
1 of 18

Visualizing anatomically registered data with Brainrender 1

 2

Federico Claudi1*$, Adam L. Tyson, Luigi Petrucco, Troy W. Margrie, Ruben Portugues, Tiago 3

Branco1* 4

1UCL Sainsbury Wellcome Centre, London, U.K.; 2 Institute of Neuroscience, Technical University of 5

Munich, Munich, Germany; 3 Max Planck Institute of Neurobiology, Research Group of Sensorimotor 6

Control, Martinsried, Germany; 4 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 7

* For correspondence: Federico.claudi.17@ucl.ac.uk (FC); t.branco@ucl.ac.uk (TB) 8

$ Present address: UCL Sainsbury Wellcome Centre, London, U.K.; 9

 10

Abstract Three-dimensional (3D) digital brain atlases and high-throughput brain wide imaging techniques generate 11

large multidimensional datasets that can be registered to a common reference frame. Generating insights from such 12

datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently 13

available software is dedicated to single atlases, model species or data types, and generating 3D renderings that 14

merge anatomically registered data from diverse sources requires extensive development and programming skills. 15

Here, we present brainrender: an open-source Python package for interactive visualization of multidimensional 16

datasets registered to brain atlases. Brainrender facilitates the creation of complex renderings with different data 17

types in the same visualization and enables seamless use of different atlas sources. High-quality visualizations can be 18

used interactively and exported as high-resolution figures and animated videos. By facilitating the visualization of 19

anatomically registered data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-20

wide multidimensional data. 21

 22

Introduction 23

Understanding how nervous systems generate behavior benefits from gathering multi-dimensional data from different 24

individual animals. These data range from neural activity recordings and anatomical connectivity, to cellular and 25

subcellular information such as morphology and gene expression profiles. These different types of data should ideally 26

all be in register so that, for example, neural activity in one brain region can be interpreted in light of the connectivity 27

of that region or the cell types it contains. Such registration, however, is challenging. Often it is not technically feasible 28

to obtain multi-dimensional data in a single experiment, and registration to a common reference frame must be 29

performed post-hoc. Even for the same experiment type, registration is necessary to allow comparisons across individual 30

animals (Simmons and Swanson 2009). 31

While different types of references can in principle be used, neuroanatomical location is a natural and most commonly 32

used reference frame (Chon et al. 2019; Oh et al. 2014; Arganda-Carreras et al. 2018; Kunst et al. 2019). In recent 33

years, several high-resolution three-dimensional digital brain atlases have been generated for model species commonly 34

used in neuroscience (Wang et al. 2020; Oh et al. 2014; Arganda-Carreras et al. 2018; Kunst et al. 2019). These 35

atlases provide a framework for registering different types of data across macro- and microscopic scales. A key output 36

mailto:Federico.claudi.17@ucl.ac.uk
mailto:t.branco@ucl.ac.uk

2 of 18

of this process is the visualization of all datasets in register. Given the intrinsically three-dimensional (3D) geometry of 37

brain structures and individual neurons, 3D renderings are more readily understandable and can provide more 38

information when compared to two dimensional images. Exploring interactive 3D visualizations of the brain gives an 39

overview of the relationship between datasets and brain regions and helps generating intuitive insights about these 40

relationships. This is particularly important for large-scale datasets such as the ones generated by open-science projects 41

like MouseLight (Winnubst et al. 2019) and the Allen Mouse Connectome (Oh et al. 2014). In addition, high-quality 42

3D visualizations facilitate the communication of experimental results registered to brain anatomy. 43

Generating custom 3D visualizations of atlas data requires programmatic access to the atlas. While some of the recently 44

developed atlases provide an API (Application Programming Interface) for accessing atlas data (Wang et al. 2020; 45

Kunst et al. 2019), rendering these data in 3D remains a demanding and time-consuming task that requires significant 46

programming skills. Moreover, visualization of user-generated data registered onto the atlas requires an interface 47

between the user data and the atlas data, which further requires advanced programming knowledge and extensive 48

development. There is therefore the need for software that can simplify the process of visualizing 3D anatomical data 49

from available atlases and from new experimental datasets. 50

Currently, existing software packages such as cocoframer (Lein et al. 2007), BrainMesh (Yaoyao-Hao 2020) and 51

SHARPTRACK (Shamash et al. 2018) provide some functionality for 3D rendering of anatomical data. These packages, 52

however, are only compatible with a single atlas and cannot be used to render data from different atlases or different 53

animal species. Achieving this requires adapting the existing software to the different atlases datasets or developing 54

new dedicated software all together, at the cost of significant additional efforts, often duplicated. An important 55

limitation of the currently available software is that it frequently does not support rendering of non-atlas data, such as 56

data from publicly available datasets (e.g.: MouseLight) or produced by individual laboratories. This capability is 57

essential for easily mapping newly generated data onto brain anatomy at high-resolution and produce visualizations of 58

multi-dimensional datasets. More advanced software such as natverse (Bates et al. 2020) offers extensive data 59

visualization and analysis functionality but currently it is mostly restricted to data obtained from the drosophila brain. 60

