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Abstract

The clinical syndromes caused by frontotemporal lobar degeneration are heterogeneous, 

including the behavioural variant frontotemporal dementia (bvFTD) and progressive 

supranuclear palsy (PSP). Although pathologically distinct, they share many behavioural, 

cognitive and physiological features, which may in part arise from common deficits of major 

neurotransmitters such as γ-aminobutyric acid (GABA). Here, we quantify the GABA-ergic 

impairment and its restoration with dynamic causal modelling of a double-blind placebo-

controlled crossover pharmaco-magnetoencephalography study. We analysed 17 people with 

bvFTD, 15 people with progressive supranuclear palsy, and 20 healthy age- and gender-

matched controls. In addition to neuropsychological assessment and structural magnetic 

resonance imaging, participants undertook two magnetoencephalography sessions using a 

roving auditory oddball paradigm: once on placebo and once on 10mg of the oral GABA 

reuptake inhibitor tiagabine. A subgroup underwent ultrahigh-field magnetic resonance 

spectroscopy measurement of GABA concentration, which was reduced among patients. We 

identified deficits in frontotemporal processing using conductance-based biophysical models 

of local and global neuronal networks. The clinical relevance of this physiological deficit is 

indicated by the correlation between top-down connectivity from frontal to temporal cortex 

and clinical measures of cognitive and behavioural change. A critical validation of the 

biophysical modelling approach was evidence from Parametric Empirical Bayes analysis that 

GABA levels in patients, measured by spectroscopy, were related to posterior estimates of 

patients’ GABA-ergic synaptic connectivity. Further evidence for the role of GABA in 

frontotemporal lobar degeneration came from confirmation that the effects of tiagabine on local 
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circuits depended not only on participant group, but also on individual baseline GABA levels. 

Specifically, the phasic inhibition of deep cortico-cortical pyramidal neurons following 

Tiagabine, but not placebo, was a function of GABA concentration. The study provides proof-

of-concept for the potential of dynamic causal modelling to elucidate mechanisms of human 

neurodegenerative disease, and explain the variation in response to candidate therapies among 

patients. The laminar- and neurotransmitter-specific features of the modelling framework, can 

be used to study other treatment approaches and disorders. In the context of frontotemporal 

lobar degeneration, we suggest that neurophysiological restoration in selected patients, by 

targeting neurotransmitter deficits, could be used to bridge between clinical and preclinical 

models of disease, and inform the personalised selection of drugs and stratification of patients 

for future clinical trials. 
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dynamic causal modelling; conductance-based modelling, GABA

ACE-R – Revised Addenbrookes Cognitive Examination

A1 – primary auditory cortex

bvFTD – behavioural variant frontotemporal dementia

CMM – canonical mean field model

DCM – Dynamic Causal Model

ERF – Event related potential

FAB – Frontal Assessment Battery

FTLD – frontotemporal lobar degeneration

IFG – inferior frontal gyrus

MEG – magnetoencephalography

MMN – mismatch negativity 

MMSE – Mini-Mental State Examination

PEB – Parametric Empirical Bayes

PSP – progressive supranuclear palsy

PSP-RS – PSP-Richardson’s syndrome

STG – superior temporal gyrus

Introduction

There is a pressing need for new therapeutic strategies for neurodegenerative diseases. To gain 

insight into the action of novel therapeutics, one requires an analytical framework that has 

mechanistic precision for human disease. Recent developments in the modelling of non-

invasive human imaging data can facilitate such translational neuroscience. For example, 

dynamic causal models of neuronal network dynamics using neuroimaging data have identified 

the effects of genetic, auto-immune, degenerative and pharmacological perturbations of brain 

function (Gilbert et al., 2016; Symmonds et al., 2018; Shaw et al., 2019a; Adams et al., 2020). 
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Here, we focus on frontotemporal lobar degeneration (FTLD), specifically patients with 

the syndromes of behavioural variant of frontotemporal dementia (bvFTD) and progressive 

supranuclear palsy (PSP). These disorders have distinctive pathology in their classical 

presentations: PSP presenting with dominant subcortical atrophy arising from 4-repeat 

neuroglial tauopathy, and bvFTD with severe frontotemporal cortical atrophy arising from 4-

repeat tauopathy, 3-repeat tauopathy or TDP43 pathology. Despite these differences in 

pathology, they share important behavioural deficits (Rascovsky et al., 2011; Ghosh et al., 

2012; Respondek and Hoglinger, 2016; Höglinger et al., 2017; Murley et al., 2020). bvFTD 

and PSP also cause similar deficits in the neurophysiology of frontotemporal circuits, including 

abnormal beta-band desynchronisation and connectivity, and reduced efficiency and 

modularity of functional circuits (Hughes and Rowe, 2013; Hughes, Ghosh and Rowe, 2013; 

Rittman, Coyle-Gilchrist and Rowe, 2016; Hughes et al., 2018; Sami et al., 2018; Rittman et 

al., 2019). The similarity of neurophysiological deficits contrasts with the marked difference 

in regional brain atrophy between bvFTD and PSP (Brenneis et al., 2004; Seeley et al., 2009; 

Rohrer et al., 2011; Seelaar et al., 2011; Ghosh et al., 2012; Jabbari et al., 2020).

We propose that similar functional deficits in the face of structural differences can be 

the result of impaired neurotransmission. bvFTD and PSP are associated with specific 

neurotransmitter deficits (Murley and Rowe, 2018). In particular, FTLD pathologies cause 

GABAergic cell loss, synaptic loss and reductions in endogenous GABA (Bigio, Brown and 

White, 1999; Ferrer, 1999; Benussi et al., 2019; Holland et al., 2020). The accumulation of 

abnormal tau protein in FTLD has also been linked to GABAergic cell loss (Levenga et al., 

2013).

