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Abstract  Three-dimensional (3D) digital brain atlases and high-throughput brain wide imaging techniques generate 11 

large multidimensional datasets that can be registered to a common reference frame. Generating insights from such 12 

datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently 13 

available software is dedicated to single atlases, model species or data types, and generating 3D renderings that 14 

merge anatomically registered data from diverse sources requires extensive development and programming skills. 15 

Here, we present brainrender: an open-source Python package for interactive visualization of multidimensional 16 

datasets registered to brain atlases. Brainrender facilitates the creation of complex renderings with different data 17 

types in the same visualization and enables seamless use of different atlas sources. High-quality visualizations can be 18 

used interactively and exported as high-resolution figures and animated videos. By facilitating the visualization of 19 

anatomically registered data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-20 

wide multidimensional data. 21 

 22 

Introduction 23 

Understanding how nervous systems generate behavior benefits from gathering multi-dimensional data from different 24 

individual animals. These data range from neural activity recordings and anatomical connectivity, to cellular and 25 

subcellular information such as morphology and gene expression profiles. These different types of data should ideally 26 

all be in register so that, for example, neural activity in one brain region can be interpreted in light of the connectivity 27 

of that region or the cell types it contains. Such registration, however, is challenging. Often it is not technically feasible 28 

to obtain multi-dimensional data in a single experiment, and registration to a common reference frame must be 29 

performed post-hoc. Even for the same experiment type, registration is necessary to allow comparisons across individual 30 

animals (Simmons and Swanson 2009). 31 

While different types of references can in principle be used, neuroanatomical location is a natural and most commonly 32 

used reference frame (Chon et al. 2019; Oh et al. 2014; Arganda-Carreras et al. 2018; Kunst et al. 2019). In recent 33 

years, several high-resolution three-dimensional digital brain atlases have been generated for model species commonly 34 

used in neuroscience (Wang et al. 2020; Oh et al. 2014; Arganda-Carreras et al. 2018; Kunst et al. 2019). These 35 

atlases provide a framework for registering different types of data across macro- and microscopic scales. A key output 36 
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of this process is the visualization of all datasets in register. Given the intrinsically three-dimensional (3D) geometry of 37 

brain structures and individual neurons, 3D renderings are more readily understandable and can provide more 38 

information when compared to two dimensional images. Exploring interactive 3D visualizations of the brain gives an 39 

overview of the relationship between datasets and brain regions and helps generating intuitive insights about these 40 

relationships. This is particularly important for large-scale datasets such as the ones generated by open-science projects 41 

like MouseLight (Winnubst et al. 2019) and the Allen Mouse Connectome (Oh et al. 2014). In addition, high-quality 42 

3D visualizations facilitate the communication of experimental results registered to brain anatomy. 43 

Generating custom 3D visualizations of atlas data requires programmatic access to the atlas. While some of the recently 44 

developed atlases provide an API (Application Programming Interface) for accessing atlas data (Wang et al. 2020; 45 

Kunst et al. 2019), rendering these data in 3D remains a demanding and time-consuming task that requires significant 46 

programming skills. Moreover, visualization of user-generated data registered onto the atlas requires an interface 47 

between the user data and the atlas data, which further requires advanced programming knowledge and extensive 48 

development. There is therefore the need for software that can simplify the process of visualizing 3D anatomical data 49 

from available atlases and from new experimental datasets. 50 

Currently, existing software packages such as cocoframer (Lein et al. 2007), BrainMesh (Yaoyao-Hao 2020) and 51 

SHARPTRACK (Shamash et al. 2018) provide some functionality for 3D rendering of anatomical data. These packages, 52 

however, are only compatible with a single atlas and cannot be used to render data from different atlases or different 53 

animal species. Achieving this requires adapting the existing software to the different atlases datasets or developing 54 

new dedicated software all together, at the cost of significant additional efforts, often duplicated. An important 55 

limitation of the currently available software is that it frequently does not support rendering of non-atlas data, such as 56 

data from publicly available datasets (e.g.: MouseLight) or produced by individual laboratories. This capability is 57 

essential for easily mapping newly generated data onto brain anatomy at high-resolution and produce visualizations of 58 

multi-dimensional datasets. More advanced software such as natverse (Bates et al. 2020) offers extensive data 59 

visualization and analysis functionality but currently it is mostly restricted to data obtained from the drosophila brain. 60 

