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Abstract 

BACKGROUND: Chronological age is the strongest risk factor for most chronic diseases. 

Developing a biomarker-based age and understanding its most important contributing 

biomarkers may shed light on the effects of age on later life health and inform opportunities 

for disease prevention.  

METHODS: A subpopulation of 141,254 individuals healthy at baseline were studied, from 

among 480,019 UK Biobank participants aged 40-70 recruited in 2006-2010, and followed up 

for 6-12 years via linked death and secondary care records. Principal components of 72 

biomarkers measured at baseline were characterised and used to construct sex-specific 

composite biomarker ages using the Klemera Doubal method, which derived a weighted sum 

of biomarker principal components based on their linear associations with chronological age. 

Biomarker importance in the biomarker ages was assessed by the proportion of the variation 

in the biomarker ages that each explained. The proportions of the overall biomarker and 

chronological age effects on mortality and age-related hospital admissions explained by the 

biomarker ages were compared using likelihoods in Cox proportional hazard models.  

RESULTS: Reduced lung function, kidney function, reaction time, insulin-like growth factor 

1, hand grip strength and higher blood pressure were key contributors to the derived 

biomarker age in both men and women. The biomarker ages accounted for >65% and >84% 

of the apparent effect of age on mortality and hospital admissions for the healthy and whole 

populations, respectively, and significantly improved prediction of mortality (p<0.001) and 

hospital admissions (p<1×10
-10

) over chronological age alone.  

CONCLUSIONS: This study suggests that a broader, multi-system approach to research and 

prevention of diseases of ageing warrants consideration.   

Key words: Epidemiology, outcomes, preventative health care, risk factors 
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Introduction 

Chronological age is the strongest risk factor for most chronic diseases that limit healthy 

lifespan, but individuals may age biologically at different rates (1), characterised by 

differential rates of disease accumulation and frailty onset. Understanding the contributors to 

biological ageing could lead to opportunities for early prevention of later life disease (2) and 

limiting the disease burden associated with ageing populations.  

A commonly used approach to identifying risk of accelerated ageing and reduced lifespan is 

to form a risk score by regressing mortality on risk factors (2, 3). However, this tends to 

identify people who have known health conditions (2). It would be particularly advantageous 

to be able to identify accelerated ageing in apparently healthy people for primary prevention 

of diseases of ageing (4). Another approach involves estimating a person’s biological age 

from the age that their biomarker profile typically reflects. In a review of estimation methods 

for biological ages (5), studies that compared different estimation methods (6-8) favoured the 

Klemera Doubal method (KDM), which derives a weighted sum of biomarkers based on the 

strengths of their associations with chronological age (9). Additionally, in a more recent 

study in an older Singaporean population, biological age estimated using KDM was found to 

be more predictive of mortality and frailty than biological ages estimated using machine 

learning methods (8). When estimating a KDM biological age, chronological age may or may 

not be treated as a constituent ‘biomarker’; if it is not a constituent ‘biomarker’, the predictive 

value of the derived biological age for health outcomes can be compared with that of 

chronological age. KDM can be implemented using principal components of biomarkers 

instead of individual biomarkers (6), avoiding the problem of over-weighting towards 

multiple correlated biomarkers.  

The UK Biobank is a richly phenotyped resource with 0.5 million participants (10) that 

provides an unrivalled opportunity to investigate earlier stages of ageing through biological, 

lifestyle and environmental factors easily measured at scale, compared to previous clinical 

biomarker-based studies of biological ageing typically based on 100-10,000 participants with 

panels of fewer than 30 biomarkers (5). A substantial middle-aged and apparently healthy 

subpopulation of the UK Biobank can be identified, to assess the prognostic capability of a 

biomarker age for subsequent health and to reduce reverse causality from prior health or 

medication use affecting biomarker levels.  

