
PHYSICAL REVIEW E 103, 022410 (2021)

Estimating integrated information in bidirectional neuron-astrocyte communication

Luis Abrego ,1 Susanna Gordleeva ,2,3 Oleg Kanakov,3 Mikhail Krivonosov ,3 and Alexey Zaikin1,3,4,5,*

1Department of Mathematics, University College London, London, United Kingdom
2Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components,

Innopolis University, Innopolis, Russia
3Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

4Institute for Women’s Health, University College London, London WC1E 6BT, United Kingdom
5Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

(Received 24 August 2020; accepted 4 January 2021; published 19 February 2021)

There is growing evidence that suggests the importance of astrocytes as elements for neural information
processing through the modulation of synaptic transmission. A key aspect of this problem is understanding
the impact of astrocytes in the information carried by compound events in neurons across time. In this paper,
we investigate how the astrocytes participate in the information integrated by individual neurons in an ensemble
through the measurement of “integrated information.” We propose a computational model that considers bidirec-
tional communication between astrocytes and neurons through glutamate-induced calcium signaling. Our model
highlights the role of astrocytes in information processing through dynamical coordination. Our findings suggest
that the astrocytic feedback promotes synergetic influences in the neural communication, which is maximized
when there is a balance between excess correlation and spontaneous spiking activity. The results were further
linked with additional measures such as net synergy and mutual information. This result reinforces the idea that
astrocytes have integrative properties in communication among neurons.

DOI: 10.1103/PhysRevE.103.022410

I. INTRODUCTION

Traditionally, it was thought that astrocytic regulation was
only supportive for structural and metabolic processes in
the neurons [1]. Recent studies provide evidence about the
role of astrocytes as signaling cells in the brain [1–6]. It is
found that astrocytes and neurons have specific and varied
communication pathways through release of transmitters in
which they can interact in a bidirectional manner. In partic-
ular, accumulated results demonstrate that astrocytes respond
mainly with Ca2+ elevations to excitatory neuronal activity
mediated by metabotropic glutamate receptors (mGluRs) [7].
As a response, astrocytes release molecules also known as
gliotransmitters, which feed back onto the synaptic cleft [8].
This promotes the activity of presynaptic and postsynaptic
neurons allowing the modulation of excitatory and inhibitory
transmission [9]. Furthermore, Ca2+ signals can propagate to
neighboring astrocytes as an intercellular Ca2+ wave involv-
ing several cells [3,10–14]. Thus, the different pathways have
different functional roles in neural communication.

This mechanism hints about the deep implications of
astrocytes in the synaptic information transfer. Ongoing re-
search shows that astrocytic signaling promotes dynamical
synchronization of firing, integration of signals from different
synaptic pathways, and modulation of neuronal transmis-
sion [4,10,12,15,16]. Interestingly, it is suggested that the
astrocyte-dependent dynamics allows neuronal groups to be
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linked at different degrees of complexity, promoting systemic
integration of neural networks [10,17–19]. This is fundamen-
tal for cognitive and behavioral functions, as they are thought
to emerge from the dynamical coordination between different
brain areas. Thus, it comes as no surprise that there is a
long-standing interest in understanding information process-
ing through astrocytic signaling.

The integrated information theory (IIT) provides a math-
ematical framework using information-theoretic principles,
that formulate the information generated from a whole sys-
tem through its transition dynamics, more and beyond than
the sum of its parts [20–22]. Ongoing evidence provides
insights about the practical applications of this measure:
it has been used to estimate information generated in the
brain to understand the basis of consciousness [23–25] but
its different mathematical descriptions have been adopted
also as quantitative measure of dynamical complexity in
many-body systems [26–29]. This is the degree of causal
interconnection of the different parts of a system in terms
of the overall information exchange. Our aim is under-
standing conditions in which integrated information arises
from the bidirectional communication in neuron-astrocyte
ensembles.

In this paper, we extend observations from our previous
work about neuron-astrocytic networks [28] by including
glutamate-induced calcium signaling [10,12,13,15,30]. This
model considers the process of glutamate being released
from excitatory neurons to produce IP3 through activa-
tion of phosphoinositide-specific phospholipase C-β (PLCβ)
followed by the IP3-dependent Ca2+-induced Ca2+-release
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mechanism. Synaptic modulation is modeled by the action of
astrocytes through Ca2+ pulses and oscillations, and astrocytic
communication is established through Ca2+ and IP3 diffusion
mediated by gap junction channels.

Using simulations, we calculate integrated information us-
ing a small neuroastrocytic network under different conditions
to relate our estimations with the anatomical connectivity,
dynamics, and noise levels of the ensembles. We provide
evidence which shows that astrocytes have a role in increasing
integrated information. More specific, the quantity grows as
the neuron-astrocyte feedback is reinforced. In this case, there
is an enhancement of synaptic transmission and dynamic co-
ordination in neurons due to the stimulation of calcium events
mediated by glutamate patterns.

Next, integrated information seems to be enhanced for less
densely connected networks. In our results, nearest-neighbor
coupling is favored over full connectivity. This implies that
higher dynamical complexity could be reached from local
interactions enabling the system to have more segregated dy-
namics. Simultaneously, integration of information could be
obtained through joint influence from astrocytes and neigh-
boring neurons.

We also simulate Ca2+ oscillatory signaling studied in
[28], where synaptic feedback to astrocytes was neglected.
The comparison of results strongly suggests that bidirec-
tional neuron-astrocyte communication shows (in all cases)
considerably higher activity-dependent integrated information
at given neural dynamics and connectivity. This means that
influence from astrocytes alone is not enough to increase
the integration of information and a feedback from neurons
is needed. Overall, these results suggest that the astrocytic
control may enhance the dynamical complexity in synaptic
information processing through bidirectional coupling.

II. METHODS AND MODEL

A. Neuron model and neuron-astrocyte interaction

This work estimates integrated information generated
through glutamate-mediated neuron-astrocyte signaling. First,
neuronal dynamics is implemented using the Hodgkin-Huxley
model [31] with a network of six coupled neurons seeded
in a square lattice, connected by using both all-to-all and
nearest-neighbor couplings. We also consider different neu-
ronal schemes altering the excitatory and inhibitory balance.
Therefore, to understand the interplay of the synaptic inputs
arranged with different couplings, we consider three main
schemes: (1) six excitatory neurons connected all-to-all (de-
noted in this work as exc-full), (2) six excitatory neurons
connected by nearest-neighbor coupling (exc-nns), and (3)
one inhibitory and five excitatory neurons allocated in the
square, all connected by nearest-neighbor coupling (inh-nns).

