) > 3. We will prove the result

by induction and so assume the result is true for M = m. In what follows,

consider choosing two individuals from those in the colonies at time . Then

P(chosen individuals are from different colonies | X(t) = m)

_2B(Z:()Zx(8) | X() = m)
(m—1I)m-2)

I

Y

by the induction hypothesis. Now, when X(t) = m + 1, condition on whether

or not the chosen pair contains the most recently born individual, and use the

inductive hypothesis and symmetry, to obtain

P(chosen individuals are from different colonies | X(t) =m+ 1)

()
)

most recently born individual is from

!

x2P colony 1 and other individual X(t)=m

chosen is from colony 2

(where t' is a time just before the m+1th individual is born). By conditioning

on the values of Z;(t') and Z,(t') just before the birth of the most recent
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individual, and recalling that conditional on the value of X(¢') the Z’s are
independent of t', we may write this last probability as

B (Zl(t') + 1 Z,(t)

m m-—1

X(t) = m)

= m(m=1)7 (BZ®ZE) | X()=m) + sBZ(E) | X(¢)=m))

m—2 1 1

8m am 8

from the inductive hypothesis and part (i). Substitute this into (5.13) to

obtain
E(Z(8)Za(t) | X(8) =m +1)

m(m — 1)
2

x P(chosen individuals are from different colonies | X(t) = m +1)

1m(m —1)
4 2

as required. O

We may now conclude our proof of Faddy’s Conjecture:

Corollary 5.10 For a birth process {X(t), t > 0} with birth rates A\, Ag,. . .,
end X(0) =1,

(i) Var(X(t)) > E(X(t))(E(X(t)) — 1) if the birth rates are superlinear

(i) Var(X(t)) < E(X(t))(E(X(t)) — 1) if the birth rates are sublinear.
Proof:

It follows from Lemma 5.9 that

B(Z:(0)Za(1)) = E((X() ~ 1)(X (1) ~ 2))
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B(zy(1) = B(z,(t)) = ZX =1
Thus

(BE(X(t)—1)
4

Cov(Z1(t), Z5(t)) -;—E((X () — 1)(X(t) - 2)) -

- %[Var(X(t)) — B(X(O))(B(X (%)) — 1)]

so that the result now follows from Theorem 5.8. O

It should be noted that it is possible to prove Faddy’s conjecture for all
N > 1 using this latter approach, but the colony process it uses seems less
natural than the family process used in the earlier proof.

Having completed the proof of Faddy’s conjecture we conclude by noting
that it is possible to prove that, if the birth rates are super-linear, the existence
of individuals in different families is positively correlated. We once again
regard our process as consisting of N > 1 families and simply label the possible
individuals within a particular family with the positive integers, so the nth
individual born into family ¢ is labelled (¢,n) say. We then use a natural
coupling to show that the process in this formulation is monotone. Next define
fin to be 1 if the nth individual in family ¢ is alive and 0 otherwise. Similarly
define g;, for the mth individual in family j. f and g are clearly increasing
(and bounded) functions on our state space. It is now a straightforward
application of Harris’ theorem (with the usual approximation argument for
the generator) to obtain the desired result.

It is clearly tempting to speculate that for sub-linear birth rates the ex-
istence of individuals in different families is negatively correlated (excluding
the initial founder individuals). While the author suspects the truth of this

statement, no proof has yet been found.
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Chapter 6

CORRELATION
INEQUALITIES

6.1 Positive Correlation Inequalities

A concept which arises naturally in many areas of applied probability is that
of positive correlation. It is often intuitively reasonable to expect related
events to be positively correlated. However, many of the results one expects
to be straightforward are very hard to prove. A particularly useful result in
this context has proved to be an inequality due to Fortuin, Kasteleyn and
Ginibre (the so-called FKG Inequality). This has provided quick methods
of proof for many previously very difficult results, as well as leading to the
discovery of new ones. For full details of the result the interested reader is
referred to Fortuin, Kasteleyn and Ginibre (1971). We shall give an explicit
statement of the result in a form suitable for our future requirements.
Define a lattice I" to be a partially ordered set in which any two elements
z and y in I" have a least upper bound z V y and a greatest lower bound z A y.

A lattice is called distributive if the operations V and A satisfy either of the
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following (equivalent) conditions:

zA(yvz) = (zAy)V(zAz) forallz,y,zinT (6.1)

zV(yAz) = (eVy)A(zVz) forall z,y,zin . (6.2)

We define a real-valued function f on such a set I' to be increasing (decreasing)
if for any ordered pair ¢ < y in I we have f(z) < f(y) (f(z) = f(v)).
Now if u is a positive finite measure on a partially ordered countable set T"

we define (f) to be (£)f(@)
_ Ezef‘/‘ & f z
(f> B Zzel‘ /"’(x) '

Then we have

Theorem 6.1 (FKG Inequality) IfI' is a finite distributive lattice and u

13 a positive measure on I' satisfying the following condition:

(a) For allz and y in T, pu(z A y)u(z V y) 2 u(z)u(y),

then if f and g are both increasing (or decreasing) functions on I' we have
(fg) = (f){g)-
A simple example of a finite distributive lattice is
Q = 2% = {all subsets of X} where X = X1, X,,...,Xn (some N).
Here, for A, B € ) we define
AANB=ANB and AVB=AUB.

We shall return to this example later.
As was stated earlier, the FKG Inequality has been used to provide rel-
atively simple proofs of results which were previously difficult. An example

of this is the result first provéd by Harris (1960) in the field of percolation
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models which now follows as an easy consequence. Percolation processes were
originally introduced by Broadbent and Hammersley (1957) as a means of
modelling the flow of liquid through a random medium. These models have
proved useful in a wide variety of applications, such as petroleum flow in sand-
stone and as simple examples of critical phenomena in statistical mechanics.
More details can be found in Kesten (1982) and Welsh (1986), but here we
simply present a brief description of the salient features.

We start by supposing the existence of a finite regular lattice G (the infinite
case is usually a straightforward extension). We then let V' denote the set of
vertices (or sites) of G, and E denote the set of edges (or bonds). There
are two types of percolation: site percolation and bond percolation. Site
percolation includes bond percolation as a special case (Fisher (1961)), and
so we shall only consider the former here. In this model sites are either open
or closed, and it is defined by introducing a random field ¢ on V' where u(A)
is the probability that A is exactly the set of open sites. Hence we can define
the distribution function F' by F(A) = Ty54u(Y), and so F(A) is simply
the probability that the set of sites A is open.

For events {A open} and {B open} to be positively correlated we would

expect a statement like the following to be true:
P(A open | B open) > P(A open) where A,BCV,
or more generally
P(A open | BUC open) > P(A open | B open) A,B,C CV.

Note that the above results are trivial in the case of classical percolation
(which defines u(A4) = pl4l(1 — p)V\4l), but we will move on to give more

interesting examples. Indeed these results will be true of any probability
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measure p which obeys the conditions of the FKG Inequality, ie.
p(AUB)u(ANB) 2 p(A)u(B) A,BCV.

To see this choose

1 ACX

0 otherwise

1 BCX
g(X)={

0 otherwise.

f(X)={

Note that in this case (f) = P(A open), similarly (g) = P(B open) and
(fg) = P(AU B open). Thus the conclusion of the FKG Inequality gives us
the required behaviour.

Moving on, if we now define
P(a — b) = P(3 a path of open sites from a to b)

and similarly P(¢ — d), for a,b,¢,d € V, we can write
Pla—b)= ) u(X)fap(X)
Xcv

where

1 if X contains a set of sites forming a
fap(X) = path from a to b
0 otherwise
Clearly f,4 and f. 4 are increasing functions (since f,3(X) =1 and X C
Y implies f,4(Y) = 1), so we apply the FKG Inequality to deduce that
P(a —b|c— d)> P(a—b). In other words, the probability that there ex-
ists a path of open sites from a to b, given that a similar path exists from ¢
to d, is greater than the probability of existence of such a path given no prior

knowledge. This is intuitively what one would expect, since the existence of
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a path from c to d tells us that more vertices than might be expected are
open and this increases the likelihood of there being a similar path from a to
b. This is just one example of the sort of information which can be deduced
using the FKG Inequality and it is the result proved at some length directly
by Harris (1960). There are obviously many others.

