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Automatic multilabel detection of ICD10 codes in Dutch
cardiology discharge letters using neural networks
Arjan Sammani 1,8✉, Ayoub Bagheri1,2,8, Peter G. M. van der Heijden2,3, Anneline S. J. M. te Riele1, Annette F. Baas4, C. A. J. Oosters5,
Daniel Oberski 2 and Folkert W. Asselbergs 1,6,7

Standard reference terminology of diagnoses and risk factors is crucial for billing, epidemiological studies, and inter/intranational
comparisons of diseases. The International Classification of Disease (ICD) is a standardized and widely used method, but the manual
classification is an enormously time-consuming endeavor. Natural language processing together with machine learning allows
automated structuring of diagnoses using ICD-10 codes, but the limited performance of machine learning models, the necessity of
gigantic datasets, and poor reliability of terminal parts of these codes restricted clinical usability. We aimed to create a high
performing pipeline for automated classification of reliable ICD-10 codes in the free medical text in cardiology. We focussed on
frequently used and well-defined three- and four-digit ICD-10 codes that still have enough granularity to be clinically relevant such
as atrial fibrillation (I48), acute myocardial infarction (I21), or dilated cardiomyopathy (I42.0). Our pipeline uses a deep neural
network known as a Bidirectional Gated Recurrent Unit Neural Network and was trained and tested with 5548 discharge letters and
validated in 5089 discharge and procedural letters. As in clinical practice discharge letters may be labeled with more than one code,
we assessed the single- and multilabel performance of main diagnoses and cardiovascular risk factors. We investigated using both
the entire body of text and only the summary paragraph, supplemented by age and sex. Given the privacy-sensitive information
included in discharge letters, we added a de-identification step. The performance was high, with F1 scores of 0.76–0.99 for three-
character and 0.87–0.98 for four-character ICD-10 codes, and was best when using complete discharge letters. Adding variables
age/sex did not affect results. For model interpretability, word coefficients were provided and qualitative assessment of
classification was manually performed. Because of its high performance, this pipeline can be useful to decrease the administrative
burden of classifying discharge diagnoses and may serve as a scaffold for reimbursement and research applications.
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INTRODUCTION
Electronic health records (EHRs) enable fast information retrieval
and contain both structured (e.g., laboratory values and numeric
measurements) and unstructured data (free text in clinical notes)1.
Clinical discharge letters are an important source of information,
but the translation from free text to structured data remains
challenging2. To structure diagnoses, the international classifica-
tion of diseases (ICD-10) coding system was created. This
classification system is hierarchical and multiple codes may be
assigned to a single discharge letter (multilabel). ICD-10 is
alphanumerically structured, with seven possible digits arranged
hierarchically as shown in Figs. 1 and 23. The classification is
performed by practitioners, managers or medical coders and
serves worldwide in clinical practice (e.g., medical history and
billing), research (e.g., trial recruitment), and (inter)national
epidemiological studies2–5. Manual classification is an enormously
costly endeavor, its quality depends on the expertise of who is
performing the classification task and the reliability for terminal
parts of ICD-10 codes can be poor, even among trained medical
coders5.
Natural language processing (NLP) together with machine

learning allows automating ICD-10 coding for discharge letters2.
This task is particularly challenging because of: (i) the

unstructured nature of free text, (ii) the multilabel setting of
ICD10 codes, and (iii) the large number of terminal ICD-10
codes4. Several attempts have been made to automatically
assign ICD-10 codes to medical documents ranging from rule-
based to machine learning approaches2,6. Generally speaking,
rule-based methods have good performance, which is however
restricted to conditions that seldomly occur in free-text clinical
notes (given possibly ambiguous wording/spelling, multilabel
classification and sparsity). Machine-learning techniques on the
other hand have shown increasingly promising results2,4,6,7.
Supervised classification can often be simplified by considering
only top-level “chapters” of the ICD-10 hierarchy or by only
considering a single label or disease groups as output. By doing
so, some models do not depict a real-world situation and are
less applicable in daily clinical practice4,7–16.
More recently, multilabel classification of detailed ICD-10 codes

