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Introduction

The environmental efficiency of buildings has gained increasing global importance, especially since its introduc-
tion as a compliance requirement for the construction of new buildings in major economies around the world.1,2 
The improvement of the environmental efficiency of buildings is the result of a complex design process which 
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involves passive and active design techniques and requires the consideration of various building properties, such 
as the building geometry (e.g. aspect ratio, orientation, spatial arrangement), envelope characteristics (e.g. build-
up, window-to-wall ratio) or building systems (e.g. radiators, HVAC). While in the UK, the government policy 
is mainly focused on targeting operational CO2 emissions (emissions that occur as a result of heating/cooling and 
electricity use), a Life Cycle Performance approach (that accounts for emissions throughout the building’s life) 
may be more suitable in examining the full impact of buildings on their environment.3,4

Frameworks for evaluating the environmental efficiency of buildings have been in use across the built 
environment discipline since the 1990’s, and have been widely discussed in literature.5–7 Improving build-
ings environmental efficiency is still regarded as a challenging task that often involves an iterative process 
of modelling and simulation. Currently, this iterative process is mostly carried out in a non-automated man-
ner, where a single computational model is built and simulated, its performance assessed and changes are 
made to the design as required.8

Computer-based design is a research domain that has gained increasing interest in recent years. It relies 
on computational capability to automate repetitive complex processes.9 Advanced computational techniques 
(Generative design, Artificial Intelligence, optimisation, etc.) can greatly affect the architectural design pro-
cess and its outcome.10 As computers become both more powerful and cheaper, and as advanced computa-
tional techniques (algorithms/software) become more commonly used, the impact of automated computational 
design is only expected to increase.

While advanced algorithms have been used in Architecture in the past, these were traditionally carried out 
mainly for formalistic purposes – achieving unique architectural forms.11–13

Building performance optimisation frameworks have been primarily used for minimising energy con-
sumption or optimising lighting performance, and are run mostly by programming tools such as Grasshopper, 
and optimisation and simulation plug-ins such as Ladybug and Honeybee.14–16 Recently, a number of tools 
have been developed for optimising other performance metrics, one of which is life cycle performance. 
While most tools (e.g. Grasshopper’s Bombyx17 or Tortuga18), focus on the Embodied Carbon performance 
of buildings rather than on their entire life cycle – this is an important boost for the research of optimsiation 
in terms of life cycle performance. Furthermore, given that the economic value of building construction and 
operation is an important factor in decision-making processes in the Architecture, Engineering and 
Construction (AEC) sector, optimising buildings designs not only by their life cycle environmental perfor-
mance, but also by their economic life cycle performance (Multi Criteria Optimisation), is of a great impor-
tance. Optimising buildings’ life cycle environmental and economic performance is still challenging, partly 
due to the technical difficulties in coupling various tools into a single optimsiation framework.

This paper introduces an early-stage design tool that integrates several techniques and computational frame-
works (Generative design, mathematical optimisataion methods, thermal simulation and Life Cycle Performance) 
to optimise the design of a case study building, in terms of Life Cycle Carbon Footprint (LCCF) and Life Cycle 
Cost (LCC). Some of the principles that are presented in this study were tested, in a limited scope, in Schwartz,19 
Schwartz et al.20 and Eleftheriadis et al.,21 however this paper further extends those principles to:

a.	 Describe the complete and full framework and its sub-components in detail, and
b.	 Test the tool on a full-scope case study, followed by a detailed analysis of the optimal buildings’ 

outputs, their life cycle performance and properties.

Background: Generating optimal buildings – life-cycle performance

Attempts to use computers to automate the design of environmentally efficient buildings have been explored 
intensively in the last few decades. While successful frameworks have been developed and used extensively 
for optimising buildings in terms of daylight performance or energy consumption,16 generating optimal 
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buildings to improve their Life Cycle Performance (carbon and cost) is still challenging. This is partly due 
to the need to integrate a range of analysis tools and techniques, namely: generative design, optimisation, 
thermal simulation and life cycle performance (environmental and economic), which are typically explored 
independently from one another. Integrating generative design in full life cycle performance analysis has 
been shown to be particularly challenging.

Despite the technological challenges, some studies presented innovative and interesting approaches for 
integrating some of the abovementioned techniques together. In a cornerstone study in building optimisation 
in terms of LCC and energy consumption, Wang et  al.22 integrated optimisation methods and Life Cycle 
Analysis (LCA) to examine an office case study building. The study used an ASHRAE (American Society of 
Heating, Refrigerating and Air-Conditioning Engineers) load calculation tool to calculate operational loads, 
and the Athena database for calculating embodied carbon processes. While the study found optimal combina-
tion of materials and build-ups, it fell short in exploring the optimal building geometry: only the rectangular 
building’s orientation and its aspect ratio were manipulated. This only gave a limited scope for an automated 
generation of a realistic building. Furthermore, the life cycle performance in the study was measured in energy 
units (MJ) rather than carbon emissions (CO2e) – a more appropriate proxy for measuring environmental 
impact. Ahuja et  al.23 presented a slightly different approach, using parametric building optimisers in 
Rhinoceros, Grasshopper and MATLAB to perform an optimisation analysis on an office case-study building. 
The proposed framework, however, was limited in exploring built forms, as it only examined ‘building mass’ 
rather than spatial arrangement and zone allocation. Furthermore, while the study analysed the buildings’ 
LCC, it only evaluated operational energy demand (kWh/m2/year) rather than their CO2e. Wiberg et al.24 intro-
duced a Grasshopper/Rhino dashboard using parametric LCA models for decision-support purposes, and 
integrated Environmental Product Declaration (EPD) databases for embodied carbon calculation. The study, 
however, used an excel-based tool for calculating operational performance, and the geometric design compo-
nent, again, did not consider space allocation. Grasshopper and Rhino were also used by Otovic et al.25 in 
conjunction with EnergyPlus, to develop a real-time LCA simulation tool. The tool enabled designers to para-
metrically control their designs and get instant feedback about their LCCF performance, however, it only used 
building layouts that had been created by the users rather than created automatically. This means that not all 
spatial arrangements are explored, and that some optimal solutions may be missed out.

To enable a complete exploration of design variables, a LCCF and LCC optimisation framework should 
consist of generative design, optimisation and LCA components. The application of these in the built envi-
ronment is covered below.

Mathematical optimisation

The term ‘Optimisation’ refers to the task of searching for the best solution (or solutions) out of an entire 
solution-set of a given problem, where a change to an input parameter can cause a change in the result.26 In 
the built environment, where building performance is affected by various design properties (also denoted as 
‘parameters’), optimisation is implemented by setting out a search mechanism that efficiently searches 
through multiple combinations of design properties and finds the optimal one/ones.