Many models in statistical mechanics are concerned with ferromagnetism.
Ferromagnetism derives from the quantum mechanical spinning of electrons.
The “spin” (and hence the magnetic moment) can be represented by an arrow
which points up or down and which flips between the two orientations. So
each site of the lattice G has a “spin” of either +1 or -1 and we interpret u(A)
as the probability that the set of sites with positive spins is exactly A. The
most common such model is the classical Ising model (see Ellis (1985) Section
IV for instance). It has p given by

ux) = e - D x ey,

where a, 8, Z are constants and e(X) is the number of edges having only one
endpoint in X. Obviously we can view this as a percolation (with the two
different spins corresponding to open and closed sites). It is easy to check
that e(XUY)+e(XNY) < e(X)+e(Y), and this implies that u satisfies the
conditions of the FKG Inequality, which can hence be applied. For instance, it
can be used to prove the existence of infinite volume Gibbs states (for details
see Ellis (1985) Section IV).

Another common area of application for the FKG Inequality is that of
particle systems. An easy example is the voter process. Informally, in this
process sites of a graph wait independently for an exponentially distributed
period of time until their associated “bell” rings. A site can have one of

two possible colours (commonly black and white). When its bell rings a site
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chooses a neighbour at random and assumes the colour of that neighbour.
Should the neighbour be of the same colour then no change occurs. We fol-
low the evolution of the process through time and investigate its behaviour.
Amongst other things the FKG Inequality can be used to show that the in-
variant measures for the distribution of vertex colours is positively correlated.
For a more rigorous and in-depth look at these processes the reader is referred
to Liggett (1985).

Finally we give an application in the field of combinatorics. Define an
infinite sequence {ax : k > 0} to be log convex if a? < ar_1ar41 (1 < k < 00).
A sequence (b : k > 0) is log concave if {b~! : k > 0} is log convex. Commonly
occurring examples of log convex sequences include the binomial coefficients
and Stirling numbers of both kinds (Abramowitz and Stegun (1972)). The
FKG Inequality is used to prove the following result:

Theorem 6.2 If (ar : 0 £ k < n) s log convez and positive and (b; : 0 < <
n),(c; : 0 <1 < n) are both increasing (or both decreasing) sequences then
zn: ak Zn: arbrcr > i arb Xn: axCr.
=0 k=0 k=0 k=0
The proof proceeds by defining di = ax/(}) for 0 < k < n, S ={1,2,...,n}
and p(A) = dj4 for all A C S. Then if weset f(A) = b4}, g(A) =4 (A C S)
we can, after a little work, apply the FKG Inequality to conclude the result.
For more details refer to Seymour and Welsh (1975).
Notice that if we put a; = 1 for all k£ we get:

Theorem 6.3 (Chebyshev) If by < ... < b, and ¢y < ... < ¢c,, or by >
. 2byand cg> ... > ¢, then

1& 12 1&

- N <= c: ).

(F22) (REe) < (3Ee)

=0 =0 =0
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6.2 Negative Correlation

We now want to turn our attention to the subject of negative correlation,
but first we must give a little thought to how we will define the concept.
It is, of course, no problem to define positive correlation. If one looks at the
conclusion of the FKG Inequality one has an excellent definition, ie. the system
(or underlying measure p) is positively correlated if E(fg) > E(f)E(g) for f, g
both increasing (or both decreasing) functions. But unfortunately it is not so
simple where negative correlation is concerned. Our first thought might be to
simply reverse the direction of the FKG Inequality to get E(fg) < E(f)E(9).
But if we put f = g we contradict the Cauchy-Schwartz Inequality and so
clearly this is inappropriate. So what kind of definition is appropriate? To
help determine this we will now give a few examples of situations in which
some sort of negative correlation seems to be present.

(i) Death Processes: These occur widely throughout statistical literature

and can arise naturally in many ways, (for instance, many occur as compo-
nents of compartmental systems). An elementary account of death processes
can be found in Taylor and Karlin (1984), but for our purposes the following
definition will suffice.

A death process {X(t) : t > 0} is a continuous time Markov chain with
X(0) = N and infinitesimal transition probabilities (“death rates”)

ifj=k-1
lmh ' P(X(t+h) =5 | X)) =k)=1{ "7
hl0 0 ifj#kk—-1
The state 0 is an absorbing state. In Ball and Donnelly (1987) the authors
prove a conjecture of Faddy concerning the relative variation of death pro-

cesses for concave or convex death rates. In the course of this they prove

that if we label the individuals initially present in the process 1,2,..., N and
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define indicator random variables

1 if nis alive at time ¢
I.(t) = n=1,...,N
0 otherwise

then if the death rates puy,un-1,-.., 41 form a concave sequence we have
E(I.(t)I.(t)) 2 E(In(t))E(In(?))

and if the death rates form a convex sequence we have
E(In()I(t)) < E(In()) EI(1)).

The result for a convex sequence of death rates can be interpreted in the

following way

P(individual m present at ¢ | individual n present at t)

< P(individual m present at t)

In other words, the presence of particles is negatively correlated.

(ii) The Anti-Voter Process: We formally define the anti-voter process n!

by supposing the existence of a finite connected graph G with vertex set V
and edge set E. Initially we colour the vertices in A black and those in V'\ A
white. Then we associate a “random clock” with each vertex of G which rings,
independently for each vertex, at the instances of a Poisson process of rate
1. When a clock rings the associated vertex chooses a neighbour at random
and adopts the opposite colour to the chosen neighbour. The set of vertices
which are black at time ¢ is denoted by 5. Clearly, since the statespace of
the process is finite, it must have an equilibrium distribution, and one would
expect because of the nature of the model some form of negative correlation

in the equilibrium distribution. In fact it is possible to prove that for graphs
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with enough symmetry, the equilibrium distribution is negatively correlated

in the sense that if z and y are neighbouring vertices, then
P(z black |y black) < P(z black)

and

P(z white |y white) < P(z white)

For the exact result and further details see Donnelly and Welsh (1984).

(iii) Anti-ferromagnetic Models: If one considers the Ising model as stated

in section 6.1 for 8 > 0 we have an example of positive correlation. In some
sense a positive # encourages neighbouring vertices to have the same spin.
However, if we allow < 0 we get a form of negative correlation. At present
it has proved impossible to treat this model in any generality and indeed it is
not clear how such an analysis should proceed. But these models do exhibit
negative correlation and they are discussed in more detail in Griffiths (1972

Section V.C.1.).
(iv) A Simple Infection Model: Suppose the existence of a finite population

of individuals z,,z,,...,znN, and introduce a model of infection where the
probability that a particular subset z;,,zi,,...,; is infected is simply a
function of k. Then, given that there are exactly M infected individuals,
we have
. M .
P(z; infected) = v for1<:< N,

M-1 M
M << e
N—1<N for1<4,7<N, t#

So the status of individuals is negatively correlated.

P(z; infected | z; infected) =
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6.3 A Negative Correlation Inequality

Before we do anything it is necessary to spend a little time proving a lemma

which will be useful later on:

Lemma 6.4 Given sequences of positive numbers (ax)i—q, (bk)i=o and (Tk)i=o
such that the following conditions are satisfied:

(i)ao—b <0

(i1) ax — by increases as k increases,

(311) Y reo @k — 2 heo bk =0,

m) m. Adoamonona na ..n,....,,....,..
€

1) Lk=0@k — Lk=0 b
(iv) =i decreases as k increases.

Z QT S < Z bkxk

(Note that condition (i) is implied by (u) and (i11). It is included merely for
clarity.)

Proof:

Define ¢4 = ax — by, k =1,...,n. Then ¢, increases as k increases and
z) decreases as k increases. Thus since (—z) increases as k increases we can

apply Chebyshev’s inequality (theorem (6.3)) to get
1 5e) (hRem) <3
= k) | =2 (=zk) | < =3 erl(—2x).
(n k=0 n k=0 n k=0
Thus
1> ) (1 n ) 1 n
_ch —Zxk Z—chxk.
(” k=0 ™ k=0 ™ k=0
But = >7_,cx = 0 by assumption (iii), so

n
> ez <0,
k=0
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ie.
n n
Z arzr < Z brxy. as required. ]
k=0 k=0
Having completed our brief diversion we now proceed as before and suppose

the existence of a set

X = {X1,Xz,...,Xn}

and let
Q = 2%* = {all subsets of X}.

Hence | 2 |= 2.