A schematic description of the studied networks is shown
in Fig. 1. The membrane potential V (i) of each neuron i is
described by the equation

Cm
dV (i)

dt
= I (i)

channel + I (i)
app +

∑
j

I (i j)
syn + I (i)

ext, (1)

where the sum over j contains inputs from presynaptic neu-
rons connected synaptically to the ith neuron as described

(a)

(b) (c)

j
i

neurons

astrocytes

(m,n)

FIG. 1. Neuron-astrocytic networks: (a) six excitatory neurons
connected all-to-all (exc-full), (b) six excitatory neurons connected
by nearest neighbors (exc-nns), (c) one inhibitory neuron and five
excitatory neurons connected by nearest neighbors (inh-nns). Con-
nections without arrows are bidirectional. Astrocytes are associated
to a single excitatory neuron and are connected between themselves
through nearest-neighbor coupling. In (c) the inhibitory neuron is not
linked to an astrocyte.

below. Time in neuronal dynamics is measured in ms; Cm

is the specific membrane capacitance, measured in μF/cm2.
Ionic currents (for the sodium, potassium, and leak channels,
respectively) measured in μA/cm2 are expressed as

Ichannel = − gNam3h(V − ENa)

− gK n4(V − Ek ) − gl (V − El ),

dx

dt
= αx(1 − x) − βxx, x = m, n, h (2)

where m and h are the activation and inactivation variables of
the sodium current and n the activation variable of the potas-
sium current. Nonlinear gating functions αx and βx are defined
by the original Hodgkin-Huxley model with the membrane
potential shifted by 65 mV. The parameters gNa, gK and gl are
the maximum conductances (measured in mS/cm2) related to
the ion channels, and ENa, EK , and El are their correspond-
ing reversal potentials. In this paper, we use the following
parameters: ENa = 55 mV, EK = −77 mV, El = −54.4 mV,
gNa = 120 mS/cm2, gK = 36 mS/cm2, gl = 0.3 mS/cm2,
and Cm = 1 μF/cm2.

The applied current I (i)
app determines the dynamical regime

of an autonomous neuron, which can be oscillatory, bistable,
or excitable. We choose the excitable regime with I (i)

app =
−5.0 μA/cm2 [32,33].

The current I (i j)
syn introduced in [28] reflects the synapse at

neuron i due to the input from presynaptic neuron j and is
defined as

I (i j)
syn = gsyn,eff(V ( j) − Esyn,i )

1 + exp
[ − (V (i)−θsyn)

ksyn

] , (3)

where parameter gsyn,eff quantifies the synaptic weight and
incorporates the astrocyte modulation due to release of
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gliotransmitters in the neuron-astrocyte network as described
in Eq. (9). The reversal potential is Esyn = −90 mV for the
inhibitory synapse and Esyn = 0 mV for the excitatory one.
Parameters θsyn = 0 mV and ksyn = 0.2 mV determine the
midpoint of the synaptic activation or inactivation sigmoid and
its steepness. Finally, each neuron receives an external input
I (i)
ext defined as a Poisson pulse train with mean rate λ. The

pulse shape is square with constant duration of 10 ms, and am-
plitudes sampled independently from a uniform distribution in
[−1.8, 1.8]. Each pulse train is generated independently for
each neuron.

Astrocytes along with presynaptic and postsynaptic neu-
rons interact through the so-called tripartite synapse [9].
Neurotransmitters (such as glutamate) are released from the
presynaptic neuron and bound to the astrocytic receptors
activating signaling pathways that influence the synaptic
transmission. Numerous observations indicate that active as-
trocytes release gliotransmitters in a Ca2+-dependent manner
through a process known as calcium-induced calcium re-
lease (CICR). When the neurotransmitters interact with the
mGluRs, inositol 1,4,5-trisphosphate (IP3) channels are acti-
vated. Next, IP3 binds available receptors at the endoplasmic
reticulum (ER) IP3Rs resulting in a Ca2+ influx from ER to
the cytosolic volume. This increase in cytosolic Ca2+ leads
to the release of gliotransmitters into the synaptic cleft. These
gliotransmitters are uptaken by the presynaptic and postsynap-
tic neurons (this process may even include diffusion towards
neighboring astrocytes and the extra-synaptical space) caus-
ing different forms of potentiation or inhibition in synaptic
transmission [34].

The concentration of the neurotransmitter (glutamate) re-
leased from the synapse at neuron i is quantified by a
dimensionless variable G(i) [19], whose dynamics is described
by

dG(i)

dt
= −αGG(i) + βG

1 + exp(−V (i)/VG)
, (4)

where αG = 32 and βG = 295 denote the relaxation and pro-
duction rates of glutamate, VG = 0.5 mV. In the case of
excitatory synapses, glutamate is stored and released due to
the action potential.

Glutamate released from presynaptic neurons is integrated
over a larger timescale by the IP3 dynamics through JG,
Eq. (6). With the increase of presynaptic firing rate modulated
by JG the amplitude of IP3 promotes spontaneous calcium os-
cillations through the Andronov-Hopf bifurcation [35]. These
oscillations disappear in the low resting state and at high
concentrations of IP3. In this work, for fixed αG and βG

the neuronal firing frequency can be modulated through the
Poisson input frequency and the astrocytic feedback by gs

introduced in (9). In particular, as it will be described later, by
defining a fixed input frequency the parameter gs will tune the
feedback from the astrocytes to neurons. The range in which
spontaneous calcium activity appears will be defined by the
joint dynamics of the neuron-astrocyte network.

B. Astrocytic dynamics and feedback

The astrocyte dynamics is described through the CICR
process [13] as follows:

dCa(m)

dt
= J (m)

ER − J (m)
pump + J (m)

l + J (m)
in − J (m)

out + J (m)
Ca,diff,

dIP(m)
3

dt
= IP∗

3 − IP(m)
3

τIP3
+ J (m)

PLC + J (m)
Glu + J (m)

IP3,diff,

dh(m)

dt
= a2

[
d2

IP(m)
3 + d1

IP(m)
3 + d3

(1 − h(m) ) − Ca(m)h(m)

]
, (5)

where m = (m, n) defines the location of each astrocyte in a
square lattice, m = 1, 2, 3 and n = 1, 2.

The Ca2+ equation expresses the calcium fluxes in the
astrocyte through different channels. Jpump denotes the flux
via the ATP-dependent pump from the cytoplasm to ER, JER

models the flux from ER to the cytosolic volume by the joint
gating of Ca2+ and IP3, Jl denotes the leaked flux from the
ER to the cytoplasm. Calcium exchanges in and out of the
extracellular space are described by Jin and Jout, respectively.