This study aims to focus on healthy individuals and: 1. estimate sex-specific biomarker ages 

in the UK Biobank using the KDM, 2. identify the main biomarker determinants of the 

biomarker ages, and 3. investigate the relationship between the biomarker age and 

chronological age in the prediction of mortality from chronic diseases and age-related 

hospital admissions. 
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Methods 

Study population 

The UK Biobank recruited 0.5 million participants across the UK aged 40-70 for baseline 

assessment in 2006-2010. Information on sociodemographic characteristics, self-reported 

health behaviours and medication was recorded. Linkage to Hospital Episode Statistics (HES) 

and national death registries provided prior and prospective information on secondary care 

outcomes and date and cause of death (Appendix 1 and 2) (10). This study was covered by 

the general ethical approval for UK Biobank studies from the NHS National Research Ethics 

Service on 17th June 2011 (Ref 11/NW/0382). 

After data cleaning (Appendix 1 and eFigure 1), 480,019 participants followed up for 6-12 

years via death registry and HES records were included (eFigure 1). In order to reduce 

reverse causality, this study focused on the 141,254 people healthy at baseline, who had no 

chronic disease medications, good health, steady/brisk walk speed, never/ex smoker (as self-

reported); and 0-2 secondary care episodes prior to recruitment, and no prior chronic age-

related disease or hip/wrist fracture (in secondary care records) (Appendix 1).  

Statistical Analyses 

Among 110 physical and biochemical biomarkers commonly measured in clinical settings, 72 

biomarkers met quality control standards (Appendix 2). Trends of each biomarker with 

chronological age were visually assessed for linearity (Appendix 3A). Principal component 

analysis with varimax rotation (6) was used to represent the 72 biomarkers as linearly 

uncorrelated principal components, from which the 51 with eigenvalues >0.33 (more than 1/3 

of the average variation described by each biomarker) were taken forward and characterised 

based on their constituent biomarkers with the largest factor loadings (Appendix 3B). The 

varimax rotation attempts to rotate these components into a simple, easily interpretable 

structure where only one or a few biomarkers have high loadings in each component, and 

resulted in many biomarker principal components having only a single biomarker strongly 

loaded onto them. As would be expected, the principal components for adiposity, lung 

function, blood pressure and blood lipids had multiple biomarkers strongly loaded on to them 

(eFigure 3). 

Biomarker ages were estimated in the healthy population separately for each sex, using the 

KDM (9) on the 51 principal components, without including chronological age as a 

biomarker (Appendix 3B). The proportion of variation in chronological age attributed to the 

biomarker age (R
2
) was estimated and biomarker principal components were ranked by their 

importance, measured by the proportion of variance in the biomarker ages that they each 

explained (Appendix 3C).  

Two general health outcomes were constructed from HES and death records: death from 

chronic disease (excluding infectious diseases, pregnancy, congenital malformations and 

external causes) (11) and age-related non-fatal hospital admissions (the subset of those types 

of admission diagnoses in a published hospital frailty risk score (12) that were age-related in 
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the UK Biobank; Appendix 2 and eTable 2). The proportion of the overall biomarker and 

chronological age effect on hospital admission risk and mortality that was explained by each 

biomarker age was also estimated, by comparing the log-likelihoods from these Cox models 

(Appendix 3D), and estimating p-values for the addition of the biomarker age by likelihood 

ratio tests. 

Calibration of the biomarker ages to chronological age was undertaken by plotting the mean 

biomarker ages for each 2.5-year chronological age group. Risk calibration of biomarker ages 

with each health outcome was assessed by comparing the Kaplan-Meier survival curves of 

participants with a biomarker age at least 5 years younger, similar to, and at least 5 years 

older than their chronological age.  

The predictive powers of chronological age and the biomarker age for each health outcome 

were further characterised by computing Harrell’s C-indices (measures of statistical 

discrimination similar to the area under the receiver operating curve; Appendix 3D) which 

were calculated both unadjusted and with adjustment for Index of Multiple Deprivation 

(IMD) 2010 quintile, smoking status, alcohol consumption and assessment centre. As a 

sensitivity test, prediction of hospital admissions by biomarker age was compared with a 

benchmark of prediction by a mortality score similar to those proposed by previous studies 

(2, 3), derived using stepwise Cox regression on the 51 biomarker principal components 

(Appendix 3B).  