Let u be a measure, p :  — [0,1] such that 3" 4¢q u(A) = 1. Finally,
define

QA= > wu)

YeQ,Y2A
We now return to the problem of defining what we mean by negative cor-

relation. Recall that
(fg) < (f){g) for all increasing functions f, g

is not possible. Restricting this to functions f, g which are the indicators of

disjoint sets gives
Q(AUB) < Q(A)Q(B)
or alternatively

P(4|B) < P(B)

as is suggested by the examples of negative correlation in the previous sec-
tion. However, we can’t extend this to all indicators (because of the Cauchy-
Schwartz Inequality again), but we may hope to “correct” the left-hand side

to get the following

Q(AUB)Q(ANB) < Q(A)Q(B) for all A,B.
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It is in fact in this form that we will prove a negative correlation inequality:
So we aim to prove a result analogous to the FKG Inequality, but for
a negatively correlated measure p. Specifically, we will prove the following

result:

Theorem 6.5 Suppose we have a measure u and a function Q both acting on
Q = 2% where X = {X,,X,,..., Xn} and Q(A) = Lyeqyoa #(Y). Suppose
further that u(-) depends only on | - | and that p(AUB)u(ANB) < u(A)u(B)
for all A/, Be Q. Then

Q(AUB)Q(ANB) < Q(A)Q(B) for all A,B € Q.

Before beginning the formal proof we have a few general comments. Firstly
we should point out that this work is closely related to that given by Karlin
and Rinott (1980). In particular the theorem on page 501 of that paper. Their
work is in a continuous setting however. They define a measure () as the
density of a continuous random vector (X;, Xs,...,X,) and show that for a

u(+) satisfying certain conditions we can make the following statement:
E(IT164(X5)) < B4 X)) (Mg 142 $:( X))

for 1 <k < k+1< n, for a general class of functions {¢;}}, (which includes
the indicator functions). This is a more general result, but as several authors
have pointed out (eg. Block, Savits, and Shaked (1982), and Joag-Dev and
Proschan (1983)) the condition on g (ie. that u is strongly multivariate reverse
rule of order 2 (see Karlin and Rinott (1980) for definition)) is very hard to
interpret and difficult to verify. Additionally, although the authors briefly
mention the case where the X; are discrete (as they are for our result), and
say that some of the results carry over, they give no details. The advantages of

the approach presented here are that the condition on the underlying measure
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p is more natural, easier to check, and that the proof of our result is more
direct. It is worth noting that if the set of random variables (X;,...,X,) are
exchangeable then the condition that u(A) = u(B) whenever | A |=| B | is

immediately satisfied. We also note without proof the result

Lemma 6.6 Suppose u(A) = u(B) whenever | A | =| B | and denote the
value taken by pu on sets of size ¢ by p;. Then

pi-1ptiv1 = (L) u? for all i

= W(ANB)u(AU B) > (<) u(A)u(B) for all A, B.

So it is sufficient to check p;_jpui4 > (L) p? for all 7 in order to satisfy the
first condition of our result.

We shall prove theorem 6.5 in stages. In outline we will proceed as follows.
Initially we prove the result for singleton sets A, B. There are then two cases
to consider for more general A, B:

1) ANnB #0
(ii)) AnNB =0.
In the first case we suppose A N B = C and define
Q={DeQ|CCD}and Qu(E)= ¥ u(¥).
YeQe,YOE

Then for a natural choice of measure puc on ¢ we apply induction on N =

| 2| to get
Qc(E U F)Qc(E N F) < Qc(E)Qc(F) forall E< F € Q¢
and so deduce that

QEUF)Q(ENF) < Q(E)Q(F) for all E, F €
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as required. In the second case (ie. AN B = @) we define C = A U {b}
where b € B and so

Q(BNC)Q(BUC) < Q(B)Q(C)

by case (i). Then, by induction on | AU B |, we see that

Q(AUL)Q(AND) < Q(A)Q(D).

Combining the two we get the required conclusion.

We now begin the formal proof of theorem 6.5 with the following proposi-

tion:
Proposition 6.7 Suppose

p(ANB)u(AUB) < u(A)u(B) for all A<B e

and that pu(A) = u(B) whenever | A |=| B |. Then

Q({a} N {¥HQ({a} U {3}) < Q({a})Q({b})

for all a,b € X with a # b.
(Clearly if a = b we simply have equality.)

[Note that in future we shall abuse notation by writing Q(a) instead of Q({a})

ete. |.
Proof:

As pu(Y') depends only upon | Y | denote by y; (i =0,1,...,N) the value
taken by p on sets of size i, (ie. y; = p(Y) where | Y |= 7). Hence the
conditions u(A N B)u(A U B) < u(A)u(B) for all A, B € 2 are equivalent to

i,j=0,1,...N
{pickpjoe < pips} forall &< j (6.3)
k=0,1,...,(i A J).
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In our case we have |a | =|b| =1 and so u(a) = u(b) = .

Since Q(a) = Yyeqyss #(Y) etc. we have

=1 1 —

N -
Q(a) = mi ( N 11 ) = Q(b).

Similarly

N —
Q(an)=>:u,-(N 2)

=2 1—2

and

=0

Q(aﬂb)=Q(@)=1=Zu;(]j)-

Now let n, = Q(a U b). Then -

N —
Qa) = Q(b) = Zu,-(f‘,’ 1)
=" e (V) B ()
— u1+uN+A_rZ_-:luil( ]\.7__12)4_(_7\'7__22 )}

N (N-2) v (N-2
= Mi + i

Fu (1) Eu(V7)
= n,+ng

N -2

where n, is defined as Y N7 i (
i—1

). Now define n, by

ny, = 1—(2n;+n,)
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Il
&

B () PER ()8R (02

= po+m(N—=2)+pna[N -2+ N -2)]+un(1-1)

Now for : = 2,3,...,N — 2 we have
+
1 ) t—1
N-2 N-2 N-2 N-2
= + + + .

So, on simplification,
N-2 N-2
ny = Z Hi ( . ) .
=0 ?

Note that by definition of n,,

Q) =1=n,+2n,+n,

Now we have
Q(aUb) = n,,
Q(a) = Q(b) =N, + Ng,

and

Q(and) =Q(B) =ny+2n, + n,.

We want to show Q(a N b)Q(a Ub) < Q(a)Q(d), that is
ny(ny + 2n; +n,) < (n, + ng)? = n? + n2 + 2n,n,,
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which is equivalent to

n,n, < nl.
So it is sufficient to show that
' 2
N N-2 N-2 N -2 N-1 N-2
> owi , D . <D m _
i=2 1—2 i=0 ? i=1 1—1
that is,
N N-2 N-=-2 N-2 N-1N-1 N-2 N-2
DD Mk _ <D0 min
Jj=2 i=0 J—2 ] i=1 j=1 1—1 J—1
(6.4)
We can rewrite (6.4) as
N—1 iA(N=1) N-1 (i=1)A(N=i) ,
DD BickMitkGik + 3. D Hici-kMitkGix (6.5)
t=1 k=0 =2 k=0
N—=1 (i-1)A(N—i-1) N—1 (i-2)A(N—i—1) '
< z z Hi-kBivkbix + Z Z Pic1—kMivkbyy
=1 k=0 =2 k=0

for a sequence of coefficients {a;r}, {a;}, {bix}, {b;x}. In other words

a;r = the coefficient of p;_kpi+r in the left-hand side of (6.4)

a;; = the coeficient of p;_1_kpiss in the left-hand side of (6.4)

b;x = the coefficient of p;_ku+x in the right-hand side of (6.4)

b;k = the coefficient of p;_;_piyr in the right-hand side of (6.4).

In some cases some of these coefficients will be zero. Their actual values
will be found later.

Hence to prove (6.4) (and hence the proposition), it is sufficient to show

that the following two conditions are satisfied:

N—1iA(N-i) N-1 (i-1)A(N—-i-1)
oY pickpirkair <) > Wik Mivkbik (6.6)
i=1 k=0 =1 k=0
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N—1 (i—1)A(N—i) N—-1 (i-2)A(N=i-1)

l‘i—l—kﬂi+kali,k <> > Bim1-kHitkb; - (6.7)
=2 k=0 =2 k=0
: N . .
Note that since y; = ' we have that u; = un_; for all 2. Hence it is

¢
sufficient to show that (6.6) is true for ¢ < % and that (6.7) is true for z < %-{-1.

We start by showing (6.6):

It is sufficient to show it for each : = 0,1,..., [%] That is, to show

iN(N=3) (i—1)A(N=i—1)
PicklitkQik < > HikitkDik (6.8)
k=0 k=0

for eachz‘=1,2,...,[%’-].

