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Abstract—The development of dual-functional radar-
communication (DFRC) systems, where vehicle localization
and tracking can be combined with vehicular communication,
will lead to more efficient future vehicular networks. In
this paper, we develop a predictive beamforming scheme in
the context of DFRC systems. We consider a system model
where the road-side units estimates and predicts the motion
parameters of vehicles based on the echoes of the DFRC
signal. Compared to the conventional feedback-based beam
tracking approaches, the proposed method can reduce the
signaling overhead and improve the accuracy. To accurately
estimate the motion parameters of vehicles in real-time, we
propose a novel message passing algorithm based on factor
graph, which yields near optimal solution to the maximum a
posteriori estimation. The beamformers are then designed based
on the predicted angles for establishing the communication
links. With the employment of appropriate approximations, all
messages on the factor graph can be derived in a closed-form,
thus reduce the complexity. Simulation results show that the
proposed DFRC based beamforming scheme is superior to
the feedback-based approach in terms of both estimation
and communication performance. Moreover, the proposed
message passing algorithm achieves a similar performance of
the high-complexity particle-based methods.

Index Terms—Dual-functional radar-communication, beam
tracking, factor graph, vehicular networks.

I. INTRODUCTION

Connectivity and automation are revolutionizing the auto-
motive industry. These technologies are enabling innovations
that will transform vehicles into platforms for drivers and
passengers that will provide services beyond transportation
[1], [2]In the era of the fifth-generation (5G) communication,
vehicle-to-everything (V2X) communication is expected to
play an important role to support promising applications
including automated vehicles, traffic management, and social
driving [3]. To fulfill the stringent quality of service (QoS)
requirement in 5G, the V2X network is required to support
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low latency information transmission in high-mobility envi-
ronments [4]. In addition to the wireless communication, the
environment sensing capability is also of great importance in
vehicular networks. Since its birth, radar systems have been
already deployed worldwide to address several military and
civilian applications such as obstacle detection, environment
reconstruction, as well as remote sensing [5]. In the future
V2X systems, due to the time-varying nature of the network
topology and the surrounding environments, radar-type tech-
nologies are envisioned as a promising candidate for detecting
and tracking cars, pedestrians, road lanes, and obstacles in
real-time [6].

Traditionally, radar and communication systems exploit
separate spectrum resources and thus rarely interfere with
each other. However, this approach becomes challenging, or
even infeasible, as the communities developing both types of
systems are seeking more resources. As a result, for V2X ap-
plications, where both radar and communication functionalities
are desirable, mutual interference is unavoidable in overlapped
frequency bands. A straightforward solution is to allocate two
systems with separated portions of frequency spectrum to
eliminate any possible interference, yet, resulting in a severe
degradation of the spectral efficiency. Departing from this
naive approach, a recent stream of research focuses on the
design of joint systems that perform both radar sensing and
communication functionalities with a single transmission. That
is the dual-functional radar communication (DFRC) technique,
which is capable of significantly reducing the hardware cost
while increasing the overall system throughput [7].

Early contributions of DFRC designs focused on the
employment of orthogonal frequency division multiplexing
(OFDM) technique [8]. OFDM offers several advantages for
wireless communication systems, such as resilience to multi-
path fading, simple time and frame synchronization, and low-
complexity equalization. From the radar sensing perspective,
OFDM-like radar signals decouple the range and Doppler
estimators in contrast to conventional radar systems, which
provides a better target estimation performance [9]. Thus,
OFDM has been regarded a promising candidate for imple-
menting DFRC systems [10], [11]. To satisfy the requirement
of communication with multiple users, DFRC systems based
on the multiple-input multiple-output (MIMO) technology
have been proposed in recent work. In MIMO radar, the
waveforms radiated by each antenna element are orthogonal,
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thus the interference can be avoided and more degrees of
freedom are available for DFRC waveform design. Pioneered
by [12], a MIMO DFRC approach is proposed to detect
target using the mainlobe of the spatial beampattern, while
transmitting useful information by varying the sidelobe power.
Later on, more advanced DFRC approaches were studied
under various conditions and constraints, such as Non Line-of-
Sight (NLoS) channels [13], multi-user interference and peak-
to-average-power ratio (PAPR)-constrained transmission [14].
However, the aforementioned works focus on the sub-6G Hz
frequency band and cannot support Gbps data rate as required
by V2X communication systems.

To overcome the above challenges, the large bandwidth
available in the millimeter wave (mmWave) spectrum is
considered as a key enabler for DFRC systems, which can
significantly improve both the data rate for communication
and the range resolution for radar. In particular, by leveraging
the massive MIMO technology, mmWave systems are able to
exploit efficient spatial processing methods such as beamform-
ing and spatial multiplexing at the transmitter and/ or receiver
sides [15], [16]. Aiming for designing DFRC transceivers at
the mmWave band, the authors of [17] designed an adaptive
DFRC waveform that meets the Pareto optimal bound. Then a
novel framework based on hybrid analog-digital beamforming
techniques was developed in [7]. However, [7] did not take
the high-mobility environments into account and their results
are thus not suitable for V2X applications. Relying on the
large-scale antenna array, the pencil-like spatial beams can
be generated by the transmitter focusing the radiation power
on the intended directions, which compensates for the high
path-loss of the mmWave signals. To establish a reliable
communication link, it is essential to align the transmit and
receive beams between the vehicles and the associated road-
side unit (RSU) [18]. Conventionally, the RSU periodically
scans the angular interval of interest and pairs the transmit
and receive beams with the strongest channel gain. However,
for the vehicular applications with dynamic network topology
and environments, the beam pairing has to be done frequently,
leading to exceedingly high communication cost.

To cope with the high-mobility constraint imposed on the
V2X scenarios, several works considered the fast beam track-
ing problem from the communication perspective [19], [20].In
[20], the RSU first sends a communication signal containing
pilots to the vehicles. Then the vehicles decode the information
and estimate the relative angles with respect to the RSU, which
are then fedback to the RSU for beam steering to the intended
direction. To reduce the latency for beam alignment, the RSU
can have a further prediction of the relative angles in the
next time slot. Then the RSU can adopt their beamformers
ahead for establishing the communication link in the following
time instant. Some recent works utilized the classic Extended
Kalman filtering (EKF) based on the state evolution of vehicles
to predict the angles [21]. Except for the angular parameters,
it is important to track the variation of other kinetic motion
parameters of vehicles such as speed and range to fulfill
the requirements of intelligent traffic applications. To achieve
highly accurate estimation result, the number of pilots for EKF
beam tracking should be sufficiently large, leading to high

communication signaling overhead. Some radar aided beam
alignment method were proposed in [22], [23],where the radar
signal operates in a different frequency band, which however
leads to increased spectral consumption. For these reasons, we
develop a DFRC-based scheme for tracking the beam direction
as well as the motion parameters in vehicular networks.