Simple Neurite Tracer (Arshadi et al. 2020), an ImageJ-based software, can render neuronal morphological data from 61

public and user-generated datasets and is compatible with several reference atlases. However, this software does not 62

support visualization of data other than neuronal morphological reconstructions nor can it be easily adapted to work 63

with different or new atlases beyond the ones already supported. Finally, software such as MagellanMapper (Young et 64

al. 2020) can be used to visualize and analyze large 3D brain imaging datasets, but the visualization is restricted to one 65

data item (i.e. images from one individual brain). It is therefore not possible to combine data from different sources into 66

a single visualization. Ideally, a rendering software should work with 3D mesh data instead of 3D voxel image data to 67

allow the creation of high-quality renderings and facilitate the integration of data from different sources. 68

An additional consideration is that existing software tools for programmatic neuroanatomical renderings have been 69

developed in programming languages such as R and Matlab, and there is currently no available alternative in Python. 70

The popularity of Python within the neuroscientific community has grown tremendously in recent years (Muller et al. 71

2015). Building on Python’s simple syntax and free, high-quality data processing and analysis packages, several open-72

source tools directly aimed at neuroscientists have been written in Python and are increasingly used (e.g Mathis et al. 73

2018; Pachitariu et al. 2017; A. L. Tyson et al. 2020). Developing a python-based software for universal generation 74

https://github.com/AllenInstitute/cocoframer
https://github.com/Yaoyao-Hao/BrainMesh
https://github.com/cortex-lab/allenCCF
https://github.com/natverse

3 of 18

of 3D renderings of anatomically registered data can therefore take advantage of the increasing strength and depth of 75

4 of 18

the python neuroscience community for testing and further development. 76

For these reasons we have developed brainrender: an open-source python package for creating high-resolution, 77

interactive 3D renderings of anatomically registered data. Brainrender is written in Python and integrated with 78

BrainGlobe’s AtlasAPI (Claudi et al. 2020) to interface natively with different atlases without need for modification. 79

Brainrender supports the visualization of data acquired with different techniques and at different scales. Data from 80

multiple sources can be combined in a single rendering to produce rich and informative visualizations of multi-81

dimensional data. Brainrender can also be used to create high-resolution, publication-ready images and videos (see A. 82

L. Tyson et al. 2020; BRAIN Initiative Cell Census Network (BICCN) et al. 2020), as well as interactive online 83

visualizations to facilitate the dissemination of anatomically registered data. Finally, using brainrender requires minimal 84

programming skills, which should accelerate the adoption of this new software by the research community. All 85

brainrender code is available at the GitHub repository together with extensive online documentation and examples. 86

 87

Results 88

Design principles and implementation 89

A core design goal for brainrender was to generate a visualization software compatible with any reference atlas, thus 90

providing a generic and flexible tool (Figure 1A). To achieve this goal, brainrender has been developed as part of the 91

BrainGlobe’s computational neuroanatomy software suite. In particular, we integrated brainrender directly with 92

BrainGlobe’s AtlasAPI (Claudi et al. 2020). The AtlasAPI can download and access atlas data from several supported 93

atlases in an unified format. Brainrender uses the AtlasAPI to access 3D mesh data from individual brain regions as well 94

as metadata about the hierarchical organization of the brain’s structures (Figure 1B). Thus, the same programming 95

interface can be used to access data from any atlas (see code examples in Figure 2), including recently developed ones 96

(e.g.: the enhanced and unified mouse brain atlas, (Chon et al. 2019)). 97

The second major design principle was to enable rendering of any data type that can be registered to a reference atlas, 98

either from publicly available datasets or from individual laboratories. Brainrender can directly visualize data produced 99

with any analysis software from the BrainGlobe suite, including cellfinder (A. L. Tyson et al. 2020) and brainreg (A. L. 100

Tyson, Rousseau, and Margrie 2020). In addition, brainrender provides functionality for easily loading and visualizing 101

commonly used data types such as .npy files with cell coordinates or image data, .obj and .stl files with 3D mesh data 102

and .json files with streamlines data for mesoscale connectomics. Additional information about the file formats accepted 103

by brainrender can be found in the online documentation. Brainglobe’s software suite also includes imio which can load 104

https://github.com/brainglobe/brainrender
https://docs.brainrender.info/
https://docs.brainrender.info/usage/using-your-data
https://github.com/brainglobe/imio

5 of 18

data from several file types (e.g. .tiff and .nii), and additional file formats can be loaded through the numerous packages 105

provided by the python ecosystem. Finally, the existing loading functionality can be easily expanded to support user-106

specific needs by directly plugging in custom user code into the brainrender interface (Figure 1A). 107

One of the goals of brainrender is to facilitate the creation of high-resolution images, animated videos and interactive 108

online visualizations from any anatomically registered data. Brainrender uses vedo as the rendering engine (Musy, 109

Dalmasso, and Sullivan 2019), a state-of-the-art tool that enables fast, high-quality rendering with minimal hardware 110

requirements. 111

High-resolution renderings of rich 3D scenes can be produced rapidly (e.g., 10,000 cells in less than 2 secs) in standard 112

laptop or desktop configurations. Benchmarking tests across different operating systems and machine configurations 113

show that using a GPU can increase the framerate of interactive renderings by a factor of 3.5 (see Tables 2 and 3 in 114