Computational optimisation techniques have been developed and used for various purposes since the 
1960’s,27 while in the built environment they have gained increasing interest since the late 2000’s.28 Optimisation 
algorithms are used in complex parametric problems, where the search space (the entire set of possible solu-
tions) requires significant computer resources. Most optimisation algorithms (e.g. genetic algorithms, ant col-
ony, simulated annealing) use advanced stochastic search mechanisms – mechanisms in which some level of 
randomness is used to efficiently cover large search spaces in the search for desirable models. This enables the 
search mechanism to depict the distribution of the search space, while trying to avoid ‘local optimum’ solutions 
(confined areas, where no better solutions exist in the immediate proximity, while better solutions might exist 
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further away). This is done by occasionally ‘pushing’ the search mechanism outside ‘local traps’.29 Optimisation 
frameworks have been used in the research of the built environment in various domains:28

Structural optimisation: Using optimisation algorithms to minimise the overall cost of structural elements 
(e.g. building slabs,12,13 concrete bridge30).

HVAC systems optimisation: Applying optimisation algorithms on the control and operation of HVAC 
systems to minimise their overall energy consumption, minimise their life cycle costs or maximise indoor 
comfort levels.31–34

Building envelope optimisation: Using optimisation for finding the optimal wall build-ups for difference 
case study buildings, to reduce their environmental impacts or cost.35–37

Life Cycle Performance optimisation: using otimisation algorithms to minimise the life cycle costs and 
environmental impact of new or refurbishment projects.8,38,39

Design optimisation: Using optimisation framework to optimise simple layouts to minimise cost or 
energy and lighting performance,40–42 or the appearance and structural properties of a supporting system.43

Lighting: Using optimisation frameworks for optimising light levels.44,45

A wide range of optimisation algorithms have been used in the Architecture, Engineering and Construction 
(AEC) sector. These include Direct Search,46 Ant Colony,31,32 Simulated Annealing,47 Genetic Algorithms34 
and others. Covering more than 200 building optimisation studies, Nguyen et  al.28 show that Genetic 
Algorithms (GA) is the most widely used optimisation algorithm across the AEC discipline. The review also 
shows that among the different GA procedures, Non-Sorting Genetic Algorithms II (NSGA-II) achieved 
more accurate solutions, faster and more efficiently than other optimisation methods.

NSGA-II is based on the principle of Pareto Dominancy: it finds a set of solutions which are not domi-
nated by any others: Given a series of optimsiation objectives, a solution ‘dominates’ another if it has as good 
results as the other solution for all objectives, and at least one result where it is better.48 The procedure starts 
with the generation of an initial set (also denoted as ‘population’) of models (‘individuals’), which are the 
result of a random combination of design parameters. The algorithm calculates the models’ performance and 
identifies the non-dominated pareto solutions. It then selects some of the best-performing individuals and, 
based on a series of procedures inspired by the evolution theory (breeding, mutation), it mixes design param-
eters and creates a new set (generation) of individuals. On average, this new set is expected to perform better 
than the previous generation.48 This iterative process of mixing models’ parameters and evaluation of their 
performance is repeated until a stopping criterion is reached (e.g. maximum number of generations).

The application of parametric design and optimisation methods is gaining increasing interest much thanks 
to easy-to-use platforms such as Grasshopper (a visual programming language that is a plugin for Rhinoceros 
3D), Ladybug (a Grasshopper plugin for connecting models to a simulation engine) or Julia (a programming 
language that is used in AutoCad environments).14–16 Other methods may include programming languages, 
such as Python or C#, to allow more flexibility in designing the optimisation procedures. Still, however, 
studies that deal with optimising spatial arrangement or building layouts for LCCF and LCC are limited.

While there is a surge in optimisation studies and application in the built environment, many of the exam-
ined tools and techniques are tailored to solve specific design problems. This is largely due to the complex 
and multi-layered nature of the design of the build environment, where multiple processes, stakeholders and 
design goals are involved. As the potential benefits of using optimisation in the design process are becoming 
clearer, it is expected that major software providers in the AEC will incorporate generic, flexible and easy-
to-use optimisation tools within their core products.

Generative design: Within an environmental efficiency context

‘Generative design’ is a term used to describe the automation of the design process that is typically attributed 
to human beings only. Unlike traditional design – which focuses on the output – the focus in generative design 
is on procedural rules, constrains and flows that define the design process rather than the end product itself.49
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Generative design in the built environment is gaining an increasing and revived interest.50 In its early 
years, though, the focus of generative design revolved mainly around innovative figurative outputs, that is, 
generating shapes (canopies, facades or roofs). Most notable are works by Gerber and Pantazis,11 Gerber and 
Lin13 and Subhajit et al.51 However, the challenge to automatically generate building layouts that satisfy 
certain spatial criteria, such as minimal distances, maximum compactness, following adjacencies, etc. (also 
referred to as ‘the Space Allocation Problem’49) given a set of spaces or activities still exists. Various 
approaches and techniques for solving the space allocation problem have been developed as early as the 
1970’s.52 Other important work was published by Hasan et al.,36 Garber37 and Hillier et al.,53 who presented 
a unique design approach using ‘shape grammars’ – a sequence of rules and conditions for space division. 
While various generative design techniques have been developed in recent years,54 the automated generation 
of buildings with improved environmental performance is still not common.

The state-of-the-art buildings generative design techniques can be roughly divided into the following 
three categories:

A ‘top-down’ approach.  Where space allocation is addressed from building level down to room level. A sim-
plified generative design approach was used in various studies,26,55–57 where simple geometric manipulations 
are applied on buildings’ footprint (e.g. Figure 1). In these cases, entire floors are considered as empty 
‘shells’ (having no internal partitions), where the building perimeters proportions are modified. While this 
approach can generate a range of building designs quickly – it does not address the allocation of rooms 
across a building.

Other studies34,47,58 used the tree-map tiling algorithm diagram for dividing spaces. Tree map is a hierar-
chical, tree-structured procedure for sub-dividing rectangular polygons (as shown in Figure 2). Later studies 
introduce corridors to the designs and attempted to divide more complex spaces,49,52 however, tree-map 
diagrams are only useful for specific given shapes.

A ‘bottom-up’ approach.  The more flexible ‘bottom-up’ techniques present a different approach by addressing 
the space allocation problem from the room level going up to the building level.41,59,60 Figure 341 shows how 
simple geometric manipulations are applied on an initial basic model, to generate a variety of spatial design 
alternatives. This approach defines a basic initial layout of four fixed and equally sized adjacent rectangular 
spaces and reaches a variety of building shapes by manipulating the rooms’ width and length parameters. 
The main weakness of this method is that the layouts are restricted to their initial fixed spatial and proximity 
arrangement.