In this paper, we propose a novel DFRC-based predictive
beamforming scheme for vehicle-to-infrastructure (V2I) sce-
narios that has a very low signaling overhead. To elaborate,
the RSU sends DFRC signals containing information to the
vehicles via downlink transmission. After receiving the DFRC
signals, the vehicles perform detection followed by decoding
to obtain the information. Meanwhile, the echoes reflected
by the vehicles are acquired by the RSU via radar sensing
techniques to estimate the beam directions as well as other
motion parameters of the vehicles. With the help of the
radar system, feedbacks from the vehicles to the RSU can
be avoided. Compared to some feedback-based schemes that
exploits a limited number of pilots for beam tracking, e.g. [21],
the proposed DFRC-based scheme utilizes the whole downlink
block both as communication data symbols and sensing pilots.
Therefore the signaling overhead solely for beam alignment
is as low as 0, which undoubtedly increases the spectral
efficiency. Accordingly, uplink resources can be fully exploited
for transmitting data rather than carrying feedback informa-
tion. Different from the feedback-based methods, the “predic-
tion” is done at the RSU, and the predicted angular parameters
are contained into the DFRC signals sent to the vehicles.
To fully realize the DFRC-based predictive beamforming, we
formulate the beam tracking problem as a Bayes inference. In
contrast to our previous work [24], we commence from the
optimal estimation perspective and propose a factor graph and
message passing-based algorithm to estimate and predict the
motion parameters of vehicles at each time slot. Compared to
the EKF method in [24], the proposed approach is expected
to achieve a better estimation performance. Note that the
product factor node and the nonlinear functions concerning
the angular parameters complicate the considered problem
making the standard message passing algorithm inapplicable
to provide any closed-form solutions. In general, particle
filtering (PF) can be used for accurately approximating the
non-closed form messages. However, the employment of a
large number of particles results in high complexity. To strike a
balance between the complexity and performance, we propose
a modified mean field (MF) message passing algorithm and
apply second-order Taylor expansion to linearize the inverse
trigonometry functions. As a result, all messages are derived
in a closed-form, leading to a low level of computational
complexity. In a nutshell, our contributions are summarized
as follows:

• We propose a DFRC based predictive beamforming
scheme for vehicular networks, achieving a better estima-
tion performance and higher spectral efficiency than that
of conventional feedback-based schemes. We consider a
prediction of the angles for formulating the beamformers
in order to reduce the latency.

• We introduce a specifically tailored factor graph-based
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framework and a message passing algorithm to accurately
track and predict the motion parameters of vehicles.

• We exploit the MF message passing and Taylor expansion
approaches for deriving closed form messages on factor
graph, providing a low-complexity and high-accuracy
estimation result.

Simulation results show that our proposed algorithm achieves
a similar performance of the PF-based method but with
only a considerably lower computational overhead. Moreover,
compared to the communication-only feedback scheme [21],
the proposed algorithm achieves better tracking performance
and higher achievable rate.

The remainder of this paper is organized as follows. We
introduce the DFRC signal model and the kinematic model of
vehicles in Section II. Section III constructs the factor graph
based on the probabilistic model of the considered system. In
Section IV, the proposed message passing algorithm for beam
tracking and motion parameter estimation is described. Then
the simulation results are shown and discussed in Section V.
Finally, our conclusions are drawn in Section VI.

Notations: We use a boldface letter to denote a vector.
The superscripts (·)T, (·)−1 and (·)H denote the transpose,
the conjugate, the inverse and the Hermitian operations, re-
spectively; N (x;mx, λx) denotes the Gaussian distribution
of real variable x having mean of mx and variance of λx;
S\x denotes all variables in set S except x; E represents
the expectation operator; V denotes the operator to obtain
the variance of a random variable; CN×M denotes a complex
space of dimensional N ×M ; R{·} and I{·} denote the real
part and imaginary part of a complex variable; | · | represents
the modulus of a complex number; ∝ represents both sides
of the equation are multiplicatively connected to a constant;
erf(·)denotes the error function; x\x denotes all variables in
x except x.

II. SYSTEM MODEL

Throughout this paper, we consider a vehicular network
with one RSU supporting K vehicles, as depicted in Fig. 1.
The RSU operates at mmWave band equipped with a massive
MIMO uniform linear array (ULA) which has Nt transmit
antennas and a separate array of Nr receive antennas. This
allows the RSU to receive the vehicle echoes for tracking while
ensuring uninterrupted downlink transmission. Each one of
the vehicles is assumed to have an M -antenna ULA mounted
on both sides of its body. The vehicles move along a one-
lane straight road parallel to the RSU array1. For brevity, we
assume that the signals transmit through line-of-sight (LoS)
channels, a further extension to non line-of-sight channels will
be designated to the future works.

Without loss of generality, we denote the range, the angle,
and the speed of the kth vehicle relative to the RSU’s array by
dk(t), θk(t), and vk(t), respectively. Provided that the vehicle
is moving along the direction parallel with the ULA, the angle

1For convenience of exposition, the vehicles are modeled as point targets
following standard assumption in the literature [25]. The extension to a non-
parallel case is straightforward since the angle between the road and the RSU
array is fixed and known to the RSU and can be easily calibrated.

Echo
RSUDFRC

Signal Transmit array

Receive array

Fig. 1. System model for the considered vehicular network.

of the RSU relative to the kth vehicle can also be defined as
θk(t). We further denote the time duration between two radar
epochs by T . Following commonly adopted assumptions [21],
we assume that the required parameters for vehicle k do not
change in a relatively short time duration. Then the motion
parameters of vehicle k at the nth time instant are denoted by
dk,n, θk,n, and vk,n.

A. Signal Model

At the nth instant, the RSU sends a K-dimensional multi-
beam direction-finding DFRC signal to the K vehicles con-
currently, denoted by sn(t) = [s1,n(t), ..., sK,n(t)]T with a
complex signal sk,n(t) for vehicle k. The signal sn(t) is
transmitted over Nt antennas of the RSU, formulating as

s̃n(t) = Fnsn(t), (1)

where Fn ∈ CNt×K is the transmit beamforming matrix. In
general, the beamforming matrix Fn is designed relying on
the predicted angle. Assuming that we have a prediction of
angle θk for all vehicles ∀k ∈ [1,K], defined by θpred,R

k,n , the
beamforming vector for the kth vehicle is the kth column of
Fn that can be written as

fk,n =
√
ek,na(θpred,R

k,n ), (2)

where ek,n denotes the signal power, a(θpred,R
k,n ) =√

1
Nt

[a1(θpred,R
k,n ), ..., aNt(θ

pred,R
k,n )]T with ai(θ) =

e−jπ(i−1) cos θ is the transmit steering vector and θpred,R
k,n is

the predicted angle at time n. By using the beamforming
matrix Fn, each beam is steered towards the predicted
angle of the targeted vehicle. The transmitted signal s̃n(t)
is reflected by all the K vehicles and the received echo
rn(t) = [r1,n(t), ..., rK,n(t)]Tcan be formulated as

rn(t) =ς

K∑
k=1

βk,ne
j2πγk,ntb(θk,n)aH(θk,n)s̃n(t− τk,n)

+ zr(t), (3)
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where ς =
√
NtNr denotes the multi-antenna array gain, βk,n,

γk,n, and τk,n denote the reflection coefficient, the Doppler,
and the delay of the kth vehicle at time n, respectively,
and b(θk,n) =

√
1
Nr

[b1(θk,n), ..., bNr (θk,n)]T is the receive

steering vector with bi(θ) = e−jπ(i−1) cos θ2. The term zr(t)
is assumed to be a complex additive white Gaussian noise with
zero mean.