Methods). This performance increase, however, depends on the complexity of the pre-processing steps, such as data 115

loading and mesh generation, which run on the CPU. As one the main goals of brainrender is to produce high-resolution 116

visualizations, we have made the rendering quality independent of hardware configuration, which only affects the 117

rendering time. Animated videos and online visualizations can be produced with a few lines of code in brainrender. 118

Several options are provided for easily customizing the appearance of rendered objects, thus enabling high-quality, rich 119

data visualizations that combine multiple data sources. 120

Finally, we aimed for brainrender to empower scientists with little, or no programming experience to generate advanced 121

visualizations of their anatomically registered data. To make brainrender as user-friendly as possible we have produced 122

extensive documentation, tutorials and examples for installing and using the software. We have also developed a 123

Graphic User Interface (GUI) to access most of brainrender’s core functionality. This GUI can be used to perform actions 124

such as rendering of brain regions and labelled cells (e.g.: from cellfinder) and creating images of the rendered data, 125

without writing custom python code (Figure 1C, Video 5). 126

 127

Visualizing brain regions and other structures 128

A key element of any neuroanatomical visualization is the rendering of the entire outline of the brain as well as the 129

borders of brain regions of interest. In brainrender this can easily be achieved by specifying which brain regions to 130

include in the rendering. The software will then use BrainGlobe’s AtlasAPI to load the 3D data and subsequently renders 131

them (Figure 1B). 132

Brainrender can also render brain areas defined by factors other than anatomical location, such as gene expression 133

levels or functional properties. These can be loaded either directly as 3D mesh data after processing with dedicated 134

software (e.g. A. L. Tyson et al. 2020; Song et al. 2020; Jin et al. 2019) (Figure 3A), or as 3D volumetric data (Figure 135

3E). For the latter, brainrender takes care of the conversion of voxels into a 3D mesh for rendering. Furthermore, custom 136

3D meshes can be created to visualize different types of data. For example, brainrender can import JSON files with 137

tractography connectivity data and create ‘streamlines’ to visualize efferent projections from a brain region of interested 138

(Figure 3B). 139

https://docs.brainrender.info/
https://figshare.com/articles/media/Claudi_et_al_2020_-_Brainrender_videos/13359785

6 of 18

Brainrender also simplifies visualizing the location of devices implanted in the brain for neural activity recordings or 140

7 of 18

manipulations, such as electrodes or optical fibers. Post-hoc histological images taken to confirm the correct placement 141

of the device can be registered to a reference atlas using appropriate software and the registered data can be imported 142

into brainrender (Figure 3C). This type of visualization greatly facilitates cross-animal comparisons and helps data 143

interpretation within and across research groups. 144

Finally, brainrender can be used to visualize any object represented by the most commonly used file formats for three-145

dimensional design (e.g.: .obj, .stl), thus ensuring that brainrender can flexibly adapt to the visualization needs of the 146

user (Figure 3D). 147

 148

Individual neurons and mesoscale connectomics 149

Recent advances in large field of view and whole-brain imaging allow the generation of brain-wide data at single neuron 150

resolution. Having a platform for visualizing these datasets with ease is critical for exploratory data analyses. Several 151

open source software packages are available for registering large amounts of such imaging data and automatically 152

identify labelled cells (e.g.: expressing fluorescent proteins) (A. L. Tyson et al. 2020; Fürth et al. 2018; Goubran et al. 153

8 of 18

2019; Renier et al. 2016). This processing step outputs a table of coordinates for a set of labelled cells, which can be 154

directly imported into brainrender to visualize a wealth of anatomical data at cellular resolution (Figure 4A). 155

Beyond the location of cell bodies, visualizing the entire dendritic and axonal arbors of single neurons registered to a 156

reference atlas is important for understanding the distribution of neuronal signals across the brain. Single cell 157

morphologies are often complex three-dimensional structures and therefore poorly represented in two-dimensional 158

images. Generating three-dimensional interactive renderings is thus important to facilitate the exploration of this type 159

of data. Brainrender can be used to parse and render .swc files containing morphological data and it is fully integrated 160

with morphapi, a software for downloading morphological data from publicly available datasets (e.g.: from 161

neuromorpho.org, Ascoli, Donohue, and Halavi 2007) (Figure 4B). 162

 163

Producing figures, videos and interactive visualizations with brainrender 164

A core goal of brainrender is to facilitate the production of high-quality images, videos, and interactive visualizations of 165

anatomical data. Brainrender leverages the functionality provided by vedo (Musy, Dalmasso, and Sullivan 2019) to 166

create images directly from the rendered scene. Renderings can also be exported to HTML files to create interactive 167

visualizations that can be hosted online. Finally, functionality is provided to easily export videos from rendered scenes. 168

Animated videos can be created by specifying parameters (e.g.: the position of the camera or the transparency of a 169

mesh) at selected keyframes. Brainrender then creates a video by animating the rendering between the keyframes. This 170

approach facilitates the creation of videos while retaining the flexibility necessary to produce richly animated sequences 171