Note that if we now define
Tk = PitkMi-k, Gk = ik, and by = b,

we have sequences as in the statement of Lemma 6.4. Clearly the z; are
decreasing as k increases (by the conditions for the proposition), so it remains
to check conditions (i), (ii) and (iii). If these are satisfied then the lemma
implies that (6.6) is true. So we need to determine the exact values of the

ax’s and by’s.
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Now the a;’s are as follows:

4

(7))
)

0

ar = {

\

And the b;’s are given by:

0 N -2 N -2
1—k—1 t+ k-1
N-2 N -2
1—1 1—1

0

¢/

by

A

\

yy (e R ey

)

i—k—z) mk22
t+k<N-2
k=0
2<i:<N-2
0<i—k<2
k>0,
or
N-2<i+k<N
k>0
otherwise.

k>0

t—k2>1

t+k<N-1

k=0

1<:<N-1

otherwise.

By symmetry we are assuming 1 < %, so for : = 0 we have no terms for either

ai or bg. For i = 1 we have to show

N-2 N -2 - N -2
i—1 i+1-2 /1 | i—=1

which is true since both sides equal 1.
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Fori=2,3,...,[¥] and k > 0 we have

iy [ eus B o | Pt |
() ()

Note that for £k = 0 we have
(N—z)(N—z) (N—zy
ar — bk = -
) 1—2 1—1
(N =2)}(N -2)!
(G—-—DNE=2)(N -7 =1)(N —:-2)!

ar — b =

[z’(Nl— D G- 1)(13 —is 1)1

< 0 as required.

N N
So condition (i) is satisfied. Note also that ( ) = ( ) N=Mi1
M

implies that

N -2 N-2

i—k 1+ k-2

_ N -2 N-2 YN-i+k—-1i+k—1
i—k—1 i+k—1 i-k N-i-k

o)
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_ N -2 N-2 N—i—-k—-1i—-k-1
o \itk—1 ) \ick—1 itk N—i+k
Hence, if we write
N-2 N-2
Cl= .
t—k—-1 t+ k-1

N -2 N -2
ng
1—k—1 t+k—-1

then for £ > 0, we may re-write (6.9) as

w-n = o)

+ N—-—it—k-1:1-k-1 _1
i+ k N-—-14+k

_ ¢ [(N—-i+k—1)(i+k—1)—(z’—k)(N—z‘—k)
! (i— k)N —1—k)

and

+(N—i—k—1)(z'—k—1)—(i+k)(N—i+k)]
G+ k)N —i+ k)

=

'1+2kN—N—2k+1+2k—2kN—N
| G—k)(N—-i—k) (G+k)(N—-i+k)

= ¢

[ (1 - N)(1-2k) (1 - N)(1+2k) }
G—k)(N—i—k) (+k)(N—-i+k)

(1—2k)(i + k)(N — i + k)
(i—k) i+ k)N —i— k)N —itk)

= Gi(1-N)

(1+2k)(s — k)(N — i — k) ]
G—k)G+E) N —i—k)(N —i+ k)
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2(1 — N)(iN — i + k? — 2k*N)
G=k)Gi+ k)N —i—k)(N—i+k)

2(2k2N + 12 — k* — iN)
2G-k)GE+ k)N —i+k)

2[k*(2N — 1) — (N — 1))
G—k)(+R)(N—it+k)

This clearly starts negative (for £ = 0) and becomes positive as k increases

(since N > ¢ > k). So part (ii) is satisfied. It remains to show part (iii).

Hence

oo 16y G [ P
(")) =
o) )]

where the first component corresponds to the (k = 0) term, the second corre-

sponds to (k = i—1), the third to (k = ¢), and the fourth and fifth components

1—2

+2

k=1

correspond to (k =1,2,...,1 —2). Also

i N—2 N—2)\ i1 N—2 N-—2
kgbk:( i—1 )( i—1 )+1§=:12(z'—k—1) (z‘+k—1)' (6.11)

(Note that b; = 0.) Now note that the (k = [) term in the fourth component
of the right-hand side of (6.10) equals half the (k = [ — 1) term in the final
component of the right-hand side of (6.11). Similarly the (k = [) term in
the final component of (6.10) equals half the (k = [ + 1) term in the final
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component of (6.11). Hence we write _
N-2 N -2 4 N-2 N-2
i—k i+ k-2 1+ k 1—k—2
to get
i N-2\(N-2 N-2\[N-2
fo e o) ()07
(N—Z)(N—z) (N—Z)(N—z)
+ . + . .
0 21— 2 1—1 1—1
(N—Z)(N—z)
+
t+1 t—3
i N-2 N—2 N—2 N—2
go e ()00
(N—z\(N-z\ (N—z)(zv—z)
+ +
i-3 )\ i+1 1 2 — 3
(N—z\(N—z\
+
0 ) 2i—2}

Zak - Z bk =0
k=0 k=0

C =

k=2

and so we have

as required. So condition (iii) is satisfied and hence (6.6) is shown. It now

remains to show (6.7). This proceeds in an exactly analogous manner to the

proof of (6.6) and the interested reader can find the details in Appendix III
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Having demonstrated that conditions (6.6) and (6.7) are satisfied, we have
completed the proof of Proposition 6.7. O

We now move on to the proof of the main result, Theorem 6.5.

Proof (of theorem 6.5):

We proceed by induction on N (= | X |).

The result is clearly true for N = 1 as either A=0 or B=0 or A = B.
For N = 2 we have either of the following two cases:
(i) A=0or B=0or AC Bor B C A, in which case the result is obvious.
(i) A= {a},B = {b} some a € X,b € X,a #b.
In Case (ii) Proposition 6.7 obtains. So suppose the result is true for all Q'
such that | Q' | =2M (M < N).
Now, given A, B € Q there are two cases:
Casel: ANB#0
Case2: ANB = 0.
We start with Case 1.
Suppose AN B = C # (. Now define a new set ()¢ as follows:

Qe={DeqQ|CCD}
Define pc(E) = ATQ where T' = Y geq, #(E). Hence Ygeq, #c(E) =1 and

po(B)po(F) = “_(Z_ffl #_(111”'_)

1
2 mMENF)WEUF)

= uo(ENF)ug(EUF).

Clearly uc depends only on | E | (by definition of u), so uc satisfies the

conditions in Theorem 6.5. But since | ¢ | < | @ | we can use the inductive
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hypothesis. So we define

Qe(E)=_ 3. po(Y)

YGQC 1Y2E

to get
Qc(ENF)Qc(E U F) < Qc(E)Qc(F).
But Q¢(E) = ﬂTQ-, and so we have

QENF)Q(EUF) < Q(E)Q(F) forall E,F € Q.

In particular
Q(ANB)Q(AUB) < Q(A)Q(B)

and so Case 1 is proven by induction.
Case2: ANB =0.
Let

M=|AUB|=|A|+|B|<N.

Without loss of generality suppose that | A | < | B |
Define C = AU {b} where b € B.
Then BN C = {b} # 0, and

| BUC |=| BUA|=M < N.
So by Case 1 we have

Q(BNC)Q(BUC) < Q(B)QC),
Q(5)Q(AU B) < Q(B)Q(AUYD),

which implies

QBQ(AUD)

Q(AUB) < 10

(6.12)
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We now start another induction: _
So suppose by induction, that for a set Z = {Z;,2,,...,Zn} of size N,
Theorem 6.5 is true for all sets D,E € Z such that | DUE | < M. (The
first step of this induction, that is | D U E | =1 or 2, again follows from
Proposition 6.7).

Then without loss of generality we have picked A such that | 4| < X,
Thus

|AU{b}|S%+1<M (for M > 2) where b € B,

and so by the second induction we have

Q(AUbR(AND) < Q(A)Q(D)
QAU B)Q(0) < Q(A)Q(D)
Thus,
Q(AUDb) < Q(A)Q(D). (6.13)
Hence by applying (6.12) followed by (6.13) we have

QANB)Q(AUB) = 1xQ(AUB)

. QAB)RAUY)
DT0)

. ABIRAQM®)
= T Q0

= Q(A)Q(B).

In other words Q(AN B)Q(A U B) < Q(A)Q(B) as required. So both induc-

tions go through, and the theorem is proven.
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.1 Appendix I

We present here details of the derivation of a; and by from Chapter 3 page 37.
We start with

ar = [pr(k)(1 = pr(k)) + ps(K)ps(k))/I(1 = pa(k))(1 = Pr(k)) — Po(k)ps(k)]

= [p1(K)ps(k) + ps(k)(1 — pa(K))]/[(1 — pa(k))(1 — pr(k)) — pa(k)ps(k)]
Where the p;(k) are as defined in (3.1). Let us begin by considering the

nurmmerator of ai:

p1(k)(1 — pr(k)) + ps(k)ps(k)

= (p:, e —p)ik———)

1
e N—k _( ~ )N EN—k—1
PN p N—1
N EN—Fk—1
+(1—) (1 p)

N-1

(G pp|EE=AN—EN—k-1 kE-1N—kN-k-1
NN-1 N N-1 NN-1 N N-1

o[k ~IN-kN—k-1 kk-1N-k-1
PA=PIINTT™ N N-1 "NN-1 N-1

kk k—1 k—1N-—k—1
+(1-p)y + ?