Figure 1.  Contour manipulation – based on.55
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Other ‘bottom-up’ approaches include the ‘additive space allocation’ procedure49 – where spaces are 
placed based on their level of connectivity to other spaces, or the original use of a Voxel model for generating 
massing-layouts in a given site.61

Advanced computational frameworks.  With the introduction of advanced computational techniques (Evolu-
tionary Algorithms and Artificial Intelligence) to the built environment, advanced computational frame-
works have shown increasingly promising results in generative design. Techniques for utilising advanced 
computational tools for generative design purposes include a heuristic distribution of spaces across a plot,62 
the coupling of optimisation algorithms with agent-based spring-system-like frameworks,63 an adaptation of 
a k-d tree data – a data storage method – to space planning51 or using artificial intelligence by training a 
Bayesian Network to generate residential buildings.10

While these approaches show increasingly promising results, some still achieved un-realistic building 
designs, and others suffered from the inherent limitations in machine learning algorithms, which may sug-
gest that it is not an appropriate method for such a task: as the outcome is based on an initial man-made 
training set, ‘new’ or ‘innovative’ designs cannot be generated, as all designs are based on the initial batch 
of buildings on which the algorithm was trained.

Building performance: The Life Cycle approach

Building performance is a generic term that describes various evaluation approaches. The term aims to 
measure the level of efficiency of buildings, when considering various performance criteria. These might 
include domains such as structural stability, usability, energy efficiency, user comfort and others.

Life Cycle performance assessment captures not only the impacts of buildings operation, but also those of 
their construction, maintenance and processes that are related to their end of life. It is a more comprehensive 
approach for performance evaluation, compared to the more commonly-used energy intensity (kWh/m2/year).3

The life cycle approach has been used extensively in the research of the built environment.64–69 It is often 
applied by using a comparative case study approach – where a number of design cases are evaluated, their life 
cycle performance is calculated, and the performance values are compared. Due to the technical complexities that 

Figure 2.  Shape grammar and sub-division of pre-defines spaces, based on.58

Figure 3.  The basic starting-point layout, and some of its parametric variations, based on.41
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are involved in a life cycle performance assessment, these studies often make a comparison between a limited 
number of designs. Furthermore, many of the cornerstone studies65,68 focused on Life Cycle Energy consumption 
as a performance proxy. Energy-based LCA, however, may mis-represent actual emission-related impacts, as it 
does not identify the source of the energy that is being analysed, and energy production technologies vary signifi-
cantly in their associated emissions and environmental impacts. For this reason, Life Cycle Carbon Footprint 
(LCCF) is regarded as a more appropriate method for evaluating the life cycle impact of buildings.

Buildings’ LCCF has been examined by several studies, looking at range of buildings types – residential, 
commercial, offices and others. A systematic literature review, examining the LCCF of 251 buildings from 
all over the world,70 has found that the majority of buildings achieved a carbon footprint that was below 
8000 kgCO2/m

2/year. Buildings with high operational-related emissions (commercial spaces, hospitals and 
hotels) had an average of nearly 5000 kgCO2/m

2/year, compared to 2290 kgCO2/m
2/year on average in resi-

dential buildings. Looking at the LCCF values of residential buildings in the UK and Ireland, the review 
found that on average, life cycle emissions were 2290 kgCO2/m

2/year and a ranged between 1020 kgCO2/m
2/

year and 6200 kgCO2/m
2/year). In a recent work by the Mayor of London, the LCCF benchmark for residen-

tial buildings has been defined to be between 1050 and 1250 kgCO2/m
2/year, and the target LCCF of future 

buildings is planned to be set to 630–740 kgCO2/m
2/year.71

To enable a life-cycle analysis of both environmental impacts (LCCF) and economical ones (LCC), this 
study uses the EN 15978:2011 – Sustainability of construction works – Assessment of environmental perfor-
mance of buildings – Calculation method4 and the BS ISO 15686-5: Building and constructed assets – 
Service Life Planning72 protocols.

EN 15978 is one of the first standardised building life cycle calculation protocols in the world. Developed 
and approved by the EU, it is based on ISO standard 14040 – Environmental Management – Life Cycle 
Assessment and is increasingly used across the construction industry to assess life cycle impacts. In 2017, 
EN 15978 was officially adopted by RICS (Royal Institution of Charted Surveyors), as it may also contribute 
to BREEAM credits in BREEAM 2018.73,74 The protocol defines five main stages in the life cycle of build-
ings, shown on Figure 4. It further uses a number of environmental categories for measuring environmental 
performance, based on the IPCC guidelines. However, CO2e (CO2 Equivalent) is often used as a proxy for 
translating various environmental impacts into a single comparable unit.75,76

BS ISO 15686-5 is the protocol used by professional organisations around the world for evaluating Whole 
Life Costing (WLC) in the built environment, and is considered to be an industry standard.64,65 LCC is one of 
the components that comprises the WLC analysis framework (as shown in Figure 5). It is often used for budget-
ing, cashflow forecasting and option appraisal at the project end point or at a specific point in time.3,66,67

When cost projections are carried out, they often consider values at the time of analysis, excluding the 
impact of inflation on future costs. However, when future costs in different design scenarios are not of simi-
lar proportions, or when they are made in different point in time (e.g. when the cost of a future small-scale 
repair in the 5 years is compared against a major refurbishment in 20 years), inflation might have a more 
significant impact.77 While environmental impacts are not assumed to degrade over time, the value of money 
might inflate or deflate as function of time. When the time factor of costs is involved, it should be expressed 
within the analysis. For this reason, BS ISO 15686-5 recommends calculating the ‘real value’ of money – 
bringing future costs to a present-day value. This should be carried out by using discounting – the process of 
bringing all future cost values into the current value of money.