(Videos 1-4). All example figures and videos in this article were generated directly in brainrender, with no further editing. 172

 173

Discussion 174

In this article we have presented brainrender, a python software for creating three-dimensional renderings of 175

anatomically registered data. 176

Brainrender addresses the current lack of python-based and user-friendly tools for redeanatomical data. Being part with 177

BrainGlobe’s suite of software tools for the analysis of anatomical data brainrender facilitates the development of 178

integrated analysis pipelines and the re-usability of software tools across model species, minimising the need for 179

additional software development. Finally, brainrender promises to improve how anatomically registered data are 180

disseminated both in scientific publications and other media (e.g., hosted online). 181

 182

Limitations and future directions 183

With brainrender we aimed to make the rendering process as simple as possible. Nevertheless, some more technically 184

demanding pre-processing steps of raw image data are necessary before they can be visualized in brainrender. In 185

particular, a critical step for visualizing anatomical data is the registration to a reference template (e.g., one of the atlases 186

provided by the AtlasAPI). While this step can be challenging and time consuming, the brainglobe suite provides 187

software to facilitate this process (e.g., brainreg and bg-space), and alternative software tools have been developed 188

before for this purpose (e.g., Song et al. 2020; Jin et al. 2019). Additional information about data registration can be 189

found in brainglobe’s and brainrender’s online documentation, as well as in the examples in brainrender’s GitHub 190

repository. A related challenge is integrating new anatomical atlases into the AtlasAPI. While we anticipate that most 191

http://neuromorpho.org/
https://figshare.com/articles/media/Claudi_et_al_2020_-_Brainrender_videos/13359785
https://docs.brainglobe.info/
https://docs.brainrender.info/
https://github.com/brainglobe/brainrender
https://github.com/brainglobe/brainrender

9 of 18

users will not have this need, it is a non-trivial task that requires considerable programming skills. We believe that 192

brainglobe’s AtlasAPI greatly facilitates this process, which is presented in Claudi et al. (2020) and has extensive online 193

documentation. 194

 195

Brainrender has been optimised for rendering quality instead of rendering performance. Other commonly used software 196

tools like napari (Sofroniew et al. 2020) and ImageJ are dedicated to visualizing N-dimensional image data and 197

perform very well even on large datasets. When comparing brainrender with other software it is important to note 198

brainrender is intended to work primarily with mesh data and not three-dimensional image data. Although it can display 199

image data (e.g., with the Volume actor) this functionality is not as fully developed as that using mesh data. A direct 200

benchmarking comparison between brainrender and napari shows that brainrender is 5x slower than napari at 201

visualizing image data, but 20x faster at visualizing mesh data. In both cases, however, brainrender achieves superior 202

rendering quality. Other software packages dedicated to high-performance rendering, such as Blender, can handle mesh 203

data with a performance that surpasses brainrender. Their use, however, comes with the large overhead of learning a 204

very complex software to generate what most often will be simple renderings. It also requires that the users themselves 205

take care of downloading, storing, and accessing mesh data from the anatomical atlases. Nevertheless, the rendering 206

performance of brainrender could be a target for improvement in future versions, both for images and mesh data, 207

through optimizing the Actor classes. While we have designed brainrender usage to require minimal programming 208

expertise, installing python and brainrender may still prove challenging for some users. In the future, we aim to make 209

brainrender a stand-alone application that can be simply downloaded and locally installed, either through Docker 210

containers or executable files. Further possible improvements include the development of plug-ins for loading of data 211

from file formats other than those already supported, and improvements to the GUI functionality. Moreover, in addition 212

to images and videos, brainrender can be used to export renderings as HTML files and generate online 3D interactive 213

renderings. Currently, however, embedding renderings into a web page remains far from a trivial task. Further 214

developments on this front should make it possible to easily host interactive renderings online, therefore improving 215

how anatomically registered data are disseminated both in scientific publications and other media. While we plan to 216

continue developing brainrender in the future, we welcome contributions from the community. Users should feel 217

encouraged to contribute irrespective of their programming experience, and we note that the programming ability of 218

many biologists is often better than what they perceive it to be. We especially welcome contributions aimed at 219

improving the user-experience of brainrender, at any level of interaction. Contributions can involve active development 220

of brainrender’s code base, but they can also be bug reports, features request, improvements with the online 221

documentation and help answering users’ questions. 222

 223

10 of 18

Materials and methods 224

Key resources 225

 226

 227

Brainrender’s workflow 228

Brainrender is written in Python 3 and depends on standard python packages such as numpy, matplotlib and pandas 229

(Harris et al. 2020; Hunter 2007; team 2020) and on vedo (Musy, Dalmasso, and Sullivan 2019) and BrainGlobe’s 230