As a sensitivity analysis to investigate whether a smaller (more practical) biomarker panel 

would suffice, analyses among healthy participants were repeated using the main constituent 

biomarkers in the 10 most important biomarker principal components in the biomarker ages 

for each sex. In addition, to aid comparison with previous studies, analyses using the full 

panel were also undertaken in the whole population. 

Guidelines for Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis (TRIPOD) (13) were followed.  

Results  

Study characteristics 

Of the 480,019 participants, 141,254 (29.4%) were in the healthy subpopulation (Table 1). 

During a median follow up period of 8.7 years for mortality and 8.0 years for hospital 

admissions, among healthy participants, 1.7% died from chronic diseases and 16.0% who had 

not been admitted to hospital with an age-related diagnosis prior to baseline were admitted 

with such a diagnosis during follow up (Table 1); the corresponding percentages among the 

whole population were 3.9% and 23.1%, respectively. Sociodemographic patterns and the 

proportions of participants healthy at baseline were similar between sexes.  
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Biomarker characteristics  

In the healthy subset, the relationships of most candidate biomarkers with chronological age 

were broadly linear or flat (eFigure 2). Lung function biomarkers, systolic blood pressure, 

cystatin C and reaction time had the strongest linear relationships with age (eFigure 2). In the 

whole population body mass index (BMI), low density lipoprotein cholesterol (LDL-C) and 

diastolic blood pressure had clear inverse U-shaped relationships with age but these were 

attenuated in the healthy subpopulation. A few biomarkers (LDL-C, heel bone density, 

calcium, alkaline phosphatase and phosphate) displayed substantially different trends 

between sexes, supporting the need to model within sex-specific strata (eFigure 2). 

Biomarker importance in biomarker ages 

The coefficients for the biomarker principal components in the estimated biomarker ages are 

listed in eTable 3. The biomarker ages described 44.0% and 51.3% of the variation in 

chronological age for healthy men and women respectively. Reduced lung function featured 

most strongly (Figure 1), describing 12.4% (men) and 10.3% (women) of the variation in the 

biomarker ages (eTable 4). Higher cystatin C, slower reaction time, lower insulin-like growth 

factor-1 (IGF-1), lower hand grip strength, and higher blood pressure also featured strongly 

for both sexes; while lower albumin, higher sex hormone-binding globulin and lower muscle 

mass biomarkers featured strongly for men; and higher levels of alkaline phosphatase, LDL-

C and apolipoprotein B and HbA1c for women. Multiple body systems were represented by 

these biomarkers (eTable 1).  

Relationship between biological and chronological age 

The biomarker ages were well calibrated as they matched healthy participants’ chronological 

ages on average (eFigure 4). Adding biomarker ages to the prediction models with 

chronological age statistically significantly improved model fit (for mortality/hospital 

admissions: p<1×10
-10

/p<1×10
-10

 in men; p<0.001/p<1×10
-10

 in women) in unadjusted 

analyses. 

More importantly, averaged across sexes, the biomarker ages described 67% and 65% of the 

overall biomarker age and chronological age effect on mortality and hospital admissions 

respectively (Figure 2A) in unadjusted analyses. Constructing the biomarker ages from the 

reduced panels of biomarkers most strongly loaded onto the most important 10 biomarker 

components noted above (in Figure 1) decreased the proportion explained by biomarkers to 

54% and 51% for each respective outcome in men, but made little difference for women 

(Figure 2B and eTable 5). These proportions were similar when adjusted for 

sociodemographic factors and health behaviours (eTable 5).  

The biomarker ages identified 17.1% of healthy participants with a biomarker age ≥5 years 

younger and 16.9% with a biomarker age ≥5 years older than their chronological age 

(‘biologically younger’ vs ‘biologically older’ participants). On aggregate, the mortality and 

hospital admission rates were highest in individuals who were biologically older and lowest 

in those who were biologically younger than their chronological age (Figure 3). At 8 years 
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after the baseline date (approximate median follow up), 1%/15% of biologically younger 

participants had died from chronic disease/had an age-related hospital admission, respectively  

compared to 2%/18% of biologically older participants (based on the survival estimates in 

Figure 3). Log-rank tests of these survival differences had p-values <1×10
-15

. 