The IP3 dynamics includes the production due to PLCδ

activation by the calcium released from the ER (denoted by
JPLC), and due to PLCβ activation by the binding of glutamate
G(i) to metabotropic receptors (denoted by JGlu). The baseline
steady-state concentration of IP3 in the absence of any exter-
nal input is denoted by IP∗

3, and the fraction of activated IP3Rs
is denoted by h. The notations in the right-hand part of (5) are
expressed as follows:

JER = c1v1Ca3h3IP3
3

[c0/c1 − (1 + 1/c1)Ca]

[(IP3 + d1)(Ca + d5)]3
,

Jpump = v3Ca2

k2
3 + Ca2 ,

Jl = c1v2[c0/c1 − (1 + 1/c1)Ca)],

Jin = v5 + v6IP2
3

k2
2 + IP2

3

, Jout = k1Ca,

JPLC = v4[Ca + (1 − α)k4]

Ca + k4
,

JGlu = αGlu

1 + exp
( − G(i)−0.4

0.01

) . (6)

This joint dynamics of IP3 and Ca2+ taken alone may
provide self-sustained oscillations. When we include CICR
through glutamate signaling, we get activity-evoked spon-
taneous Ca2+ oscillations mediated by IP3 signaling. This
retains physiological features observed in experimental data
[36]. Parameters in (5) and (6) are described in detail and esti-
mated empirically in [13]. In this work we use c0 = 2.0 μM,
c1 = 0.185, v1 = 6 s−1, v2 = 0.11 s−1, v3 = 2.2 μM s−1,
v5 = 0.025 μM s−1, v6 = 0.2 μM s−1, k1 = 0.5 s−1, k2 =
1.0 μM, k3 = 0.1 μM, a2 = 0.14 μM−1 s−1, d1 = 0.13 μM,
d2 = 1.049 μM, d3 = 0.9434 μM, d5 = 0.082 μM, α = 0.8,
τIP3 = 7.143 s, IP∗

3 = 0.16 μM, k4 = 1.1 μM.
Parameter v4 describes the rate of Ca2+ induced generation

of IP3 through PLCδ. We use two combinations of values
for v4 and αGlu. In the version of the model taking into
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account the bidirectional interaction between astrocytes and
neurons (αGlu = 9 μM/s), we use v4 = 0.3 μM s−1, which
corresponds to spontaneous Ca2+ oscillations in the CICR
model [Eqs. (5) and (6)]. In the version with unidirectional
coupling (αGlu = 0), we assume v4 = 0.5 μM s−1 in order to
obtain Ca2+ self-oscillations. Note as well that the timescale
for the astrocyte model is in seconds. Thus, we rescale the
time units in order to match it in milliseconds for numerical
integration.

The diffusive fluxes of Ca2+ and IP3 molecules, which
account for coupling between astrocytes by gap junctions, are
denoted by JCa,diff and JIP3,diff and expressed as

J (m)
Ca,diff = dCa(�Ca)(m),

J (m)
IP3,diff = dIP3(�IP3)(m), (7)

where the diffusion coefficients are dCa = 0.01 s−1 and dIP3 =
0.1 s−1. Laplace operators �Ca(m,n) and �IP(m,n)

3 are com-
puted using a five-point stencil scheme with no-flux boundary
conditions:

�Ca(m,n) = Ca(m+1,n) + Ca(m−1,n)

+ Ca(m,n+1) + Ca(m,n−1) − 4Ca(m,n), (8)

and same for IP3.
The spontaneous calcium elevations or calcium pulses trig-

ger the release of gliotransmitters, including glutamate, back
to the synaptic cleft. This has implications in the synaptic
information transfer that our model incorporates through the
modulation of the synaptic weight:

gsyn,eff = gsyn[1 + H(Ca(m) − θs)gsCa(m)], (9)

where gsyn = 0.04 mS/cm2 is the baseline synaptic weight
due to neuron-neuron communication, θs = 0.2 μM sets the
minimum Ca2+ level to release a gliotransmitter, and H is the
Heaviside step function. The impact of the astrocyte in the
synaptic transmission is expressed by the coupling parameter
gs. We consider that each excitatory synapse is connected to
one astrocytic process forming the tripartite synapse.

It is known that astrocytes act at different levels of neu-
ronal activity by inducing changes at individual or multiple
synapses depending on the signaling pathway and location.
Our model simplifies the interaction between neuron and
astrocytes by just incorporating the enhancement of post-
synaptic excitatory currents mediated by Ca2+-dependent
release of gliotransmitters (e.g., glutamate, ATP, and D-
serine). In this way, we consider the effect of astrocytes
through the integration of neuronal activity from gluta-
matergic synapses over longer timescales and feedback to
postsynaptic terminals to facilitate synaptic transmission.
Therefore, this model accounts for a phenomenological point
of view in which we retain the effect of spontaneous activity
of glial cells in the synaptic excitability. These observations
include long-term potentiation in the hippocampus due to
release of D-serine [37], glutamate released acting on presy-
naptic terminals to enhancing excitatory transmission [4], and
improvement of neuronal synchrony [38].

C. Estimation of integrated information

Integrated information 	 is proposed to measure the infor-
mation that the system has about its own dynamics beyond the
independent contribution of its parts. For a system to exhibit
integrated information, it is expected that all its possible sub-
systems perform their own dynamics and causally interact at
the same time. Thus, highly complex patterns are possible.

Several formulations of integrated information have been
proposed [39]. A promising measure is the decoder-based
integrated information 	∗ [40]. It quantifies the excess of
information generated by the transition dynamics of a sys-
tem with respect to its nonoverlapping components, which
are assumed to transition independently. In other words, for
a stochastic process described by x(t ) with previous states
y(t ) = x(t − τ ), 	∗ is defined as

	∗[x, y; π ] = Ixy − I∗
xy;π , (10)

where π = [M1, M2, . . . , Mk] defines the partition of the sys-
tem into k independent subsystems, such that at any instant
of time x = (xM1 , . . . , xMk ). Ixy is the mutual information be-
tween x and y [41]:

Ixy = Hx + Hy − Hxy. (11)

The entropy is defined as Hx = −∑
x p(x) log p(x) and quan-

tifies the average information contained in x. The measure I∗
denotes the mismatched decoding information, which can be
understood as how much information can be extracted from a
variable with a suboptimal decoding distribution [40,42]:

I∗
xy;π = max

β
Ĩxy;π (β ), (12)

where maximum over β is found using a gradient descent
algorithm, and

Ĩxy;π (β ) = −
∑

x

p(x) log
∑

y

p(y)q(x|y)β

+
∑
x,y

p(xy) log q(x|y)β. (13)

Here, q(x|y) denotes the mismatched decoding probability
distribution defined for a partition π :

q(x|y) = �s∈π p(xs|ys). (14)

Furthermore, 	∗ should be estimated using the partition π

of the system at which it is minimized. This carries a high
computational cost, as the calculation scales exponentially
with the number of elements in the network and the number
of partitions. Therefore, we apply the submodular optimiza-
tion using the Queyranne’s algorithm for k = 2 partitions,
π = [A, B], as it is the minimum case in which we can mea-
sure cause-effect information. This is a standard practice for
computing integrated information and provides valid results
to detect dynamical complexity [39,43].