Remark 1: The echoes may arrive at the RSU during the
transmission of the DFRC signal, in which case the transmitted
signal would inevitably generate self-interference to the recep-
tion. To address this issue, we employ separate transmit and
receive antenna arrays at the RSU, with strong RF isolation
combined with highly directive elevation beamforming. Then,
the self-interference can be cancelled out via exploiting classic
RF full-duplex structure [26], where the residual interference
is small enough to be incorporated into the noise term. For
notational convenience and to avoid alleviating from the focus
of this paper, we will not discuss this topic in detail and
designate this as our future work. �

Given the relative range of vehicle k and the RSU, i.e., dk,n,
the reflection coefficient can be modeled as

βk,n =
ξ

2dk,n
, (4)

where ξ represents the complex radar cross-section (RCS) [5].
According to [27], the following result generally holds for

ULA in a massive MIMO scenario:

|aH(θi)a(θj)| ≈ 0, ∀i 6= j. (5)

This result indicates that the steering vectors related to two
different vehicles are asymptotically orthogonal in massive
MIMO systems [21]. Therefore, we assume that there is only
negligible inter-beam interference and the RSU can identify
the echoes from different vehicles. The reflected echo for the
kth vehicle can then be expressed as

rk,n(t) =ςβk,ne
j2πγk,ntb(θk,n)aH(θk,n)s̃k,n(t− τk,n)

+ zk,n(t), (6)

where s̃k,n(t) = fk,nsk,n(t). In the following section, we will
introduce the measurement model adopted at the RSU.

B. Observation Model

By performing radar matched filtering on (6) with a delayed
and Doppler-shifted version of sk,n(t), we obtain the estimates
of delay τk,n and Doppler γk,n, which are related to range dk,n
and speed vk,n, respectively. Considering Gaussian observa-
tion noise, the measurement model for the motion parameters
dk,n and vk,n are given by

τk,n =
2dk,n
c

+ zτ , and (7)

γk,n =
2vk,n cos θk,nfc

c
+ zγ , (8)

2It should be noted that we are considering a fully digital massive MIMO
architecture, where the echo signal (3) is received by the RSU without analog
combination.

��,�−1

��,�

Δ

Δ

��,�

Tx beam

��,�−1Rx beam

RSU

�

�

Fig. 2. State evolution model of the considered vehicular network.

respectively, where fc and c represent the carrier frequency and
signal propagation speed, noise terms zτ and zγ obey Gaussian
distributions N (zτ ; 0, σ2

τ ) and N (zγ ; 0, σ2
γ), respectively.

Remark 2: By only exploiting the observation within a
single time-slot, the speed estimation of a vehicle at the RSU
is challenging, since the resultant Doppler phase shift is not
significant [28]. To tackle this issue, one may estimate the
vehicle’s velocity given a Doppler shift accumulated within
multiple time-slots. �

Having the estimates of delay and Doppler, we have the
received signal samples yk,n = [y

[1]
k,n, ..., y

[Nr]
k,n ]T for θk,n and

βk,n based on the filtered signal, given by

yk,n = ςβk,n
√
ek,nb(θk,n)aH(θk,n)a(θpred,R

k,n ) + zk,n, (9)

where the term zk,n = [z
[1]
k,n, ..., z

[Nr]
k,n ]T denotes the noise

samples at different receive antennas. Without loss of gen-
erality, we model z[i]

k,n = zy ∼ N (zy; 0, σ2
y), ∀i. Remark

that after matched filtering, we achieve a signal-to-noise ratio
(SNR) gain G, which is typically identical to the energy of
signal sk,n(t). Vector a(θpred,R

k,n ) in (9) denotes the transmit
beamformer for vehicle k based on the predicted angle θpred,R

k,n

at time instant n. After straightforward manipulations, we
arrive at the following measurement model

yk,n =βk,npk,n



Nt∑
i=1

ejπ(i−1) cos θ̂k,ne−jπ(i−1) cos θk,n

Nt∑
i=1

ejπ(i−1) cos θ̂k,ne−jπ(i−2) cos θk,n

...
Nt∑
i=1

ejπ(i−1) cos θ̂k,ne−jπ(i−Nr) cos θk,n


+ zy, (10)

where pk,n =
√

ek,n
Nt

. Next, we consider the state evolution
model of the motion parameters of vehicles.
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C. State Evolution Model

We aim for obtaining the motion parameters of all vehicles
in the coverage area of the RSU. Based on the previous states
and the moving patterns of the vehicles, we can determine
the state evolution models for the vehicles, as shown in
Fig. 2. Relying on the geometric relationship of the motion
parameters at time instant n−1 and n as shown in Fig. 2, we
have the following kinematic equations as{

sin(θk,n − θk,n−1)dk,n = vk,n−1T sin θk,n−1,
d2
k,n = d2

k,n−1 + (vk,n−1T )2 − 2dk,n−1vk,n−1T cos θk,n−1.

(11)

The above two equations show how the motion parameters
of vehicle k evolve with time. For brevity, we define ∆θ =
θk,n − θk,n−1 and ∆d = vk,n−1T . Obviously, solving the
above nonlinear equations to construct the evolution model is
challenging. As a compromise approach, we propose to find a
tractable approximation of (11). Since in general, the variation
of vehicle’s position is relatively small within a short period
T , we can use the approximation ∆θk,n ≈ sin ∆θk,n. Based
on this, the first equation of (11) can be written as

∆θk,n ≈ sin ∆θk,n =
∆d sin θk,n−1

dk,n
. (12)

By considering the fact that dk,n ≈ dk,n−1 in time duration
T , ∆θk,n is further expressed as

∆θk,n ≈
∆d sin θk,n−1

dk,n−1
. (13)

For the range variation in two continuous time slots, we can
rewrite the second equation of (11) as

dk,n − dk,n−1 =
∆d2 − 2dk,n−1∆d cos θk,n−1

dk,n + dk,n−1
. (14)

Then, by exploiting the fact that dk,n ≈ dk,n−1, (14) can be
simplified to

dk,n − dk,n−1 ≈ ∆d

(
∆d

2dk,n−1
− cos θk,n−1

)
. (15)

Comparing to the range dk,n−1, the variation ∆d is negligible,
therefore the term ∆d

2dk,n−1
can be omitted and dk,n − dk,n−1

is given by

dk,n − dk,n−1 ≈ ∆d cos θk,n−1. (16)

Furthermore, using the reflection coefficient model (4), we
have

βk,n = βk,n−1
ξdk,n−1

ξdk,n

= βk,n−1 ≈
(

1 +
∆d cos θk,n−1

dk,n−1

)
. (17)

Finally, we assume that the speed of the vehicle is approxi-
mately a constant, i.e.,

vk,n ≈ vk,n−1. (18)

Having (13)-(18), we summarize the state evolution models
for θk,n, range dk,n, speed vk,n, and coefficient βk,n in the

following

θk,n = θk,n−1 +
vk,n−1T sin θk,n−1

dk,n−1
+ zθ, (19)

dk,n = dk,n−1 − vk,n−1T cos θk,n−1 + zd, (20)
vk,n = vk,n−1 + zv, (21)

βk,n = βk,n−1 + βk,n−1
vk,n−1T cos θk,n−1

dk,n−1
+ zβ , (22)

where the transition noise zθ, zd, zv , and zβ obey
zero mean Gaussian distributions N (zθ; 0, σ2

θ), N (zd; 0, σ2
d),

N (zv; 0, σ2
v), and CN (zβ ; 0, σ2

β), respectively. Note that the
state evolution of dk,n, θk,n, and βk,n also depend on other
variables. For simplicity, we adopt the estimates at time
instant n − 1, i.e., v̂k,n−1, θ̂k,n−1, and d̂k,n−1 to replace the
corresponding terms in (19)-(22), such that the evolution of
the motion parameters only depends on their own previous
states.