AtlasAPI (Claudi et al. 2020). Extensive documentation on how to install and use brainrender can be found at 231

docs.brainrender.info and we provide here a only brief overview of the workflow in brainrender. The GitHub repository 232

also contains detailed examples of Python scripts and Jupyter notebooks (Kluyver et al. 2016). All brainrender’s code 233

is open-source and has been deposited in full in the GitHub repository and at PyPI (a repository of Python software) 234

under a permissive BSD 3-Clause license. We welcome any user to download and inspect the source code, modify it as 235

needed or contribute to brainrender’s development directly. 236

Reagent type

(species) or

resource

Designation Source or reference Identifiers Additional

information

Software,

algorithm

Numpy https://doi.org/10.1038/s41586-020-

2649-2

RRID:SCR_008633

Software,

algorithm

Vtk https://doi.org/10.1016/j.softx.2015.04.001
RRID:SCR_015013

Software,

algorithm

Vedo https://zenodo.org/record/4287635

Software,

algorithm

BrainGlobe

Atlas API

https://doi.org/10.21105/joss.02668

Software,

algorithm

Pandas https://doi.org/10.5281/zenodo.3509134

Software,

algorithm

Matplotlib doi: 10.1109/MCSE.2007.55
RRID:SCR_008624

Software,

algorithm

Jupyter doi:10.3233/978-1-61499-649-1-87
RRID:SCR_018416

https://docs.brainrender.info/
https://github.com/brainglobe/brainrender

11 of 18

Brainrener can be installed in any python environment using python version >= 3.6.0. We recommend the creation of 237

an anaconda or virtual environment with an appropriate python version for use with brainrender. Installing brainrender 238

is then as simple as “pip install brainrender” although additional optional packages might have to be installed separately 239

(e.g. to access data from the Allen Institute). 240

The central element of any visualization produced by brainrender is the Scene. A Scene controls which elements (Actors) 241

are visualized and coordinates the rendering, the position of the camera’s point of view, the generation of screenshots 242

and animations from the rendered scene and other important actions. 243

Actors can be added to the scene in several ways. When loading data directly from a file with 3D mesh information (e.g.: 244

.obj) an Actor is generated automatically to represent the mesh in the rendering. When rendering data from other 245

sources (e.g.: from a .swc file with neuronal morphology or from a table of coordinates of labelled cells), dedicated 246

functions in brainrender parse the input data and generate the corresponding Actors. Actors in brainrender have 247

properties, such as color and transparency, that can be used to specify the appearance of a rendered actor accordingly 248

to the user’s aesthetic preferences. Brainrender’s Scene and Actor functionality use vedo as the rendering engine (249

GitHub repository; Musy, Dalmasso, and Sullivan 2019). 250

In addition to data loaded from external files, brainrender can directly load atlas data containing, for example, the 3D 251

meshes of individual brain regions. This is done via BrainGlobe’s AtlasAPI to allow the same programming interface in 252

brainrender to visualize data from any atlas supported by the AtlasAPI. Brainrender also provides additional functionality 253

to interface with data available from projects that are part of the Allen Institute Mouse Atlas and Mouse Connectome 254

projects (Wang et al. 2020; Oh et al. 2014). These projects provide an SDK (Software Development Kit) to directly 255

download data from their database and brainrender provides a simple interface for downloading gene-expression and 256

connectomics (streamlines) data. All atlas and connectomics data downloaded by brainrender can be loaded directly 257

into a Scene as Actors. 258

https://github.com/marcomusy/vedo

12 of 18

Visualizing morphological data with reconstructions of individual neurons can be done by loading these type of data 259

directly from .swc files, or by downloading them in Python using morphapi - software from the BrainGlobe suite that 260

provides a simple and unified interface with several databases of neurons morphologies (e.g. neuromorpho.org, Ascoli, 261

Donohue, and Halavi 2007). Data downloaded with morphapi can be loaded directly into a brainrender scene for 262

visualization. 263

 264

Example code 265

As a demonstration of how easily renderings can be created in brainrender, the Python code (Figure 5) illustrates how 266

to create a Scene and add Actors by loading 3D data from an .obj file and then adding brain regions to the visualization. 267

Brainrender’s GitHub repository provides several simple and concise examples about how to use brainrender to load 268

https://github.com/brainglobe/brainrender/paper

13 of 18

user data, atlas data, to edit rendered meshes (e.g. to change color or cut them with a plane), to save screenshots from 269

rendered scenes and create animated videos. 270

While brainrender is intended to be mainly a visualization tool, simple analyses can be carried out directly by leveraging 271

functionality from either vedo or BrainGlobe’s AtlasAPI. For example, Vedo can access properties of actors added to a 272

brainrender scene, which could be used to measure the distance between two actors, or to check if two actors’ meshes 273

intersect (Figure 6A). Similarly, BrainGlobe’s AtlasAPI provides methods to, for example, check whether a point (defined 274

by a set of coordinates) is contained in a brain region of interest, or to retrieve brain regions that are above or below a 275

brain region of interest in the atlas’ hierarchy (Figure 6B). 276

The code and data used to generate the figures and videos in this article is made freely available at brainrender’s GitHub 277

repository and provides examples of more advanced usage of brainrender’s functionality. 278

 279

Benchmark tests 280

We designed a series of benchmark tests aimed at evaluating brainrender’s performance with different combinations 281

of hardware and operating system. We used five tests designed to cover most aspects of brainrender’s functionality: 282