Discounting is carried out by comparing the theoretical future return of the initial investment, assuming 
the money had been invested rather than spent. The difference between this prospective return and an aver-
age prospective inflation rate, expressed as percentage, is called the ‘real discount rate’.78 The real discount 
rate in this study is set in accordance with the Green Book79 and the BSRIA guide for LCC,78 that is, 3.0%. 
The real discount rate is then used when calculating the overall profitability of an investment, or its Net 
Present Value (NPV). This is done by discounting value of future costs, minus future potential incomes (e.g. 
potential interest).
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The Net Present Value (NPV) of a commodity is expresses by the following equation:

NPV
V

ri

n

n
=

+( )=
∑

0 1

i
	 (1)

Where:
NPV = Net Present Value
n = period of analysis in years
i = Present year
Vi = Cost in year i
r = Real discount rate

Figure 5.  Life cycle cost (LCC) as part of whole life costing (WLC).
Source: Adapted from BS ISO.72

Figure 4.  Building life cycle, according to EN 15978:2011.4
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Summary: The technological challenge

The attempt to generate both life-cycle environmentally and economically optimal buildings is highly chal-
lenging as it requires the simultaneous integration of multiple processes. These are described below:

A.	 Computational frameworks
	 A.1. Generative design – the control and modification of buildings geometry-related properties (spa-

tial arrangements, room proximities, room dimensions, etc.).
	 A.2. Optimisation – The search after the optimal combination of building properties to achieve the 

optimisation goal
B.	 Performance evaluation frameworks
	 B.1. Embodied performance evaluation – assessment of the embodied performance of each assessed 

design (environmental and economic).
	 B.2. Operational performance evaluation – assessment of the operational performance of each 

assessed design (environmental and economic).

While this may suggest that two aspects of the design could be optimised separately (the buildings’ form – to 
minimise heat loss and material use and the building’s fabric – to minimise its life cycle impact), it was 
concluded that the optimisation procedure should be implemented in a single framework rather than being 
de-coupled into two parts, as the performance criteria in this study are cross-dependent. Separating the opti-
misation procedure would, therefore, not necessarily guarantee an overall optimal system (e.g. a fabric with 
less material and low embodied carbon will often have higher U-Value – and higher heat loss. Also, capital 
cost and embodied carbon are not always positively corelated – this is the case, for example, with windows 
frames where timber-framed windows have the lower embodied carbon, compared to uPVC and Aluminium 
frames, but they are also the most expensive alternative).

The proposed computational tool

To overcome these technological challenges, PLOOTO-LC (Parametric Lay-Out Organisation generaTOr 
– Life Cycle), a designated computational tool that integrates the above-mentioned tools and techniques was 
developed. PLOOTO-LC’s framework is based on existing buildings evolutionary-algorithm optimisation 
procedures, where models are simulated and evaluated, and building parameters are modified in a recurrent 
manner. This study introduces the processes that helped in the development of the tool: Firstly, while build-
ings forms are typically excluded from optimisation studies, this study shows how spatial arrangement, or 
building layout, were incorporated as a design parameter. Secondly, the study presents the development and 
use of an automated process for generating those buildings layouts.19–21

To enable the full integration between generative design, thermal simulations, life cycle performance 
(environmental and economic) and mathematical optimisation, a designated computer programme was cre-
ated. Figure 6 describes PLOOTO-LC’s components and the tools that were used to create them.

Python 3 was used as the programming language to automate the generation of buildings layouts and 
models in the form of an .idf file.80 The output of this first process was a set of EnergyPlus models, each 
included schedules, usage profiles and construction build-ups. EPPY (EnergyPlus Python)81 – a Python/
EnergyPlus scripting language – was used in this module, as it enables easier handling of EnergyPlus files 
within a Python environment. Python was also used to build the NSGA-II application that controlled the 
evolutionary algorithm. As the optimisation criteria in this study were both embodied and operational per-
formance, the optimisation procedure was designed to both read the idf files to get buildings’ Embodied 
Carbon, and run thermal simulations using EnergyPlus to get their operational-related emissions. While 
PLOOTO-LC’s original aim is optimising the life cycle performance of residential buildings, it can be 
adapted and modified to enable the optimisation of other building types.
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The tool is consisted of two main components and six sub-components, as described in Figure 7. The fol-
lowing section describes those in detail.

Model generation

To enable an analysis of different building layouts’ Life cycle performance, PLOOTO-LC’s first module is 
responsible for the automated generation of spatial arrangements. This space allocation engine automatically 

Figure 6.  The tools and computational techniques used in PLOOTO-LC’s development.
*idf – EnergyPlus Input Data File.

Figure 7.  PLOOTO-LC’s computational framework.
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generates building designs, based on heuristic principles and an initial set of user requirements (as outlined 
in Schwartz et al.20). To enable a life cycle performance assessment, the module generates models in a suit-
able file format (IDF in this case) file format – which can be simulated using a thermal simulation tool 
(EnergyPlus).

The generation of models is the output of the following sub-processes:

A.	 The identification of design parameters: where various spatial design requirements are specified (e.g. 
plot dimensions, maximum building height, number of storeys, number of rooms at each floor, room 
proximities, etc.). These parameters should be chosen by the user, based on their knowledge, design 
intent, site limitations and building use.

B.	 Initial modelling: This step begins with the preparation of a ‘template’ .idf that holds pre-defined 
materials, build-ups, loads and schedules data. These elements follow a strict naming convention that 
helps allocating the appropriate properties to the different zones in the model generation process (e.g. 
Bedroom Occupancy Schedules begins with ‘BrOcS’. Living room Equipment Loads starts with 
‘LrEqL’ etc.). No geometries nor zones are defined on these initial files, as these are generated at the 
next steps.

	 Based on the desired design properties, and on inputs from step A, models (.idf files) are then 
generated and saved at a designated folder. Through the model-generation process, PLOOTO-LC 
allocates the relevant thermal properties to each zone – based on its name and the naming conven-
tion, as described above. The names of the buildings’ different surfaces follow a similar naming 
strategy (e.g. the names of external exposed wall surfaces start with the initials EW, followed by 
a serial number. Names of internal wall surfaces start with IW followed by a serial number, etc.). 
This systematic naming convention assists in calculating the buildings’ embodied Carbon in the 
following steps.

	 At the end of this stage, each model holds a geometric description of a building (coordinates of the 
thermal zones, surface and windows) and the rooms thermal loads, usage profiles and thermal prop-
erties. Surface build-ups and materials are still not applied at this stage, as these would be assigned 
at the optimisation stage, ahead of the simulations.

This marks the end of the ‘model generation’ step. The .idf files are ready for the next stage: optimisation. 
From this stage onwards, the models’ zone geometries will not change.

Optimisation

Once the models are generated, an optimisation exercise is carried out using the spatial arrangements out-
puts, as well as the other user-defined building properties (thermal properties, building materials, window-
to-wall-ratio, etc.) as parameters for optimisation. To implement the optimisation procedure, a designated 
NSGA-II (Non-Sorting Genetic Algorithms – II) application was created.

The optimisation stage is the output of the following sub-processes:

C.	 Preparation for Life Cycle optimisation: At this stage the scope of the study is defined, as well as the 
objective functions and the building parameters that are to be considered in the optimisation 
process.

D.	 Iterative modelling: Using the initial models that had been generated in sub-process B, a first genera-
tion of fully-functional models is created by assigning build-ups to the different surfaces and manipu-
late window-to-wall ratios.