has been improved greatly with deep learning, showing better
performance when using RNNs. These improved models however
rely on enormous labeled datasets (Table 1)2,4,6,17. Unsupervised
or semi-supervised classification algorithms are not dependent on
curated EHR datasets and may even reduce bias from practice and
coding behavior. Recent work by Sonabend et al. illustrated an
unsupervised knowledge integration algorithm by using pre-
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existing clinical knowledge sources such as Medscape and
mapped identified terms to concept unique identifiers. This
resulted in a well-performing classification algorithm for six
entities8. In general, clinically relevant granularity in predicted
labels and reliability of terminal parts of ICD-10 codes is
challenging to model performance (Table 1)2,4,6–16. Contextual
word embeddings (ELMo and BERT) are derived from pretrained
bidirectional language models and show substantial performance
improvements in many NLP tasks18,19. Fine-tuning of these
pretrained models is, given the language and context of the
training data, in essence, efficient and performant but poses
challenges when contextual embeddings in a subdomain and
language are lacking6,18,20. Furthermore, patient privacy may be
compromised if these language models are published online21.

In our prior work, we assessed the performance of the different
machine and deep learning models from literature to this dataset.
We employed two vectorization methods (bag of words and word
embeddings) and used support vector machines for each of the
representations. We also employed several neural network
architectures, from which the bidirectional gated recurrent unit
(BGRU) performed best2. In this work, we focus on clinical usability
which requires high performance, sufficient clinical granularity,
and interpretability. We focussed on well-defined and frequently
used three- and four-character ICD-10 codes that are clinically
relevant such as atrial fibrillation (I48), acute myocardial infarction
(I21) or dilated cardiomyopathy (I42.0). Since privacy-sensitive
clinical data is being used, we embedded a pseudonymization
algorithm in the pipeline for GDPR compliance. The main
contributions of this work are: (i) addressing imbalanced data by
using a binary relevance method for multiclass/multilabel
classification and a combination of binary classifiers into a
multilabel clinically relevant presentation, (ii) a combination of
word embeddings and bi-directional gated recurrent unit neural
network that encompasses neighborhood and context of words
and (iii) “explainability” of the model with word coefficients and
manual assessment of classification. We assessed three- and four-
character performance using solely the summary paragraph of
discharge letters (conclusion), adding clinical variables (age/sex)
and multilabel classification, as is the case in clinical practice, and
compared our proposed embedding to ELMo as a contextual
embedding layer in the neural network model.

Fig. 1 The alphanumeric structure of ICD-10 codes. The codes may
be three to seven characters and terminal parts of these codes
describe the diagnoses in more detail. The first character (Alpha) is
considered to be the “chapter” of ICD-10 coding, followed by a digit.
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Fig. 2 Codes with more than 400 appearances in the dataset. Three character codes are presented on the y-axis and their labels are
provided in the figure. These codes are derived from letters from the department of cardiology.
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RESULTS
Datasets
In total, 5548 discharge letters from in-house cardiology patients
were included in the dataset with an average of 4.7 codes per
letter (cardinality). The median age at discharge was 68 years (1st
and 3rd quartiles [58–77]) and 36% of patients were female. For
sanity check, Cohen’s Kappa was calculated for three- and four-
character ICD-10 codes and was high: 0.78 (95% confidence intervals
(CI) [0.72–0.84]) for four-character codes and 0.85 (95% CI
[0.79–0.89]) for three-character codes. Table 2 summarizes the
characteristics and an example (Box 1) is given after de-

identification. Sixty-four different ICD-10 codes have at least 200
records in this dataset. The most common ICD-10 code was I25
(chronic ischemic heart disease) followed by Z95, I10, and I48
(presence of cardiac vascular implants and grafts, primary hyperten-
sion, and atrial fibrillation/flutter, respectively) with all at least 1000
individual counts. The validation dataset contained an additional
5089 discharge and procedural letters from cardiology. The most

Table 1. Performance of machine-learning classifiers in literature.

Author (reference) F1-score Classifier Dataset

Atutxa et al.4 0.84–0.95 RNN Death certificates from CépiDc (France), ISTAT (Italy), and a Hungarian
databasea

Blanco et al.6 0.70 RNN Osakidetza Spanish Basque public health system

Cao et al.9 0.68 HCAML Internal Chinese EHR dataset

Chen et al.10 0.63 Longest Common Subsequence ICD-10 National Chinese dataset

Lin et al.14 0.73 CNN Tri-service General Hospital Taipei dataset with ICD-10 labels

Du et al.11 0.43 CNN Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC II)b

Duarte et al.12 0.65 “Combined neural network” Cause of death autopsy reports (three-character)

Karimi et al.13 0.81 CNN ICD-9 radiology reports

Koopman et al.7 0.94 Binary SVM classifier for 4 different codes Australian Bureau of Statistics dataset with ICD-10 cause of deathsc