Predictive power of biomarker ages  

In the healthy population, adding the biomarker age to a prediction model with chronological 

age increased the C-indices for mortality/hospital admission only slightly (0.008/0.003 in 

men, 0.002/0.001 in women; Table 2A). C-indices for the prediction of hospital admissions 

were greater for the biomarker ages than for the benchmark mortality score (difference in C-

indices: 0.111/0.068 in men/women; Table 2A). Sociodemographic factors and health 

behaviours, which are adversely associated with health outcomes, were also associated with 

higher biomarker ages (living in an area classified within the most vs least deprived IMD 

quintile was associated with an extra 3.6/2.3 years of biomarker age for men/women after 

adjusting for chronological age alone), but adjustment for these factors did not substantially 

attenuate the differences in C-indices associated with adding the biomarker age into the 

prediction models with chronological age for men and women (Table 2B). 

Results for the whole UK Biobank population 

In analyses run on the whole population, the importance of biomarker principal components 

in the biomarker ages was similar to that in healthy participants (eFigure 5 and Figure 1). The 

standard deviations of the differences between biomarker ages and chronological ages (9.7 

years in men, 8.8 years in women) were slightly higher than those for the healthy 

subpopulation (8.7 years in men, 7.7 years in women). The biomarker ages explained greater 

proportions of the chronological age effects on mortality and hospital admissions in the 

whole population (91%/84% for mortality/hospital admission respectively, averaged across 

sexes; eFigure 6 vs Figure 2). Adding biomarker ages to the prediction models with 

chronological age statistically significantly improved model fit (p<1×10
-10

 for both health 

outcomes and both sexes) in unadjusted analyses. Correspondingly, adding the biomarker 

ages to a prediction model with chronological age increased the C-indices for 

mortality/hospital admission (0.056/0.014 in men, 0.026/0.011 in women) more substantially 

than in the healthy population (eTable 6 vs Table 2).  

Discussion  

This study found that the biomarker ages consisting of markers of impaired function in a 

range of organs accounted for >65% and >84% of the apparent effect of age on mortality and 

hospital admissions in the healthy and whole populations, respectively.   

Key biomarker determinants of biomarker ages and their relationships with chronological 

age 

Lung, kidney, cognitive and liver function, IGF-1, hand grip strength and blood pressure 

were key contributors to the biomarker ages for both sexes, while sex hormone-binding 
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globulin and muscle mass in men, and cardiovascular function and HbA1c in women were 

also important.  

These top-ranking biomarkers in this UK population generally matched those in a 

Singaporean study (8) and slight differences by sex were seen in both populations. However, 

these lung and renal function biomarkers were not investigated in the study comparing 

Canadian, South Korean and Eastern European biological ages, which instead found that the 

top-ranking blood-based biomarkers varied by population and sex (14). Studies of ageing 

biomarkers also found that lung and renal biomarkers were top-ranking determinants of 

functional decline (15) and variation in age-related traits (16). The present study provides 

additional detail on the relative importance on ageing of biomarkers within body system 

groups, such as finding cystatin C to be more important than other renal biomarkers 

(creatinine and creatinine-based estimated glomerular filtration rate [eGFR]) (17), as previous 

studies each assessed only one of these biomarkers (8, 14-16).  

Several key biomarkers in this study (blood pressure, blood lipids, height and lung function) 

have each been shown to be associated with a range of age-related diseases observationally, 

and in some cases causally in randomised trials and Mendelian randomisation studies (eTable 

7). Associations of other key biomarkers such as cystatin C and hand grip strength have been 

less extensively researched, but found to be associated with mortality or cardiovascular 

outcomes (17-21). Blood pressure (10
th

 most important for healthy men and 8
th

 for healthy 

women; Figure 1) is well-established as a modifiable and causal risk factor of cardiovascular 

disease (22).  