In this study, we test the GABAergic hypothesis of PSP and bvFTD impairment in three 

complementary ways. First, we use dynamic causal modelling of magnetoencephalography to 

identify local network dynamics in PSP and bvFTD, during a roving auditory oddball paradigm 

(Shaw et al., 2019a; Adams et al., 2020). We use this paradigm because it reveals impairments 

in bvFTD and PSP at the physiological level in frontal and temporal connections. We then test 

whether frontotemporal connectivity is proportionate to clinical severity. Second, we optimise 

a (conductance-based) dynamic causal model of a placebo-controlled double-blind randomised 

cross-over study of the GABA-reuptake inhibitor tiagabine. In healthy controls, this approach 

previously confirmed the predicted increase in tonic inhibition after tiagabine (Adams et al., 

2020). Specifically, we test whether tiagabine restores the frontotemporal cortical mechanisms 

underlying evoked responses to unexpected sensory perturbations in PSP and bvFTD. Third, 
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we test whether the pharmacological effect of tiagabine on the neural dynamics of frontal 

cortex is conditional on the degree of patients’ individual GABAergic deficit, as estimated from 

magnetic resonance spectroscopy acquired at ultrahigh field (7-Tesla). 

Materials and methods

Experimental design:

We undertook a randomised placebo-controlled double-blind crossover study to investigate the 

effects of tiagabine, in 32 patients (17 bvFTD, 15 PSP) and 20 age- and gender-matched healthy 

adults (Table 1). In keeping with the declaration of Helsinki, written informed consent was 

acquired from all participants. The Cambridge Research Ethics Committee approved the study, 

which was exempted from Clinical Trials status by the Medicines and Healthcare products 

Regulatory Agency (UK). The International Standard Randomised Controlled Trial Number is 

10616794. Participants attended two MEG sessions, two weeks apart. They received either 10 

mg oral tiagabine or a placebo. Blood was drawn 105 minutes later to coincide with peak 

plasma levels and CNS penetration (Nutt et al., 2015) immediately prior to MEG data 

acquisition. A comparison across controls and patients showed evidence of equivalence for the 

level of tiagabine in participant serum (Bayesian independent samples t-test, BF10=0.301).

Patients were recruited from tertiary referral centres within the East of England 

National Health Service with probable bvFTD, with or without parkinsonism (Rascovsky et 

al., 2011) or probable PSP-Richardson’s syndrome (PSP-RS, Höglinger et al., 2017), including 

those presenting with PSP-F phenotype and subsumed under PSP-RS according the MAX-rules 

criteria for PSP (Grimm et al., 2019). Healthy adults were recruited from the MRC Cognition 

and Brain Sciences Unit and NIHR Join Dementia Research volunteer panels, with no 

neurological or psychiatric illness. 

In addition, participants completed a neuropsychological battery of tests commonly 

employed in quantifying cognitive and behavioural impairment in FTLD pathologies. These 

included the Revised Addenbrookes Cognitive Examination (ACE-R) (Mioshi et al., 2006), 

the Mini-Mental State Examination (MMSE), Hayling test, Frontal Assessment Battery (FAB), 

INECO (Torralva et al., 2009), frontal screening test (FAB) (Dubois et al., 2000) and the 

Revised Cambridge Behavioural Inventory (CBI-R) (Wear et al., 2008). Patients with a PSP 

diagnosis also had a PSP rating scale (PSPRS) examination (Höglinger et al., 2017). The group 
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results of these tests are collated in Table 1. Note the use of Bayes factors to identify evidence 

in favour of the null (no group differences) as well as testing the alternate hypotheses (that the 

groups differ). 

Neurophysiological responses were measured using magnetoencephalography (MEG) 

in a roving auditory oddball paradigm (Garrido et al., 2008). Earpieces were used to present 75 

ms binaural sinusoidal tones, with a 7.5ms ramp up and down at the start and end of the tone, 

at 500 ms intervals. The tone frequency increased or decreased by 50 Hz (range 400–800 Hz) 

after 3 to 10 repetitions. Auditory thresholds were assessed in quiet at 500, 1000, and 1500 Hz 

and additionally checked in the MEG. During MEG, tones were presented at 60dB above the 

population-average threshold. Participants were under continuous video monitoring: none fell 

asleep. The task was performed eyes-open in blocks of five minutes.

Data acquisition and pre-processing:

A 306-channel Vectorview acquisition Magnetoencephalography system (Elekta Neuromag, 

Helsinki) was used in an Elekta Neuromag magnetically-shielded room. This uses a sensor 

triplet at 102 locations (a pair of gradiometers and a magnetometer) sampled at 1000 Hz. 

Electroocculograms (EOGs) tracked eye movements vertically and horizontally and 5 head-

position indicator coils tracked head position. A 70 channel, MEG-compatible, EEG cap 

(Easycap GmbH) using Ag/AgCl electrodes positioned according to the 10-20 system was used 

concurrently. Scalp shape was recorded with a 3D digitizer (Fastrak Polhemus Inc., Colchester, 

VA) using >100 scalp points, as well as nasion and bilateral pre-auricular fiducial points. 

Participants also underwent T1-weighted structural magnetic resonance imaging at 3T by 

Siemens PRIMSA scanner (MPRAGE sequence, TE = 2.9 msTR = 2000 ms, 1.1mm isotropic 

voxels) or at 7T by Siemens TERRA scanner (MP2RAGE sequence 0.75mm isotropic voxels, 

TE=1.99ms, TR=4300ms, TI1=840ms, TI2=2370ms) at the Wolfson Brain Imaging Centre, 

University of Cambridge. 

MEG data were first pre-processed by head position alignment and movement 

compensation with 5 headcoils, using the temporal extension of Signal Space Separation with 

MaxFilter v2.2 (Elekta Neuromag). Bad channels were identified both manually and 

automatically. The Statistical Parametric Mapping toolbox (SPM12, Wellcome Trust Centre 

for Neuroimaging, UCL, UK) was used for subsequent pre-processing and analysis, along with 

custom MATLAB scripts (MATLAB 2017a, Mathworks, Natick, MA). Data were Butterworth 

filtered between 1-180 Hz, epoched from -100 ms to 400 ms relative to auditory stimulus 
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presentation. Artefact rejection was performed using electrooculogram, EEG and MEG 

channel thresholding, with the same thresholds applied across all groups. The deviant and 

standard trials were taken as the 1st and 6th trials of each stimulus train respectively, averaged 

over frequencies. Although the task presented the same number of trials to all participants, the 

trial numbers used in the analysis differ between groups due to intolerance of a third block in 

a minority of patients, and a higher rate of artefacts in patient groups (eg. eye blinks, occasional 

movements or swallowing). 