Pakhomov et al.15 0.54 Naive Bayes Classifier Random sample of HICDA (A mayo-clinics adaptation of ICD-8) dataset

Perotte et al.16 0.40 Hierarchy-based SVM Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC II)b

Singh et al.17 0.86 BERT model implemented in PyTorch Medical Information Mart for Intensive Care III (MIMIC III)

Sonabend et al.8 0.71 “Unsupervised knowledge integration
(UNITE)”

Medical Information Mart for Intensive Care III (MIMIC III) and Partners
HealthCare (PHS) Biobankd

RNN recurrent neural network, HCAML hierarchical convolutional attention for multi-label classification, EHR electronic health record, ICD international
classification of disease, SVM support vector machine, CNN convolutional neural network, HICDA hospital adaptation of the international classification of
diseases.
aUsing 128,000 training data.
bUsing the same dataset.
cUsing 447,336 training data and only four ICD-10 codes to predict as an outcome.
d193,677 and 52,691 training data for six disease groups.

Table 2. UMCU Cardiology dataset characteristics.

Variable Description

Taxonomy International Classification of
Disease version 10

Language Dutch

Number of unique records 5548

Number of unique tokens 148,726

The average number of tokens
per record

936

Number of rolled-up labels
(i.e., I42)

608

The average number of codes
per letter

4,7

% of labels with >50 letters 8,03%

Cohen’s Kappa 4-character: 0.78, 95% CI
[0.72–0.84]
3-character: 0.85, 95% CI
[0.79–0.89]

Age. Median (IQs)
Sex (% Female)

68 (1st: 58, 3rd: 77) years
36% Female

Box 1: An example of a Dutch discharge letter from the dataset

Bovengenoemde patiënt was opgenomen op <DATUM-1> op de <PERSOON-1>
voor het specialisme Cardiologie.
Reden van opname STEMI inferior
Cardiale voorgeschiedenis. Blanco
Cardiovasculaire risicofactoren: Roken(-) Diabetes(-) Hypertensie(?) Hypercholes-
terolemie (?)
Anamnese. Om 18.30 pijn op de borst met uitstraling naar de linkerarm, zweten,
misselijk. Ambulance gebeld en bij aansluiten monitor beeld van acuut
onderwandinfarct.
AMBU overdracht. 500 mg aspegic iv, ticagrelor 180 mg oraal, heparine, zofran
eenmalig, 3× NTG spray. HD stabiel gebleven.Medicatie bij presentatie.Geen.
Lichamelijk onderzoek. Grauw, vegetatief, Halsvenen niet gestuwd. Cor s1 s2 geen
souffles.Pulm schoon. Extr warm en slank.
Aanvullend onderzoek. AMBU ECG: Sinusritme, STEMI inferior III)II C/vermoedelijk
RCA.
Coronair angiografie. (…). Conclusie angio: 1-vatslijden..PCI
Conclusie en beleid
Bovengenoemde <LEEFTIJD-1> jarige man, blanco cardiale voorgeschiedenis, werd
gepresenteerd vanwege een STEMI inferior waarvoor een spoed PCI werd verricht
van de mid-RCA. Er bestaan geen relevante nevenletsels. Hij kon na de procedure
worden overgeplaatst naar de CCU van het <INSTELLING-2>…Dank voor de snelle
overname…Medicatie bij overplaatsing. Acetylsalicylzuur dispertablet 80 mg; oraal;
1× per dag 80 milligram; <DATUM-1>. Ticagrelor tablet 90 mg; oraal; 2× per dag 90
milligram; <DATUM-1>. Metoprolol tablet 50 mg; oraal; 2× per dag 25 milligram;
<DATUM-1> .Atorvastatine tablet 40 mg (als ca-zout-3-water); oraal; 1× per dag 40
milligram; <DATUM-1>
Samenvatting
Hoofddiagnose: STEMI inferior wv PCI RCA. Geen nevenletsels. Nevendiagnoses:
geen.
Complicaties: geen Ontslag naar: CCU <INSTELLING-2>.
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common ICD-10 code in the validation set was comparable to the
training set (I25, followed by Z95, I10, I48, I50, etc.) and are depicted
in the supplementary file (Supplementary Fig. 1).