1 PN A PNZ1I NZ1

k—1 N-—k-1 k
= N_l[P“Pﬁ”l'P)N

_p(1-p)N fl (N_k+ﬁ)]

N N
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k-1 . )k o N-k-1 N—k—1+ SN —k—1
- P Py=P—n—7 "P"n-1 "PTN-1

k-1 +U ) N - k—l

k[ k-1 (l—vp)(k—l)
- N_IPF1t TN ]‘

Next the numerator of b;:

p1(k)ps(k) + ps(k)(1 — pa(k))

= (p:, + (1 —p)klc 1)
><< p)kN k(Z—U))

H1-peds 1@—p%:k—u~q»kN Ye-v)

kk—1kN—k kk—1kN—k
— ) | — — (2 — — — — —
(1 ’”)[NN—1NN—1‘2 WoNNCINNoIC w]
—1kN-—k
w1 -p) [ FTE A=)
EEo1 ko kk-1N-k
NN-1IN-1 NN-IN-1
k—1 k& kk—1
2 — — — —————
ML e Ll g 2
k—1kN—k kk—1 &
— — _ (1 — — (1 —
PI-P | yann 1t "Wt yyoiv 1@ ”4
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Jk—1 k
PNTINC

k—

(1) + (L P

-1

= p(1-p)(1 —u

)k—llc_ N-k+k
N-1N| N-1

Lk—1 k k-

+P 5o 1N P)———l

k

= G- - P (R G- )

k k-
Hi-pitol
k-1 k kk—1
yoanv—1tA-Pyy—T

= p(l-wu)

L ra-pi]

Finally we move on to the denominator:

(1 = pa(k))(1 — pr(k)) — ps(k)ps(k)]

_ N—k kN k _u)
y 1_.N-k-1'( )N EN—k—1
PN 1 IR N —1

a-p A v a- e e v)
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 N-kN-k-1kN- k 2—w
N N-1 NN-

a1 )N EN-kN—k-1 EN—k, )N—k—l
PE=PIINT™N N-1 "NN-1¥ YN

N—kN—k-
TN N-1 N “_“4

L2 [V kN k-1 C—p kN— k(2 )+N—kN—k—1
N—-1 N-1 PIINNC N N-1

N—-k N-k-1
—-p

N1t N-1 ]“

B (1_)N EN—kN—k—1 kN—_kN—k-1
PE"PIIN-TTN N-1 "NN-1 N-1

o [N okN k-1 (- kN— k(2 )+N—kN—k—1
PINT1T N1 PINNC N N-1

[N—k N-k-1
—D

N-1" N-1 ]+1

= e N EN-—k—1(N—k k|, o[N—kN—k-1

PP 1 N-1 N N N—-1 N-1
kN—k N—kN—k—1

_(1_p)[NN —ut R N—1]

[Nk N-k-1]

PINTT N—1

_ N-kN-k-1 _a )kN k )+N—kN—k-1
= PNT1 N1 “PNNC N N_1
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[Nk N-k-1]
PIN-1T N1

N—-ktN-k-1 N-k N-k-1
PINT1 N1 "N-1 ~N-1

a )kN k )+kN E N—kN-k-1]
TUTPINN Y TYWT NN TN N

N—kN-k-1 N-—k N-k-1
PINCT1TN-1 N-1 "N-1

—(1- )[1’;];\77 k(l—u)+]—VT\,—k]+1

N—-tktN-k-1 N-k N-k-1
PINT1T N1 N—1 N —1

~a-p) |-+ Tt o] 4

(L N-kEN—k-1 N-k_ N—k-1
p[ tTN-1N-1T TN-1 “N-1 ]
+N((1N P) 5 INQY = 1) = KV = B)(1 =) = (N = F)V = 1)]

N [(N—1)+u(N k—1)— (N —k)— (N — k—l)]

(1 p)k N
N(N 1)[k(l u) — 1+ Nu]
N2—N+k2+k—2kN
N -1 N-1
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(1 pk

N(N )[k(l—u) 1+ Nu]

p [ k2+k—2kN] (1-p)k k(1 — w) — 1+ Nu]

- N—1L2k+ N -1 N(N -1)

[k(1 — u) — 14 Nu]

p [k*—2k+2kN +k—2kN (1-p)k
N-1] N-1 N(N -1)

_ k k—1+(1 p)k
= PNOIN-IT NI -

[k(1 —u)—1+ Nu]j

S P EA L e P A
= NPV P ¢ TN
Hence . pk'l + (l-p}\(,k-l)

a

k= pN-l +(1_ _ku+(1—P)k;\-]_l

b

g = P = e =
and this simplifies routinely to give
(k=) +p=1)
(1-p)N=k)(N-1u+(k=1)(N+p-—1)
(k—=1)(N+p—-1—pNu)
Q=p)(N—=k)N-1Du+(k—-1)(N+p-1)

ar =

b =

as required.
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.2 Appendix II
Here are the details of the simplification of equations (4.5), (4.6) and (4.7).
.2.1 Section A

Firstly we give the derivation of the equations (4.8) from equation (4.5).

P(Q% | Cic1 =2,K;-1 = K)

{f:p‘(l —p)* ( 2 ) ifpj(l —p)T* ( sz )H
1=0 2 Jj=0 J

+O(NY)

0
= 2
d=0

= (1-pF+OWY

P(Q}( \ Cin=2,K; ;= K)

T-2 —
= pi-p) ( j ) S p(1 - p)T-2 ( T2 ) Lo
J

§=0

= 2p(1—p)+O(NY).

T-2 . T —
P(Q%( I Ct—l = 2, Kt—l = I{) = p2 E pJ(l _p)T—2—] ( .
Jj=0 J

2
) +O(NY)

= p*+O(N7Y).

All these are very easy since for them we ignore terms O(N~!). For the

next three however we can only ignore terms O(N~?%), so they take a little
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more care.

P(Q(}{ | Ct—l == 1, Kt—l = I()

U B T-1 B .
SO

N-K-j o N-K-j-(T-0-j-1)
N-d-j N-d-j—(T-0-j-1)
cixlxN-K-T N-K-T-(T-1)

T-1 _
= (1-p) Yy, (pj(l-p)T—l_j ( T . 1 )

N_K-j N—K—j—(T—j—l))
X - X o0 X - :
( N=jJ N-j—-(T-j-1)

(A SELE ETLE)) IS

- a-nY% (pfu —p)T1 ( -1 ) (_NJ;K)”"') + O

(since ZV—J:TI_{:—;J4- =1- %_+ O(N—2))
- (1-p)§(pf(1—p)T-l-f(T‘1)(1_5(2’1“-1‘)))
j=0 j N 1
+O(N"2)
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_ u_m}_%@T_mmmT—LMﬂ+owﬂ)

= -p[1-F7CT-@-1p)| + 0N

_ [ TK(2-p) pK 2
-—O—M}———ﬁ———N + O(N72).
‘We now move on to:
1 1Ad
P(Qk | Cici =1,K;3 =K)=)_) cq; say (cf. (4.5)),
d=01=0

ie. P(Q}( | Ct—l = I,Kg_l = I\’) = Coyo-l-cl,o-{-cl,].