Simple Neurite Tracer (Arshadi et al. 2020), an ImageJ-based software, can render neuronal morphological data from 61 

public and user-generated datasets and is compatible with several reference atlases. However, this software does not 62 

support visualization of data other than neuronal morphological reconstructions nor can it be easily adapted to work 63 

with different or new atlases beyond the ones already supported. Finally, software such as MagellanMapper (Young et 64 

al. 2020) can be used to visualize and analyze large 3D brain imaging datasets, but the visualization is restricted to one 65 

data item (i.e. images from one individual brain). It is therefore not possible to combine data from different sources into 66 

a single visualization. Ideally, a rendering software should work with 3D mesh data instead of 3D voxel image data to 67 

allow the creation of high-quality renderings and facilitate the integration of data from different sources. 68 

An additional consideration is that existing software tools for programmatic neuroanatomical renderings have been 69 

developed in programming languages such as R and Matlab, and there is currently no available alternative in Python. 70 

The popularity of Python within the neuroscientific community has grown tremendously in recent years (Muller et al. 71 

2015). Building on Python’s simple syntax and free, high-quality data processing and analysis packages, several open-72 

source tools directly aimed at neuroscientists have been written in Python and are increasingly used (e.g Mathis et al. 73 

2018; Pachitariu et al. 2017; A. L. Tyson et al. 2020). Developing a python-based software for universal generation 74 
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of 3D renderings of anatomically registered data can therefore take advantage of the increasing strength and depth of 75 
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the python neuroscience community for testing and further development. 76 

For these reasons we have developed brainrender: an open-source python package for creating high-resolution, 77 

interactive 3D renderings of anatomically registered data. Brainrender is written in Python and integrated with 78 

BrainGlobe’s AtlasAPI (Claudi et al. 2020) to interface natively with different atlases without need for modification. 79 

Brainrender supports the visualization of data acquired with different techniques and at different scales. Data from 80 

multiple sources can be combined in a single rendering to produce rich and informative visualizations of multi-81 

dimensional data. Brainrender can also be used to create high-resolution, publication-ready images and videos (see A. 82 

L. Tyson et al. 2020; BRAIN Initiative Cell Census Network (BICCN) et al. 2020), as well as interactive online 83 

visualizations to facilitate the dissemination of anatomically registered data. Finally, using brainrender requires minimal 84 

programming skills, which should accelerate the adoption of this new software by the research community. All 85 

brainrender code is available at the GitHub repository together with extensive online documentation and examples. 86 

 87 

Results 88 

Design principles and implementation 89 

A core design goal for brainrender was to generate a visualization software compatible with any reference atlas, thus 90 

providing a generic and flexible tool (Figure 1A). To achieve this goal, brainrender has been developed as part of the 91 

BrainGlobe’s computational neuroanatomy software suite. In particular, we integrated brainrender directly with 92 

BrainGlobe’s AtlasAPI (Claudi et al. 2020). The AtlasAPI can download and access atlas data from several supported 93 

atlases in an unified format. Brainrender uses the AtlasAPI to access 3D mesh data from individual brain regions as well 94 

as metadata about the hierarchical organization of the brain’s structures (Figure 1B). Thus, the same programming 95 

interface can be used to access data from any atlas (see code examples in Figure 2), including recently developed ones 96 

(e.g.: the enhanced and unified mouse brain atlas, (Chon et al. 2019)). 97 

The second major design principle was to enable rendering of any data type that can be registered to a reference atlas, 98 

either from publicly available datasets or from individual laboratories. Brainrender can directly visualize data produced 99 

with any analysis software from the BrainGlobe suite, including cellfinder (A. L. Tyson et al. 2020) and brainreg (A. L. 100 

Tyson, Rousseau, and Margrie 2020). In addition, brainrender provides functionality for easily loading and visualizing 101 

commonly used data types such as .npy files with cell coordinates or image data, .obj and .stl files with 3D mesh data 102 

and .json files with streamlines data for mesoscale connectomics. Additional information about the file formats accepted 103 

by brainrender can be found in the online documentation. Brainglobe’s software suite also includes imio which can load 104 

https://github.com/brainglobe/brainrender
https://docs.brainrender.info/
https://docs.brainrender.info/usage/using-your-data
https://github.com/brainglobe/imio
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data from several file types (e.g. .tiff and .nii), and additional file formats can be loaded through the numerous packages 105 

provided by the python ecosystem. Finally, the existing loading functionality can be easily expanded to support user-106 

specific needs by directly plugging in custom user code into the brainrender interface (Figure 1A).  107 