Performance of models
The performance in test and validation (F1-score) of our best
performing model (BGRU) is summarized in Fig. 3. Overall, the

performance was remarkably high for all selected ICD-10 codes in
both test and validation and was optimal using the entire corpus
of the discharge letters rather than using just the conclusion/
summary section. Adding variables age and sex did not affect
performance. Leveraging the model by using ELMo as the
embedding layer did not improve performance (Fig. 4). The
performance of multilabel three-character classification in the test
set was 0.75 for sensitivity, 0.92 for specificity with an F1-score of

Fig. 3 F1 scores for test and validation for three- and four-character ICD-10 codes. The model performed well in both three- and four-
character codes in both the test and validation datasets.
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0.74 and decreased in external validation (0.72, 0.61, 0.69,
respectively, Supplementary Table 5).

Three and four-character ICD-10 labels
Table 3 contains a description of all three and four-character ICD-
10 labels. Performance for main diagnosis (I21, I25, I42, I48, and
I50) and cardiovascular risk factors (I10, E11, and E78) was high
(Fig. 3 and Supplementary Table 2) in both test and validation. F1-
scores range from 0.76 (I10) to 0.99 (N18). Performance for the
four-character codes was also high, with F1 scores ranging from
0.87 (Z95.5: the presence of coronary angioplasty implant graft
and I25.1: atherosclerotic heart disease of the native coronary

artery) to 0.98 for I48.1 (persistent atrial fibrillation). Sensitivity in
external validation ranged from 90% for the presence of cardiac
and vascular implants and grafts (Z95) to 100% for cardiomyo-
pathy (I42) (supplementary Tables 3 and 4). Specificity was lower
in the validation set which would indicate false positives or over-
classification by our model. For all three-character ICD-codes,
these putative “false” positives were assessed. Many (83% on
average) of the putative “false” positives were in fact true positives
after manual review, indicating that the model had successfully
identified additional cases. Of the putative “false” positives, 93%
were correct for E11, 87% were correct for E78, 60% were correct
for I10, and 97% correct for I21. This pattern was seen for the rest
of the codes as well (Supplementary Table 7).

Fig. 4 Comparison between ELMo and our proposed method. Leveraging the model by using ELMo as the embedding layer did not
improve performance.

Table 3. Selected three-character and four-digit ICD-10 codes.

ICD10 code three-digit and (four-
digit)

Description of codes

E11a (E11.9) Type 2 diabetes mellitus (type 2 diabetes mellitus without mention of complications)

E78a (E78.0) Disorders of lipoprotein metabolism and other lipidemias (pure hypercholesterolemia)

I10a Primary hypertension

I21 (I21.1, I21.4) Acute myocardial infarction (ST-elevation myocardial infarction and non-ST elevation myocardial infarction)

I25 (I25.1, I25.1, I25.5) Chronic ischemic heart disease (atherosclerotic heart disease of the native coronary artery, old myocardial
infarction, and ischemic cardiomyopathy)

I42 (I42.0) Cardiomyopathy (dilated cardiomyopathy)

I48 (I48.0, I48.1, I48.2, I48.9) Atrial fibrillation and flutter (paroxysmal atrial fibrillation, persistent atrial fibrillation, chronic atrial fibrillation,
unspecified)

I50 (I50.1) Heart failure (left ventricular failure)

N18a Chronic kidney disease

Z95 (Z95.0, Z95.1, Z95.5) Presence of cardiac and vascular implants grafts (presence of a cardiac pacemaker, presence of aortocoronary
bypass graft, presence of coronary angioplasty implant and graft)

aRisk factor for cardiovascular disease.
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Word coefficients
To interpret the model, word coefficients have been plotted per
ICD-10 code. Words that increase the prediction probability are
delineated in green. For Type 2 diabetes (E11) these words are
either related to the use of medication (“metformin”, “gliclazide”,
“insulin”), are synonyms for E11 (“diabetes”, “mellitus”, “dmii”) or
are words that co-occur with cardiovascular risk factors (“over-
weight” (translation: overweight), “stenoses”). For hypertension
(I10), the highest coefficients were reached with the synonyms
and medication for hypertension as well (“hypertensie”, “amlodi-
pine”, “valsartan”, “ht”). This pattern can be seen for all ICD-10
codes. The words “Blanco”, “normale” and “nee” all have negative
coefficients which illustrate the negative effect of these words in
the ICD-10 codes E11, E78, I10, I21, and Z95. The coefficients of all
ICD-10 codes are visible in the Supplementary Files.