D. Communication Model

To receive the signal sent by the RSU, vehicle k adopts a
receive beamformer wk,n and the received signal is formulated
as

gk,n(t) = ς̄αk,nw
H
k,nu(θk,n)aH(θk,n)s̃k,n(t) + zg(t), (23)

where ς̄ =
√
NtM is the array gain between the RSU and the

vehicle, αk,n is the channel pathloss coefficient, zg(t) is the
Gaussian noise term, and u(θk,n) ∈ CM×1 denotes the receive
steering vector of vehicle k, which has a similar definition as
a(θ). The beamformer wk,n is designed based on the predicted
angle of vehicle k relative to the RSU at time instant n, i.e.,
wk,n = u(θpred

k,n ). The prediction of the angle θpred
k,n at time

n is done at the RSU based on the estimate at time n − 2,
which is contained in the DFRC signal at time n−1 to the kth
vehicle. Assuming that the original transmitted signal sk,n(t)
from the RSU has unit power, then the SNR of the received
signal is given by

SNRk,n =

∣∣∣ς̄αk,nwH
k,nu(θk,n)aH(θk,n)fk,n

∣∣∣2
N0

, (24)

where N0 is the power spectral density (PSD) of the additive
white Gaussin noise. Substituting the expression of fk,n into
(24) yields

SNRk,n = ς̄2ek,n

∣∣∣αk,nuH(θpred
k,n )u(θk,n)aH(θk,n)a(θ̂k,n|n−1)

∣∣∣2
N0

.

(25)

Based on the SNR corresponding to the kth vehicle, the
achievable sum-rate of all vehicles at time n is expressed as

Rn =

K∑
k=1

(1 + SNRk,n). (26)

It can be observed that the achievable sum-rate relies on the
transmit and receive beamformers. When the angle is perfectly
predicted, i.e., θk,n = θpred,R

k,n = θpred
k,n , uH(θpred

k,n )u(θk,n) =
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1 and aH(θk,n)a(θ̂k,n|n−1), the received SNR is maximized,
given by

SNRk,n =
ek,n|αk,n|2

N0
, (27)

and we have the maximum achievable sum-rate. For the
channel coefficient αk,n, it can be simply estimated based on
the range parameter dk,n.

For clarity, we define vectors yk = [yT
k,1, ...,y

T
k,N ]T,

τk = [τk,1, ..., τk,N ]T, and γk = [γk,1, ..., γk,N ]T as the
received signals, observed delays and Dopplers of vehicle k
until time instant N , respectively. Furthermore, the unknown
parameters corresponding to vehicle k can also be rewritten in
vector form as θk = [θk,1, ..., θk,N ]T, dk = [dk,1, ..., dk,N ]T,
vk = [vk,1, ..., vk,N ]T and βk = [βk,1, ..., βk,N ]T, respec-
tively. As the echo signals reflected by different vehicles can
be identified unambiguously, in what follows, we will omit the
vehicle index ‘k’ for brevity. Note that the proposed algorithm
is applicable for any vehicles in the RSU’s coverage area. In
the above, we have expressed the radar signal as well as the
communication model. In the next section, we will formulate
a factor graph model to infer the variables representing the
motion parameters of vehicles.

III. FACTOR GRAPH MODEL

Our goal is to estimate the unknown range d, speed v,
angle θ, and path loss β given the state evolution model and
the observation model. From the Bayesian perspective, this
is equivalent to inferring the variables from the observations
through an estimator, i.e., the maximum a posteriori (MAP)
estimator,

{d̂, θ̂, v̂, β̂} = arg max
d,θ,v,β

p(d,θ,v,β|y, τ ,γ), (28)

where p(d,θ,v,β|y, τ ,γ) denotes the joint a posteriori
distribution. Nevertheless, solving (28) involves a multi-
dimensional search, leading to an exponentially increased
complexity. As a result, there is a need for a low-complexity
estimation approach. To this end, we aim for finding a sub-
optimal solution that the maximization is performed based on
the marginal a posteriori of a variable of interest x, formu-
lated as x̂ = arg maxx p(x|y, τ ,γ). Generally, the marginal
distribution can be obtained through direct marginalization of
the joint distribution, i.e.,

p(x|y, τ ,γ) =

∫
{d,θ,v,β}\x

p(d,θ,v,β|y, τ ,γ). (29)

However, direct marginalization requires a prohibitively high
complexity due to the multi-dimensional integrations involved
in (29). In what follows, we will resort to the factor graph
framework to obtain the marginals of unknown variables by
leveraging the conditional independency between variables.

According to Bayes Theorem, the joint distribution is rewrit-
ten as

p(d,θ,v,β|y, τ ,γ,β) = p(y, τ ,γ|d,θ,v)p(d,θ,v,β),
(30)

where p(y, τ ,γ|d,θ,v,β) and p(d,θ,v,β) are the likelihood
function and the joint a priori distribution, respectively. Let

us consider the a priori distribution first. Based on the state
transition function in (19)-(22), the joint a priori distribution
can be factorized as

p(d,θ,v,β) = p(d)p(θ)p(v)p(β)

= p(d0)p(θ0)p(v0)p(β0)

N∏
n=1

p(dn|dn−1)

· p(θn|θn−1)p(vn|vn−1)p(βn|βn−1), (31)

with the transition probabilities

p(vn|vn−1) ∝ exp
(
−(vn − vn−1)2/2σ2

v

)
, (32)

p(θn|θn−1) ∝ (33)

exp

−(θn − θn−1 −
v̂n−1T sin θ̂n−1

d̂n−1

)2

/2σ2
θ

 ,

p(dn|dn−1) ∝ (34)

exp
(
− (dn − dn−1 + v̂n−1T cos θ̂n−1)2/2σ2

d

)
,

p(βn|βn−1) ∝ exp
(
−(βn − ρn−1βn−1)2/2σ2

β

)
, (35)

where ρn−1 = 1 +
v̂k,n−1T cos θ̂k,n−1

d̂k,n−1
. The initial vehicle

parameters at time instant 0 are obtained by employing an
omnidirectional probing waveform sent from the RSU. Based
on the received echoes, the RSU is able to infer the parameters
d0, θ0, v0, and β0 of a vehicle entering the coverage area
of RSU. Without loss of generality, we model the initial
distributions of d0, θ0, vk,0, and β0 as Gaussian distribu-
tions p(d0) = N (d0;md0 , λd0), p(θ0) = N (θ0;mθ0 , λθ0),
p(v0) = N (v0;mv0 , λv0), and p(β0) = N (β0;mβ0

, λβ0
).

For the joint likelihood function, since the received signals,
observed delays and Dopplers are irrelevant given the vari-
ables, we can express the joint likelihood function as

p(y, τ ,γ|d,θ,v,β) = p(y|θ,β)p(τ |d)p(γ|θ,v). (36)

Considering that the Gaussian noise terms are independent for
different time instants n, therefore p(y, τ ,γ|d,θ,v,β) can be
factorized as

p(y, τ ,γ|d,θ,v,β) =

N∏
n=1

[
p(γn|θn, vn)

p(τn|dn)

Nr∏
l=1

p(y[l]
n |θn, βn)

]
, (37)

where p(τn|dn) ∝ N (rn; 2dn
c , σ2

τ ) and p(γn|θn, vk,n) ∝
N (γn; 2vn cos θnfc

c , σ2
γ). Recalling the model (10), the received

signal y[l]
n at the lth receive antenna consists of Nt com-

ponents, which makes the inference problem very difficult.
Hence we introduce an auxiliary variable ε[q]n satisfying ε[q]n =

e−jπq cos θn and y[l]
k,n =

∑Nt
i=1 ai(θ̂

0
n)ε

[i−l]
n + zy . Based on the
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Fig. 3. The factor graph representation of the considered problem.