Prediction in healthy versus unhealthier individuals 

In unhealthy individuals, their disease status and hospital admissions will already provide 

information of their risk (23), whereas in apparently healthier individuals knowledge of a 

biomarker age is potentially more useful for identifying unrecognised health risks; 

furthermore knowledge of risk of non-fatal outcomes should provide a longer window for 

intervention and prevention than knowledge of mortality risk. The biomarker ages were 

substantially better than the benchmark mortality score in predicting age-related hospital 

admissions (Table 2), and in the whole UK Biobank, the improvement in predictive power for 

mortality of the biomarker ages over chronological age (Table 2) and the effect sizes of the 

biomarker ages were comparable to the improvements reported by previous studies of 

biological ages in US, Canadian and Singaporean populations (2, 7, 8, 25). The biomarker 

ages had only slightly greater variation in the whole vs the healthy population, but the 

predictive value of the biomarker ages was considerably greater when including unhealthier 

individuals (eTable 6, Table 2). Hence, this could reflect a diagnostic element of these 

biomarkers that is stronger in the less healthy individuals. Therefore, when comparing 

biological ages across different studies it is important to take into account the health and age 

profile of populations.  

Comparison of an individual’s biomarker age with their (unmodifiable) chronological age 

could provide a valuable means of communicating modifiable health risks, alongside their 
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detailed biomarker profile (26). A biomarker age could also augment a national prevention 

programme promoting clinical biomarker screening in a middle-aged population (27), after 

causal factors underlying its constituents have been established. The most important 

biomarkers in the biomarker ages were measured via blood biochemistry measurements, 

spirometry and body size measurements, which can be administered routinely in clinical 

settings. For women, it may be suitable to measure just 12 key biomarkers (7 blood-based 

and 5 physical measurements; Figure 2B) across 7 body systems to assess biomarker ageing, 

as relatively little explanatory and predictive value was compromised. A Healthy Aging 

Index constructed from a similar but smaller panel of biomarkers (blood pressure, lung 

function, creatinine, fasting glucose and cognitive test biomarkers) was moderately predictive 

of mortality in a US population (28). Despite the successful use of clinical risk prediction 

tools such as ‘heart age’ and ‘lung age’ in clinical care (29), there is little evidence as yet of 

implementation of an overall biological age, and proposals to use it in drug development (11, 

14, 30) and clinical care (2, 5, 30) may be longer-term uses.  

Strengths and limitations of this study 

The estimation methods used assumed that biomarkers with the strongest linear relation to 

chronological age contribute most to a biomarker age. Lung function biomarkers, systolic 

blood pressure, cystatin C and reaction time had the strongest linear relationships with age 

(eFigure 2), and therefore contributed substantially to variation in the biomarker ages. 

However, a limitation of this approach is that not all biomarkers strongly associated with age 

may be reflective of clinical disease risk and, conversely, any risk factors for ageing diseases 

that do not themselves have a strong relationship with age may have been under-represented 

by the KDM. For example, BMI has been causally linked to 30 diseases (including many age-

related diseases) (31) but the general adiposity component was only 28
th

 most important for 

men and 26
th

 for women (eTable 4). Likewise, lipid-related cardiovascular biomarkers, LDL-

C and apolipoprotein B are causally linked to atherosclerotic cardiovascular disease in men 

and women (32), but were only important in the biomarker age for women (Figure 1).  

This approach was based on the cross-sectional associations of biomarkers with age, 

available for a large cohort, because repeat biomarker measurements (at one other time) were 

only available for a small subset of participants (10). However, in a study with multiple 

longitudinal measurements, the Pace of Aging, estimated from longitudinal changes in 

biomarkers over time, was shown to correlate with biological age estimated later (24).  