Manual qualitative assessment of classification
For qualitative assessment of over-, under-, and improved
classifications all three-character ICD-10 codes were investigated
manually by a clinical doctor. The model performed remarkably
well in predicting ICD-10 codes of patients in case medication use
indicated specific diagnoses. For E11 (type 2 diabetes) for
example, in case metformin or gliclazide was prescribed, the
model accurately identified them whereas the medical coders
missed them in the validation set. The model seemed to
overestimate the probability of type 2 diabetes when “type ii”
was used in another context (type 2 ischemia or type 2 atrial
septal defect). This detection of prescribed medication in the text
was also present for hypertension (I10) and dyslipidemias (E78).
The detection of medication, however, also led to overclassifica-
tion, since some prescribed drugs (amlodipine, perindopril, or
rosuvastatin) are often also prescribed as a means of treatment or
primary/secondary prevention in other diseases than hyperten-
sion, for example in heart failure or ischemic heart disease. In the
case of acute myocardial infarction (I21), the model accurately
identified procedures for which acute ischemia was an indication
(STEMI and non-STEMI). Our model seemed to struggle with
shorter ambiguous procedural letters. In the case of I50 (heart
failure) relatively short discharge letters (e.g., for device implanta-
tion) may include an abbreviation of cardiac decompensation
(“decomp cor”) but was missed by our model. As expected, if more
words were used to describe the patient’s condition (“CRT-D
replacement for non-reversible perfusion defects that led to a dilated
and poorly functioning asynchronous LV”) the model did accurately
predict the ICD-10 class. Overclassification was present in case of
other reasons for decompensation than cardiac (pulmonary,
hepatic, or renal), or in case cardiomyopathy was not yet
diagnosed but the discharged patient was still undergoing the
work-up. Supplementary Table 8 contains a description of all
three-character ICD-10 codes and their qualitative assessments.

DISCUSSION
We created a deep learning pipeline for automatic multilabel ICD-
10 classification in the free medical text using Dutch cardiology
discharge letters. Given the sensitive nature of these data, we
included a de-identification step22.
Prior work on NLP in cardiology was focused on specific

relevant indicators such as hypertension, algorithms to identify
Framingham heart failure signs and symptoms, or identification of
cardiovascular risk factors and outcomes23. The use of recurrent
neural networks (RNN) for cardiovascular diagnoses, risk factors,
and complications, however, remained relatively uncharted.
Partially, this is due to the rather low performance of some
models limiting clinical usefulness7,9–16. Recent methodological
developments in neural networks lead to high performing models,
but they rely on limiting the number of codes (four) to predict or

require huge datasets of up to 128,000 training data points (Table 1)4,7.
Limited performance of some models, the necessity of gigantic
datasets for (pre-)training, and lack of interpretability withhold
them from replacing or aiding a human coder.
In this work, we used a deep neural network and focussed on

clinical usefulness with both single and multilabel prediction in a
relatively small dataset of 5,548 clinical discharge notes. We
extracted frequently used, well defined, and clinically relevant
three- and four-digit ICD-10 codes5. These three-character codes
still have enough granularity to include relevant diagnoses such as
atrial fibrillation (I48) or acute myocardial infarction (I21). Next, we
assessed and improved an already potent type of RNN (BGRU) by
using semi-structured parts of the text, by adding clinical variables
(age and sex), and by adding an ELMo embedding layer. We then
sought to explain our model using word coefficients and a manual
review of misclassifications. Even though our dataset focussed on
cardiology, the pipeline is generalizable and may be trained with
data from any other specialty.
A comparison of several state-of-the-art RNN ICD coding