Dynamic causal modelling: an extended canonical microcircuit 

model

We used the extended conductance-based canonical mean field model (CMM) for evoked 

responses (Kiebel et al., 2008) based on SPM12 (DCM10), as previously described in detail 

by Adams et al., (2020). A schematic of the model is shown in Fig. 1A. The network comprises 

3 bilateral sources: primary auditory (A1), superior temporal gyrus (STG) and inferior frontal 

gyrus (IFG). The gross-anatomical model has been widely used to study the mismatch 

negativity response and confirmed by intracranial corticographic recordings (Phillips et al., 

2016). High density “whole brain” dynamic causal models for functional MRI data are 

possible, but not for CMM models inverted to MEG (Frässle et al., 2018). Although other 

regions of the frontal lobe are affected by bvFTD and PSP, we focus on the IFG because of the 

prior evidence of its role in generating the response to deviant sensory events (Phillips et al., 

2015; Shaw et al., 2019, Garrido et al., 2008); its abnormal cognitive physiology in bvFTD 

and PSP (Hughes et al., 2013; Sami et al., 2018); and the good sensitivity of MEG to this 

region, in contrast to orbital and medial prefrontal cortex. The intrinsic connectivity among the 

neuronal populations within each source is described in detail in Adams et al., (2020). These 

sources constitute key nodes of a network generating the responses to predicted (standard) and 

unexpected (deviant) events. 

The extended CMM model provides a more physiologically plausible parameterisation 

of synaptic parameters, while being compatible with previous studies of this paradigm 

(Muthukumaraswamy et al., 2015; Gilbert and Moran, 2016; Shaw et al., 2017, 2018). Briefly, 

this model incorporates layer 4 stellate cells, superficial pyramidal cells, deep cortico-cortical 

projection neurons, deep thalamic projection neurons and separate supra- and infra-granular 

inhibitory interneuron populations that allow for laminar specific dynamics mediated by 
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GABAergic neurotransmission (Bhatt et al., 2016; Shaw et al., 2018; Spriggs et al., 2018). 

Connections between source regions were based on the fully connected models from Phillips 

et al., (2015) and Shaw et al., (2019), originally derived from Garrido et al., (2008). This 

network formed the basis of an iterative process to find the most likely reduced model 

(described below). Auditory inputs to the network were parameterised using a Gaussian bump 

function (peak 60 ms, half-width 8 ms) to layer 4 stellates in bilateral auditory and inferior 

frontal cortex. The frontal cortical ‘auditory’ inputs represent the expectation of an event in the 

tone sequence, but not which event type. This ‘expectancy signal’ might arise from prefrontal 

or striatal/thalamic sources, but the source is not modelled: the inclusion of such expectancy 

inputs to the prefrontal cortex increases model evidence in similar auditory oddball tasks 

(Phillips et al., 2015; Chennu et al., 2016). 

The dynamic causal modelling focusses on the electrophysiological response to deviant 

events. We have previously shown the model’s ability to recapitulate the standard, deviant and 

mismatched responses in healthy adults (Adams et al., 2020). However, the response to deviant 

stimuli is of particular interest, and was selected to interrogate the effects of disease and drug. 

MR Spectroscopy:

We exploited the increased signal-to-noise and spectral resolution of ultrahigh field “7T” MR 

Spectroscopy, relative to 3T or 1.5T MR Spectroscopy, using a 7T MAGNETOM Terra 

scanner (Siemens Healthineers, Erlangen, Germany) with a 32-channel receive, single channel 

transmit head coil (Nova Medical, Massachusetts, USA). Nineteen patients (11 PSP and 8 

bvFTD) completed magnetic resonance spectroscopy, as part of a larger study (Murley et al., 

2020, in press). Control MRS data are from the controls described in Murley et al., 2020. MR 

spectra were acquired serially from a right inferior frontal gyrus voxel (2x2x2cm3), placed 

manually by the same operator using anatomical landmarks for a short-echo semi-LASER 

sequence (Öz et al., 2011; Deelchand et al., 2015) (TR/TE 5000/26ms, 64 repetitions). We 

used the recommended pre-scan protocol of FASTESTMAP shimming (Gruetter and Tkáč, 

2000) and semi-LASER water-peak flip angle and VAPOR water suppression calibration (Tkáč 

et al., 1999). This sequence gives reliable GABA measurements in humans in vivo (Barron et 

al., 2016; Kolasinski et al., 2017; Joers et al., 2018; Betina Ip et al., 2019; Frangou et al., 2019; 

Hong et al., 2019). Each of the 64 individual spectral transients from each participant were 

saved separately. These were then corrected for effects of eddy currents, and for frequency and 
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phase shifts using MRspa (Dinesh Deelchand, University of Minnesota, 

www.cmrr.umn.edu/downloads/mrspa). One patient participant was excluded for incomplete 

scans and movement artefacts. 

A single prefrontal voxel was studied, placed over the region of prefrontal cortex in the 

dynamic causal model of cortical physiology. A control region of occipital lobe was also 

studied (reported by Murley et al, 2020). Additional prefrontal cortical regions were not 

included because of patient tolerance given the duration of the spectroscopy session. 

Neurochemicals between 0.5 and 4.2ppm, including glutamate and GABA, were 

quantified using LCModel (Version 6.2-3) (Provencher, 1993) with water scaling and a 

simulated basis set that included experimentally-acquired macromolecule spectra. See 

supplementary Figure S1 for illustration of the MRS Spectrum and LCModel fit for GABA 

and Glutamate. 

Statistical analysis:

For MEG, variational Bayesian model inversion and subsequent reduction identified the most 

likely explanation for subject-specific MEG data in terms of Gaussian posteriors over neuronal 

and biophysical parameters. Group and drug effects were tested using Parametric Empirical 

Bayes (PEB) analysis, based on these posterior estimates. For other data, Bayesian analysis 

used JASP software (JASP Team, version 0.12.2) with conventional thresholds for Bayes 

Factors (BF) representing substantial (>3), strong (>10) and very strong (>30) evidence in 

favour of hypotheses. Correction for multiple tests was based on Null control by fixing the 

prior odds to 0.5, and the posterior odds adjusted according to the number of groups being 

compared (Westfall et al., 1997). Descriptive frequentist statistics were performed in 

MATLAB 2017a, with p<0.05 considered significant.