12	 International Journal of Architectural Computing 00(0)

E.	 Iterative simulations: At this stage the thermal simulation is carried out and the LCC/LCCF perfor-
mance are calculated. Both criteria are a combination of two components: embodied and operational.

	 To get the embodied carbon and costs figures, models are read, and their carbon and costs values are 
summed: Each model (.idf) is read by the designated Python NSGA-II optimisation script. The algo-
rithm loops through each building surface and sums the overall area of the difference building ele-
ments, based on filtering using the naming strategy as described above. The overall embodied carbon 
and costs of each building element is then calculated by multiplying the overall element surface area 
with its build-ups’ embodied carbon and costs values.

	 For the operational-related emissions, a thermal simulation is carried out using EnergyPlus – one of 
the most widely-used thermal simulation tools.28 The simulated energy consumption is then trans-
lated into carbon and costs, based on energy-carbon and costs conversion factors as provided by the 
UK government’s National Calculation Method (NCM)82 and cost data83 (for further details about 
this process, please refer to Tables 5 and 6 and section 4.2.3 – Calculating the Objective Functions). 
Specific modelling and calculation assumptions, including analysis boundaries, material and con-
struction data, NPV and others are described in Tables 4 to 8.

	 The modelling and simulation procedures are then followed by the other optimisation processes 
– selection, mutation and cross-over of design properties for the next generation of models. These 
model characteristics are finally sent back to step D, where a new generation of models is 
created.

F.	 Once the optimisation converges – the optimisation is halted, and the pareto-optimal models are 
identified.

As illustrated in Figure 7, stage D of the optimisation process – iterative modelling – introduces a process 
without which the optimisation of the buildings in this study could not have been achieved. Here, thermal 
models are assembled, not only by using ‘conventional’ optimisation parameters (e.g. U-Values or Window 
to Wall Ratio), but also by the automatically generated geometries. This enables the optimisation procedure 
to evaluate the combination of different Window-to-Wall Ratio (WWR), materials and build ups ‘layered on’ 
various design geometries.

As NSGA-II is a heuristic-based method, to validate the application outputs and increase the confidence 
in the optimal or near-optimal results, three independent optimisation runs were carried out – all having the 
same input parameters – and their results were compared.

Implementation

Generative design

PLOOTO-LC was tested on the generation and optimisation of a two-storey terrace house building, 
located in London, UK. To ensure that all design outputs are similar in programme, size and volume, an 
initial set of design requirements was identified. Based on the classification of ‘typical’ London-based 
residential buildings,84 the dimensions of the plot for the two-story generated building were set to be 6.0 
× 14.6 m. A list of rooms was defined, and a room adjacency matrix was laid out (Table 1). The generative 
design procedure aimed to fit all rooms within the plot, as long as rooms did not exceed a re-designed 
range of allowed widths and lengths. Storey height was set at 3.0 m, windows could be placed on external 
walls only, and only when external walls were at least 0.8 m away from the edge of the plot. External walls 
that shared a border with adjacent plots were considered as adiabatic surfaces.

In the optimisation procedure, the size of each window could be examined independently of any other 
window (e.g. the size of a living room window could be modified and its impact on performance could be 
evaluated independently of the kitchen window).
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Table 1.  PLOOTO-LC’s inputs – possible room sizes and proximity matrix.

Thermal zone Width (cm) Length (cm) Adjacent to 
room

Minimum Maximum Minimum Maximum

Ground floor 1 Living 600 600 360 440 4
2 Dining 360 440 360 440 3, 4
3 Kitchen 360 440 360 440 2, 4
4 Core (stairs) 160 240 360 440 1, 2, 3, 8

1st floor 5 Bedroom 1 600 600 360 440 8
6 Bedroom 2 360 440 360 440 8
7 Bedroom 3 360 440 360 440 8
8 Core (stairs) 160 240 360 440 4, 5, 6, 7

To avoid model duplication or a situation in which buildings have marginals differences, a selection 
criteria was defined (e.g. rooms in different placements, or rooms with similar placements but at least 
50 cm difference in a room’s size), and only buildings with significant difference were included in the next 
optimisation step. Based on the selection criteria, the tool managed to generate 32 different building forms 
(Figure 8).

Room schedules for occupancy, internal loads and thermostats were defined per room and are shown in 
Table 2, based on inputs from the UK’s National Calculation Method (NCM) and CIBSE Guide A.82,85

Optimisation

Optimisation set-up.  Once the models had been generated – the optimisation scope could be determined. 
Table 3 shows the design properties that had been chosen for the optimsiation process and the number of 
possible alternatives each design property had (actual building components and build-ups can be found in 
Table 7). Given these conditions, the search space for this study had more than 130 million possible combi-
nations. The optimisation was executed with a uniform crossover (exchange of parents’ chromosomes where 

Figure 8.  Models outputs – the 32 terrace house designs.
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Table 2.  Occupancy and lighting schedules, internal loads and thermostats.

Schedule name Kitchen Bedroom Circulation/Toilet Livingroom

Time Entry Time Entry Time Entry Time Entry

Occupancy schedules
Occupancy hours 00:00–07:00

07:00–10:00
10:00–20:00
20:00–23:00
23:00–24:00

0
1
0
0.2
0

00:00–07:00
07:00–08:00
08:00–09:00
09:00–22:00
22:00–23:00
23:00–24:00

1
0.5
0.25
0.0
0.25
0.75

00:00–07:00
07:00–10:00
10:00–20:00
20:00–23:00
23:00–24:00

0
1
0
0.2
0

00:00–16:00
16:00–19:00
19:00–22:00
22:00–24:00

0
0.5
1
0

Lighting 00:00–07:00
07:00–10:00
10:00–20:00
20:00–23:00
23:00–24:00

0
1
0
1
0

00:00–07:00
07:00–09:00
09:00–19:00
19:00–23:00
23:00–24:00

0
1
0
0.2
0

00:00–07:00
07:00–10:00
10:00–19:00
19:00–24:00

0
1
0
1

00:00–16:00
16:00 –23:00
23:00–24:00

0
1
0

Equipment 00:00–07:00
07:00–10:00
10:00–19:00
19:00–23:00
23:00–24:00

0.07
1
0.07
0.25
0

00:00–07:00
07:00–09:00
09:00–17:00
17:00–20:00
20:00–22:00
22:00–24:00

0.07
1
0.07
0.5
1
0.5

00:00–07:00
07:00–09:00
09:00–17:00
17:00–20:00
20:00 –22:00
22:00 - 24:00

0.07
1
0.07
0.5
1
0.5

00:00–16:00
16:00–18:00
18:00–22:00
22:00–23:00
23:00–24:00

0.07
0.5
1
0.7
0

  Time Temp Time Temp Time Temp Time Temp

Thermostat 00:00–05:00
05:00–10:00
10:00–17:00
17:00–23:00
23:00–24:00

12°C
18°C
12°C
18°C
12°C

00:00–09:00
09:00–20:00
20:00–24:00

18°C
12°C
18°C

00:00–05:00
05:00–10:00
10:00–17:00
17:00–23:00
23:00–24:00

12°C
18°C
12°C
18°C
12°C

00:00–14:00
14:00–23:00
23:00–24:00

12°C
21°C
12°C

Internal loads
Electric equipment (W/m2) 30.28 3.58 2.16 3.9
People (W/zone) 120 220 110 220
Lighting (W/m2) 8 2.8 2.8 4.1