systems reported that classification performance is higher for
ICD chapters than rolled-up codes. The previously reported F1-
scores of ICD-10 chapters for this dataset were around 50–60% at
best and limited to 20–30% for rolled-up, more terminal codes2.
BGRU has been promising for the classification of medical text and
prior experiments advocate either reducing granularity or
increasing training data to improve performance2,4,6. In addition,
the use of co-occurrences (association rule mining) for the
initialization weights also positively impacted performance12.
Unfortunately, in most settings training data are limited. There-
fore, we tried reducing the granularity of our dataset whilst
remaining clinically relevant without reducing the label-set size. By
doing so, our pipeline reached F1 scores for rolled-up codes of
97%. Using the entire corpus of text rather than semi-structured
parts also improved classification performance, especially for
conventional risk factors such as diabetes and hypertension that
are seldomly mentioned in the summary paragraph of discharge
letters. By building on prior work and using BGRU which is
computationally less expensive, our reported performance is
substantially higher than previously seen in smaller datasets,
making it a useful and scalable tool for administrative and
research support2,4,12. We argue that this is caused by the high-
quality of the selected training data, our preprocessing pipeline,
and the binary classification method together with a potent BGRU.
Contextual word embeddings (ELMo and BERT) have shown
substantial performance improvements in many NLP tasks6,18,19.
Recently, Blanco et al. assessed the performance of a BGRU
combined with ELMo, showing an improvement in model
performance. Their trained language was in Spanish which in
terms of NLP is under strong growth and therefore they were able
to train their embedding sets on the strong Spanish Billion Word
Corpus6. In this regard, however, the lack of large Dutch (medical)
language models for embeddings poses an important challenge.
This is especially understandable as in our case privacy sensitive
information in the medical field may be compromised if these
language models are published online21. Interestingly, ELMo did
not positively affect our results which may be due to a variety of
reasons. First, our pipeline was already optimized for this specific
task of medical ICD-10 labeling and included word-embedding in
the first layer of the BGRU, performing quite well with a binary
relevance method. Next, given the fact that our model is trained
and validated in a specific field of expertise (cardiology), there is
little word ambiguity to be expected (the case when contextual
word embeddings would be most beneficial). Third, the ELMo
pipeline may still be suboptimal and have room for improvement
for this task. Using language-specific pre-trained embeddings in
the field of medicine, multi-language support, or by trying meta-
embeddings as proposed by Blanco may further improve the
performance of these pipelines6,24. A recently published
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standardized benchmarking by Peng et al.25 evaluated BERT and
ELMo on ten datasets, showing substantially better performance
using pre-trained BERT models than other state-of-the-art models.
Sing and colleagues implemented BERT as well on de-identified
data from the MIMIC-III dataset (58.000 admissions). They
demonstrated that with fine-tuning based transfer learning of a
pretrained bidirectional transformer language model, very high
overall performances can be reached for both top 10 and top 50
ICD-10 codes. They advocate working on interpretability for
models’ prediction and further deployment to more coding
systems (e.g., CPT and SNOMED)17.
An important consideration is model interpretability. State-of-

the-art deep learning models are challenging to grasp with no
specialized knowledge in neural networks, and practice has shown
that the easier the model, the wider its acceptance. There has
been a significant increase in the use of machine learning
methods but a notable proportion of works still use relatively
simple methods: shallow classifiers, or combined with rule-based
methods for higher interpretability23. Interpretable results how-
ever may provide experts with supporting evidence when
confronted with coding decisions4. We, therefore, attempted to
provide insight into the model by using word coefficients and
manual assessment of classifications. These results illustrate that
synonyms of ICD-10 diagnoses or medication specifically pre-
scribed for these diseases have the highest positive probabilities.
Negative words (negation), such as “normal” or “no” decrease the
probability of ICD-10 diagnoses, more noticeably for cardiovas-
cular risk factors. Interestingly, in a recent study published by Lin
et al.20, their results also suggest that BERT subsumes domain
adaptation for negation detection and further fine-tuning on
specific corpora does not lead to much overfitting.
Most ICD-10 codes are used rarely in clinical practice, while a

small number of diagnoses comprise the majority of patients seen
in cardiology clinics3,5. To aid administrative support, our focus
was directed towards multilabel classification and we argue that
the model is interpretable and its performance is high enough to
aid medical coders. From a clinical perspective, the high single
label performance allows for patient identification in EHRs by
using only the clinical discharge letters as a first step towards
building research cohorts of interest. Less frequent ICD-10 codes,
for rare diagnoses for instance, still require datasets large enough
for machine learning and deep learning algorithms to perform
well in ICD-10 classification2. For these diagnoses, rule-based
methods may be a more viable option, given that the terms in the
text follow regular patterns and the task is limited to single-label
classification4. To accurately capture rare diagnoses, other more
structured parts of the EHR may be useful such as laboratory
results. A well-performing example is a simple classification
algorithm for the identification of patients with systemic sclerosis
in the EHR by using positive antinuclear antibody titer
thresholds26.
An automated coding system that combines simple classifiers

with machine learning models is not new, as they have been
successfully implemented in 2006 at the Mayo Clinic and resulted
in an 80% reduction of staff engaged in manual coding15. More
recently, a similar system for veterinary EHRs (VetTag) was built,
which classified veterinary clinical notes with diagnosis codes.
Authors argue that processing these clinical notes has a
tremendous impact on (veterinary) clinical data sciences27. None-
theless, these promising results have not led to the widespread
use of automatic coding systems for discharge letters23. It is clear
that human coders can benefit by reviewing suggested ICD-10
codes rather than reading all discharge letters and translating
them to proper ICD-10 codes15. Saved time can then be used to
dive deeply into the correct terminal and detailed coding or
additional structuring of data, leading to better research
infrastructure. However, there are two long-term concerns: the
first is the actual implementation of these algorithms into the