The dynamic causal model (DCM) was inverted using source-reconstructed ERF data 

for all 6 sources for each subject for standard and deviant trials separately (Friston et al., 2007). 

In other words, we allowed the differences between standard and deviant trials to be modelled 

by differences in every intrinsic and extrinsic connection; enabling us to characterise group 

differences induced by either standard or deviant stimulus processing. Data were filtered 

between 0–48 Hz. A Tukey window that did not attenuate signals between 50 ms and 350 ms 

after stimuli was applied. Redundant DCM parameters were removed using Bayesian model 
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reduction at the between-subject (i.e., second) level using PEB (with a group mean). The 

reduced model was then used to test for group and drug effects on connectivity parameters 

using PEB and general linear models in the usual way (Henson et al., 2011). Second-level 

PEBs were run for each group (control, PSP and bvFTD) separately, with a third-level “PEB-

of-PEBs” to compare groups (Henson et al., 2011; Zeidman et al., 2019). Effects of interest 

were considered significant above a threshold posterior probability of >0.95.

Data availability

The extended DCM is available at [address on acceptance] and works in conjunction 

with the modified SPM12 scripts provided therein. Source data may be available for non-

commercial research purposes, on request from the senior author, subject to limitations to 

protect participant identity. 

Results

Healthy controls, PSP and bvFTD patients were age- and gender-matched (Table 1). bvFTD 

patients were impaired in comparison to healthy controls in all tests. Compared to controls, 

PSP patients were impaired in the INECO, FAB, Hayling and selected subscales of the ACER. 

Although bvFTD patients were impaired compared to controls on the Graded Naming test, 

there was no evidence of a difference for PSP patients. Compared to PSP, patients with bvFTD 

performed worse on the INECO, but PSP and bvFTD were similar in terms of verbal fluency 

and did not differ in terms of MMSE, Hayling, ACER and FAB. 

Following artefact rejection, the number of deviant trials were for controls 188±53, 

patients 155±55; and the number of standard trials were for controls 141±42, patients 116±42). 

Regarding MRS quality, the line-width did not differ between groups (bvFTD 13.6 ±3.5, PSP 

13.0 ±1.9, controls 13.7 ±1.5: Bayes factor =4.1 in favour of the null model of no difference 

between groups), and group differences in Cramer-Rao lower bound were equivocal (bvFTD 

15.1 ±5.7, PSP 13.2 ±5.7, controls 9.6 ±1.2; Bayes factor in favour of null model =0.4). 

However, SNR was lower and more variable in bvFTD (bvFTD 40.6 ±10.0, PSP 48.2 ±7.0, 

controls 53.8 ±5.5; Bayes factor in favour of group difference =50.7). Group-wise event-related 

fields are show in supplementary figure S2 for each group, drug condition and region. 
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The following sections set out the results of dynamic causal modelling of cortical 

physiology, in relation to cognitive impairment, group, drug and GABA-levels. We focus on 

the response to deviant events. 

DCM predictions accurately reflected empirical event related fields: Using the DCM 

illustrated in Fig. 1A, the predicted event related fields (ERFs) correlated well with the 

observed ERFs (Pearson correlation coefficient: median = 0.79, iqr = 0.2). A distribution of 

these correlations can be seen in the kernel distribution plot in Fig. 1B. Figure S2 shows the 

event-related fields predicted by the model, adjacent to the observed event-related fields, for 

each group, drug condition and region. 

There was no significant difference between the accuracy of patient and control groups. 

Accuracy did differ by region, with the signals from STG modelled most accurately, most 

likely because of the higher signal-to-noise ratio (Fig. 1B, lower). Note that DCM furnishes 

parameter estimates that maximise the log model evidence (i.e. marginal likelihood), which 

quantifies the accuracy adjusted for complexity. In other words, the accurate fits in Fig. 1B do 

not represent overfitting but rather the expressivity of the DCM. 

Extrinsic connectivity findings corroborate published evidence and correlate with 

behavioural measures: Comparing the extrinsic connections between groups, we found patient 

deficits in feedback frontotemporal connectivity between left IFG and left STG (Fig. 2A, 

posterior probability ≈1.00), consistent with previous findings (Hughes and Rowe, 2013; Cope 

et al., 2017). The loss of frontal to temporal connectivity was present in both the PSP and 

bvFTD groups (post-p =0.99 and ≈1.00 respectively) and did not differ between PSP and FTD 

(Fig. 2A, lower). 

The strength of the frontal to temporal backward connections correlated with cognitive 

performance, measured with the ACE-R, and behavioural impairments measured with the FAB 

tests (Fig. 2B). These measures demonstrated strong or very strong evidence for correlations 

with the frontal to temporal backward connection (Bayes Factors, BF10, ACE-R = 24.3; FAB 

= 38.0).

Forward connections from STG to IFG were increased, bilaterally, in patients (posterior 

probability = 0.89 for left and 0.84 for right), with this effect evidenced strongly in PSP 

(posterior probability ≈1.00 and 0.98) and weakly in bvFTD (posterior probability = 0.60 and 

0.60), although the PSP-vs-bvFTD group difference was not significant. 
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Intrinsic connectivity patterns in IFG: Changes in extrinsic connections contextualise 

intrinsic or local processing within the microcircuits of regional cortical sources. Focussing on 

GABAergic mechanisms, we sought to explain how changes in local processing could 

influence the large-scale abnormalities seen in patients. With the focus on frontal cortical 

deficits, the following section pertains to GABAergic (intrinsic) connections in the IFG node 

for deviant tones. A schematic of these GABAergic connections is provided in Fig. 3A. In what 

follows, we characterise these differences in terms of intrinsic connectivity and their effects on 

the depolarisation of target populations. Specifically, we can distinguish between inhibitory 

recurrent or self-connections and inhibitory projections from interneurons to pyramidal cells. 

Self-connections mediate tonic background inhibition, while intrinsic efferents to pyramidal 

populations can be regarded as mediating phasic inhibition.

Following a second level PEB of each group to identify drug effects, a “PEB-of-PEBs” 

third level PEB analysis was run for all groups (Fig. 3B). Overall, tiagabine increased 

background inhibition in deep-layer interneurons (Fig. 3C). The joint patient group showed 

higher levels of tonic inhibition at these recurrent synapses when compared to the controls. But 

when comparing the PSP and bvFTD groups separately, there were differences at the phasic 

synapse onto cortico-cortical projection neurons and background (self) inhibition of cortico-

thalamic projection neurons (Fig. 3D, left column).