Values range between 0 and 1, when 0 means 0% (or ‘off’) and 1 means 100% (or ‘fully on’). Temp: temperature.82,85

each parameter is chosen from either parent, with equal probability) of 0.8. This means that such crossover 
occurred for 80% of the chromosomes in each generation. The study also used a mutation rate of 0.2. This 
means that mutation occurred for 20% of the chromosomes in each generation: genes from the initial gene 
pool (as described in Tables 3 and 7) were selected randomly, using a uniformed distribution, and incorpo-
rated in the models. This is done so that new model parameters that may have been excluded in previous 
generations, can be introduced to the GA, as some parameters may lead to better models’ performance.

The GA was stopped manually after 40 generations, as it was noticed that the average results per each 
generation had achieved similar results for more than 20 consecutive generations. Stopping criteria was 
manual – the procedure was stopped once convergence stabilised (as seen in section 5 –Results).

Study assumptions.  Based on BS EN 15978:2011 and BS ISO 15686-5, the case study buildings life cycle 
analysis scopes are described in Table 4. The calculation of Embodied CO2 and costs were based on data 
from materials EPD’s, and Bath Inventory of Carbon and Energy86 for CO2 emissions, and on manufacturing 
costs and Spon’s Architects’ and Builders’ price book87 for material costs. Sources of CO2 emissions and cost 
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data for the different building components and materials throughout the buildings life cycle stages are pre-
sented Tables 5 to 8 and Figure 9 below.

Calculating the objective functions.  The evaluation of the LCCF and LCC of each model was carried out auto-
matically by the NSGA-II application. The programme identifies the relevant modelled building materials 
and their quantities, and then adds up their associated embodied CO2 and costs factors (including CO2 
incurred by replacements, waste, transportation, etc.). Once the model thermal analysis is finished, the pro-
gramme retrieves the model’s energy consumption, assigns the relevant operational CO2 and cost values to 
it and adds these values to those of the embodied CO2 and cost. Bounded by the study scope, the life cycle 
impact, for both CO2 and cost, was calculated using the following formulas:

LCCFi Eip Eit Eic Eir Eio Eieol= + + + + +( )∑ 	 (2)

Where:
LCCFi = Life Cycle Carbon Footprint –Emissions per total floor area (kgCO2e/m

2) of the i’th model
Eip = Emissions due to overall building materials production and manufacturing
Eit = Emissions due to transport to site
Eic = Emissions due to construction works on site
Eir = Emissions due to replacements works
Eio = Emissions through the operational stage of the building (lighting, space and water heating)
Eieol = Emissions through the End of Life stage and disposal of the building

LCCi Cip Cir Cio= + +( )∑ 	 (3)

Where:
LCCi = Life Cycle Cost – Cost per total floor area (£/m2) of the i’th model
Cip = Cost of overall building materials
Cir = Cost related to replacements works
Cio = Overall cost of the operational stage of the building (lighting, space and water heating)
The implementation of this study was carried out using UCL Legion High-Performance Computing 

Facility (HPC) services – an infrastructure network of a cloud computing system.106 Legion enables the 

Table 3.  Optimisation inputs – design parameters and the search space.

Design parameter Number of possibilities

Geometries Models/spatial arrangements 32
Zones (rooms) per model 8
Window per zone 1
Window location (orientation) Up to 4

Build-ups External wall 9
Roof 9
Ground floor 9
Internal floor/ceiling 9
Party wall 3
Windows 3
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execution of parallel computational processes using multiple computer cores. The optimisation was exe-
cuted and stopped manually after 40 generations, each consisted of 60 individuals. Using 30 threads in paral-
lel, it took 2 h for all simulation to complete and for the optimisation to reach a convergence.

Results

Pareto-optimal models

For validation and verification purposes, three sets of optimisation runs were carried out. However, as the 
results were similar – only one set of outputs is shown.

Table 5.  Sources of data for the emissions and costs involved in the different life cycle stages.

Life cycle stage Data source and references

  CO2e emissions Costs

A1 + A2 + A3 EPD, Bath ICE. Geometries based on the 
IDF model (replacement rates and waste 
rates applied)

Building components and materials cost. 
Geometries based on the IDF model 
(replacement rates and waste rates applied)

A4 3% from overall embodied CO2e
a –

A5 7% from overall embodied CO2e
a –

B4 EPD and Bath ICE.86 Assumed life 
expectancy88–90

EPD and Bath ICE.86 Assumed life 
expectancy88–90

B6 Space heating – EnergyPlus simulation. 
Electricity for lighting – manual calculation

Space heating – EnergyPlus simulation. 
Electricity for lighting – manual calculation

B7 Based on Energy Saving Trust91 Based on Energy Saving Trust91

C1 + C2 + C3 + C4 2% from overall Embodied CO2e
a  

aBased on Gustavsson et al.,68 Monahan and Powell,92 Blengini and Di Carlo,93 Cole and Kernan,94 and Dixit et al.95

Table 6.  Study assumptions.

LCCF Stage Data source and references

Assumed building life span 60 years96

Energy cost increase, on top of inflation 10% every 5 years97

Discount rate (for NPV calculation) 3% (BSRIA, 2016)
Gas emission rates 0.216 kg CO2e/kWh82

Gas cost (including assumed annual standing charge and VAT) £0.045/kWh98

Electricity emission rates 0.519 kg CO2e/kWh82

Electricity cost (including assumed annual standing charge and 
VAT)

£0.16/kWh98

Assumed boiler life span 15 years
Boiler unadjusted cost £2000
Initial boiler efficiency 93%
Annual reduction in boiler efficiency 1%99

Weather file London Gatwick.epw
Heating set points for the different rooms, domestic hot 
water consumption and internal loads

All based on the NCM (national calculation 
method)82
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Figure 10 shows the optimisation and pareto results. Figure 10(a) shows the LCCF and LCC results of the 
entire GA run, that is, each and every individual in the GA. It shows that overall, LCCF and LCC results 
ranged between 1050–1800 kgCO2e/m

2 and 550–1000£/m2 respectively.
Figure 10(b) focuses on the pareto-optimal solutions and shows that the front is consisted of 12 optimal 

models, with an LCCF that ranges between around 1050 and 1110 kgCO2e/m
2, and LCC – between 550 

Table 8.  Materials data.