One of the goals of brainrender is to facilitate the creation of high-resolution images, animated videos and interactive 108 

online visualizations from any anatomically registered data. Brainrender uses vedo as the rendering engine (Musy, 109 

Dalmasso, and Sullivan 2019), a state-of-the-art tool that enables fast, high-quality rendering with minimal hardware 110 

requirements. 111 

High-resolution renderings of rich 3D scenes can be produced rapidly (e.g., 10,000 cells in less than 2 secs) in standard 112 

laptop or desktop configurations. Benchmarking tests across different operating systems and machine configurations 113 

show that using a GPU can increase the framerate of interactive renderings by a factor of 3.5 (see Tables 2 and 3 in 114 

Methods). This performance increase, however, depends on the complexity of the pre-processing steps, such as data 115 

loading and mesh generation, which run on the CPU. As one the main goals of brainrender is to produce high-resolution 116 

visualizations, we have made the rendering quality independent of hardware configuration, which only affects the 117 

rendering time. Animated videos and online visualizations can be produced with a few lines of code in brainrender. 118 

Several options are provided for easily customizing the appearance of rendered objects, thus enabling high-quality, rich 119 

data visualizations that combine multiple data sources. 120 

Finally, we aimed for brainrender to empower scientists with little, or no programming experience to generate advanced 121 

visualizations of their anatomically registered data. To make brainrender as user-friendly as possible we have produced 122 

extensive documentation, tutorials and examples for installing and using the software. We have also developed a 123 

Graphic User Interface (GUI) to access most of brainrender’s core functionality. This GUI can be used to perform actions 124 

such as rendering of brain regions and labelled cells (e.g.: from cellfinder) and creating images of the rendered data, 125 

without writing custom python code (Figure 1C, Video 5). 126 

 127 

Visualizing brain regions and other structures 128 

A key element of any neuroanatomical visualization is the rendering of the entire outline of the brain as well as the 129 

borders of brain regions of interest. In brainrender this can easily be achieved by specifying which brain regions to 130 

include in the rendering. The software will then use BrainGlobe’s AtlasAPI to load the 3D data and subsequently renders 131 

them (Figure 1B). 132 

Brainrender can also render brain areas defined by factors other than anatomical location, such as gene expression 133 

levels or functional properties. These can be loaded either directly as 3D mesh data after processing with dedicated 134 

software (e.g. A. L. Tyson et al. 2020; Song et al. 2020; Jin et al. 2019) (Figure 3A), or as 3D volumetric data (Figure 135 

3E). For the latter, brainrender takes care of the conversion of voxels into a 3D mesh for rendering. Furthermore, custom 136 

3D meshes can be created to visualize different types of data. For example, brainrender can import JSON files with 137 

tractography connectivity data and create ‘streamlines’ to visualize efferent projections from a brain region of interested 138 

(Figure 3B). 139 

https://docs.brainrender.info/
https://figshare.com/articles/media/Claudi_et_al_2020_-_Brainrender_videos/13359785
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Brainrender also simplifies visualizing the location of devices implanted in the brain for neural activity recordings or 140 



7 of 18 

 

manipulations, such as electrodes or optical fibers. Post-hoc histological images taken to confirm the correct placement 141 

of the device can be registered to a reference atlas using appropriate software and the registered data can be imported 142 

into brainrender (Figure 3C). This type of visualization greatly facilitates cross-animal comparisons and helps data 143 

interpretation within and across research groups. 144 

Finally, brainrender can be used to visualize any object represented by the most commonly used file formats for three-145 

dimensional design (e.g.: .obj, .stl), thus ensuring that brainrender can flexibly adapt to the visualization needs of the 146 

user (Figure 3D). 147 

 148 

Individual neurons and mesoscale connectomics 149 

Recent advances in large field of view and whole-brain imaging allow the generation of brain-wide data at single neuron 150 

resolution. Having a platform for visualizing these datasets with ease is critical for exploratory data analyses. Several 151 

open source software packages are available for registering large amounts of such imaging data and automatically 152 

identify labelled cells (e.g.: expressing fluorescent proteins) (A. L. Tyson et al. 2020; Fürth et al. 2018; Goubran et al. 153 
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2019; Renier et al. 2016). This processing step outputs a table of coordinates for a set of labelled cells, which can be 154 

directly imported into brainrender to visualize a wealth of anatomical data at cellular resolution (Figure 4A). 155 