Whereas no interactions were found between controls vs. patients and the drug 

conditions, an interaction was found between the PSP and bvFTD groups and the drug 

conditions (Fig. 3D, right column). Specifically, the phasic inhibition of stellate cells showed 

opposite effects in the two patient groups, with the PSP cohort having high inhibition at this 

synaptic connection in the placebo condition, which was then decreased by tiagabine; whereas 

bvFTD patients had low inhibition at this synaptic connection, which increased on tiagabine 

(Fig. 3E).

GABA concentration in IFG explains physiological variance: The opposing responses 

to the drug in the two groups, and the potential dependence on initial GABA status, led us to 

examine the influence of baseline GABA levels. 19 patients (11 PSP and 8 bvFTD) completed 

magnetic resonance spectroscopy. The matched control group used for spectroscopy 

comparison are those detailed by Murley et al., 2020, in press. These 19 patients were part of 

a larger MRS study that confirmed reduced frontal cortical GABA concentration in PSP and 

bvFTD (Murley et al., 2020, in press). There was very strong evidence for a difference between 

the control and patient groups (Bayesian ANOVA corrected for multiple comparisons 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ab097/6168993 by U
niversity C

ollege London user on 26 M
arch 2021



(Westfall, Johnson and Utts, 1997): PSP BF10=48.23; bvFTD BF10=1862). The contrast 

confirmed weak evidence of equivalence between patient groups (Fig. 4A, BF10=0.334). We 

therefore hypothesised that the physiological variance may be due to variations in levels and 

loci of GABA in the cortical microcircuit. This was explored in the context of local synaptic 

activity in the CMM model. 

The model evidence (approximated by variational free energy) improved markedly 

when regional GABA was included as a between-subjects variable (see Fig. 4B, posterior 

probability ≈1.00). For deep GABAergic synapses there was very strong evidence for a positive 

correlation with GABA (connections shown in Fig. 4B, far right). This dependency of 

GABAergic transmission (in CMM) on GABA concentration (from MRS) centred on deep-

layer interneurons, affecting background inhibition of interneurons and phasic inhibition onto 

both cortico-cortical and cortico-thalamic projections. There was a negative effect of GABA 

concentration on the background inhibition of cortico-cortical projections.

The interactions between these factors were explored for the response to deviant stimuli 

in a separate PEB analysis (Fig. 4C-E). Interactions between GABA concentration and patient-

group were identified at the deep phasic synapses onto cortico-cortical and cortico-thalamic 

pyramidal cell groups (Fig. 4C). This relationship is illustrated in the adjacent linear regression 

plots showing that the positive correlation with GABA concentration was strong in bvFTD, 

and weak in PSP. 

An interaction between the effect of tiagabine (vs placebo) and GABA concentration 

was identified in the inhibitory synapses on deep cortico-cortical projection neurons (Fig. 4D), 

with a higher correlation evidenced between the synaptic activity and GABA concentration 

when patients were on tiagabine. A higher-order interaction between drug condition, GABA, 

and patient group was observed for the deep, tonic inhibitory synapses rather than the phasic 

synapses (see supplementary Figure 3). 

Discussion

The principal results of this study are that (i) biophysically informed generative models of 

cortical function can replicate the cortical dynamics observed in patients by 

magnetoencephalography; (ii) the reduction in frontal to temporal backward connectivity is 

proportionate to cognitive performance; (iii) there is a neurochemical and functional 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ab097/6168993 by U
niversity C

ollege London user on 26 M
arch 2021



GABAergic deficit in bvFTD and PSP. This manifests as aberrant deep inhibitory intrinsic 

connections, with a moderating effect of GABA concentration on the cortical physiology; and 

(iv) individual differences are such that the effects of tiagabine depend on GABA concentration 

in the frontal cortex. Taken together, these results suggest the potential for GABA-ergic 

restoration of cortical physiology in selected patients, with the ultimate goal of restoring at 

least in part their cognitive function.  

Tiagabine was well tolerated by patients, but we stress that in this study, it was used as 

a pharmacological probe of cortical dynamics, not as a clinical treatment, and no clinical or 

behavioural outcome measures were assessed. We do not advocate its use clinically in bvFTD 

or PSP, but recommend that further work, including early phase clinical trials, are warranted 

to move from an effect on neural dynamics to potential effects on cognition and behaviour. The 

results we present here suggest that such early phase trials would likely benefit from participant 

stratification, including possibly by spectroscopic characterisation. 

The interest in the canonical microcircuit model used here and in Adams et al. (2020), 

goes beyond bvFTD or PSP. We used these disorders as ‘demonstrator conditions’ to test 

whether such models can identify clinically and pharmacologically meaningful effects at a 

cellular and neurochemical resolution that cannot be directly accessed in vivo. The critical 

question is not whether a disease or a drug affects neurophysiological responses, but how such 

an effect arises? A model can resolve mechanisms only to the level of detail specified within 

it: different cellular and molecular processes may lie behind the functional deficit of a specified 

cell-population of synapse. For this reason, the extended CMM used six cell-types, separating 

superficial and deep cortical layers and their inhibitory populations, and thalamo-cortical 

connections. This was sufficient to test our principal hypothesis, but we recognise the 

simplification of the model with respect to heterogeneity of cell types, connectivity and 

neurotransmission. Finer-grained cellular, synaptic or pharmacological resolution would 

require more complex models (cf. Shaw et al, 2020; Symmonds et al., 2020).

Hughes et al. (2013) demonstrated a reduction in fronto-temporal beta coherence by 

bvFTD, which was recapitulated in the loss of beta-band coherence and Granger causal 

connectivity in the non-fluent primary progressive aphasia variant of frontotemporal dementia 

(Cope et al., 2017). Moreover, both bvFTD and PSP cause a similar loss of local efficiency in 

the beta band, for frontal networks. We attribute these beta-frequency effects to loss of 

descending information to lower levels of a cortical information processing hierarchy (Bastos 

et al., 2012; Cope et al., 2017). Canonical microcircuit models of phasic band-limited activity 
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and connectivity have successfully reproduced this effect (Bastos et al., 2015). Here, we further 

demonstrate that a conductance-based neuronal model can accurately generate ERF data and 

reveal deficits in such hierarchical extrinsic connectivity in patients. Indeed, the inter-regional 

(extrinsic) connectivity correlated with cognition and behavioural performance, linking clinical 

measures to a generative model level of understanding of network function.