Material name Thickness 
(m)

kgCO2e/kg kg/m3 Life spana 
(years)

Waste 
rateb (%)

Cost 
(GBP/m2)

Plasterboard 0.0125 0.302 668 75 22.5 8
Mineral wool 100 mm 0.1 1.37 19.5 100 15 6
XPS 50 mm 0.05 2.82 35 100 5 11
EPS 100 mm 0.1 3.17 25 100 5 7
Concrete 100 0.1 0.107 2400 75 5 25
Ground (London clay) 1 0 0 100 0 0
Brick 0.102 0.158 1550 100 20 45
Aerated block 0.1 0.28 600 100 20 20
Screed 0.2 0.25 2300 75 5 150
Clad cement board 0.008 0.724 1700 45 8 45
Clad aluminium 0.0009 11 2700 43 8 35
Roof ceramic tiles 0.013 0.48 1600 45 8 35
Roof slate 0.008 0.04 2850 74 8 75
Roof fibre cement 0.008 2.8 1700 45 8 50
Flooring hardwood 0.02 1.09 750 39 10 70
Flooring laminated wood 0.005 3.3 600 20 10 25
Flooring carpet (nylon) 0.01 4.5 400 10 5 38
MDF 0.01 1.2 700 39 10 6
Mineral wool 75 mm 0.075 1.37 19.5 100 15 5
EPS 75 mm 0.075 3.17 25 100 5 6
Plaster (render) 0.02 0.13 668 39 5 15
Sub structure timber (at 0.6 length, 1 m height) 0.05 1.09 750 100 15 8

aLife span based on Global,100 Black Hills Professional Home Inspections LLC101 and Forum.102

bWaste rates based on WRAP,103 Tam104 and DEFRA.105

Figure 9.  The basic design parameters that were considered in the optimisation process.
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and 620£/m2. Compared to literature and previous studies70 that found that the LCCF of residential build-
ings in the UK range between 1020 kgCO2e/m

2 and 6200 kgCO2e/m
2, these figures are relatively low. Still, 

however, this is expected as these are the LCCF values of buildings that have been optimised to reduce 
their LCCF as much as possible. 

Figure 10(c) shows the LCCF (black) and LCC (green) average values per each generation. It shows that 
the first generations started with an average of around 1500 kgCO2e/m

2, which, by the 10th generation, went 
down to around 1100 kgCO2e/m

2.
All pareto-optimal models had the same building geometry (geometry number 16, as shown in detail in 

Figure 11) – which was proven to have the best performance of all examined geometries. This building 
geometry was the most efficient as it apparently has a combination of minimal volume-to-exposed-surface-
area, but also cost-effective windows and construction materials. Minimising surface area both reduced heat 
loss and reduces construction material and its associated embodied carbon and capital costs.

Furthermore, all pareto-optimal models had the same external wall, party wall and floor/ceiling build-ups, 
as well as window orientations (south-facing windows, whenever the layout wall orientation allowed). The 
pareto-front models differed however, in their roof, ground floor slab and windows constructions, as well as 
with the kitchen’s south-facing window-to-wall ratio.

Aggregated year-by-year emissions and costs

Next, a comparison between the aggregated annual emissions and costs of the pareto-optimal models was 
carried. Figure 12 shows that among the pareto-optimal models, those that had the highest LCC values also 
achieved minimal LCCF values, and models with lower LCC had higher LCCF values. This is because 
buildings with a better operational-related performance had required a higher initial investment for construc-
tion (e.g. more insultation, better windows, etc.). In some cases, more expensive construction elements had 
lower Embodied Carbon values, compared to the cheaper ones (timber-frame windows, for example, com-
pared to uPVC windows). This could also contribute to the opposite relationship between LCCF and LCC 
throughout the buildings’ lives. Figure 12 also shows that the embodied element in the LCC (cost at year 0, 
or the initial investment in the buildings) equals to around 65% of the buildings’ life cycle spending, while 
the embodied carbon equals only around 20% of the buildings’ LCCF. This is because of the difference 
between the value of energy (in pounds) and its associated emissions (in CO2e).

Figure 10.  Optimisation (a) Pareto, (b) Convergence, and (c) Results.
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Figure 11.  Best spatial arrangement – floor plans, elevations and thermal zones.

Figure 12.  Aggregated year-by-year emissions (left) and costs (right) for the pareto front models.
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Life Cycle stages

Figure 13 shows the pareto models life cycle performance, broken down by the life cycle stages (following 
BS EN 15978:2011). As the CO2 emissions of a unit of energy is generally high in relation to the building’s 
overall initial embodied carbon, the analysis shows that the use stage (space heating, lighting and the use of 
domestic hot water) is the most carbon-intensive stage in the life cycle of the building, and – as expected for 
the climate and the typical heating fuel in London – space heating is the largest single cause of CO2 emis-
sions. However, when costs are examined – and since the cost of the same unit of energy in the UK is rela-
tively low in relation to the building’s initial construction costs – results show that the operational stage has 
a secondary contribution to the building’s life cycle cost and that the initial investment has the highest cost 
throughout the building’s life. The difference between the sum of the initial capital investment and that of 
spending on operational purposes is also emphasised by the discounting of future spending to get the NPV 
of energy costs, followed by the LCC protocol as explained in section 2.3.

Proportional contribution of embodied and operational components

When comparing the ratio of the embodied and operational CO2 and cost outputs for the optimal buildings, 
Figure 14 shows that the operational stage of the optimal building designs contributes most to their life cycle 
carbon footprint (80% on average, σ = 2). This is well aligned with the results of a systematic literature 
review,70 that found that the operational stage contributes to around 75% of the LCCF, while the embodied 
carbon accounted for only 24%. When examining the LCC – it is the initial capital investment that has the 
largest part of the optimal buildings cost throughout their lives (77%, σ = 2). It is suggested that the different 
trend, when comparing the ratio of LCCF and LCC components, is due to the relatively low cost of the 
operational units (i.e. gas and electricity), compared to the cost of construction materials, whereas those 
operational units’ emission rates are relatively high, compared to the materials’ embodied carbon.