• rendering large numbers (14, 16, 17) of cells using the Points actor. 283

• using a plane to "slice" the same number of cells (using the Scene.slice method) 284

• rendering more than 1000 individual meshes representing brain regions from the Allen institute’s mouse brain. 285

• making a short (3 seconds, 10 fps) animation of a spinning brain with several brain regions’ meshes displayed. 286

• rendering (10 times) a 3D image representing the voxel-wise expression levels of gene Gpr161 in the mouse brain 287

(data from the Allen Institute) 288

 289

N OS CPU GPU

1 Macos Mojave 10.14.6 2.3 ghz Intel Core i9 Radeon Pro 560X 4 GB

GPU

2 Ubuntu 18.04.2 LTS x86 64 Intel i7-8565U (x) @

4.5ghz

NO GPU

3 Windows 10 Intel(R) Core i7-7700HQ

2.8ghz

NO GPU

4 Windows 10 Intel(R) Xeon(R) CPU E5-

2643 v3 3.4ghz

NVIDIA geforce GTX 1080

Ti

 Table 2. Machine configurations used for benchmark tests. 290

https://github.com/brainglobe/brainrender/paper
https://github.com/brainglobe/brainrender/paper

14 of 18

Test Machine GPU # actors # vertices FPS run duration

10k cells 1 yes 3 1029324 24.76 0.81

 2 No 3 1029324 22.46 1.16

 3 No 3 1029324 20.00 1.41

 4 Yes 3 1029324 100.00 1.34

100k cells 1 yes 3 9849324 18.87 3.23

 2 No 3 9849324 14.91 4.34

 3 No 3 9849324 0.43 7.94

 4 Yes 3 9849324 1.20 1.13

1M cells 1 yes 3 98049324 2.65 31.01

 2 No 3 98049324 2.55 96.49

 3 No 3 98049324 0.03 86.75

 4 Yes 3 98049324 0.13 36.57

Slicing 10k cells 1 yes 3 237751 37.64 0.96

 2 No 3 237751 39.10 1.25

 3 No 3 237751 26.32 1.88

 4 Yes 3 237751 200.00 1.34

Slicing 100k cells 1 yes 3 276092 31.79 7.77

 2 No 3 276092 25.98 9.09

 3 No 3 276092 21.28 16.88

 4 Yes 3 276092 111.11 9.65

Slicing 1M cells 1 yes 3 275069 11.23 91.31

 2 No 3 275069 5.39 104.79

 3 No 3 275069 5.03 158.99

 4 Yes 3 275069 37.04 97.43

brain regions 1 yes 1678 1864388 9.38 11.78

 2 No 1678 1864388 7.61 27.40

 3 No 1678 1864388 6.49 46.79

 4 Yes 1678 1864388 11.90 35.83

animation 1 yes 8 96615 9.91 18.98

 2 No 8 96615 22.12 12.63

 3 No 8 96615 15.15 11.92

 4 Yes 8 96615 47.62 12.29

15 of 18

Table 3. Benchmark tests results. The number of actors refers to the total number of elements rendered, and the 291

number of vertices refers to the total number of mesh vertices in the rendering. 292

For each test we estimated the time necessary to complete the test script as well as the frame rate of the interactive 293

rendering. Four machines were used for benchmark tests (see Table 2). The results of the benchmark tests (see table 1) 294

illustrate that although a GPU improves performance, in the absence of a dedicated GPU brainrender can handle rich 295

interactive visualizations (for most user cases the number of rendered mesh vertices is much lower than that used in 296

the tests). 297

 298

Acknowledgements 299

We thank Yu Lin Tan for sharing the single neuron morphology shown in 3D. The illustrations of a human, mouse and 300

zebrafish used in Figures 1, 2 and 3 were obtained from scidraw.io. 301

 302

Video legends 303

Video 1. Animated video created with brainrender showing the location of cells labelled by targeted expression of a 304

fluorescent protein identified with cellfinder (data from Tyson et al. 2020). In dark blue: streamline visualization of 305

efferent projections from the retrosplenial cortex following injection of an anterogradely transported virus expressing 306

fluorescent proteins (data from Oh et al. 2014). 307

Video 2. Animated video created with brainrender. Visualization of neuronal morphologies for two layer 5b pyramidal 308

neurons in the secondary motor area of the mouse brain. Data from Winnubst et al. 2019, downloaded with 309

morphapi from neuromorpho.org. The secondary motor area and thalamus are also shown. 310

Video 3. Animated video created with brainrender. Frontal view of all brain regions in the Allen Mouse Brain atlas as 311

the brain is progressively 'sliced' in the rostro-caudal direction. 312

Video 4. Animated video created with brainrender. Visualization of the location of three implanted neuropixel probes 313

from multiple mice (data from Steinmetz et al. 2019). Every 0.5 seconds, a subset of the probes' electrodes that 314

detected a neuron's action potential are shown in salmon to visualize neuronal activity. 315