The value of such generative models lies in their utility to predict the mechanistic nature 

of changes from pathology or pharmacology. There is growing evidence to support the claims 

of such models, drawing on the identification of the processes affected by genetic Na/Ca 

channelopathies, by anti-NMDA auto-immune encephalitis, and by pharmacological 

perturbations of brain function (Gilbert et al., 2016; Symmonds et al., 2018; Shaw et al., 2019a, 

2020a, 2020b; Adams et al., 2020). With such diverse validation studies, the canonical 

microcircuit model approach promises novel insights into mechanisms of action or disease, or 

new candidate pharmacological targets. 

The use of Parametric Empirical Bayes (PEB) in dynamic casual modelling—when 

testing for group effects—finds another application that we use for the first time in dementia 

research: the examination of the effects of individual differences in a neurotransmitter trait 

(that is to say, baseline unmedicated status) on the model optimisation, and then on the 

individual differences in response to drug. This is conceptually related to the increase in 

variance explained by a covariate in a frequentist analysis of variance. However, by embedding 

the individuals’ GABA concentration in a PEB design, we can quantify the evidence for, or 

against, the effect of GABA on neuronal dynamics and response to drug. Here, tiagabine’s 

effect on IFG in response to unexpected sensory (oddball) events was attributable to an increase 

to the tonic inhibition of deep inhibitory neurons, consistent with data from healthy adults 

(Adams et al., 2020). This effect on deviant trials is expected in an oddball paradigm. 

Our interpretation of the changes observed in Fig. 4B is of stronger phasic inhibition 

deep layer neurons, whereby endogenous GABA levels could improve cortico-cortical rhythm 

segregation and promote coincident firing of these cells: and potentially increase bursting 

activity from the moderation to deep burst-firing pyramidal neurons. The latter is associated 

with beta-rhythm generation and the backwards propagation of information (Bastos, Vezoli 

and Fries, 2015). The interaction (Fig. 4C) with patient group indicates this effect is stronger 

in bvFTD than PSP. This is of interest as PSP causes less frontal cortical atrophy than bvFTD 

(Josephs et al., 2008; Lagarde et al., 2013, 2015; Whitwell, 2019) despite a similar GABA loss 

and similar functional synaptic deficit (Bigio et al., 2001; Levenga et al., 2013). The effect of 
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GABA reuptake inhibition was not confined to phasic inhibition. Indeed, the effect on tonic 

GABA transmission accords with Dyke et al’s study that combined of GABA spectroscopy 

with transcranial magnetic stimulation (Dyke et al., 2017). 

The localisation of the site of drug effects, opens the way to test the physiological 

effects of other drugs, acting on GABA, NMDA or other principal neurotransmitters - and in 

other disorders. The increased tonic inhibition of these interneurons identified in our patients 

is considered to decrease the activity of this population, and this may be indicative of an 

overriding loss of deep inhibitory population activity in patients, either due to synaptic or 

neurotransmitter deficits. 

The lack of an interaction between drug condition and the control-vs-patient group 

needs to be interpreted with caution, as there was also an interaction between the PSP-vs-

bvFTD group and drug conditions. The drug had differential (opposing) effects between the 

two disorders at the phasic stellate synaptic connection, which is responsible for both activity 

levels of stellate cells, and the organization of information via coincident firing and rhythmic 

segregation (Whittington et al., 2000; Duguid et al., 2012). We speculate that this difference 

reflects the lesser degree of cell-loss and atrophy in PSP than bvFTD: the effects of a drug on 

a region where cells are present is expected to differ from the effect on a region which has 

sustained massive cell loss. 

There are limitations to our study. First, we rely on clinical rather than pathological 

confirmation of the diagnosis, and therefore we cannot confirm which bvFTD cases had Tau 

vs TDP43 pathology. Nonetheless, the accuracy of Rascovsky criteria of probable bvFTD is 

high (Rascovsky et al., 2011), and the accuracy of PSP-RS clinical criteria is very high 

(Gazzina et al., 2019). Second, our study is also relatively small, with N~16 per group. 

However, note that Bayesian ‘power’ is not based on the concept of false negative rejection of 

the null hypothesis, but on the precision of the evidence to make an inference in favour, or 

against, competing hypotheses. The Bayes factors express the relative evidence between two 

models, and for our model selection and correlations (Figs. 2–4), the evidence was very strong 

or decisive (BF>10, and relevant posterior probabilities >0.95). To unpack the high order 

interactions into robust simple main effects may require larger group sizes. However, we note 

that high Bayes factors indicate not only which model is more likely, but also indicate that the 

precision has been sufficient to make an inference at all, rather than remain undecided (with 

0.3< Bayes-factors <3). 
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Third, we used dynamic causal modelling of the response to deviant stimuli, rather than 

the differential mismatch response between standard and deviant responses. We do not assume 

equality of network parameters between standard and deviant conditions but prioritise the 

parameterisation of a generative model for deviant events, as an index of immediately prior 

GABA-dependent short-term plasticity following successive repetitions. Moreover, addition of 

a fourth factor of ‘trial type’ into the modelling may reduce clarity of the effects of factors of 

interest (disease, drug, and MRS-GABA levels), calling for the analysis of third-order 

interactions beyond an already complicated design. 