So dealing with this in parts we have

T-1 -
Coo = {(1 —P) (2_?) [PJ(l —P)T—l—j ( Tj ' )

N-K-j N-K-j-1 NeK—j—(T-j—-1)
*TN—; YT nN—j-1 X TN—j-—T-j-1

X(T) N K N-K-T N-K-T-1

L | N¥6N-T*N-T-1 " N-T-2 *°7
N-K-T-(T-2)
*TN-T_(T-1) )}
T-1| | T - -3
=(1—p)§[ﬁ(1—P)T"1_J( jl)(l_%) (l_%>

g ( ? ) (%) +0(N'2)}
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(1 —zo)TE_1 [pi(l —p)T=1 ( T? : )

=0 J

» T i
X (1—%(2T—j—1)) ( . ) NIiT + O(N-?)
T-11 | T —
- a-pY% [p’(l—p)T“" ( . ) S
=0 J
_ (1-pKT -
= 5 + O(N72).
Next we have
T-1| (T-1\[T-j
co = O—MZJ%O—MFH( ; )( lj)ij
N-K—-j N-K-j-1 N-K-—j—(T-1—j—1)

N-1-5 N-1—-j-1 " N-1-j—(T-1-j-1)

N-KE-(T-1) N-K-(T-1)-1
N-T-1 N-T-2

N—K-—(T-1)— (T -2)
N—-T-1-(T-2)

+O(N~?)
—a-pY% pf(l—pf-‘-"(Tfl)ﬂN;j—) +O(N?)
=0 J

= (1 - ) 3(T ~ EBin(T ~1,p))) + O(N )
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= (1= p)3(T = (T = 1)p) + 0N

= (1= PFTA ) +5)+ON)

P(l pK

K i}
= 7T -p*+ EE= 1 o(v?),
Finally
[ {T-1
i=o j
N-K-j N-K-—j—1
"N_1—=; " N-1-;-1
N-K—(T-1)
T N-T
N-K-T N-K-T-1
*N_T-1 " N-T-2
+O(N?)
1| T T-1)
= py, |[PA-p) , (1—
i=0 | J )
1| (11
= py, p’(l—p)T‘l"( . (1—
i=o | J )
+O(N™?)
_ _ T-1 )
_ p(l_(K 1)1821" 1)+E[P’(1—
j=0
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N-K-j—(T-1-j-1)
N-1-j-(T-1-j-1)

N-K-T-(T-2)
*N-T-1-(T-2)

K-1

2T—2—j+1
N )

+O(N™?%)

N

p)F ( T )
J

(K —1)(2T — 14))}

(K —1)j
N

|



+O(N™?)

= p (1 _ K- %ﬂ i KJ; 1E[Bin(T — 1,p)]) + O(N™?)

-, (1 (K - 1)1521" -1 (K- 1)}5,:1‘ — 1)p) + oY)

Hence

TK  KT(-p)’
N N

pl-pK p(K-1)T(2-p)
N N

p(1 —p)(K —1)
N

P(Q}( I Ct—l = 1,Kt—1 = I{) — p+(1 __p)

+

+

+ 0(N"2).
Next

P(Q%{ I Ct—l = 1, I{t_l = I\") ‘

{iﬁ'(l — ( 1 )

T—-(1vd) _ o
x 2 (p"(l—p)T“"j(T.l)(T ! z)
7=0 j d—1

K—i_ .  K-i-(d—i-1)
N—j—i N—j—i—(d—i—1)

9 T-d o K—-d g K-d-1 y
2—-d N-T—-d N-T-d-1

2
= 2
d=1

X

K-d-(2-d-1)
xN—T—d—(z—-d—l)}
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+O(N™?%)

2 T-d _ i
[p Z?(”j(l'p)T-l_j(le)(Td—Jl )

= >
K-1 K-1-1_ K—l—-(d—l—l))]

X

d
N TN % N

y T-d >(K—de—d——lx“'xK—d—(Z—d—l)
2_-d N N N

+O(N~?)

:rz_l(Pj(l—P)T_l'j(T—l ) xlxl) (T—l)K_l
J=0 ] 1 N

+pr_2pf<1—p>T-l-f(Tf1) (T_f_l ) = xl} +O(N7?)
J=0 J

_ (T-1)(K -1)
_ p[ )

—1I=2 . . — Y

(T - 1)(K — 1)
p| =1

=D

+O(N™?)

e pr-ny (pf(l - a0 ( r )) +o(N-1)
J

=0
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[ (7))

[ T-2
J

(K-1)1-p(T-1)

)

_ p[(T—l)(K—1)+

N N

_ AE-DT-DC=p) e

N

Finally, for the last three equations we can only ignore terms O(N~3), so

these again take a little more effort.

P(Q% | Ci-1 = 0,K,, = K)

T [ T

= Y | |Pa-pT7| "

d=0 |j=0 J
N-K-j N-K-j-1

N—j N—j—1

N—K—TXN-—K—T—I

] + O(N-?2)

N—K—j—-(T—j—l))
N-j—-(T-j-1)

N—-K-T-(T-1)
N—-T—(T-1) ]

N-K-j-1

N—j—1

N-K-(2T-1)
N—(2T —1)

] +O(N~%)

N-=T N—-T-1
+O(N~3)
& {T)N-K—j
—jgp’(l—p)T (J) N X
T T K K
£l (7)o
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TR O A Sy
(since J]\\;_ 4 _ (N — A) [;f ]52 + f,i} +O(N7?)
SPR Gt L C ) +o(N-3))

K2 2T—j @T—12T (-1
1‘_(2T JH_( 0 ) N2( 2 2 )H

+O(N~3)

2T-1  2T-1  j-1 (2T — 1)2T G -1)
(smce Zl—— E E’ 2 )

K (012t
2

. 2 o o s o
+E(pj(1_p)T_j(T)[}’\%(2T J)(22T j 1)+%J(J 1)])

7=0 J 2

- 1— —(2T E(Bin(T,p))) -
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+O(N~3)

K K

T (T [ K? K
_ T—-3 2_ ——4T -2 . .2_ .
+J§p’(1 p) ( ; ) [—2N2(4T 2T —4Tj +5° + ) + 533007 =)

+O(N7?)
KT K(2T - 1)2T
S G A R

2

K
+-2—]\ﬁ(4T2 — 2T —4T?%p+ (Tp)* + Tp(1 — p) + Tp)

4525 l(TP)? + To(1 — p) ~ Tp] + O(N )
(since J ~ Bin(T, p) = E(J?) = (mean)? + (variance)?

= (Tp)* + Tp(1 - p))

KT K

- _ o _ o 2 _ _ 2
1— 52— p) - 535((2T = 1)2T + 4T°K — 2TK — 4T"pK

+(Tp)*K + Tp(1 — p)K + TpK + (Tp)* + Tp(1 — p) — Tp] + O(N~?)

KT KT
D A

[TK(2-p)’-T(4~-p") - K(2-2p+p°)+2-p’]
+O(N-3)

,_KkT (2—p)+ KT
N P)T oN?

[TK(2-p)*-T(2-p)-K@2-p)?’+(2-p)
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—~T(4p—2p*) + K(2 —2p) — (2 —4p + 2p")] + O(N7?)

= 1

_KT2-p) ( T )K(K— 1)(2 - p)*
N 2 N2

_{r{v_{[T@p -p)—K(1-p)+(1-2p+p)]+O(NT)

KT2-p) (T \KEK-1)@2-p? TKXE-1)1-p)
l-——F ( 0 ) N2 + Nz

KT

- (E -1 -p)+T(2p-p") — K(1 —p)+ (1 = 2p+ )]+ O(N )

= 1

_KTC-p) ( T ) K(K =)@ -p)? | TK(K - 1)(1-p)
N 0 g g

_I;_f[Tp(z —p)—p(1—p)]+O(N?)

as required.
Next we have
P(Qk | Ci1 =0,K, y = K) =do + d; say,

where dy denotes the terms in (4.5) with d = 0, and d, represents the terms

with d = 1. So:

r [ (T N-K-j N-K-j-1
dO:Z(PJ(l—P)T_J(,)X N—j]x i —J X e

=0 J

N-K-(T-1) T\ kK N
*TN-(T-D )x( )
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(N-KE-T N-K-T-1 = N-K-T-(T-2)
N—-(T+1) ~N-(T+2) N-T—(T-1)

T ( N AYE AR K
J;(p](l_p)’! (j)(l)N+0N—(2T—1)

J[N-KE-j N-K-j-1  N-K-T—(T-2
N—; N—j—-1 N-T— (T —2)

T

;)(Pj(l—p)T_j [f) (f) -7

CE L K@T-1) [1 K1?T-2-ih
N N? N

r(.  T\(T
e (7)(0)

(| _Ké  K(eT-1)
N N? N?

(7)1
j=0 J 1

) o

K(2T-j-1 i
1_ﬁ( 1 )D+0(N)

K K@®-2T+1) K)2T-1-j) s
| - - R ) oy
TK TK6 TK(2T-1 TK? . -
T 7 ) _ (2T —1- E(Bin(T,p)) + O(N7?)