In addition, for comparison purposes, we compute the
whole-minus-sum integrated information 	WMS and mutual
information between subsystems IAB. Both measures provide
an additional insight about the synergy and correlations in
the system. The measure 	WMS provides a measure of net
synergy, i.e., synergy minus redundancy [24,39,44],

	WMS[x, y; π = [A, B]] = Ixy − (
IxAyA + IxByB

)
, (15)
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where IxAyA denotes the mutual information between xA and
yA (equivalently for B). The condition 	WMS > 0 implies that
the system as a whole carries more information about its
evolution than the sum of its parts, while 	WMS < 0 implies
that redundant contributions dominate.

The mutual information between subsystems IAB quantifies
the spatial correlation between halves of the system. That is,
IAB = HxA + HxB − Hx, by using (11).

The joint activity of N = 6 neurons is represented as a
binary code indicating their firing pattern per each time step.
Thus, the spike train of neuron i is binned by sliding a window
in constant intervals � = 1 ms using a threshold Vθ = −40
mV. In this way, for every neuron if a spike is found at
[t, t + �], i.e., V (i) > Vθ , we set the state as xi = 1, otherwise,
xi = 0. The state of the population of neurons x is defined by
its joint activity at any instant of time, which corresponds to a
binary array of N bits. The probability associated to each state
is obtained by its empirical frequency distribution. Estimation
of information-theoretic measures were obtained through the
“practical PHI toolbox” [26,40,43,45] ensuring convergent
behavior.

D. Measures of synchronization

The degree of synchronization of the neurons is repre-
sented by an order parameter r that quantifies the phase
dispersion of the spike trains. The instantaneous phase can be
described as

θ (t ) = 2πk + 2π
t − tk

tk+1 − tk
, (16)

where tk is the firing time of a neuron. In other words, the
change of phase between two firing times carries an increase
of 2π , and for t ∈ [tk, tk+1] the phase increases linearly. The
instantaneous synchronization r(t ) is defined by

r(t ) =
∣∣∣∣∣

1

N

N∑
j=1

eiθ j

∣∣∣∣∣, (17)

where θ j denotes the instantaneous phase for each neuron
j = 1, . . . , N . The order parameter r = 〈r(t )〉 quantifies the
average coherence across time of Eq. (17). According to (17),
a completely asynchronous behavior implies r = 0, while for
full synchronization we get r = 1. This measure quantifies the
interaction between individual neurons. We report r(t ) after
binning the spike trains with a window of 10 ms at constant
intervals [46]. Similar results were obtained for lower sizes.

III. RESULTS

We applied the fourth-order Runge-Kutta method to solve
Eqs. (1) and (5) on networks described above. For each net-
work we stimulate the neurons with a Poisson pulse train with
rate λ = 20 Hz, while the coupling parameter gs is varied.
We consider both unidirectional and bidirectional neuron-
astrocyte communication as described previously in Sec. II B.
For the second set of simulations, we fix the coupling param-
eter and vary the frequency λ. Here, the excitatory network
has all-to-all coupling with gs = 2.5 (considering just unidi-
rectional feedback from astrocytes), while the network with
an inhibitory neuron and nearest-neighbor coupling is set at

FIG. 2. Simulated Ca2+ patterns in an astrocyte obtained for
(a) unidirectional feedback JGlu = 0, v4 = 0.5 μM s−1 and (b) bidi-
rectional neuron-astrocyte coupling JGlu > 0, v4 = 0.3 μM s−1. The
neural network used is exc-nns with gs = 3.42.

gs = 7.5 (by including unidirectional and bidirectional com-
munication). The time length for each simulation is 1500 s
with a time step �t = 0.09 ms. First 500 s were discarded to
avoid effects from transient states. Next, we binarize the spike
trains using a bin width T set to 1 ms, from where we compute
the information-theoretic measures. Estimations of integrated
information show convergence for increased length of time
series for this timescale.

A. Collective behavior in neuron-astrocyte networks

When we just consider unidirectional feedback from as-
trocytes, there are self-sustained regular Ca2+ oscillations
[Fig. 2(a)]. However, when we allow neuron-astrocyte feed-
back there is an interplay between the time-dependent
glutamate signals released from the synaptic activity and
the level of Ca2+ stimulated throughout the CICR process
[Fig. 2(b)]. It is well known that Ca2+ dynamics can undergo
different bifurcations in response to feedback from neurons
and biological parameters [47], so different modes of en-
coding of stimuli are possible. In this paper, we emphasize
the effect of the bidirectional feedback between spontaneous
calcium oscillations and neuronal activity on the integration
of the stimuli in the population coding.

First, our simulations indicate small spontaneous oscilla-
tions for typical Ca2+ and IP3 resting concentrations using
v4 = 0.3 μM s−1. As we increase the coupling parameter
gs, Ca2+ pulselike fluctuations arise with mixed amplitude
and frequency modulation (AFM) due to the influence of
glutamate released by the spike trains. For example, Fig. 2
considers two cases associated with neuron-astrocyte commu-
nication: (a) regular and (b) spontaneous oscillations.

When bidirectional communication between neurons and
astrocytes is set, the frequency of spontaneous calcium oscil-
lations increases with the synaptic activity. As a consequence,
there is positive reinforcement between both. This regime
is in agreement with experimental observations [36,48,49].
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FIG. 3. Order parameter r̄ as the coupling gs is varied. Inset:
dependence of the average firing rate v (s−1) of the population
of neurons upon r̄. Plots are shown for (a) unidirectional and
(b) bidirectional communication. Each marker represents a network
architecture: black open circle [exc-full, Fig. 1(a)], blue open square
[exc-nns, Fig. 1(b)], and red plus [inh-nns, Fig. 1(c)].

Further stimulation through gs induces a transition to an up-
per fixed point, in which Ca2+ abruptly converges towards
stable (constant) concentration levels. This state corresponds
to a sustained plateau of Ca2+, which in practical situations
triggers only a single Ca2+ pulse. Therefore, this dynamical
regime is not biologically relevant for our analysis.

We next compute the synchronization between neurons due
to the effect of astrocytes. In Fig. 3(a) the order parameter r̄
transitions to a limit value (around 1.8 � gs � 4.8). Next, it
remains practically bounded by r̄ � 0.51. This rise is consis-
tent with the fact that astrocytes are forcing the assemblies
with the same oscillatory input [Fig. 2(a)]. This creates a
periodic increase in the firing rate as Ca2+ peaks at the same
times for all neurons. Nonetheless, as we allow feedback from
the glutamate signals to astrocytes r̄ outperforms reaching
nearly full synchronization [Fig. 3(b)]. The transition points
to high r̄ (around 1.8 � gs � 4.8 for exc-full and exc-nns, and
gs � 12.5 for inh-nns) are clearly dependent on the network
architectures and balance between excitatory and inhibitory
responses.