software. Implementation is more than solely installing an
automation pipeline. It requires new software that is embedded
in existing workflows and prolonged maintenance. The second is
the improvement of technology for more complex and less
frequent ICD-10 codes with high accuracy, which would require
larger datasets and feedback algorithms. We underline the
importance of further efforts to focus on implementation, rather
than solely focusing on methodological fine-tuning as suggested
by Singh et al.17.
Our proposed model may be limited by the quality of the data.

Even though they were coded by an experienced medical coder,
given the character of the dataset it is prone to have human error.
As this work involves privacy-sensitive data, we are restricted by
the Dutch version of the European GDPR (AVG) which inhibits us
from using external Dutch datasets. Nonetheless, within this small
country and the fact that medical staff rotate we do not believe
this poses a major limitation to the validation. Future studies may
improve this model by using contextual word embeddings pre-
trained on Dutch medical corpora, assess performance in other
datasets as well as the use of other coding systems.
We propose a novel automated ICD-10 classifier BGRU pipeline

with a de-identification step. Interpretation of the BGRU pipeline is
made possible by using word coefficients. Because of its high
performance, this pipeline can be useful to decrease the
administrative burden of classifying discharge diagnoses and
may serve a scaffold for reimbursement and research applications.

METHODS
Medical ethical regulations and GDPR
This study was exempt from medical ethical regulations by the Medical
Ethical Committee of the University Medical Center Utrecht (UMCU) (No.
18-446). A data management plan was created and reviewed by the
privacy security board to meet institutional and national requirements in
the Netherlands for GDPR compliance.

Dataset
Discharge letters were retrieved from the EHRs in the University Medical
Centre Utrecht (UMCU) and were available from the start of the EHR on 08-
09-2013 until data extraction on 30-06-2018, written by a total of 84
different medical doctors. All letters were manually classified with
multilabel/multiclass ICD-10 codes by an experienced medical coder that
works solely in the field of cardiology. The discharge letters were matched
to the corresponding ICD-10 classification by using patient ID and dates of
admission/discharge from within the UMCU Research Data Platform. We
removed ICD-10 codes with less than 50 observations28. Since the
reliability of terminal codes is poor, simplification of ICD-10 codes is
important to receive a valid image of health care reality5. The selection of
specific ICD codes was based on availability and clinical usability (sufficient
granularity) of higher-level rolled-up codes (e.g., I42 (cardiomyopathy)
rather than I42.3 (endomyocardial (eosinophilic) disease)). The 10 selected
codes account for six main diagnoses (acute myocardial infarction, chronic
ischemic heart disease, cardiomyopathy, atrial fibrillation/flutter, heart
failure and presence of cardiovascular implant grafts) and four cardiovas-
cular risk factors (type 2 diabetes, hyper/dyslipidemia, primary hyperten-
sion, chronic kidney disease). To not oversimplify the task, from these
10 selected codes, further four-character ICD-10 codes (e.g., I48.0
(paroxysmal atrial fibrillation) rather than I48) were also considered to
assess performance for very granular labels with at least 100 appearances
in both the training and validation set. The ICD-10 codes are depicted in
Table 3. Dataset quality for both three- and four-character ICD-10 codes
were manually assessed using an adaptation of Cohens Kappa previously
described and used for ICD-10 codes (AS)5. Hundred clinical discharge
notes were randomly selected, stripped from patient-IDs, and reclassified
by a medical coder (D.K.) that was blinded to the correct codes.

Validation
To assess the performance of the model in a new dataset, a nonoverlap-
ping temporal validation dataset was created consisting of letters and ICD-
10 codes. This validation set contains new clinical discharge and
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procedural letters written by 46 different medical doctors. Given GDPR
restrictions and the nature of this privacy-sensitive work, extracting letters
from other hospitals was not possible. However, because clinical staff in
the Netherlands rotate from hospitals within the country frequently, the
letters were written by other clinicians and teams. In addition, sentence
structures, as well as diagnosis coding structures, are interchangeable in
hospitals. Therefore, this temporal dataset was deemed fit for external
validation. For this set, clinical letters from 01-07-2018 until 04-09-2019
were included. Because the dataset is solely constructed on discharge
letters and ICD-10 codes, the pipeline is not EHR system or vendor-specific
and may be interoperable.