Beyond the location of cell bodies, visualizing the entire dendritic and axonal arbors of single neurons registered to a 156 

reference atlas is important for understanding the distribution of neuronal signals across the brain. Single cell 157 

morphologies are often complex three-dimensional structures and therefore poorly represented in two-dimensional 158 

images. Generating three-dimensional interactive renderings is thus important to facilitate the exploration of this type 159 

of data. Brainrender can be used to parse and render .swc files containing morphological data and it is fully integrated 160 

with morphapi, a software for downloading morphological data from publicly available datasets (e.g.: from 161 

neuromorpho.org, Ascoli, Donohue, and Halavi 2007) (Figure 4B). 162 

 163 

Producing figures, videos and interactive visualizations with brainrender 164 

A core goal of brainrender is to facilitate the production of high-quality images, videos, and interactive visualizations of 165 

anatomical data. Brainrender leverages the functionality provided by vedo (Musy, Dalmasso, and Sullivan 2019) to 166 

create images directly from the rendered scene. Renderings can also be exported to HTML files to create interactive 167 

visualizations that can be hosted online. Finally, functionality is provided to easily export videos from rendered scenes. 168 

Animated videos can be created by specifying parameters (e.g.: the position of the camera or the transparency of a 169 

mesh) at selected keyframes. Brainrender then creates a video by animating the rendering between the keyframes. This 170 

approach facilitates the creation of videos while retaining the flexibility necessary to produce richly animated sequences 171 

(Videos 1-4). All example figures and videos in this article were generated directly in brainrender, with no further editing. 172 

 173 

Discussion 174 

In this article we have presented brainrender, a python software for creating three-dimensional renderings of 175 

anatomically registered data. 176 

Brainrender addresses the current lack of python-based and user-friendly tools for redeanatomical data. Being part with 177 

BrainGlobe’s suite of software tools for the analysis of anatomical data brainrender facilitates the development of 178 

integrated analysis pipelines and the re-usability of software tools across model species, minimising the need for 179 

additional software development. Finally, brainrender promises to improve how anatomically registered data are 180 

disseminated both in scientific publications and other media (e.g., hosted online).  181 

  182 

Limitations and future directions 183 

With brainrender we aimed to make the rendering process as simple as possible. Nevertheless, some more technically 184 

demanding pre-processing steps of raw image data are necessary before they can be visualized in brainrender. In 185 

particular, a critical step for visualizing anatomical data is the registration to a reference template (e.g., one of the atlases 186 

provided by the AtlasAPI). While this step can be challenging and time consuming, the brainglobe suite provides 187 

software to facilitate this process (e.g., brainreg and bg-space), and alternative software tools have been developed 188 

before for this purpose (e.g., Song et al. 2020; Jin et al. 2019). Additional information about data registration can be 189 

found in brainglobe’s and brainrender’s online documentation, as well as in the examples in brainrender’s GitHub 190 

repository. A related challenge is integrating new anatomical atlases into the AtlasAPI. While we anticipate that most 191 

http://neuromorpho.org/
https://figshare.com/articles/media/Claudi_et_al_2020_-_Brainrender_videos/13359785
https://docs.brainglobe.info/
https://docs.brainrender.info/
https://github.com/brainglobe/brainrender
https://github.com/brainglobe/brainrender
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users will not have this need, it is a non-trivial task that requires considerable programming skills. We believe that 192 

brainglobe’s AtlasAPI greatly facilitates this process, which is presented in Claudi et al. (2020) and has extensive online 193 

documentation.  194 

 195 

Brainrender has been optimised for rendering quality instead of rendering performance. Other commonly used software 196 

tools like napari (Sofroniew et al. 2020) and ImageJ are dedicated to visualizing N-dimensional image data and 197 

perform very well even on large datasets. When comparing brainrender with other software it is important to note 198 

brainrender is intended to work primarily with mesh data and not three-dimensional image data. Although it can display 199 

image data (e.g., with the Volume actor) this functionality is not as fully developed as that using mesh data. A direct 200 

benchmarking comparison between brainrender and napari shows that brainrender is 5x slower than napari at 201 