The observed behavior in excitatory networks shows that
synchronization is favored for all-to-all coupling due to the
high integration in the network, followed by the nearest-
neighbor coupling. The inhibitory neuron leads the transition
to synchronization at higher gs with respect to the excitatory
case. This is because the inhibitory synapse reduces the firing
frequency of the neighboring excitatory neurons. As a conse-
quence, the calcium events associated to those synapses are
less frequent. Thus, higher gs is needed to compensate this
reduction in astrocytic feedback. In our modeling, this effect
has the benefit of modulating the potentiation of excitatory

FIG. 4. Raster plots of (a) neuronal and (b) astrocytic activity
at gs = 3.4 and λ = 20 Hz with bidirectional coupling. Plots cor-
respond to an excitatory network with all-to-all coupling [exc-full,
Fig. 1(a)]. Bottom figure (c) shows the instantaneous synchronization
of the neurons defined according to Eq. (17).

currents mediated by the astrocytes. However, from the results
presented here, the role of bidirectional feedback suggests an
increased self-organization for all the networks. This hints
about the role of astrocytes as regulators of bursting of neu-
ronal populations [35,50,51].

These results suggest that astrocytes integrate neural sig-
nals through the IP3 transduction and respond in the form of
pulses allowing dynamical coordination in the neurons. For
instance, in Fig. 4 we present a raster plot for an excitatory
network with all-to-all coupling, exc-full. As the neurons pro-
duce glutamate the IP3 encodes the state of the neuron in a
slower timescale and activates calcium bursts and pulses. This
allows episodes of high synchronization in the whole network
as expressed by r. As we will discuss in the next section, this
has implications in the information processing mechanism of
the neural assemblies.

B. Information processing in neuron-astrocyte communication

The obtained dependencies of the integrated information
	∗ with different values of time delay τ and coupling values
gs are shown on Fig. 5. The results in the upper row (a) corre-
spond to the case of unidirectional feedback from astrocytes,
and in the lower row (b) to bidirectional neuron-astrocyte
communication.

The comparison between Figs. 5(a) and 5(b) shows that
	∗ is significantly enhanced for all the network architectures
reported with neuron-astrocyte feedback. Next, the networks
exhibit strong peaks at synaptically relevant timescales τ = 2
and 20 ms. These results are arguably related to the spiking-
bursting dynamics due to neuron-neuron interactions and
input noise. In particular, the first peak is an indication of
the substantial correlation and integration of short-term in-
formation from past states of the system, while the second
one reflects the train pulse duration of 10 ms and correlations
between firing patterns.

An instance of such is shown in Fig. 6, corresponding to an
excitatory network with all-to-all coupling, exc-full. Note that
at gs = 0 there is positive 	∗ attributable to neuron-neuron

022410-6



ESTIMATING INTEGRATED INFORMATION IN … PHYSICAL REVIEW E 103, 022410 (2021)

FIG. 5. Integrated information 	∗ for different coupling values
gs and timescales τ . Each column indicates the network under con-
sideration (shown in Fig. 1). Top row (a) shows the results for the
unidirectional feedback from astrocytes and (b) the bidirectional
neuron-astrocyte communication. Bright region of the heat plots cor-
responds to maximal 	∗ around 2 ms and the shaded region around
20 ms indicates its second peak. Both peaks emerge as gs grows as
described in the text.

interactions. Initial peaks are sharpened through larger gs

defining two timescales with greater 	∗. Again, higher in-
tegration of information is observed when neuron-astrocyte
interaction is considered.

To study further the dependency of 	∗ upon the coupling
gs, we fix τ = 2 ms. Figures 7(a) and 7(d) show the integrated
information for unidirectional and bidirectional communica-
tion, respectively. Greater values of 	∗ are observed in all
cases when neuron-astrocyte feedback is present. This sug-
gests that bidirectional communication overall increases the
amount of information that the system holds about its own
dynamics, at short timescales with respect to the contribution
of its parts.

In addition, we observe that different networks undergo a
transition to high 	∗ with varied gs similarly to the behavior
of the synchronization parameter r̄ observed in Fig. 3. For uni-
directional coupling there is a sigmoid transition followed by
a plateau. In our simulations this is bounded by 	∗ � 0.022
[Fig. 7(a)]. For bidirectional coupling, 	∗ peaks in the transi-
tion regime [Fig. 7(d)] and then shrinks as Ca2+ concentration

FIG. 6. Integrated information 	∗ for different coupling values
gs and varied timescales τ . The network architecture corresponds
to exc-full [Fig. 1(a)] for (a) unidirectional and (b) bidirectional
coupling.

FIG. 7. Measures 	∗ (integrated information), 	WMS (net syn-
ergy), and IAB (mutual information). Left column: (a)–(c) indicate
values associated with unidirectional feedback from astrocytes. Right
column: (d)–(f) show values for the bidirectional neuron-astrocyte
communication. 	∗ and 	WMS are reported at τ = 2 ms. Legends
are defined as in Fig. 3.

becomes permanently high. Here, 	∗ can be up to five times
higher than in the unidirectional case.

The excitatory network with all-to-all coupling exc-full
transitions first followed by the nearest-neighbor one exc-
nns. In a the long run, for both cases the nearest-neighbor
assembly has larger 	∗. These results are a consequence of
the heterogeneous design of exc-nns, which outputs balanced
firing patterns as each spike is just dependent of the nearest
structural neighbors. By adding inhibition, as in inh-nns, the
transition regime is right shifted to higher gs. This is not
surprising as the inhibition of excitatory synapses reduces
the excitatory transmission from neurons to astrocytes and,
ultimately, affects the event rate of Ca2+ pulses, as already
discussed. As a consequence, this widens the observed tran-
sition of 	∗ and r̄. After Ca2+ oscillations are replaced by a
regime where Ca2+ concentration is permanently high, all the
architectures transition to higher degrees of synchronization
and there is a decline in 	∗, which is associated with an excess
correlation.