auxiliary variables, p(y[l]
n |θn) is given by

p(y[l]
n |θn, βn) ∝ exp

(
|y[l]
n − βn

√
pn
∑Nt
i=1 ai(θ̂

0
n)ε

[i−l]
n |2

2σ2
y

)
· δ(ε[i−l]n − e−jπ(i−l) cos θn)︸ ︷︷ ︸

κi−l

. (38)

Following (30)-(38), we have the factorization of the joint a
posteriori distribution and can represent it by a factor graph,
as shown in Fig. 3, where each square represents an factor
vertex and each circle denotes a variable vertex. In Fig. 3,
the blue solid line boxed area and red dashed line boxed
area correspond to the state evolution model and observation
model, respectively. The shorthand notations ψn|n−1, φn|n−1,
ϕn|n−1, and ηn|n−1 denote the state transition probabilities
p(dn|dn−1), p(vn|vn−1), p(θn|θn−1), and p(βn|βn−1), re-
spectively. The factor vertices τn, γn, and y

[i]
n denote the

likelihood functions corresponding to the observations τn, fn
and y[i]

n . Having the factor graph, message passing algorithm
can be implemented to efficiently compute the “beliefs” (ap-
proximate marginals) of unknown variables, which will be
elaborated in the following section.

IV. THE PROPOSED MESSAGE PASSING APPROACH

This section presents the proposed message passing algo-
rithm for predicting and tracking the beam. There are two
kinds of messages, i.e., the message from the factor vertex to
the variable vertex and vice versa. For notational convenience,
we use −→µ f (x) to denote the message from the factor vertex

f to the variable vertex x and ←−ν f (x) to denote the message
from x to factor f .

A. Conventional Message Passing Algorithm

The conventional message passing algorithm, also known
as belief propagation (BP) has defined the following message
updating rules,

−→µ f (x) ∝
∫
f(x)

∏
x′∈Sf\{x}

←−ν f (x′)dx′, (39)

←−ν f (x) ∝
∏

f ′∈Sx\{f}

−→µ f ′(x), (40)

where Sf denotes the set of variables in function f(x) and
Sx denotes the set of factor vertices connected to x. Having
obtained all messages from ∀f ∈ Sf to variable vertex x, the
belief (marginal) of variable x is then given by

b(x) =
∏
f∈Sx

−→µ f (x). (41)

B. Vehicle State Prediction

As discussed in Section II, the RSU and the vehicles design
the receive beamformers based on the predicted angles. With
the estimates of the motion parameters at time n − 1, the
RSU can predict angle θn via the state evolution model.
Furthermore, the RSU can perform a prediction of the angle at
time n+ 1 based on the information obtained at the (n− 1)th
time instant. In this way, the information of the predicted angle
θpred
n+1 is contained in the DFRC signal sent to the vehicles. Af-

ter receiving the angle information, the vehicles can formulate
the receive beamformer wn+1 at the (n + 1)th instant using
the predicted angles θpred

n+1 for in formation reception at time
n + 1. If the prediction is sufficiently accurate, the transmit
beams of RSU and the receive beams of vehicles are aligned,
which leads to a better communication performance.

We commence our discussions with the messages in
the state evolution part. Provided that the belief of vn−1

has been obtained in Gaussian form as b(vn−1) =
N (vn−1;mvn−1 , λvn−1), the message −→µ φn|n−1

(vn) is calcu-
lated according to (39), given by
−→µ φn|n−1

(vn) ∝∫
exp

(
− (vn − vn−1)2

2σ2
v

)
exp

(
(vn−1 −mvn−1)2

2λvn−1

)
dvn−1,

∝ exp

(
−

(vn −mvn−1
)2

2(σ2
v + λvn−1

)

)
. (42)

It can be observed that the above message subjects to
Gaussian distribution, which is characterized by the mean
mφn|n−1→vn = mvn−1 and variance λφn|n−1→vn = σ2

v +
λvn−1 . Therefore, we use the corresponding mean and variance
to simplify the message derivations.

In a similar way, we can derive the messages −→µ ψn|n−1
(dn),

−→µ ηn|n−1
(βn), and −→µ ϕn|n−1

(θn) related to the vehicle predica-
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tion based on the transition probabilities (33)-(35), expressing
as 

mψn|n−1→dn = mdn−1
− v̂n−1T cos θ̂n−1,

λψn|n−1→dn = σ2
d + λdn−1 ,

mϕn|n−1→θn = mθn−1
+ v̂n−1T sin θ̂n−1

d̂n−1
,

λϕn|n−1→θn = σ2
θ + λθn−1 ,

mηn|n−1→βn = ρn−1ρn−1mβn−1 ,
ληn|n−1→βn = σ2

β + ρ2
n−1λβn−1

.

(43)

It can be observed that the means and variances in (43) are
updated based on the marginal mean and variance in the
previous time instant and the state evolution model. Based
on the Gaussian form message −→µ ϕn|n−1

(θn), we have the
predicted angle θpred,R

n at the nth epoch as

θpred,R
n = arg max

θ

−→µ ϕn|n−1
(θn) = mϕn|n−1→θn , (44)

which is used for designing the beamformer at the RSU.
In addition, to realize the predictive beamforming at all

vehicles, the RSU performs a further prediction of the relative
angle at time n+1 based on the estimate θ̂n|n−1 as well as the
predicted motion parameters mψn|n−1→dn and mφn|n−1→vn ,
given by

θpred
n+1 = θ̂n|n−1 +

mvn−1T sin θ̂n|n−1

mdn−1
− v̂n−1T cos θ̂n−1

. (45)

The uncertainty of the angle is given by λθn+1|n−1
= 2σ2

θ +

λθn−1
. The predicted angle θpred

n+1 is then sent to the vehicles
for receive beam steering at time n+ 1.

C. Vehicle State Tracking

At the nth time instant, the vehicles receive the data
information as well as the predicted angles for time n+1. Then
the vehicles can decode the information and formulate their
beamformers to receive the signals at the (n+1)th time instant.
On the other hand, the RSU receives the echoes reflected by
the vehicles. Based on the observations, the RSU is able to
refine the estimates of the motion parameters at time n. Then
following the process in the above subsection, the RSU can
predict the angles for the (n+1)th and (n+2)th time instants.
In the following, we will discuss the messages calculations
related to the observations.

1) Messages related to dn: The message −→µ τn(dn) is identi-
cal to the likelihood function p(τn|dn) since τn depends solely
on dn. After straightforward manipulations, we write −→µ τn(dn)
as

−→µ τn(dn) ∝ N
(
dn;

cτn
2
,
σ2
τ c

2

4

)
. (46)

Then the belief of dn at time instant n can be obtained as3

b(dn) = −→µ τn(dn) · −→µ ψn|n−1
(dn)

= N (dn;mdn , λdn) , (47)

3Note that the considered system is causal, therefore the motion parameters
of vehicles depend only on the past states. The messages only forward along
the time direction.

���� ��

�� cos��

Fig. 4. Reconstruction of the factor vertex γn.

with the mean and variance being

mdn = λdn

(
2cτ

σ2
τ c

2
+
mdn−1 − v̂n−1T cos θ̂n−1

σ2
d + λdn−1

)
, (48)

λdn =

(
4

σ2
τ c

2
+

1

σ2
d + λdn−1

)−1

. (49)

Since b(dn) is a Gaussian distribution, the estimate of range dn
is d̂n = mdn . The estimate d̂n is used for modeling the state
evolution function (19). Also, the obtained belief is passed to
factor vertex ψn+1|n for calculating −→µ ψn|n−1

(dn).