visualizing image data, but 20x faster at visualizing mesh data. In both cases, however, brainrender achieves superior 202 

rendering quality. Other software packages dedicated to high-performance rendering, such as Blender, can handle mesh 203 

data with a performance that surpasses brainrender. Their use, however, comes with the large overhead of learning a 204 

very complex software to generate what most often will be simple renderings. It also requires that the users themselves 205 

take care of downloading, storing, and accessing mesh data from the anatomical atlases. Nevertheless, the rendering 206 

performance of brainrender could be a target for improvement in future versions, both for images and mesh data, 207 

through optimizing the Actor classes. While we have designed brainrender usage to require minimal programming 208 

expertise, installing python and brainrender may still prove challenging for some users. In the future, we aim to make 209 

brainrender a stand-alone application that can be simply downloaded and locally installed, either through Docker 210 

containers or executable files. Further possible improvements include the development of plug-ins for loading of data 211 

from file formats other than those already supported, and improvements to the GUI functionality. Moreover, in addition 212 

to images and videos, brainrender can be used to export renderings as HTML files and generate online 3D interactive 213 

renderings. Currently, however, embedding renderings into a web page remains far from a trivial task. Further 214 

developments on this front should make it possible to easily host interactive renderings online, therefore improving 215 

how anatomically registered data are disseminated both in scientific publications and other media.   While we plan to 216 

continue developing brainrender in the future, we welcome contributions from the community. Users should feel 217 

encouraged to contribute irrespective of their programming experience, and we note that the programming ability of 218 

many biologists is often better than what they perceive it to be. We especially welcome contributions aimed at 219 

improving the user-experience of brainrender, at any level of interaction. Contributions can involve active development 220 

of brainrender’s code base, but they can also be bug reports, features request, improvements with the online 221 

documentation and help answering users’ questions.  222 

  223 
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Materials and methods 224 

Key resources 225 

 226 

 227 

Brainrender’s workflow 228 

Brainrender is written in Python 3 and depends on standard python packages such as numpy, matplotlib and pandas 229 

(Harris et al. 2020; Hunter 2007; team 2020) and on vedo (Musy, Dalmasso, and Sullivan 2019) and BrainGlobe’s 230 

AtlasAPI (Claudi et al. 2020). Extensive documentation on how to install and use brainrender can be found at 231 

docs.brainrender.info and we provide here a only brief overview of the workflow in brainrender. The GitHub repository 232 

also contains detailed examples of Python scripts and Jupyter notebooks (Kluyver et al. 2016). All brainrender’s code 233 

is open-source and has been deposited in full in the GitHub repository and at PyPI (a repository of Python software) 234 

under a permissive BSD 3-Clause license. We welcome any user to download and inspect the source code, modify it as 235 

needed or contribute to brainrender’s development directly. 236 

Reagent type 

(species) or 

resource 

Designation Source or reference Identifiers Additional 

information 

Software, 

algorithm 

Numpy https://doi.org/10.1038/s41586-020-

2649-2 

RRID:SCR_008633 

 

 

Software, 

algorithm 

Vtk https://doi.org/10.1016/j.softx.2015.04.001 
RRID:SCR_015013 

 

 

Software, 

algorithm 

Vedo https://zenodo.org/record/4287635     

Software, 

algorithm 

BrainGlobe 

Atlas API 

https://doi.org/10.21105/joss.02668   

Software, 

algorithm 

Pandas https://doi.org/10.5281/zenodo.3509134   

Software, 

algorithm 

Matplotlib doi: 10.1109/MCSE.2007.55      
RRID:SCR_008624 

 

 

Software, 

algorithm 

Jupyter doi:10.3233/978-1-61499-649-1-87 
RRID:SCR_018416 

 

 

https://docs.brainrender.info/
https://github.com/brainglobe/brainrender
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Brainrener can be installed in any python environment using python version >= 3.6.0. We recommend the creation of 237 

an anaconda or virtual environment with an appropriate python version for use with brainrender. Installing brainrender 238 

is then as simple as “pip install brainrender” although additional optional packages might have to be installed separately 239 

(e.g. to access data from the Allen Institute). 240 

The central element of any visualization produced by brainrender is the Scene. A Scene controls which elements (Actors) 241 

are visualized and coordinates the rendering, the position of the camera’s point of view, the generation of screenshots 242 

and animations from the rendered scene and other important actions. 243 

Actors can be added to the scene in several ways. When loading data directly from a file with 3D mesh information (e.g.: 244 