TK _TK§ TKQT-1) TK*, TK?
N N? e v 2Pt

+ O(N™3),
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N

-1

. S(TY(T-i) K
()7} 5

N-K-j N-K-j-1  N-K-(2T-2)
N—j—1 N—j—2 N (2T —1)

3=0

T-1 ) _j T T—j K
jgp’(l—p)T (])( . )—N-(zT—1)

N-K—j N-K—j-1 N-K-(2T-2)
N—; N—j—1 N — (2T — 2)

[ BE0] [ KT o

L=pT Y p(l - p)T-1- ( rel )
j=0 J

[K K(2T -1) K*
X | =+

1-pT

(K  K(2T -1 K? . _
N-i— ( e ) - N2(2T— 1— E(Bin(T — 1,p)))] + O(N73)

(K K@T-1) K2
+

(1 —p)T LJ—V- N2 - N2

2T -1—(T - l)p)] + O(N~?)
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Hence
P(Q% | Ci-1 = 0,K,_; = K)

TK _TK§ TK(T-1) TK*2-p) TK’

= (2 p) N2 N2 N2 N2

TK(2T -1)(1-p) (1-p)TK?
+ N2 - N2

(T(2-p)—1+p)+O(N~?)

(what follows is simply rearrangement...)

TK TK§  TK
N‘Z N;[(zT 1) = TK(2—-p)+ K + (2T — 1)(1 — p)

= (2- p)

—(1-pKT(2—-p)+ (1 - p)’K]+ O(N7?)

= @-P g - o+ -T2~ p) + (1 )2 - p)

+K[(1-p)* +1]+T[2+2(1 - p)] - (2-p)] + O(N )

TK TKf 2T’K*2- p)

= (2- p) R IN?2

- - )TK _TK6 2T°K*2-p)?  TK*2-p)
= L A oN? oN?

TK (Kp’ 2-p)’ p ~a
W[—Z_-*-T[ 5 +2—=|-(2-p)|+0O(N?)
K TK6 2T°K*2-p)® TK?*(2-p) + T?K(2 — p)?

T
= (2- -
C-PF -7 oN? RE 2N?
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TK | (2—p)? P  Kp P’ 3
+N2[ P —p+ -+ T (2= )| 0N

- e-pZk TK _TKé 2T*K*2-pp TK2-p)? TK(2-p)
N? 2N? 2N? 2N?
TK 2 —p)? Kp? p? B
gNz : N [ 2p (2_?)] +O(NT)

TK Tk8 [ T\ K& -1)2-p)

JTE | K@2-p* T@-p? (2-p)
N? 2 2 2

2 I’ 2 2
—p+5+ =7 +T(2—%)]+O(N'3)

_ E _ TK® T\ KK -1)(2-p)?® 2TK(K-1)1-p)
(2-p) N2 2( o ) N2 N2

TK  K@-p? T2-p)
o - - p - KOS TE
2-p)’ p’  Kp’ 4 -3

- - )ﬂ _TK§ T )KE-1@2-p? 2TKE-1)(1-p)
N N? 9 N2 B N2

TK

+ 5K (4= 4p— (2= p)? + p) + T(4~ 1" = (2 - p)?)
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—4(1-p)+ (2-p)* -2p+p’] + O(N7?)

_ TK TK6 (T \K(K-1)2-p? 2TK(K—1)(1-p)
- (2—p)T_ N2 —2(2) N2 B N2
TK

2 2 -3
+W[T(4p—zp )~ 2p+2p%] + O(N?)

_ oopTE_TEe T | K(K-D@-pf 2TK(EK-1)01-p)
- PN T e 0 NZ Nz

+%[Tp(2 —p)—p(1 —-p)]+O(N7?)

as required.

Lastly

P(Q% | Ceey = 0, K4y = K)

g (1) (77)
d=0 3=0 ] d

K _K-1 K-(d-1
N—j N-j;-1 N—j—(d-1)

X

N-K-j N-K-j-1  N-K-(T-e-1)
N—d—j  N-d—j-1 N-T-—(T-1)

><(T—d) K—d K—d—1

9o g IN-T—d N-T—d-1°""

L K-d-(@2-d-1)
N-T-d-(2-d-1)

x (1— u)2_d} + O(N73)
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K _K-1 . K-(d-1
N—j N-j-1 N—j-d-1)

| T-d) EKE-d K-d-1 K-d-(2-d-1)
o_d|N—-T—-d N-T—-d—-1 *N_T—d-(2-d-1)

+O(N™?)

i{ Tf(p«l-pf-j(?)(“f)
d=0 j=0 J d

(T—d)K—d K—d—1 K—d—(z—d—l)}
X X X o00 X

2—d
+O(N~?)

= dy + d; + d; say, where d; represents the term for d = ¢ in the equation

immediately above (¢ = 0,1,2). Now

. (T ) KK -1 oy
2

N
(T-1 _ _ _
d = \Zﬁ (p"(l—p)T'j(f) (Tl ])%) (T1 1)KN 1)+O(N‘3)
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E=g S TY)[T-i)KK-1 -
e I

Hence

P(Q% | Ci-1 =0,K;; = K)

KK-1 T T-1\T=2( | LT T —j
-F | Ebe C)0Y)
+:rZ:—2(p"(1—p)T"’(:’,’)(T;j)) +O(N7?)
=0 j
_ KE-1)|(T T-1 )32, i T-1 T
-2 (1) (75 B b (7))
+Tf (Pj(l—p)T"j ( T) (T;j ))} +O(N7?)
i=0 j
_KEK-1D|(T
= = \
+(T1_1)T(l—p)TZ:-I(p"(l—p)‘T‘l"-"(Tfl))
i=0 j
> (pfu =L ( o )) FoW-?)
i=0 J
_KKEK-1D|(T
= T N2 (2 ) +T(T-1)(1-p)
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( T2 —
+ Z)(l—p)zz (pj(l—p)T‘z'j ( g _ ? )) +O(N7)

\ i=0 ]

MEMEE
\ 2 2 2

= ( ! ) (2~ 2" + O(N )

as required.

+ O(N73?)

2.2 Section B

Next we proceed to the simplification of equation(4.6):

P(MK I I{t—l = K, Cg_l = C)

- BB} - o) o
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T4 K-—d K—d—(i—1)
+{2 [N-:r_dx”'>< N-T—d-(i-1)

w2

e
e
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0T < d c— ¢ - -3
= Wd:o{p“"’) d(d)(A—d>}+0(N )

= %{K — E(Bin(c, p))| + O(N™?)

==%m-m+mwﬂ

2.3 Section C

Lastly we turn to the simplification of equation(4.7) which we break into two

cases, (¢ > 0) and (¢ = 0):

P(FK | Kt—l = K,Ct_l =c> 0)

TAK cAd c
gl ()
T—(cvd) —c — 7 —3
x[z (Pj(l—P)T—C_j(T. )(T ’. )
J=0 7 d—1
K—i _ _ K-i-(d=i-1)
X[N—j—i" "N—j—z‘-(d—z‘—l)])D}
K—-d| d N
*N-1|, ) N+0
el ()

+ O(N™?)
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X [Tz_:c(pj(l_p)T—c_j(TiC) (T—]—z) .
=0 J d—1

K-d| d N
“\N-7|,|N+6

. : K—-d| d
= d=0[{(z=dterm)}x{N_T(1)}

Cc

= Y [{r"(1-p

(=}

+O(N7?)
= dz_: p%(1 — p)e? ( ; ) X KA'T 4 + O(N72).

Now for ¢ = 0 we have P(T'k | K;-y = K,Ciy =0) = Eﬁé{ Dy say, where
D, represents the d = ! term from (4.7) (i =0,1,...,c). Hence

P(FK I Kt—l = K, Ct—l = 0)

= D+ O(N%
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el (1)

+O(N7?)

2531 o
=0 J

_ TK(K-1)(1— ;| T—-1 3
- N? E{p’(l p)* ( ; )}+0(N)

j=0

_ TEE-1)(1-p) o
= 7 +O(N™?).

2.4 Section D

Finally we give the details of the simplification of the first-step analysis of the
transition equations (ie. equations (4.11) and (4.13)). We start with (4.11):

K =1 plK = 1)(T =12 - p)TL

I = N N

TK TK(l —p)? + p(l1-p)K
N N

+1I, [p+(1— p)

_pE-VTE2-p)  pA-p)(K—1)
N N

TK(2-p) pK
N N

+T1o(1 - p) [1 = +O(N~?)