Machine-learning pipeline for ICD-10 classification
The pipeline is summarized in Fig. 5. Before feeding data into the different
machine learning or deep learning algorithms, we first applied the
following steps:

(i) We de-identified the letters using DEDUCE22.
(ii) We preprocessed the text (trimmed whitespaces, numbers and

converted all characters to lowercase) using the tm and tidytext
packages in R29.

To transform the text into data a machine can understand (text
representation), the output of our preprocessed text was then vectorized
using word embedding. This method allows representing words in such a
way that it captures meanings, semantic relationships, and context that
words are used in. It is a dense feature representation in a low dimensional
vector and has been proven to be a robust solution for most NLP issues.
Word embedding is also the first layer in a neural network (NN) based
classifier. After k-fold cross-validation (k= 5) we implemented a BGRU NN.

BGRU neural network
The general architecture of a BGRU model is shown in Fig. 6. In this model,
the input layer is the text from discharge letters and the output layer is the
ICD-10 label. The model uses deep RNN in its hidden layers, called gated
recurrent units (GRUs). GRU is a type of RNN that can model sequential
data. The GRU network receives an input at each timestep, updates its
hidden state, and makes a prediction. By using recurrent connections,
information can cycle inside these networks for an arbitrarily long time.
However, RNNs are known to have difficulties learning the interactions
between distant words because of long-range dependencies. This problem
is known as the vanishing gradient problem. Extensions for NNs, such as
long-short term memory (LSTM) and GRU were specifically designed to
combat this issue through a gating mechanism. Using GRUs also leads to a
reduced number of parameters, faster convergence, and a more general-
izable model in comparison to other methods12.
We used the Keras library to implement the BGRU model for automated

ICD-10 coding30. Vector dimensionality was set to 300, windows size to five
and we discarded words that only appeared once in the training set. We
experimented with the model directly on the word sequence of all the
discharge letters. As in previous studies on textual data, the fact that our
data contains long texts creates a challenge for preserving the gradient
across thousands of words. Therefore, we used dropout layers to mask the
network units randomly during the training31. We set the number of
hidden units in the RNN layers at 100. Dropout and recurrent dropout were
added to avoid overfitting, both at a 0.2 rate. On the output of the
recurrent layer, a fully connected NN (two dense layers) was applied for the
classification of the ICD-10 codes. The hidden dense layer contains 128
units and uses the relu activation function, and the output layer uses a
softmax function to determine if the ICD code should be assigned to the
letter.

Fig. 5 Summary of training, validation, and model interpretation pipeline. Data were preprocessed, vectorized, and split into a training
(80%) and holdout (20%) set as shown in panel (a). Binary classifiers were trained in panel (b) and the model was evaluated in panel (c). Model
interpretability was provided by using word coefficients and human interpretation of misclassification.
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Contextual word embeddings
A dense NN using word vectors from contextual embeddings based on
ELMo has been used for the comparison study19. These word vectors are
learned functions of the internal states of a deep bidirectional language
model trained on our original dataset. In this representation, the vector
obtained for each word depends on the entire context in which it is used.
Using a bidirectional LSTM, instead of a fixed embedding for each word,
ELMo looks at the entire sentence before assigning each word an
embedding (Supplementary Fig. 2).

Assessment of performance and experiments
We investigated performance by randomly splitting the dataset between a
training (0.80) and testing (0.20) set. The model was then again evaluated
in external validation. Sensitivity (recall), specificity, positive predictive
value (PPV, precision), negative predictive value (NPV), and F1-score
(a harmonic mean between sensitivity and positive predictive value) were
calculated. We performed four experiments with different input variables:
(I) using only the summary paragraph parts of discharge letters
(conclusion), (II) using the entire corpus of discharge letters, (III) using
the entire corpus of discharge letter and adding the variables age and sex,
and (IV) multilabel classification of experiment III. For an administrative
support tool, it is important to suggest the right diagnoses, ranked by the
prediction probabilities. For multilabel assessment, we considered every
ICD label above a probability threshold as a positive. We assigned this
threshold in such a way that the label cardinality for the test set is similar
to the label cardinality in the training set. When performance discrepancies
were present, a clinical doctor (A.S.) manually assessed these errors in a
descriptive manner. False positives were either all manually assessed, or a
subset of 100 letters in case of >100 putative false positives.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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