The compositions of the derived biomarker ages were limited by the range of biomarkers 

available, and unlike the cohorts examined by studies of promising ageing biomarkers (1, 33, 

34), the UK Biobank is not specifically a gerontological resource. Cohort effects in this 

population are difficult to disentangle, and may influence trends in body size. Hence, height 

(one of the top 15 most important biomarkers; Figure 1) may be acting as a proxy for cohort 

effects. Biomarker trends with age in the UK Biobank were not all completely linear (eFigure 

2), but a previous study has shown that incorporating non-linearity and non-monotonicity (in 

limited functional forms) only slightly improved the accuracy of estimated biological age 

components, and was computationally complex (35). Moreover, biological ages estimated 
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using KDM were found to be more predictive of mortality and frailty than biological ages 

estimated using machine learning methods in an older Singaporean population (8), and the 

only clinical biomarker-based age (14) identified by a review of deep learning biological 

ageing scores (36) did not explore the improvement in predictive power from using a non-

linear estimation method. The epidemiological reliability of the present analyses was 

increased by focusing on a healthy subpopulation, using biomarker principal components and 

adherence to clinical risk prediction reporting guidelines (13) (eTable 8). 

Conclusions 

Biomarker ages in men and women consisting of clinical biomarkers reflecting functionality 

of a range of organs accounted for a substantial proportion of the effects of age on disease 

and hospital admissions in the UK Biobank. They have the potential to be used and evaluated 

as a broader-based approach to risk identification and prevention than individual biomarkers. 

Of the most important biomarkers contributing to the derived biomarker ages, 

cardiometabolic biomarkers have well-studied causal associations with mortality and 

cardiovascular disease, but further research is needed to identify modifiable causal factors 

underlying all constituents of biological ages, for a range of age-related diseases.  
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Table 1: Participant characteristics for the healthy subpopulation and the whole UK Biobank 

population 

 

 Healthy subpopulation Whole population 

 Persons Men Women Persons Men Women 

Participants (n) 141,254 65,869 75,385 480,019 219,248 260,771 

Person-years at risk (millions) 1.2 0.56 0.64 4.12 1.87 2.25 

Median age at baseline (years) 56.0 55.7 56.4 58.3 58.8 58.0 

Age band at baseline in years (%)       

40-44 12.1 13.9 10.5 10.2 10.4 10.1 

45-49 15.9 16.5 15.4 13.1 12.7 13.4 

50-54 17.8 17.1 18.4 15.1 14.4 15.8 

55-59 19.4 18.6 20.1 18.1 17.5 18.6 

60-64 21.9 21.0 22.6 24.3 24.3 24.3 

65-70 12.9 12.9 13.0 19.2 20.8 17.9 

IMD 2010 quintile (%)       

Q1 (least deprived) 23.9 23.8 24.1 20.0 19.7 20.1 

Q2 22.2 22.1 22.3 20.0 19.7 20.3 

Q3 20.9 20.7 21.1 20.0 19.8 20.2 

Q4 18.7 18.7 18.7 20.0 19.9 20.1 

Q5 (most deprived) 14.3 14.7 13.9 20.0 20.9 19.3 

Smoker status (%)       

Current 0.0 0.0 0.0 10.5 12.4 8.8 

Previous 33.4 35.9 31.2 34.5 38.3 31.3 

Never 66.6 64.1 68.8 54.5 48.8 59.4 

No answer/missing 0.0 0.0 0.0 0.5 0.5 0.5 

Alcohol consumption frequency (%)       

Never 5.5 4.5 6.5 8.0 6.3 9.5 

Special occasions only 8.8 5.6 11.6 11.5 7.3 15.0 

One to three times a month 10.5 8.6 12.3 11.1 8.9 13.0 

Once or twice a week 27.3 27.2 27.4 25.8 25.9 25.7 

Three or four times a week 26.8 29.5 24.5 23.1 26.1 20.5 

Daily or almost daily 21.0 24.7 17.7 20.3 25.3 16.1 

No answer/missing 0.0 0.0 0.0 0.2 0.2 0.2 

Health events during follow up (n)        

Deaths from chronic disease 2,394 1,357 1,037 18,799 11,362 7,437 

Prior age-related hospital admissions 6,206 2,953 3,253 74,811 35,401 39,410 

Incident age-related hospital admissions 21,627 10,317 11,310 93,716 43,700 50,016 