.obj) an Actor is generated automatically to represent the mesh in the rendering. When rendering data from other 245 

sources (e.g.: from a .swc file with neuronal morphology or from a table of coordinates of labelled cells), dedicated 246 

functions in brainrender parse the input data and generate the corresponding Actors. Actors in brainrender have 247 

properties, such as color and transparency, that can be used to specify the appearance of a rendered actor accordingly 248 

to the user’s aesthetic preferences. Brainrender’s Scene and Actor functionality use vedo as the rendering engine ( 249 

GitHub repository; Musy, Dalmasso, and Sullivan 2019). 250 

In addition to data loaded from external files, brainrender can directly load atlas data containing, for example, the 3D 251 

meshes of individual brain regions. This is done via BrainGlobe’s AtlasAPI to allow the same programming interface in 252 

brainrender to visualize data from any atlas supported by the AtlasAPI. Brainrender also provides additional functionality 253 

to interface with data available from projects that are part of the Allen Institute Mouse Atlas and Mouse Connectome 254 

projects (Wang et al. 2020; Oh et al. 2014). These projects provide an SDK (Software Development Kit) to directly 255 

download data from their database and brainrender provides a simple interface for downloading gene-expression and 256 

connectomics (streamlines) data. All atlas and connectomics data downloaded by brainrender can be loaded directly 257 

into a Scene as Actors. 258 

https://github.com/marcomusy/vedo
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Visualizing morphological data with reconstructions of individual neurons can be done by loading these type of data 259 

directly from .swc files, or by downloading them in Python using morphapi - software from the BrainGlobe suite that 260 

provides a simple and unified interface with several databases of neurons morphologies (e.g. neuromorpho.org, Ascoli, 261 

Donohue, and Halavi 2007). Data downloaded with morphapi can be loaded directly into a brainrender scene for 262 

visualization. 263 

 264 

Example code 265 

As a demonstration of how easily renderings can be created in brainrender, the Python code (Figure 5) illustrates how 266 

to create a Scene and add Actors by loading 3D data from an .obj file and then adding brain regions to the visualization. 267 

Brainrender’s GitHub repository provides several simple and concise examples about how to use brainrender to load 268 

https://github.com/brainglobe/brainrender/paper
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user data, atlas data, to edit rendered meshes (e.g. to change color or cut them with a plane), to save screenshots from 269 

rendered scenes and create animated videos. 270 

While brainrender is intended to be mainly a visualization tool, simple analyses can be carried out directly by leveraging 271 

functionality from either vedo or BrainGlobe’s AtlasAPI. For example, Vedo can access properties of actors added to a 272 

brainrender scene, which could be used to measure the distance between two actors, or to check if two actors’ meshes 273 

intersect (Figure 6A). Similarly, BrainGlobe’s AtlasAPI provides methods to, for example, check whether a point (defined 274 

by a set of coordinates) is contained in a brain region of interest, or to retrieve brain regions that are above or below a 275 

brain region of interest in the atlas’ hierarchy (Figure 6B). 276 

The code and data used to generate the figures and videos in this article is made freely available at brainrender’s GitHub 277 

repository and provides examples of more advanced usage of brainrender’s functionality. 278 

 279 

Benchmark tests 280 

We designed a series of benchmark tests aimed at evaluating brainrender’s performance with different combinations 281 

of hardware and operating system. We used five tests designed to cover most aspects of brainrender’s functionality: 282 

• rendering large numbers (14, 16, 17) of cells using the Points actor. 283 

• using a plane to "slice" the same number of cells (using the Scene.slice method) 284 

• rendering more than 1000 individual meshes representing brain regions from the Allen institute’s mouse brain. 285 

• making a short (3 seconds, 10 fps) animation of a spinning brain with several brain regions’ meshes displayed. 286 

• rendering (10 times) a 3D image representing the voxel-wise expression levels of gene Gpr161 in the mouse brain 287 