To further support our hypothesis that the integrated in-
formation is enhanced through bidirectional coupling, we
compute the net synergy 	WMS and mutual information IAB.
This is in order to investigate the relationship between our
observations in Sec. III A with the behavior of these measures.
As shown in Fig. 7, 	WMS and IAB mirror the transition of r̄ (in
turn, the dynamical transition of the Ca2+ dynamics) as well.
We note the following when neurons and astrocytes interact:
the overall synergy and correlation increase with gs, and the
net synergy peaks just at the transition point but drops after-
wards, meanwhile, the correlation increases continuously with
gs. This implies that 	∗ is maximized when the correlation

022410-7



LUIS ABREGO et al. PHYSICAL REVIEW E 103, 022410 (2021)

FIG. 8. (a)–(c) Integrated information 	∗ for different stimula-
tion frequencies λ and timescales τ : (a) exc-full network [Fig. 1(a)]
with fixed coupling gs = 2.5 and (b), (c) inh-nns network [Fig. 1(c)]
with gs = 7.5. Unidirectional feedback is denoted by (ud) and bidi-
rectional (bd). (d) 	∗ for fixed τ = 2 ms and varied λ. Markers:
exc-full, open circle; inh-nns (ud), open square; and inh-nns (bd),
plus. (a)–(c) Bright region of the heat plots corresponds to maximal
	∗ around 2 ms and the shaded region around 20 ms indicates its
second peak. Both peaks increase with λ as described in the text.

among neurons is balanced with the independent dynamics of
its constituents. As gs grows, redundancy counterbalances the
synergy in the system due to excess correlation and decreases
	∗. This is a consequence of the dynamical transition to
permanent high Ca2+ concentration, affecting equally all the
neurons in the network.

If we relate 	∗ with IAB for each network, we can observe
that exc-full has the highest degree of correlation (integra-
tion) but the lowest integrated information, and redundancy
dominates for increased neuron-astrocyte coupling. On the
contrary, inh-nns shows the lowest degree of correlation but
there are higher synergistic effects, which provide a higher
contribution of integration of information. However, for in-
termediate values of correlation, when we compare the three
networks, exc-nns has the highest integrated information.

Observe that the synergy and correlation are rather small
in the unidirectional case. These results highlight the complex
interplay between neural connectivity and neuron-astrocytic
interactions to get optimal population coding. Indeed, it is
reported that a balance between excess correlation and desyn-
chronization supports information processing in neurons
[52–54], and this has implications in higher order cognitive
and behavioral processes. Thus, both measures 	WMS and IAB

are also dominant for the bidirectional coupling. This implies
that the system undergoes enhanced integration but at the

same time, the generated information is less redundant with
respect to the contribution from its components. This confirms
that integrated information is favored when we introduce a
positive feedback between neurons and astrocytes and is max-
imized at the transition regime between spontaneous activity
to a high stable equilibrium.

Finally, we consider the impact of the input noise on the
integrated information values. Increased frequency does not
appear to change the general behavior of 	∗ discussed up to
this point. For the unidirectional case, Figs. 8(a) and 8(c),
the integrated information peaks at τ = 2 and 20 ms, and
remains steady for the range of frequencies considered in this
paper. In contrast, neuron-astrocyte communication shows a
sudden transition around λ � 24 Hz [Fig. 8(b)]. At τ = 2
ms the integrated information grows linearly with λ in the
unidirectional case. However, the effects are negligible to pro-
vide any substantial change. In contrast, the bidirectional case
shows a rapid increase that sets after transitioning as described
[Fig. 8(d)]. Simulations show that this point corresponds to the
switch between AFM spontaneous Ca2+ activity and a higher
stable state. This result confirms again that 	∗ increases at the
transition between dynamical regimes.

IV. DISCUSSIONS AND CONCLUSIONS

We investigated the behavior of integrated information
in glutamate-mediated neuron-astrocyte interaction. Differ-
ent neural networks connected to a network of astrocytes
were stimulated with an external uncorrelated input iterating
over different network assemblies, noise levels, and dynam-
ical regimes. Integrated information was quantified in two
scenarios: (1) astrocyte-to-neuron one-way influence and (2)
bidirectional neuron-astrocyte mutual interaction.

It is found that 	∗ significantly increases with bidirectional
communication, a condition in which the astrocytes under-
pin dynamic synchronization in the neurons. Further analysis
through the calculation of mutual information and net synergy
corroborated that integrated information in these systems is
maximized when there is a balance between excess correlation
and spontaneous spiking activity. This condition is satisfied
near criticality previously to reach a high concentration state.
Also, consistently with previous results, our simulations show
that the encoding of information in these systems is more
efficient than its individual contributions when neurons hold
a heterogeneous connectivity. It allows local interactions with
global integration of information, rather than a homogeneous
one.

Note that, due to our finite-time estimate of information,
we do not capture the full repertoire of calcium events for the
regime under consideration. Generally, calcium oscillations
may display complex patterns with varied amplitude, shape,
and frequency as a mechanism of information encoding. The
effect of calcium events variation upon integrated information
requires further investigation. Nevertheless, while this oscil-
latory diversity is not taken into account, we observe that at a
synaptic timescale integrated information is higher due to this
neuron-astrocyte communication.

These results support the conjecture that the IP3 transduc-
tion of glutamate patterns and cross coupling between the
IP3 and Ca2+ signals further contribute to the emergence of
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integrated information in neuron-astrocyte networks. In other
words, this coupling may favor flexible coordination among
the neuronal patterns yielding more information from the pop-
ulation than the sum of its parts.

Although validation is needed from experimental data
and conclusions were derived from simulations in a reduced
model, the aim of this paper is to investigate the relationship
between a well-known signaling pathway observed in neuron-
astrocyte communication and the information processing in
neuronal populations. Our analysis retains the main physio-
logical features of this pathway, and suggests at a possible
link with the emergence of integration of information.

From previous results it is shown that 	∗ is favored
at the boundary areas between random and ordered phases
[29,55,56]. For example, this situation takes place during
metastable conditions and phase transitions in self-organized
criticality. In this sense, criticality as a working condition in
the brain and metastability are two possible ways in which
this measure may grow given that there is a propagation of
neural signals in a coordinated manner among multiple neu-
ronal populations. Experimental results relying on the balance
of excitation and inhibition in cortical cultures confirm the
role of criticality for wakefulness [57–59] using neuronal
avalanche metrics. Likewise, highly metastable systems, such
as chimera states, are thought to form a basis of cognition
[60,61]. These scenarios provide the brain functional spe-
cialization and functional integration, which may lead to the
conscious experience and higher-order processes.

In our modeling approach, we relate the emergence of a
large 	∗ to the switch of semisynchronized states allowing

an optimal representational capacity of the network while
minimizing redundant contributions. In such a case, the neu-
ral network has a balanced spread of input excitability. As
said, our observations indicate this balance takes place in
the transition from a random to an ordered phase near the
edge of criticality. This is in line with results that suggest
that astrocytes induce activity-dependent neuronal synchro-
nization through complex bifurcation dynamics. However, it
is equally plausible that in larger systems, astrocytes mediate
synchronization between groups of neurons to propagate spa-
tiotemporal patterns across different areas through unstable
dynamics. Previous works suggest that conscious processing
may relate with the integration of neural signals coming to
astrocytes inducing Ca2+ release when the unstable state of
IP3 activity reaches a fixed point [62]. It is also shown that
astrocytes can switch synaptic plasticity between depression
and potentiation in groups of synapses for learning tasks [63].
Further research is needed to assess this question. As of late,
we are currently developing a large-scale model to understand
the switching coordination provided in an astrocyte-neuron
network in the context of information processing.