2) Messages related to γn: Then, we focus on the mes-
sage updating concerning the speed variable. Note that (8)
involves a nonlinear cosine function, calculating the message
−→µ γn(vn−1) can not provide a closed-form expression. To
tackle this problem, we reconstruct the factor node τn by
introducing a factor vertex representing the cosine function
and a variable vertex denoting the cosine of an angle, as
illustrated in Fig. 4. Provided the message ←−ν γn(ϑn) obeys
N (ϑn;mϑn→γn , λϑn→γn), we can now determine the message
−→µ γn(vn−1) as

−→µ γn(vn) ∝
∫

exp

(
−

(γn − 2fc
c vnϑn)2

2σ2
γ

)

· exp

(
− (ϑn −mϑn→γn)2

2λϑn→γn

)
dϑn

∝ exp

(
− (γn − vnmϑn→γn)2

2(σ2
γ + v2

nλϑn→γn)

)
. (50)

Although we derive a closed form solution for the integration
problem, it is seen that the variable vn appears in both sides
of the fraction bar, which indicates that we can not write the
message −→µ γn(vn) in a Gaussian form. Hence we resort to the
MF message passing algorithm, in which the message −→µ f (x)
is defined as

−→µ f (x) ∝ exp

∫ ln f(x)
∏

x′∈Sf\{x}

←−ν f (x′)dx′

 . (51)

Following (51), we can derive the Gaussian message −→µ γn(vn),
whose mean and variance are

mγn→vn =
γnmϑn→γn

C1(λϑn→γn +m2
ϑn→γn)

, C1 =
2fc
c

(52)

λγn→vn =
σ2
γ

C2
1 (λϑn→γn +m2

ϑn→γn)
, (53)
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respectively. Similarly, the mean and variance of −→µ γn(ϑn) are
given by

mγn→ϑn =
γnmvn→γn

C1(λvn→γn +m2
vn→γn)

, (54)

λγn→ϑn =
σ2
γ

C2
1 (λvn→γn +m2

vn→γn)
, (55)

respectively, where mvn→γn and λvn→γn are identical to
mφn|n−1→vn and λφn|n−1→vn , respectively. The belief of vn
can be obtained with message −→µ γn(vn) and −→µ φn|n−1

(vn) and
the estimate v̂n is used for predicating the parameters in the
(n+ 1)th epoch.

Next we move our focus to the nonlinear cosine function
that maps the angle θn to a real number ϑn. According to the
characteristic function [29], the expectation of ejθ given θ ∼
N (θ; 0, λθ) is E[ejθ] = e0+(jθ)2/2 = e−λθ/2. It is well known
that ejθ = cos θ + j sin θ, hence we have E[cos θ] = e−λθ/2

while E[sin θ] = 0. Considering the message ←−ν cos(θn) =
N (θn;mθn→cos, λθn→cos), we can obtain parameters mϑn→γn
and λϑn→γn as

mϑn→γn = E[cos θn] = E[cos(θ +mθn→cos)]

= E[cos θ cosmθn→cos − sin θ sinmθn→cos]

= e−λθn→cos/2 cosmθn→cos, (56)

λϑn→γn = E[cos2 θn]− E[cos θn]2

=
1

2

(
· e−2λθn→cos cos 2mθn→cos

)
− e−λθn→cos cos2mθn→cos. (57)

For message −→µ cos(θn), the function turns to be an inverse
cosine function. To overcome this nonlinear issue, one can
directly employ the particle filtering (PF) based method by rep-
resenting the nonlinear distributions by particles. However, the
huge computational cost violates the low-latency requirement
of vehicular applications. As an alternative, we employ the
second order Taylor expansion concerning the inverse cosine
function as arccosϑ ≈ π/2 − ϑ − ϑ3/6. Then based on
the obtained parameter mγn→ϑn and λγn→ϑn , we derive the
Gaussian message −→µ γn(θn) as

mcos→θn = E[arccosϑn] =
π

2
− E[ϑn]− E[ϑ3

n]

6

=
π

2
−mγn→ϑn −

m3
γn→ϑn + 3mγn→ϑnλγn→ϑn

6
, (58)

λcos→θn = E[arccos2 ϑn]−m2
cos→θn . (59)

The detailed expression of λcos→θn is not given here, which
involves the sixth-order moment of ϑn. Please refer to the
generalized Hermite polynomials for the expressions of higher
order moments of ϑn.

3) Messages related to y
[l]
n : Next, we will derive the

messages related to the observations y[l]
n . Assuming that all

messages from ε
[q]
n to y[l]

n are known with Gaussian distribu-
tions, it is readily to obtain the message −→µ

y
[l]
n

(βn) using MF

rules as

m
y
[l]
n →βn

=
m∗
ε→y[l]n

y
[l]
n

√
pn(v

ε→y[l]n
+ |m

ε→y[l]n
|2)
, (60)

λ
y
[l]
n →βn

=
σ2
y

pn(v
ε→y[l]n

+ |m
ε→y[l]n

|2)
, (61)

where m
ε→y[l]n

=
∑Nt
i=1 ai(θ̂n|n−1)m

ε
[i−l]
n →y[l]n

, and λ
ε→y[l]n

=∑Nt
i=1 |ai(θ̂n|n−1)|2v

ε
[i−l]
n →y[l]n

. The mean m
y
[l]
n →βn

and
λ
y
[l]
n →βn

represents the information of the observation at the
lth receive antenna contributed to the variable βn. Having
−→µ
y
[l]
n

(βn) in hand, the belief of βn can be obtained according
to (41) with mean and variance

mβn = vβn

(
mηn|n−1→βn

ληn|n−1→βn
+

Nr∑
l=1

m
y
[l]
n →βn

λ
y
[l]
n →βn

)
, (62)

λβn =

(
1

ληn|n−1→βn
+

Nr∑
l=1

1

λ
y
[l]
n →βn

)−1

. (63)

Obviously, the update of mβn and λβn depend on the state
evolution information from the previous time instant as well as
the information from the Nr receive antennas. Consequently,
the message from βn to a factor vertex y[l]

n is simply derived
by

m
βn→y[l]n

=
λ
βn→y[l]n

mβn − λβnmy
[l]
n →βn

v
βn→y[l]n

− λβn
, (64)

λ
βn→y[l]n

=
λ
βn→y[l]n

λβn

v
βn→y[l]n

− λβn
. (65)

Provided the Gaussian message −→µ βn(y
[l]
n ), the message

−→µ
y
[l]
n

(ε
[q]
n ), q ∈ [1− l, Nt − l] is computed as,

m
y
[l]
n →ε[q]n

=

y
[l]
n m∗

βn→y[l]n
−
∑

i 6=q+l
ai(θ̂n|n−1)m

ε
[i−l]
n →y[l]n

aq+l(θ̂n|n−1) · (|m
βn→y[l]n

|2 + λ
βn→y[l]n

)
, (66)

λ
y
[l]
n →ε[q]n

=
σ2
y

|aq+l(θ̂n|n−1)|2 · (|m
βn→y[l]n

|2 + λ
βn→y[l]n

)
. (67)

Using (66) and (66), the information obtained from the ob-
servation y

[l]
n is fed to the auxiliary variable and then to the

angular parameter.