Figure 13.  Life cycle stages break-down – LCCF (left) and LCC (right).



Schwartz et al.	 23

Current legislation’s life cycle performance

The framework further enabled an analysis of the life cycle performance of the optimal buildings that com-
ply with current UK legislation. As legislation is currently focused on reducing operational consumption, an 
optimisation was carried out to find the optimal combination of design parameters that would lead to the 
building with the minimal operational energy consumption and spending on energy.

This building had the lowest possible U-Values (that were also highest in Embodied Carbon and capital 
costs). The LCCF and LCC of that building was then calculated and finally plotted against the Pareto-optimal 
solutions that were presented previously. Figure 15 shows that the optimal building, in terms of operational 
consumption does not result in the minimal carbon footprint or minimal life cycle costs. In fact, this building 
had achieved 1237 kgCO2e/m2 and 668£/m2, compared to an average 1094 kgCO2e/m2 and 586£/m2 of the 
pareto-optimal models. On a 60-years scale, the building that had been optimised for operational performance 
emits around 13% and costs around 15% more than the average pareto-optimal building (more than a total of 
£11,000, discounted over 60 years, or £16,500 un-discounts). This is an important finding, as it means that cur-
rent policy can be improved as it does not achieve what it intends – a reduction in overall carbon emissions.

As the UK government had committed to reduce CO2 emissions in the built environment (rather than 
energy consumption), it is important to promote the investigation of the more comprehensive approach of 
‘performance’ in buildings: exploring the contribution of the emissions that are incurred during the construc-
tion and maintenance of buildings, throughout their lives, rather than focusing on their annual energy perfor-
mance solely.

Discussion and conclusions

This study has tested the implementation of a proposed computational tool for the automated generation and 
optimisation of building designs, in terms of their life cycle performance. The study presented an integration 
of generative design programming, optimisation algorithms, thermal simulations and life cycle performance 
evaluation frameworks (EN 15978:2011 for LCCF and BS ISO 15686-5 for LCC).

The study proposed to integrate multiple analysis methods and design techniques and successfully merged 
them together. PLOOTO-LC – the designated computer programme for generating buildings layouts – created 

Figure 14.  The ratio of embodied and operational emissions and costs over 60 years.
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a series of feasible designs based on an initial set of design criteria. These were then fed into an NSGA-II 
optimisation application, which automatically calculated the LCCF and LCC of each design by accessing 
each model, extracting surface areas, build-ups and associated CO2 and costs, and carrying out a thermal 
analysis to evaluate operational CO2 and costs. The study has shown that a set of building geometries, build-
up materials and WWR combinations that results with a pareto front of near-optimal designs, in terms of 
LCCF and LCC, were found by using the tool.

Results show that the optimal buildings have achieved significant reductions in both LCCF and LCC, 
compared to existing literature. The study presented a year-by-year breakdown and a life cycle stages analy-
sis of CO2 emissions and cost, and showed that, in the optimal buildings, the operational-stage has the largest 
life cycle environmental impact, while it had a secondary impact on building life cycle cost.

The study further performed an investigation into the life cycle performance of the optimal ‘compliant’ 
building – the one that has the minimal operational performance. Compared to the absolute LCCF and LCC 
optimal buildings, though, that building achieved worse life cycle performance.

The proposed tool could potentially assist design teams, legislators and decision makers early in the 
design process, particularly when facing life cycle environmental and costing decisions. Though the study 
focused on LCCF and LCC, the computational framework can be adapted to optimise other objective criteria 
for example, energy intensity, operational energy consumption and others.

Limitations

Though different components of the tool have been tested and validated before,8,20 it is acknowledged that 
two main types of limitations exist:

Computational application limitations: During the optimisation procedure, only the spatial arrangements that 
had been found by PLOOTO-LC were examined. It is noted that other spatial arrangements might exist that, 
when coupled with the other examined building properties, might result with better life cycle performance.

Figure 15.  The LCCF and LCC of the optimal compliant building (operational consumption) plotted against the 
pareto-optimal LCCF and LCC designs, showing that the compliance has room for improvement.
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Life cycle performance limitations: This study examined buildings performance under certain settings 
and potential design properties (climate, orientation, construction materials, build-ups, etc.). It is acknowl-
edged that different settings and specifications may lead to different study outcomes.

Furthermore, in calculating the embodied and operational performance of building models, this study used 
particular set of data (a combination of EPDs and Bath ICE) for embodied CO2 and costs values. It is noted 
that when different EPDs or embodied Carbon databases are used (e.g. Bath ICE) – these values may differ.

For operational performance, the study used EnergyPlus for thermal simulation and energy consumption 
prediction. Although thermal simulation tools are commonly used in the research of the built environment, 
studies have shown that a gap exists between thermal simulation tools predictions and actual energy 
use.84,107–109 Furthermore, as future weather conditions might change significantly – it is acknowledged that 
the predicted operational emissions figures in reality may differ from the calculated ones.

Other life-cycle-related uncertainties include various study assumptions: for example, 60 years as the 
assumed building life span, building components replacement rates, assumed inflation rates and others. 
These are limitations that are embedded within life-cycle protocols. It is also important to point out that these 
findings are specific for the selected location and cost parameters of the UK.

It should be noted that, however, that the flexibility of the proposed tool allows it to accommodate such 
future refinements. Thus, at any point, any of the input parameters (e.g. cost, embodied CO2, life expectancy, 
etc.) can be modified to reflect a more accurate depiction of the model.

Lastly, while the optimisation ran for 2 h on 30 threads in parallel, this study recognises that this process 
is resource intensive. This means that the optimisation task could take around 8–12 h to run on a personal 
computer.

Future work

The development of a generative design application was a key aspect of this research. As discussed in this 
study, current generative design programming frameworks for architectural spatial arrangements are limited. 
Though the discipline of architectural generative design is not yet highly developed, it is expected that it will 
become more common both in academia and in practice in the future.

In that respect, PLOOTO-LC has fulfilled its aim – it resulted in a feasible and realistic set of designs. 
However, while the tool has shown promising results, further research and technical development of genera-
tive design approaches is needed, with a focus on their potential integration with sustainable design and 
engineering principles. This could lead to a more extensive research of sustainability in the built environ-
ment and to the development of a new approach to the design of efficient buildings.

Furthermore, since the scope of this study was limited to evaluating the potential of automated design of 
a residential building, further development is required to adapt it for application for the generation of other 
building uses – commercial, educational and others.

Lastly, the focus of the proposed tool is the generation of optimal buildings regarding their LCCF and 
LCC. Future developments are required to enable the tool to generate optimal buildings when different 
objectives should be account for, for example, energy use, daylight distribution, user comfort, etc.
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