ACKNOWLEDGMENTS

L.A. acknowledges CONACYT for his doctoral scholar-
ship to conclude this work. A.Z. acknowledges support from
MRC Grant No. MR/R02524X/1. We acknowledge support
by the grant of the Ministry of Education and Science of the
Russian Federation Agreement Grant No. 075-15-2020-808.

[1] T. Fellin, J. Neurochem. 108, 533 (2009).
[2] C. Agulhon, J. Petravicz, A. B. McMullen, E. J. Sweger, S. K.

Minton, S. R. Taves, K. B. Casper, T. A. Fiacco, and K. D.
McCarthy, Neuron 59, 932 (2008).

[3] P. Jourdain, L. H. Bergersen, K. Bhaukaurally, P. Bezzi, M.
Santello, M. Domercq, C. Matute, F. Tonello, V. Gundersen, and
A. Volterra, Nat. Neurosci. 10, 331 (2007).

[4] G. Perea and A. Araque, J. Physiol. Paris 96, 199 (2003).
[5] G. Perea, M. Navarrete, and A. Araque, Trends Neurosci. 32,

421 (2009).
[6] R. Min, M. Santello, and T. Nevian, Front. Comput. Neurosci.

6, 93 (2012).
[7] J. T. Porter and K. D. McCarthy, J. Neurosci. 16, 5073

(1996).
[8] V. Parpura, T. A. Basarsky, F. Liu, K. Jeftinija, S. Jeftinija, and

P. G. Haydon, Nature (London) 369, 744 (1994).
[9] A. Araque, V. Purpura, R. P. Sanzgiri, and P. G. Haydon, Trends

Neurosci. 22, 208 (1999).
[10] J. J. Wade, L. J. McDaid, J. Harkin, C. Vincenzo, and J. A. S.

Kelso, PLoS One 6, e29445 (2011).
[11] S. Y. Gordleeva, S. A. Lebedev, M. A. Rumyantseva, and V. B.

Kazantseva, JETP Lett. 107, 440 (2018).
[12] M. De Pitta, V. Volman, H. Berry, and E. Ben-Jacob, PLoS

Comput. Biol. 7, e1002293 (2011).
[13] G. Ullah, P. Jung, and A. H. Cornell-Bell, Cell Calcium 39, 197

(2019).

[14] G. W. De Young and J. Keizer, Proc. Natl. Acad. Sci. USA 89,
9895 (1992).

[15] M. De Pitta, M. Goldberg, V. Volman, H. Berry, and E. Ben-
Jacob, J. Biol. Phys. 36, 221 (2010).

[16] E. V. Pankratova, A. I. Kalyakulina, S. V. Stasenko, S. Y.
Gordleeva, I. A. Lazarevich, and V. B. Kazantsev, Nonlinear
Dyn. 97, 647 (2019).

[17] A. Pereira and F. A. Furlan, Prog. Neurobiol. 92, 405
(2010).

[18] A. Engel, K. J. Friston, J. A. S. Kelso, P. Konig, I. Kovacs, A.
MacDonald, E. Miller, W. Phillips, S. Silverstein, C. Tallon-
Baudry, J. Triesch, and P. Uhlhaas, Coordination in behavior
and cognition, in Dynamic Coordination in the Brain: From
Neurons to Mind, Vol. 5 (MIT Press, Cambridge, MA, 2010).

[19] S. Y. Gordleeva, A. V. Ermolaeva, I. A. Kastalskiy, and V. B.
Kazantsev, Front. Physiol. 10, 294 (2019).

[20] G. Tononi, O. Sporns, and G. Edelman, Proc. Natl. Acad. Sci.
USA 91, 5033 (2003).

[21] D. Balduzzi and G. Tononi, PLoS Comput. Biol. 4, e1000091
(2008).

[22] M. Oizumi, L. Albantakis, and G. Tononi, PLoS Comput. Biol.
10, e1003588 (2014).

[23] H. Kim, A. G. Hudetz, J. Lee, G. A. Mashour, and U. Lee, Front.
Hum. Neurosci. 12, 42 (2018).

[24] A. K. Seth, A. B. Barrett, and L. Barnett, Philos. Trans. R. Soc.,
A 369, 3748 (2011).

022410-9

https://doi.org/10.1111/j.1471-4159.2008.05830.x
https://doi.org/10.1016/j.neuron.2008.09.004
https://doi.org/10.1038/nn1849
https://doi.org/10.1016/S0928-4257(02)00007-4
https://doi.org/10.1016/j.tins.2009.05.001
https://doi.org/10.3389/fncom.2012.00093
https://doi.org/10.1523/JNEUROSCI.16-16-05073.1996
https://doi.org/10.1038/369744a0
https://doi.org/10.1016/S0166-2236(98)01349-6
https://doi.org/10.1371/journal.pone.0029445
https://doi.org/10.1134/S0021364018070032
https://doi.org/10.1371/journal.pcbi.1002293
https://doi.org/10.1016/j.ceca.2005.10.009
https://doi.org/10.1073/pnas.89.20.9895
https://doi.org/10.1007/s10867-009-9182-8
https://doi.org/10.1007/s11071-019-05004-7
https://doi.org/10.1016/j.pneurobio.2010.07.001
https://doi.org/10.3389/fphys.2019.00294
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1371/journal.pcbi.1000091
https://doi.org/10.1371/journal.pcbi.1003588
https://doi.org/10.3389/fnhum.2018.00042
https://doi.org/10.1098/rsta.2011.0079


LUIS ABREGO et al. PHYSICAL REVIEW E 103, 022410 (2021)

[25] J. R. Isler, R. I. Stark, P. G. Grieve, M. G. Welch, and M. M.
Myers, PLoS One 13, e0206237 (2018).

[26] M. Oizumi, N. Tsuchiya, and S. Amari, Proc. Natl. Acad. Sci.
USA 113, 14817 (2016).

[27] M. Tegmark, PLoS Comput. Biol. 12, e1005123 (2016).
[28] O. Kanakov, S. Gordleeva, A. Ermolaeva, S. Jalan, and A.

Zaikin, Phys. Rev. E 99, 012418 (2019).
[29] L. Abrego and A. Zaikin, Entropy 21, 382 (2019).
[30] S. Gordleeva, S. Stasenko, A. Semyanov, A. Dityatev, and V.