A dynamic casual model can only resolve mechanisms to the level of detail specified 

in the model, in terms of its anatomical regions and the microcircuit detail within them. Models 

should be sufficiently complex to test the hypotheses concerned, and here we used a common 

gross-anatomical framework for frontotemporal interactions for change detection (auditory 

oddball tasks). In the frontal lobes, bvFTD also affects anterior cingulate and orbitofrontal 

cortex, but these regions are not well identified by MEG, because of their depth or the 

apposition of homologous cortex with opposite polarity on the medial surfaces. Moreover, 

additional regions would rapidly increase the number of parameters, risking poor convergence 

or local minimum solutions. Analytical solutions for Bayesian model reduction of high-density 

“whole brain” networks are not yet possible for M/EEG, and may not be possible in view of 

volume conduction effects. Additional regions of MRS would also be limited by participant 

tolerance. To resolve the convergence of additional cellular mechanisms onto the observed 

physiological deficit is possible in principle, by extensions of the microcircuit model (just as 

our model extended from four- to six-cell types to separate superficial and deep cortical layers 

and their inhibition). However, PEB can reveal additional complexities, in terms of interactions 

with other measures, such as GABA. The presence of such interactions indicates that a drug 

treatment is likely to be selective in its benefits (or adverse effects) according to the state of an 

individual patient. Simple group-wise comparisons can thereby be misleading in isolation. For 

the GABA spectroscopy, a limitation was that only a subset of the patient group underwent 

MRS, due to temporal offset in the readiness of the methods. However, these analyses also 

draw on evidence-based Bayesian analyses, not frequentist statistics, and were sufficiently 

powered for the effects we observed (and the large effects sizes expected, from Murley and 

Rowe 2018). We also note that hidden parameters identified by DCM are interdependent, such 

that the examination of the influence of individual parameters can be confounded by 

covariance. The PEB process considers parameter covariances that would be ignored if using 
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traditional frequentist approaches to mass-univariate inferences on parameters, and thus is 

preferable for hierarchical modelling.

This study did not aim to identify a cognitive benefit of group-wise treatment, nor 

chronic treatment effects - it is not a clinical trial. We focus instead on the identification of 

mechanisms of disease and drug intervention. To determine clinical efficacy requires a clinical 

trial, which we believe is indicated. Such trials are a pressing need for bvFTD, PSP and 

dementia generally (Boxer et al., 2013a, 2013b; Tsai and Boxer, 2016). We propose that in 

PSP, FTD and other neurological and psychiatric disorders (Brodersen et al., 2014; Shaw et 

al., 2019b; Aponte et al., 2020; Mosley et al., 2020), the combination of model-based 

physiology and targeted psychopharmacology can provide critical evidence to reduce the risk 

of such trials, reducing cost, duration and failure rates of phase II-III trials.  
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Supplementary material

Supplementary figures: Suppl_FigS1, Suppl_FigS2, Suppl_FigS3

Figure 1 – Model schematic and accuracy

a) A schematic of the network used to model the roving auditory oddball paradigm. The 

6 sources (bilateral primary auditory, superior temporal gyrus and inferior frontal 

gyrus) are each represented by a local network node of 6 cell populations shown in blue. 

These nodes are extrinsically connected with forward, backward and lateral 

connections (shown as solid and dashed black arrows).

b) Kernel density distribution (upper) of the level of correlation between observed and 

modelled ERFs for all groups and conditions, with the median in red and the 

interquartile range shown as a darker band around the median. The correlations making 

up this density distribution are shown in the correlation matrix (lower).

Figure 2 – Between-source connectivity in response to deviant 

stimuli: effect of group and cognitive function.  

a) Extrinsic connection strength difference between controls and patients in deviant trials, 

with blue indicating higher in controls and red meaning higher in patients (posterior 

probabilities are shown next to significant connections for values >0.5, and considered 

significant for values >0.95). Note the reduced strength of frontal lobe back projections 

to temporal cortex in patients. 

b) Scatter plots (upper) show the relation between the patient scores for the ACE-R and 

the FAB and the strength of their fronto-temporal backward connectivity.

Figure 3 – Within-source connectivity in response to unexpected 

stimuli.

a) Schematic showing all GABAergic synaptic connections in the model, that were 

entered into the PEB analyses.

b) The PEB-of-PEBs design matrix following three second-level PEBs for the control, 

PSP and bvFTD groups looking at the drug condition.
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c) The main effect of drug (TGB-PLA) across all groups for deviant trials, with the 

connection on the deep interneurons (blue) showing high evidence for tiagabine vs 

placebo and no evidence for connections greater in the placebo condition (post-p>0.9).

d) Top row: The main effects of controls–patients: a difference in the deep interneuron 

connection (red), greater for patients than controls, but no interaction with drug 

condition Bottom row: The main effects of PSP–bvFTD: bvFTD connections from deep 

interneurons to deep cortico-cortical pyramidal cells are greater than PSP (red) and 

thalamic projection cells connection greater for PSP than bvFTD (blue). The interaction 

with drug condition is at the superficial interneuron to stellate cells connection (blue).

e) The interaction at the stellate phasic synapse for PSP–bvFTD with the drug condition 

showing opposing effects of tiagabine in the PSP and bvFTD groups.

Figure 4 – MRS GABA levels and group interactions

a) Baseline GABA level distribution for Control, PSP and bvFTD groups (Bayesian 

ANOVA corrected for multiple comparisons: Control vs PSP BF10=48.23 **; Control 

vs bvFTD BF10=1862 ***; PSP vs bvFTD BF10=0.334).

b) The design matrix (i.e., general linear model), model space and Bayesian model 

performance comparison for the model when excluding or including MRS GABA 

levels. Far right: Parameters correlating with MRS GABA levels. Evidences and 

colormap as in Fig. 3C.

c) Interaction results for MRS GABA levels and PSP–bvFTD. Each synapse shown in the 

node plot on the left is detailed in the adjacent linear regression plots.

d) Interaction results for MRS GABA levels and TGB–PLA. Each synapse shown in the 

node plot on the left is detailed in the adjacent linear regression plots.
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Figure 1 – Model schematic and accuracy 
a) A schematic of the network used to model the roving auditory oddball paradigm. The 6 sources (bilateral 

primary auditory, superior temporal gyrus and inferior frontal gyrus) are each represented by a local 
network node of 6 cell populations shown in blue. These nodes are extrinsically connected with forward, 

backward and lateral connections (shown as solid and dashed black arrows). 
b) Kernel density distribution (upper) of the level of correlation between observed and modelled ERFs for all 
groups and conditions, with the median in red and the interquartile range shown as a darker band around 

the median. The correlations making up this density distribution are shown in the correlation matrix (lower). 
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Figure 2 – Between-source connectivity in response to deviant stimuli: effect of group and cognitive 
function.   