Video 5. Example brainrender GUI usage. Short demonstration of how brainrender's GUI can be used to interactively 316

visualize brain regions, labelled cells and custom meshes. 317

 318

volume 1 yes 12 49324 1.79 2.31

 2 No 12 49324 1.66 1.95

 3 No 12 49324 3.55 2.15

 4 Yes 12 49324 23.26 1.21

16 of 18

References 319

Arganda-Carreras, Ignacio, Tudor Manoliu, Nicolas Mazuras, Florian Schulze, Juan E Iglesias, Katja Bühler, Arnim 320

Jenett, François Rouyer, and Philippe Andrey. 2018. “A Statistically Representative Atlas for Mapping Neuronal Circuits 321

in the Drosophila Adult Brain.” Front. Neuroinform. 12 (March): 13. 322

Arshadi, Cameron, Mark Eddison, Ulrik A Gunther, Kyle I Harrington, and Tiago A Ferreira. 2020. “SNT: A Unifying 323

Toolbox for Quantification of Neuronal Anatomy.” bioRxiv. 324

Ascoli, Giorgio A, Duncan E Donohue, and Maryam Halavi. 2007. “NeuroMorpho.Org: A Central Resource for Neuronal 325

Morphologies.” J. Neurosci. 27 (35): 9247–51. 326

Bates, Alexander Shakeel, James D Manton, Sridhar R Jagannathan, Marta Costa, Philipp Schlegel, Torsten Rohlfing, 327

and Gregory Sxe Jefferis. 2020. “The Natverse, a Versatile Toolbox for Combining and Analysing Neuroanatomical 328

Data.” Elife 9 (April). 329

BRAIN Initiative Cell Census Network (BICCN), Ricky S Adkins, Andrew I Aldridge, Shona Allen, Seth A Ament, Xu An, 330

Ethan Armand, et al. 2020. “A Multimodal Cell Census and Atlas of the Mammalian Primary Motor Cortex.” Cold Spring 331

Harbor Laboratory. 332

Chon, Uree, Daniel J Vanselow, Keith C Cheng, and Yongsoo Kim. 2019. “Enhanced and Unified Anatomical Labeling 333

for a Common Mouse Brain Atlas.” Nat. Commun. 10 (1): 5067. 334

Claudi, Federico, Luigi Petrucco, Adam Tyson, Tiago Branco, Troy Margrie, and Ruben Portugues. 2020. “BrainGlobe 335

Atlas API: A Common Interface for Neuroanatomical Atlases.” JOSS 5 (54): 2668. 336

Ding, Song-Lin, Joshua J Royall, Susan M Sunkin, Lydia Ng, Benjamin A C Facer, Phil Lesnar, Angie Guillozet-Bongaarts, 337

et al. 2016. “Comprehensive Cellular-Resolution Atlas of the Adult Human Brain.” J. Comp. Neurol. 524 (16): 3127–338

3481. 339

Fürth, Daniel, Thomas Vaissière, Ourania Tzortzi, Yang Xuan, Antje Märtin, Iakovos Lazaridis, Giada Spigolon, et al. 340

2018. “An Interactive Framework for Whole-Brain Maps at Cellular Resolution.” Nat. Neurosci. 21 (1): 139–49. 341

Goubran, Maged, Christoph Leuze, Brian Hsueh, Markus Aswendt, Li Ye, Qiyuan Tian, Michelle Y Cheng, et al. 2019. 342

“Multimodal Image Registration and Connectivity Analysis for Integration of Connectomic Data from Microscopy to 343

MRI.” Nat. Commun. 10 (1): 5504. 344

Harris, Charles R, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric 345

Wieser, et al. 2020. “Array Programming with NumPy.” Nature 585 (7825): 357–62. 346

Hunter, J. D. 2007. “Matplotlib: A 2D Graphics Environment.” Computing in Science & Engineering 9 (3): 90–95. 347

https://doi.org/10.1109/MCSE.2007.55. 348

Jin, Michelle, Joseph D Nguyen, Sophia J Weber, Carlos A Mejias-Aponte, Rajtarun Madangopal, and Sam A Golden. 349

2019. “SMART: An Open Source Extension of WholeBrain for iDISCO+ LSFM Intact Mouse Brain Registration and 350

Segmentation.” Cold Spring Harbor Laboratory. 351

Kluyver, Thomas, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle 352

Kelley, et al. 2016. “Jupyter Notebooks - a Publishing Format for Reproducible Computational Workflows.” In 353

Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by Fernando Loizides and Birgit 354

Scmidt, 87–90. Netherlands: IOS Press. https://eprints.soton.ac.uk/403913/. 355

https://doi.org/10.1109/MCSE.2007.55
https://eprints.soton.ac.uk/403913/

17 of 18

Kunst, Michael, Eva Laurell, Nouwar Mokayes, Anna Kramer, Fumi Kubo, António M Fernandes, Dominique Förster, 356

Marco Dal Maschio, and Herwig Baier. 2019. “A Cellular-Resolution Atlas of the Larval Zebrafish Brain.” Neuron 103 (1): 357

21–38.e5. 358

Lein, Ed S, Michael J Hawrylycz, Nancy Ao, Mikael Ayres, Amy Bensinger, Amy Bernard, Andrew F Boe, et al. 2007. 359