Kazantsev, Front. Comput. Neurosci. 6, 92 (2012).
[31] A. L. Hodgkin and A. F. Huxley, J. Physiol. 117, 500 (1952).
[32] V. B. Kazantsev and S. Y. Asatryan, Phys. Rev. E 84, 031913

(2011).
[33] P. M. Esir, S. Y. Gordleeva, A. Y. Simonov, A. N. Pisarchik, and

V. B. Kazantsev, Phys. Rev. E 98, 052401 (2018).
[34] A. Araque, G. Carmignoto, P. G. Haydon, S. H. Oliet, R.

Robitaille, and A. Volterra, Neuron 81, 728 (2014).
[35] S. Y. Makovkin, I. V. Shkerin, S. Y. Gordleeva, and M. V.

Ivanchenko, Chaos, Soliton Fractons 138, 109951 (2020).
[36] V. Parpura, Glutamate-mediated bi-directional signaling be-

tween neurons and astrocytes, Glial-Neuronal Signaling
(Kluwer Academic, Amsterdam, 2004).

[37] C. Henneberger, T. Papouin, S. H. Oliet, and D. A. Rusakov,
Nature (London) 463, 232 (2010).

[38] T. Fellin, O. Pascual, S. Gobbo, T. Pozzan, P. G. Haydon, and
G. Carmignoto, Neuron 43, 729 (2004).

[39] P. A. Mediano, A. K. Seth, and A. B. Barrett, Entropy 21, 17
(2019).

[40] M. Oizumi, S. Amari, T. Yanagawa, N. Fujii, and N. Tsuchiya,
PLoS Comput. Biol. 12, e1004654 (2016).

[41] T. Cover, Elements of Information Theory (Wiley, Hoboken, NJ,
2012).

[42] M. Oizumi, T. Ishii, K. Ishibashi, T. Hosoya, and M. Okada,
J. Neurosci. 30, 4815 (2010).

[43] S. Hidaka and M. Oizumi, PLoS One 13, e0201126 (2018).
[44] V. Griffith and C. Koch, Quantifying synergistic mutual infor-

mation, in Guided Self-Organization: Inception, edited by M.
Prokopenko (Springer, Berlin, 2014), pp. 159–190.

[45] J. Kitazono, R. Kanai, and M. Oizumi, Entropy 20, 173 (2018).
[46] A. R. C. Paiva, I. Park, and J. C. Principe, Inner products

for representation and learning in the spike train domain, in

Statistical Signal Processing for Neuroscience and Neurotech-
nology, edited by K. G. Oweiss (Academic, Oxford, 2010),
pp. 265–309.

[47] V. Matrosov, S. Gordleeva, N. Boldyreva, E. Ben-Jacob, and V.
Kazantsev, Comput Gliosci. 1, 151 (2018).

[48] X. Wang, N. Lou, Q. Xu, G. Tian, W. Peng, X. Han, J. Kang, T.
Takano, and M. Nedergaard, Nat. Neurosci. 9, 816 (2006).

[49] A. Cornell-Bell, S. Finkbeiner, M. Cooper, and S. Smith,
Science 247, 470 (1990).

[50] K. Lenk, E. Satuvuori, J. Lallouette, A. Ladron-de Guevara, H.
Berry, and J. A. K. Hyttinen, Front. Comput. Neurosci. 13, 92
(2019).

[51] H. S. Lee, A. Ghetti, A. Pinto-Duarte, X. Wang, G.
Dziewczapolski, F. Galimi, S. Huitron-Resendiz, J. C. Piña-
Crespo, A. J. Roberts, I. M. Verma, T. J. Sejnowski, and
S. F. Heinemann, Proc. Natl. Acad. Sci. USA 111, E3343
(2014).

[52] B. Averbeck, P. E. Latham, and A. Pouget, Nat. Rev. Neurosci.
7, 358 (2006).

[53] O. B. Mayo, L. Berdondini, and D. T. De Pietri, Methods Mol.
Biol. 1938, 131 (2019).

[54] D. A. Gutnisky and V. Dragoi, Nature (London) 452, 220
(2008).

[55] P. A. Mediano, J. C. Farah, and M. Shanahan,
arXiv:1606.08313.

[56] H. Mori and M. Oizumi, Information integration in a globally
coupled chaotic system, in the 2018 Conference on Artificial
Life: A Hybrid of the European Conference on Artificial Life
(ECAL) and the International Conference on the Synthesis and
Simulation of Living Systems (ALIFE) (MIT Press, Cambridge,
MA, 2018), pp. 384–385.

[57] J. M. Beggs and D. Plenz, J. Neurosci. 23, 11167 (2003).
[58] W. L. Shew, H. Yang, T. Petermann, R. Roy, and D. Plenz,

J. Neurosci. 29, 5595 (2009).
[59] W. Shew, H. Yang, S. Yu, R. Roy, and D. Plenz, J. Neurosci. 31,

55 (2011).
[60] E. Tognoli and J. A. K. Scott, Neuron 81, 35 (2014).
[61] K. Bansal, J. O. Garcia, S. H. Tompson, T. Verstynen, J. M.

Vettel, and S. F. Muldoon, Sci. Adv. 5, eaau8535 (2019).
[62] A. Pereira Jr. and F. A. Furlan, J. Biol. Phys. 35, 465 (2009).
[63] M. De Pitta and N. Brunel, Neural Plast. 2016, 7607924 (2016).

022410-10

https://doi.org/10.1371/journal.pone.0206237
https://doi.org/10.1073/pnas.1603583113
https://doi.org/10.1371/journal.pcbi.1005123
https://doi.org/10.1103/PhysRevE.99.012418
https://doi.org/10.3390/e21040382
https://doi.org/10.3389/fncom.2012.00092
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1103/PhysRevE.84.031913
https://doi.org/10.1103/PhysRevE.98.052401
https://doi.org/10.1016/j.neuron.2014.02.007
https://doi.org/10.1016/j.chaos.2020.109951
https://doi.org/10.1038/nature08673
https://doi.org/10.1016/j.neuron.2004.08.011
https://doi.org/10.3390/e21010017
https://doi.org/10.1371/journal.pcbi.1004654
https://doi.org/10.1523/JNEUROSCI.4360-09.2010
https://doi.org/10.1371/journal.pone.0201126
https://doi.org/10.3390/e20030173
https://doi.org/10.1038/nn1703
https://doi.org/10.1126/science.1967852
https://doi.org/10.3389/fncom.2019.00092
https://doi.org/10.1073/pnas.1410893111
https://doi.org/10.1038/nrn1888
https://doi.org/10.1007/978-1-4939-9068-9_10
https://doi.org/10.1038/nature06563
http://arxiv.org/abs/arXiv:1606.08313
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.3864-09.2009
https://doi.org/10.1523/JNEUROSCI.4637-10.2011
https://doi.org/10.1016/j.neuron.2013.12.022
https://doi.org/10.1126/sciadv.aau8535
https://doi.org/10.1007/s10867-009-9147-y
https://doi.org/10.1155/2016/7607924