(data from the Allen Institute) 288 

 289 

N OS CPU GPU 

1 Macos Mojave 10.14.6 2.3 ghz Intel Core i9 Radeon Pro 560X 4 GB 

GPU 

2 Ubuntu 18.04.2 LTS x86 64 Intel i7-8565U (x) @ 

4.5ghz 

NO GPU 

3 Windows 10 Intel(R) Core i7-7700HQ 

2.8ghz 

NO GPU 

4 Windows 10 Intel(R) Xeon(R) CPU E5-

2643 v3 3.4ghz 

NVIDIA geforce GTX 1080 

Ti 

 Table 2. Machine configurations used for benchmark tests. 290 

https://github.com/brainglobe/brainrender/paper
https://github.com/brainglobe/brainrender/paper
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Test Machine GPU # actors # vertices FPS run duration 

10k cells 1 yes 3 1029324 24.76 0.81 

 2 No 3 1029324 22.46 1.16 

 3 No 3 1029324 20.00 1.41 

 4 Yes 3 1029324 100.00 1.34 

100k cells 1 yes 3 9849324 18.87 3.23 

 2 No 3 9849324 14.91 4.34 

 3 No 3 9849324 0.43 7.94 

 4 Yes 3 9849324 1.20 1.13 

1M cells 1 yes 3 98049324 2.65 31.01 

 2 No 3 98049324 2.55 96.49 

 3 No 3 98049324 0.03 86.75 

 4 Yes 3 98049324 0.13 36.57 

Slicing 10k cells 1 yes 3 237751 37.64 0.96 

 2 No 3 237751 39.10 1.25 

 3 No 3 237751 26.32 1.88 

 4 Yes 3 237751 200.00 1.34 

Slicing 100k cells 1 yes 3 276092 31.79 7.77 

 2 No 3 276092 25.98 9.09 

 3 No 3 276092 21.28 16.88 

 4 Yes 3 276092 111.11 9.65 

Slicing 1M cells 1 yes 3 275069 11.23 91.31 

 2 No 3 275069 5.39 104.79 

 3 No 3 275069 5.03 158.99 

 4 Yes 3 275069 37.04 97.43 

brain regions 1 yes 1678 1864388 9.38 11.78 

 2 No 1678 1864388 7.61 27.40 

 3 No 1678 1864388 6.49 46.79 

 4 Yes 1678 1864388 11.90 35.83 

animation 1 yes 8 96615 9.91 18.98 

 2 No 8 96615 22.12 12.63 

 3 No 8 96615 15.15 11.92 

 4 Yes 8 96615 47.62 12.29 
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Table 3. Benchmark tests results. The number of actors refers to the total number of elements rendered, and the 291 

number of vertices refers to the total number of mesh vertices in the rendering. 292 

For each test we estimated the time necessary to complete the test script as well as the frame rate of the interactive 293 

rendering. Four machines were used for benchmark tests (see Table 2). The results of the benchmark tests (see table 1) 294 

illustrate that although a GPU improves performance, in the absence of a dedicated GPU  brainrender can handle rich 295 

interactive visualizations (for most user cases the number of rendered mesh vertices  is much lower than that used in 296 

the tests).  297 
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 302 

Video legends 303 

Video 1. Animated video created with brainrender showing the location of cells labelled by targeted expression of a 304 

fluorescent protein identified with cellfinder (data from Tyson et al. 2020). In dark blue: streamline visualization of 305 

efferent projections from the retrosplenial cortex following injection of an anterogradely transported virus expressing 306 

fluorescent proteins (data from Oh et al. 2014). 307 

Video 2. Animated video created with brainrender. Visualization of neuronal morphologies for two layer 5b pyramidal 308 

neurons in the secondary motor area of the mouse brain. Data from Winnubst et al. 2019, downloaded with 309 

morphapi from neuromorpho.org. The secondary motor area and thalamus are also shown. 310 

Video 3. Animated video created with brainrender. Frontal view of all brain regions in the Allen Mouse Brain atlas as 311 

the brain is progressively 'sliced' in the rostro-caudal direction. 312 

Video 4. Animated video created with brainrender.  Visualization of the location of three implanted neuropixel probes 313 

from multiple mice (data from Steinmetz et al. 2019). Every 0.5 seconds, a subset of the probes' electrodes that 314 

detected a neuron's action potential are shown in salmon to visualize neuronal activity. 315 

Video 5. Example brainrender GUI usage. Short demonstration of how brainrender's GUI can be used to interactively 316 

visualize brain regions, labelled cells and custom meshes. 317 

 318 

volume 1 yes 12 49324 1.79 2.31 

 2 No 12 49324 1.66 1.95 

 3 No 12 49324 3.55 2.15 

 4 Yes 12 49324 23.26 1.21 
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