a) Extrinsic connection strength difference between controls and patients in deviant trials, with blue 
indicating higher in controls and red meaning higher in patients (posterior probabilities are shown next to 
significant connections for values >0.5, and considered significant for values >0.95). Note the reduced 

strength of frontal lobe back projections to temporal cortex in patients. 
b) Scatter plots (upper) show the relation between the patient scores for the ACE-R and the FAB and the 

strength of their fronto-temporal backward connectivity. 
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Figure 3 – Within-source connectivity in response to unexpected stimuli. 
a) Schematic showing all GABAergic synaptic connections in the model, that were entered into the PEB 

analyses. 
b) The PEB-of-PEBs design matrix following three second-level PEBs for the control, PSP and bvFTD groups 

looking at the drug condition. 
c) The main effect of drug (TGB-PLA) across all groups for deviant trials, with the connection on the deep 

interneurons (blue) showing high evidence for tiagabine vs placebo and no evidence for connections greater 
in the placebo condition (post-p>0.9). 

d) Top row: The main effects of controls–patients: a difference in the deep interneuron connection (red), 
greater for patients than controls, but no interaction with drug condition Bottom row: The main effects of 

PSP–bvFTD: bvFTD connections from deep interneurons to deep cortico-cortical pyramidal cells are greater 
than PSP (red) and thalamic projection cells connection greater for PSP than bvFTD (blue). The interaction 

with drug condition is at the superficial interneuron to stellate cells connection (blue). 
e) The interaction at the stellate phasic synapse for PSP–bvFTD with the drug condition showing opposing 
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effects of tiagabine in the PSP and bvFTD groups. 
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Figure 4 – MRS GABA levels and group interactions 
a) Baseline GABA level distribution for Control, PSP and bvFTD groups (Bayesian ANOVA corrected for 

multiple comparisons: Control vs PSP BF10=48.23 **; Control vs bvFTD BF10=1862 ***; PSP vs bvFTD 
BF10=0.334). 

b) The design matrix (i.e., general linear model), model space and Bayesian model performance comparison 
for the model when excluding or including MRS GABA levels. Far right: Parameters correlating with MRS 

GABA levels. Evidences and colormap as in Fig. 3C. 
c) Interaction results for MRS GABA levels and PSP–bvFTD. Each synapse shown in the node plot on the left 

is detailed in the adjacent linear regression plots. 
d) Interaction results for MRS GABA levels and TGB–PLA. Each synapse shown in the node plot on the left is 

detailed in the adjacent linear regression plots. 
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Controls PSP PSP 
versus 
Con
(BF)

bvFTD bvFTD 
versus 
Con 
(BF)

PSP 
versus 
bvFTD 
(BF)

Demographics

Group size 20 15 – 17 – –

Gender M10 : F10 M9 : F6 n.s. M11 : F6 n.s. n.s.

Age 67.3 (4.3) 68.8 (7.8) 1.27 61.5 (10.4) 0.239 1.20

Cognition

MMSE 28.6 (1.4) 26.5 (3.6) 29.6 19.8 (10.3) 1.77 1.59

ACE-R

Total (100) 95.1 (4.4) 78.0 (9.2) 1.86e3 61.4 (27.3) 2.30e5 1.23

Attention (18) 17.5 (0.6) 16.7 (2.3) 7.29 12.9 (6.3) 0.431 1.09

Memory (26) 24.0 (3.2) 21.9 (3.9) 1.25e3 13.1 (8.5) 0.656 16.9

Verbal Fluency (14) 13.0 (1.0) 4.7 (2.8) 3.93e10 4.1 (3.0) 2.68e10 0.221

Language (26) 25.4 (1.1) 23.9 (1.8) 14.5 19.2 (7.8) 4.35 1.29

Visual spatial (16) 15.3 (1.1) 10.9 (3.7) 10.3 12.1 (4.2) 658 0.256

INECO

Total (30) 25.4 (2.8) 17.3 (4.9) 9.90e7 9.2 (7.0) 1.17e4 22.8

WM index (10) 7.2 (1.3) 4.4 (2.0) 9.91e4 3.0 (2.3) 444 0.691

FAB Total (18) 17.3 (1.1) 12.1 (3.3) 2.21e4 9.2 (5.6) 3.73e4 0.591

Hayling

Scaled score 18.5 (1.0) 3.4 (1.9) 1.19e25 1.75 (1.1) 9.43e20 2.40

Overall score 6.1 (0.3) 11 (6.0) 12.7 8.3 (2.9) 19.56 0.434

A+B Converted error score 2.6 (2.9) 18.7 (19.5) 5.33e5 39.7 (20.9) 199.47 2.31

Graded naming total (30) 23.8 (3.7) 20.2 (4.1) 1.21e3 12.5 (8.7) 2.32 4.18

CBI-R

Total (170) – 49.7 (31.0) – 89.9 (26.0) – 66.7

Memory and orientation (32) – 7.3 (5.6) – 16.9 (6.3) – 233

Everyday skills (20) – 11.0 (7.8) – 11.6 (5.9) – 0.344

Self care (16) – 6.5 (5.9) – 5.8 (5.4) – 0.350

Abnormal behaviour (14) – 3.3 (2.7) – 12.3 (5.9) – 2.34e3

Mood (16) – 2.2 (2.2) – 5.2 (3.7) – 4.69

Beliefs (12) – 0.4 (0.8) – 1.2 (2.1) – 0.735

Eating habits (16) – 3.7 (4.66) – 9.7 (5.1) – 19.1

Sleep (8) – 3.1 (2.3) – 3.0 (2.1) – 0.340

Stereoptypic and motor 
behaviours (16)

– 3.1 (4.4) – 10.1 (5.3) – 72.5

Motivation (20) – 9.1 (6.3) – 14.1 (4.7) – 3.90

Table 1 Group demographics

Cohort demographics and cognition. Gender difference was assessed using the χ2 test. Otherwise, Bayesian ANOVAs were 
used, corrected across groups for multiple comparisons. Bayes Factors (BF) are therefore presented as corrected posterior 
odds. Conventional thresholds for Bayes Factors represent substantial (>3), strong (>10) and very strong (>30) evidence in 
favour of hypotheses. 
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Using biophysical modelling of data from controls and FTLD patients, on and off a 

GABAergic drug, combined with GABA spectroscopy, Adams et al. show that the potential 

restoration of neurotransmission in neurodegeneration depends on the degree of disruption 

to baseline physiology. 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ab097/6168993 by U
niversity C

ollege London user on 26 M
arch 2021