4) Messages related to κq: Finally, we aim for computing
the messages related to the function κq , which involves the
nonlinear function e−jq cos θn . Note that this part of factor
graph has cycles, we have to implement the message passing
algorithms for a few iterations [30]. As above, the mean
and variance of θ̃n = cos θn given the Gaussian form
input message ←−ν κq (θn) can be calculated similar to (56)
and (57), denoting by mθ̃n→κq and λθ̃n→κq . Employing the
transformations of trigonometric functions and after some
manipulations, we have the mean and variance for message
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Fig. 5. Reconstruction of the factor vertex κq .

−→µ κq (ε
[q]
n ), formulating as

m
κq→ε[q]n

= e
−q2λθ̃n→κq/2e

−jqmθ̃n→κq , (68)

λ
κq→ε[q]n

= 1− e−q
2λθ̃n→κq . (69)

It is then straightforward to determine the message ←−ν
y
[l]
n

(ε
[q]
n )

and ←−ν κq (ε
[q]
n ) as4

←−ν
y
[l]
n

(ε[q]n ) = −→µ κq (ε[q]n )

Nt∏
l′ 6=1,l′=1

−→µ
y
[l′]
n

(ε[q]n ), (70)

←−ν κq (ε[q]n ) =

Nt∏
l=1

−→µ
y
[l]
n

(ε[q]n ). (71)

The above two messages are still Gaussian since all mes-
sages on the right-hand-side of (70) and (71) are represented
in Gaussian closed-form. Computing the backward message
−→µ κq (θn) involves the inverse function of e−jqθ̃n = e−jq cos θn ,
which is not applicable to deliver Gaussian distributed variable
θn. To this end, we reconstruct the function node κn, as shown
in Fig. 5, on which the process for calculating −→µ κq (θn) is
given in the following. The real and imaginary parts of the
mean as well as the variance of ←−ν κq (ε

[q]
n ) are passed to the

inverse cosine (“acos”) and inverse sine (“asin”) functions,
respectively. Then the mean and variance of message from
the acos factor vertex to θ̃n is calculated based on Taylor
expansion similar to (58) and (59). The message related to
asin function is calculated according to the second order
Taylor expansion of inverse trigonometric function, given by
arcsin ε ≈ ε− ε3/6. Then the mean of the message −→µ asin(θ̃n)
is expressed as

masin→θ̃n = I{m
ε
[q]
n →κq

}

(
1 +

λ
ε
[q]
n →κq
2

+
I{m

ε
[q]
n →κq

}2

6

)
,

(72)

and the expression of variance λasin→θ̃n having higher or-
der moments is not given here. Consequently, the message

4It may happen parial messages −→µ
y
[l′]
n

(ε
[q]
n ) do not exist. In this circum-

stance, we cam simply set −→µ
y
[l′]
n

(ε
[q]
n ) = 1.

←−ν acos(θ̃n) is simply calculated by
←−ν acos(θ̃n) = −→µ asin(θ̃n)−→µ acos(θ̃n)

∝ N

(
θ̃n;

macos→θ̃nλasin→θ̃n +masin→θ̃nλacos→θ̃n
λasin→θ̃n + λacos→θ̃n

,
λasin→θ̃nλacos→θ̃n
λasin→θ̃n + λacos→θ̃n

)
. (73)

In the end, the message −→µ κq (θn) is calculated in Gaussian
form by implementing the Taylor expansion of inverse cosine
function again, which has a similar form to that of (58) and
(59). Having determined all messages form κq to θn, we arrive
at the belief of θn,

b(θn) = −→µ γn(θn)−→µ ϕn|n−1
(θn)

∏
q

−→µ κq (θn), (74)

which is used for obtaining the message −→µ ϕn+1|n(θn+1) and
for beam prediction at (n+ 1)th time instant. The estimate of
θn, given by θ̂n = arg maxθn b(θn), is used for constructing
the state transition model.

In the above, we have solved the beam prediction and beam
tracking problems based on the factor graph framework. With
the help of the determined angular parameters, the RSU and
the vehicle can maintain a reliable link for data transmission.

D. Beam Misalignment Analysis

Recalling that a vehicle can receive the predicted angle θpred
n+1

at the (n+ 1)th time instant from the RSU at time instant n,
therefore can adjust the direction of its receive beamformer
based on the prediction. As we have the mean value θpred

n+1 as
well as the uncertainty λθn+1|n−1

, the beam-steering direction
of the vehicle at the (n+1)th time instant follows the Gaussian
distribution N (θV

n+1; θ̂pred
n+1 , λθn+1|n−1

). On the other hand, the
beam prediction at the RSU is performed after the beam
tracking process at time n, as in (44).

In mmWave systems, the beamwidth is typically very nar-
row that beam misalignment may happen when the predicted
angles of the RSU and at the vehicle differ from the actual
angle. To analyze the probability of beam misalignment,
we use ∆ = 2δ to denote the beamwidth and beams are
aligned only if the vehicle’s beam direction θV

n+1 satisfying
|θV
n+1 − θn+1| ≤ δ and the RSU’s beam direction θR

n+1 satis-
fying |θR

n+1−θn+1| ≤ δ, where θn+1 denotes the actual angle
of the vehicle relative to the RSU’s array and δ = π/Nantenna

[31]. This is equivalent to calculating the probability of

pmis = 1− palignVpalignR, where (75)

palignV = Pr{θV
n+1 ≤ θn+1 + δ} − Pr{θV

n+1 ≤ θn+1 − δ},
palignR = Pr{θR

n+1 ≤ θn+1 + δ} − Pr{θR
n+1 ≤ θn+1 − δ}.

Given the distribution of θV
n+1, we have the cumulative distri-
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bution function (CDF) as

Φ1(x) = C2

∫ x

−∞
exp

(
−

(θV
n+1 − θ

pred
n+1 )2

2λθn+1|n−1

)
dθV
n+1

=
1

2

[
1 + erf

(
x− θpred

n+1

λθn+1|n−1

√
2

)]
. (76)

Similarly, we have the CDF Φ2(x) for Gaussian distribution
−→µ ϕn+1|n(θn+1) as

Φ2(x) =
1

2

[
1 + erf

(
x−mϕn+1|n→θn+1

λϕn+1|n→θn+1

√
2

)]
. (77)

Consequently, the misalignment probability pmis is calculated
as

pmis = 1− (Φ1(θn+1 + δ)− Φ1(θn+1 − δ))
· (Φ2(θn+1 + δ)− Φ2(θn+1 − δ)).

(78)

Observed from the above analysis, the misalignment probabil-
ity depends on the width of the beam, which motivates us to
optimize the beamwidth in our future work to minimize the
probability pmis.

E. Computational Complexity and Signaling Overhead

Observe from Sec. IV-B and IV-C that the complexity of
the proposed algorithm is dominated by the calculations of
corresponding messages. It is worth to see that all messages
can be written in a closed-form by employing appropriate ap-
proximations and message updating rules. Hence, the message
calculations only involve trivial addition and multiplication
operations, leading to a very low level of complexity. To
elaborate, the order of complexity of the proposed algorithm
can be given by O(4K). In contrast, the PF-based algorithm
adopts R particles to represent the nonlinear functions, which
has the order of complexity O(4KR). In general, R should
be sufficiently large to achieve a reasonably good estimation
performance, and the complexity is significantly increased. As
a commonly used scheme for beam tracking, the extended
Kalman filtering (EFK) requires the matrix inversion, having
a complexity order of cube of the matrix dimension, i.e.,
O((4K)3). Through this complexity comparison, we show
the superiority of the proposed algorithm in the large scale
vehicular networks. Concerning the signaling overhead, the
feedback-based approach usually utilizes one or two pilot
symbols for beam tracking. For the proposed DFRC-based
beam tracking scheme, since the whole downlink block is used
for transmitting data information, the signaling overhead much
lower than the feedback-based scheme.