Hence since I, = II; + O(N~!) we have

IO, |(1 - p) — (1 _p)T]\I’\’ 3 TK(}V_py (1 ;VP)K
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LPE-DTC-p) pl-pE-1) pE-1)(T=-1)2= p)]

N N N
_ p(KN— 1)+H0(1—P) [I_TK(J%[_I)) _p]{r{jl_i_o(N—2)
So
I, [(1 ) —(1- p)TK(;— p) _p(1 —p)]E/?K— 1 pK —2(2—19)]
p————(KN_ Dt 1-p) [1-TK(;_”)—"3—5—] I, + O(N-2)
and so
N
N 1-ppN—-(1-pTK2-p)—p(l—-p)2K -1)+p(K—-1)(2—-p
t [( )N —(1-p)TK(2 - p) — p(1 - p)( )+ p( X )l
«[BEF s p 1 - TEC2D B ] 4 o

1 N
T 1-p [N—[TK(2—p)+p(2K—1)—M(K—1)]

(1-p)
1 TK(2-p)+p(2K —1) - BEB(K - 1)
- 1- D N
X [p—————(KN_ D +(1-p) [1 - ——TK(sz" p) _ ’%] Ho] + O(N™?)

. N A _2)
(s1nceN_A—1+N-+O(N )
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p(K —1) TK(2-p) pK
A—pnN N N

_ —1)— 2= _
IK (2—p) + p(2K - 1) - G (K 1)] +O(N7?)
_ pK-1) p(K—1) p(2-p)(K—1) —2
- B - B2 oar,
Now for (4.13):
_ (1-pK(K-1T
o, = N7
KT(2 - p) T ) K(K —1)(2-p)?
+o |1~ ——5F—+ ( \ ) e
L IEK ;\;)(1 =P _ i{\,{ [Tp(2 - p) — p(1 - p)]]
(2-p)TK TK§ T \ K(K —1)(2 - p)?
+H1[ N N\ _2(2) N?
_2TK(K ;ﬁl)(l it {,{Vf [Tp(2 - p) — p(1 — p)]]

+1I, + O(N™?)

2 N?

(T)Km>nu—m2

_ (1-pK(K-1)T
- o

+1I,

N 2 N?

1_KT(2_p)+(T)K(K—l)(z_p)z
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LT — Da-p) {"Vf (T2 — p) — p(1 — p)]

(2-pTK TK#
+H1 [ N N2

~ [Mo+ o]

2 N? N?

\ ( T ) K(K -1)2-p) , 2TK(K —1)(1 - p)

ig [Tp(2—p) — p(1 - p)]]

+ Mo + O(N )]

\ T ’d
T | K(K-1)(2-p)? _3
( 2 e ] Fem

(1 - p)K(K — 1)T
RE 1o |1 N N?

[ TK(2-p) TK(X-1)(1- p)]

(2-p)TK TK6
N N?

+1I, [ ] + O(N7%).

Hence

TK(2-p)  TK(K-1)(1-p)]  (1-pKE 1T (2-pTK
HO[ N T Nz p] - +H1[+]

TK¢6

~ [Do+ O(N"Y)] [ 7

] + O(N73).
And so
I, [TK(z —p) , TK§  TE(K - 1)(1- p)l _

N N? N?

(1-p)K(K -1)T (2—-p)TK -3
LU PR (RS I
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We now substitute in for II; using (4.12) to get:

mle-n+ s (K"lﬁf(l"p)] _
e ] o A G e |
+O(N™?)
Therefore
I,
B (=) | ppn) | o(N-2)
C @-p+F+ESR (2 p) BonlRol)  (oplail)

(1-p*(K-1)+p(2—p)(K—-1)+O(N)
(1-pf+(K—-1)(1-p)-(2-pp(1 —=p)(K —1)+(2—-p)*p(K - 1)

(K -1)[(1-p)’+p2—-p)J]+ONT
(1-p)f + (K —-1)[(1-p)*—(2-p)p(1 - p) +(2 - p)?p]

(K —1)+O(N™1)
(1-p)f + (K —-1)[(1—-p)?2+(2-p)p]

(since (1 —p)® + p(2—p) = 1)

(K —1)+ O(N™1)
1—pf+ (K1)

K-1

ie. l=a—per&=-D

+ O(N™') as required.
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.3 Appendix III

We need to show

N=1 (i=1)A(N=i) C N-1G-2AN=Y) ,
Pic1-kMisk@ix < D ) Pio1—kbivkb; g (.14)
=2 k=0 =2 k=0

Again it is sufficient to show it for each i =0,1,..., [% +1]. That is, to show

(i=1)A(N—=i) (i—2)A(N—i-1)

Picr-kbirk @i — S mici—ksirkbig (.15)
k=0 k=0

If we now define
’ 1
Tk = PipkMi-1—k, Gk = @;; and by = b,

we again have sequences as in the statement of Lemma 6.4. So if the four
conditions of that Lemma are satisfied then its conclusion gives us the desired
inequality (.14). Condition (iv) is clear since the ) are decreasing by suppo-
sition. To check conditions (i), (ii) and (iii) we need to determine the exact
values of the a;’s and b;’s.

The ai’s are as follows:

([ N-—2 N—2
i—1—k |\ ivk—2

N N -2 N-2 i—1—Fk>2
i+ k i—k—3 i+k<N-2

A = {
0<i1—-1—-k<?2
N-=-2 N -2
or
1—1—k i+ k-2
N-2<i+k<N
0 otherwise.

\
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And the b.’s are :

0 N-=-2 N-2 i—1—k>1
by = i—k—2 i+k—1 i+k<N-1

0 otherwise

Note that for : = 2 we have to show

1 [ N-2 N-2 N-2 N-2
)Y <2 )
so\2-1-k |\ 2+k-2 2-2-k |\ 24k-1

which is true since both sides équal 2(N — 2). Now note that

N N N—-M+1 N-—2 N—-2 YN—-i+k
= —_— = —
M M-—1 M i—k—1 i—k—2 ) 1—k-1

and
i1+ k-1
1+k—-2 t+k—-1 N-i-k
and
N-2) N - N-i-k—-1
itk | \itk-1 i+k
and

N-3 )\ [ N-2 i—k—2
i—k—3 i—k—2 | N—it+k-1

Hence if we write
N-2 N -2
Cir=
(i—k—Z) (i+k—1)

(and note that C;; > 0), then we have

ar — by




_2/ N-2 N—2

\i—k-2 i+k—1

(N —i+ k) (i+k—1) (N—i—k—l)(z'—k—z)_z]
Mla—k—D(N-—i—k) G+ —i+k+1)

(N =i+ k) i+k-1)—(G—k=1)(N—-i—k)
G—-k-—1)(N—i—k)

+1N—i—k—UU—k—2}—ﬁ+kXN—i+k+1q
G+E)YN—i+k+1)

= 20;,,:[ k(N —1) KN-1)+N-1 ]

G-k-1D)(N—-i—-k) (G+k)(N—i+k+1)

= 2C;x(N —1)

%U+kXN—i+k+1%-M+4Xf—k—IXN—i—kq
I t—k—1D)(N—-i—k)(E+E)(N—-i+k+1)

_ 50 (2N —Dk(k4+1)— (N —8)(i —1)
= 2Cix(N - 1) .(i—k—1)(N—i—k)(i+k)(N—i+k+1)]

So since we have k < i—1 and 7 4+ k < N, we can see that the numerator
starts negative (at k = 0) and increases (eventually becoming positive) as k
increases. The denominator is always positive. So conditions (i) and (ii) are

satisfied. Now for condition (iii) we have:

i-1 =3 N_2 ‘N-2 N-2 N-2
SR sy | et o bivel | et |

() ) ()
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i2 iz ([ N2 N -2 |
b = 2| . (.17)
k=0 k=0 Z—k'—'z Z+k—1

Now consider the two terms inside the summation on the right-hand side of
(.16) and note that the value of the first of these terms corresponding to k = {
equals half the term on the right-hand side of (.17) corresponding to k = [ —1.
Similarly the value of the second term in (.16) corresponding to k£ =/ equals

half the term in (.17) corresponding to k = [ + 1. We therefore define

=g () (o ()

So
-1 N-2\[N-2 N-2)(N-2
UL e g K G [ ey
NESATE SRR (N -2
1 2% — 4 0 \ 20 -3
and
2 N—2\[N-2 N2\ N-2
Zn - o (1) (7)) (0
NEEE (N—2 (V-2 (N -2
2i—4 )\ 1 2i-3 )\ o0 '
Hence 4 -
ap — bk=0
k=0 k=0

as required.
So all the conditions of Lemma 6.4 are satisfied and we thus have the

required conclusion.
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