“Genome-Wide Atlas of Gene Expression in the Adult Mouse Brain.” Nature 445 (7124): 168–76. 360

Mathis, Alexander, Pranav Mamidanna, Kevin M Cury, Taiga Abe, Venkatesh N Murthy, Mackenzie Weygandt Mathis, 361

and Matthias Bethge. 2018. “DeepLabCut: Markerless Pose Estimation of User-Defined Body Parts with Deep 362

Learning.” Nat. Neurosci. 21 (9): 1281–9. 363

Muller, Eilif, James A Bednar, Markus Diesmann, Marc-Oliver Gewaltig, Michael Hines, and Andrew P Davison. 2015. 364

“Python in Neuroscience.” Front. Neuroinform. 9 (April): 11. 365

Musy, Marco, Giovanni Dalmasso, and Bane Sullivan. 2019. “Vedo, a Python Module for Scientific Visualization and 366

Analysis of 3D Objects and Point Clouds Based on Vtk (Visualization Toolkit).” 367

Oh, Seung Wook, Julie A Harris, Lydia Ng, Brent Winslow, Nicholas Cain, Stefan Mihalas, Quanxin Wang, et al. 2014. “A 368

Mesoscale Connectome of the Mouse Brain.” Nature 508 (7495): 207–14. 369

Pachitariu, M, C Stringer, M Dipoppa, S Schröder, L F Rossi, H Dalgleish, M Carandini, and K D Harris. 2017. “Suite2p: 370

Beyond 10,000 Neurons with Standard Two-Photon Microscopy.” bioRxiv. 371

Renier, Nicolas, Eliza L Adams, Christoph Kirst, Zhuhao Wu, Ricardo Azevedo, Johannes Kohl, Anita E Autry, et al. 2016. 372

“Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes.” Cell 165 (7): 1789–1802. 373

Shamash, Philip, Matteo Carandini, Kenneth Harris, and Nick Steinmetz. 2018. “A Tool for Analyzing Electrode Tracks 374

from Slice Histology.” bioRxiv. https://doi.org/10.1101/447995. 375

Simmons, Donna M, and Larry W Swanson. 2009. “Comparing Histological Data from Different Brains: Sources of Error 376

and Strategies for Minimizing Them.” Brain Res. Rev. 60 (2): 349–67. 377

Sofroniew, Nicholas, Talley Lambert, Kira Evans, Juan Nunez-Iglesias, Kevin Yamauchi, Ahmet Can Solak, Grzegorz 378

Bokota, et al. 2020. Napari/Napari: 0.3.8rc1 (version v0.3.8rc1). Zenodo. https://doi.org/10.5281/zenodo.4046812. 379

Song, Jun Ho, Woochul Choi, You-Hyang Song, Jae-Hyun Kim, Daun Jeong, Seung-Hee Lee, and Se-Bum Paik. 2020. 380

“Precise Mapping of Single Neurons by Calibrated 3D Reconstruction of Brain Slices Reveals Topographic Projection 381

in Mouse Visual Cortex.” Cell Rep. 31 (8): 107682. 382

The pandas development team. 2020. Pandas-Dev/Pandas: Pandas (version latest). Zenodo. 383

https://doi.org/10.5281/zenodo.3509134. 384

Tyson, Adam L., Charly V. Rousseau, and Troy W. Margrie. 2020. brainreg: automated 3D brain registration with support 385

for multiple species and atlases (version 0.1.5). Zenodo. https://doi.org/10.5281/zenodo.3991718. 386

Tyson, Adam L., Charly V. Rousseau, Christian J. Niedworok, Sepiedeh Keshavarzi, Chryssanthi Tsitoura, and Troy W. 387

Margrie. 2020. “A Deep Learning Algorithm for 3D Cell Detection in Whole Mouse Brain Image Datasets.” bioRxiv. 388

https://doi.org/10.1101/2020.10.21.348771. 389

Wang, Quanxin, Song-Lin Ding, Yang Li, Josh Royall, David Feng, Phil Lesnar, Nile Graddis, et al. 2020. “The Allen 390

Mouse Brain Common Coordinate Framework: A 3D Reference Atlas.” Cell 181 (4): 936–953.e20. 391

https://doi.org/10.1101/447995
https://doi.org/10.5281/zenodo.4046812
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3991718
https://doi.org/10.1101/2020.10.21.348771

18 of 18

Winnubst, Johan, Erhan Bas, Tiago A Ferreira, Zhuhao Wu, Michael N Economo, Patrick Edson, Ben J Arthur, et al. 392

2019. “Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range 393

Connectivity in the Mouse Brain.” Cell 179 (1): 268–281.e13. 394

Yaoyao-Hao. 2020. “BrainMesh: A Matlab Gui for Rendering 3D Mouse Brain Structures.” 395

Young, David M, Clif Duhn, Michael Gilson, Mai Nojima, Deniz Yuruk, Aparna Kumar, Weimiao Yu, and Stephan J 396

Sanders. 2020. “Whole-Brain Image Analysis and Anatomical Atlas 3D Generation Using MagellanMapper.” Curr. 397

Protoc. Neurosci. 94 (1): e104. 398