V. SIMULATION RESULTS

Let us consider a network with 4 vehicles moving on the
road, as shown in Fig. 6. Without loss of generality, the
coordinate of the RSU is set as [0, 0]T and the initial positions
of vehicles are [100, 20]T, [90, 20]T, [80, 20]T, and [70, 20]T,
respectively. The RCS ξ is set to 10 + 10j, which is used for
calculating the reflection coefficient βk,0 via (4). The speeds

Driving direction

� − axis

� − axis

RSU

Fig. 6. The considered vehicular network for simulations.
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Fig. 7. RMSE of the range estimation versus the time instant.

of four vehicles at time instant 0 are randomly generated from
the uniform distribution [5, 20] m/s. The RSU and the vehicles
are operating at a carrier frequency of fc = 30 GHz. The time
slot duration is T = 0.02 s and the signal propagation speed is
approximated as c = 3×108 m/s. For brevity, we set both the
radar noise variance σ2

y and the noise PSD for communication
N0 to 1. For the observed delays and Dopplers at RSU, we use
the standard deviations of στ = 0.67 µs and σγ = 2 kHz for
all vehicles at different time slots. The state transition noises
are set with standard deviations of σd = 0.2 m, σv = 0.5
m/s, σβ = 1, and σθ = 0.02◦. For the log-distance pathloss
model, we assume a unit channel gain at the reference distance
d0 = 1 m. The maximum number of iterations for message
passing algorithm is set to 10. All results are averaged from
1000 independent Monte Carlo simulations unless otherwise
specified.

We first consider the tracking performance of the motion
parameters of vehicles relying on the proposed approach. In
Fig. 7, we show the tracking result of the range parameter
dn in terms of root mean squared error (RMSE). The RMSE
is averaged from the results obtained for all 4 vehicles. Four
deployments with different number of transmit and receive
antennas are illustrated. For all cases, it is interesting to see
the curves first decreases and then increases with respect to the
time index. This is because when the vehicles move towards
the RSU, the reflection coefficient βn becomes larger, leading
to a higher SNR gain. On the contrary, the SNR deceases
when the vehicles are moving away. Moreover, employing
a larger scale antenna array will introduce a higher array
gain as well as more observations, therefore resulting in a
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better tracking performance. The averaged RMSE of angle
estimation parameterized by different number of antennas is
depicted in Fig. 8. Obviously, the RMSE curves for angle
tracking have a similar trend as that in Fig. 7. It is also
observed that the estimation of the angle is very accurate, at
the error level of 10−2 rad.

Next we compare the performance of the proposed approach
and the classic feedback-based algorithm. For fair comparison
purpose, we still employ the factor graph and message passing
algorithm for the feedback-based scheme5. Note that in the
feedback-based scheme, the pilots are contained in the down-
link communication signal. Therefore, the reflection parameter
in the observation model of (10) is replaced by channel gain
αn, which is determined by estimating the range parameter dn.
In contrast to the DFRC signal that the whole block can be
used as the pilots, the feedback scheme can employ only 1 or
2 pilots, leading to a much smaller SNR gain after matched
filtering. For simplicity, we equivalently multiply the noise
variance σ2

y by a constant for the feedback-based scheme.
We compare the CDF of the estimation error of vn based
on the proposed approach and the feedback scheme at the last
time instant with M = Nt = Nr = 64 antennas. The high-
complexity PF-based message passing algorithm and the EKF
method in [24] are utilized as a benchmark. It is observed that
with significantly reduced complexity, the proposed parametric
message passing method can attain the performance of the PF-
based one, verifying the effectiveness of applying Taylor series
expansion and MF message passing. Moreover, the proposed
approach significantly outperforms the feedback-based scheme
with 1 and 2 pilots due to the higher SNR gain.

Fig. 10 evaluates the angle estimation result using the
proposed approach, the feedback scheme, and the EKF method
in [24]. We illustrate the CDF versus the angle estimation
error at the last time instant for 1000 trails. Two cases with
64 and 128 antennas are illustrated. We see that for both cases,
the feedback scheme suffers from a remarkable performance

5Existing feedback-based methods [21] rely on the EKF, which in general
has a worse performance than message passing algorithm due to using first-
order Taylor series expansion.
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Fig. 9. CDF of the speed estimation error.
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Fig. 11. CDF of the communication achievable rate.

loss due to limited matched-filtering gain. In contrast to the
proposed approach, increasing the number of antennas for
the feedback scheme will lead to performance degradation.
This can be explained by the fact that a higher number of
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antennas provides a narrower beam, in which case using only
1 pilot is not sufficient to track the variation of the angular
parameter. Moreover, the proposed algorithm outperforms the
EKF method since EKF employs only the first-order Taylor
expansion and neglect the higher-order information. Since the
estimated angles are used for beamforming design, the tracking
error of angles will result in the misalignment of the beams.
As a consequence, the received SNR is reduced, leading to
a lower achievable rate. In Fig. 11, we illustrate the CDF
of the communication achievable rate of all time instants
based on the proposed and the feedback-based methods at
a SNR of 10 dB. For the proposed scheme, the achievable
rate R at different time instants are higher than 4 bps/Hz.
While the achievable rate for the feedback-based scheme is
much lower. This validates our discussions above that the
large angle estimation error in the feedback-based approach
degrades the achievable rate. Furthermore, the rate degradation
becomes more significant for the feedback-based scheme in
the case with 128 antennas, where the angle variation cannot
be accurately tracked due to the narrow beamwidth. Figs. 10
and 11 show the superiority of employing DFRC signaling for
reliable communication in vehicular networks.

Finally, we consider the misalignment probability with
different widths of the beam. According to (75), it is expected
a wider beam will result in a lower misalignment probability.
In Fig. 12, we depict the beam misalignment probabilities of
two kinds of vehicles, i.e. high-speed vehicle having a speed
in the interval [18, 20] m/s and low-speed vehicle having
a speed in the interval [5,7] m/s, versus the time instant.
The beamwidth of δ = π/16 is achieved by activating only
16 antennas in the 128-antenna array. First we can see the
misalignment probability for low-speed vehicle is lower than
that for the high-speed vehicle. This is due to that the faster
vehicle causes more violent variation of the relative angle
θn. In addition, we observe that the high-speed vehicle is
more sensitive to the beamwidth than the low-speed one. The
misalignment probability experiences a significant rise when
we choose δ = π/128. This motivates us to further optimize
the beamwidth for vehicles with different speeds in practical
scenarios.

VI. CONCLUSIONS

In this paper, we proposed a novel DFRC based beamform-
ing scheme for vehicular networks, providing zero signaling
overhead for beam tracking. We commence from a Bayesian
perspective and construct the joint a posteriori distribution
based on the echo signals received at the RSU and the state
transition models of the vehicles. The joint distribution was
further fully factorized and represented by a factor graph,
then the message passing algorithm is utilized to estimate
the unknown variables. A second order Taylor expansion was
employed to approximate the nonlinear inverse trigonometric
functions. Consequently, the messages on factor graph were
determined in closed-form, providing a low complexity solu-
tion for the considered beam tracking problem. A two-step
prediction of angles are further processed and sent to the
vehicles via DFRC signals, which can reduce the latency for
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Fig. 12. Beam misalignment probabilities of vehicles versus the time instant.

beam alignment. Simulation results demonstrate the effective-
ness and superiority of the proposed approach compared to
the conventional feedback-based scheme.
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