 

Note: IMD: Index of Multiple Deprivation. 
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Table 2: Harrell's C-indices (with standard errors) for each health outcome in the healthy UK Biobank subpopulation, biomarker age vs 

chronological age and biomarker age vs mortality score 

 

(A) Unadjusted analysis 

 

Outcome and age predictor Healthy men Healthy women 

Mortality from chronic disease   

   CA alone 0.712 (0.008) 0.667 (0.009) 

   BA alone 0.689 (0.008) 0.635 (0.009) 

   BA and CA 0.720 (0.008) 0.669 (0.009) 

   Improvement of BA and CA over CA 0.008 0.002 

Age-related hospital admissions   

   CA alone 0.636 (0.003) 0.606 (0.003) 

   BA alone 0.615 (0.003) 0.586 (0.003) 

   BA and CA 0.639 (0.003) 0.608 (0.003) 

   Improvement of BA and CA over CA 0.003 0.001 

   Mortality score 0.504 (0.003) 0.518 (0.003) 

   Improvement of BA over mortality score 0.111 0.068 
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(B) Adjusted for sociodemographic factors and health behaviours 

 

Outcome and age predictor Healthy men Healthy women 

Mortality from chronic disease   

   CA alone 0.724 (0.008) 0.688 (0.009) 

   BA alone 0.702 (0.008) 0.660 (0.009) 

   BA and CA 0.731 (0.008) 0.690 (0.009) 

   Improvement of BA and CA over CA 0.007 0.002 

Age-related hospital admissions   

   CA alone 0.660 (0.003) 0.633 (0.003) 

   BA alone 0.640 (0.003) 0.614 (0.003) 

   BA and CA 0.662 (0.003) 0.634 (0.003) 

   Improvement of BA and CA over CA 0.002 0.001 

   Mortality score 0.574 (0.003) 0.571 (0.003) 

   Improvement of BA over mortality score 0.066 0.043 

 

Note: CA: chronological age; BA: biomarker age. Analyses in (B) were adjusted for Index of Multiple Deprivation 2010 quintile, smoking 

status, alcohol consumption and assessment centre. 
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Table titles and figure captions 

Table 1: Participant characteristics for the healthy subpopulation and the whole UK 

Biobank population 

Table 2: Harrell's C-indices (with standard errors) for each health outcome in the 

healthy UK Biobank subpopulation, biomarker age vs chronological age and biomarker 

age vs mortality score  

Figure 1: Importance of the top 15 biomarker principal components in the biomarker 

ages for healthy men and women. The percentage of R
2
 denotes the percentage of variation 

in the biomarker age explained by each biomarker. 

Figure 2: Relative contribution of biomarker ages and chronological age in explaining 

each health outcome, in the (A) main analysis and when (B) using the reduced 

biomarker panel, for healthy men and women. The reduced biomarker panel consists of: 

forced expiratory volume in 1s/height, forced vital capacity/height, reaction time, insulin 

growth factor 1, cystatin C, hand grip strength/height, systolic and diastolic blood pressure in 

both sexes; albumin, sex hormone-binding globulin, fat-free mass, standing height and sitting 

height in men; and low density lipoprotein cholesterol, alkaline phosphatase, HbA1c and urea 

in women. These were the primary biomarkers that loaded most strongly onto the 10 

principal component biomarkers that were most important contributors to biomarker ages for 

each sex, plus diastolic blood pressure, forced vital capacity and sitting height because they 

were strongly loaded onto the same components (rotated factor loading >0.5) and could be 

measured at the same instance as the primary biomarkers. 

Figure 3: Outcome-free survival of healthy men and healthy women for (A) mortality 

from chronic disease and (B) age-related hospital admissions, according to whether 

their biomarker age is younger, similar to or older than their chronological age. Note: 

BA: biomarker age; CA: chronological age. 
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Figure 1 
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Figure 2 
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Figure 3 
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