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Abstract: We propose a Bayesian approach using improper priors for hi-
erarchical linear mixed models with flexible random effects and residual
error distributions. The error distribution is modelled using scale mixtures
of normals, which can capture tails heavier than those of the normal dis-
tribution. This generalisation is useful to produce models that are robust
to the presence of outliers. The case of asymmetric residual errors is also
studied. We present general results for the propriety of the posterior that
also cover cases with censored observations, allowing for the use of these
models in the contexts of popular longitudinal and survival analyses. We
consider the use of copulas with flexible marginals for modelling the de-
pendence between the random effects, but our results cover the use of any
random effects distribution. Thus, our paper provides a formal justification
for Bayesian inference in a very wide class of models (covering virtually all
of the literature) under attractive prior structures that limit the amount of
required user elicitation.
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1. Introduction

Longitudinal and survival data appear in many application areas such as
medicine, biology, agriculture, epidemiology, economics and small area estima-
tion. This kind of observations typically present within- and among- subject
dependence due to grouping and/or repeated measurements. Hierarchical linear
mixed models (LMM) are often used to account for parameter variation across
groups of observations as well as dependence. The general formulation of this
type of model is given by

yij = x�
ijβ + z�ijui + εij , (1)

where yij is the observed response for subject i at time tij , j = 1, . . . , ni with ni

recording the number of repeated measurements for subject i, and i = 1, . . . , r
where r denotes the number of subjects, β is a p × 1 vector of fixed effects, ui

are q × 1 mutually independent random vectors (often called random effects)
and εij are i.i.d. residual errors. Let y = {yij} be the n× 1 vector of response
variables and X and Z denote the known design matrices of dimension n × p
and n × qr, respectively, while ε is the n × 1 vector of residual errors, and
u = (u�

1 , . . . ,u
�
r )

�. We assume that rank(X) = p, and n > p+ qr throughout.
In matrix notation we can write (1) as

y = Xβ + Zu+ ε.

These models are used in different fields under different names and notation.
In Bayesian analysis of variance, the use of these models goes back to Tiao and
Tan (1965). In survival analysis, the n survival times grouped in T are usually
transformed to logarithms and modelled through

log(T) = Xβ + Zu+ ε, (2)

which is often referred to as a Mixed Effects Accelerated Failure Time model
(MEAFT, Komárek and Lesaffre, 2007). In this literature, the random effects
u are typically called frailties. An additional challenge that often appears in
this case is the presence of censored observations. In the context of production
and cost frontiers used in economics, the logarithm of the output (or cost)
of r firms are modelled using (1) with certain regularity restrictions on the
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regression coefficients β and sign restrictions on the random effects ui, which
have a clear interpretation here in terms of inefficiencies. These models are
known as stochastic frontier models (see e.g. Fernández et al., 1997).

The random vectors ε and u are often assumed to be normally distributed.
Given that the normality assumption can be restrictive in practice (and even im-
possible for stochastic frontier models), alternative distributional assumptions
have been explored, such as smooth flexible (semi-nonparametric) distributions
for the random effects and normal residual errors (Zhang and Davidian, 2001),
skew Student-t distributions for the random effects (Lee and Thompson, 2008),
normal random effects with residual errors modelled through a finite mixture
of normals (Komárek and Lesaffre, 2007, 2008), and residual errors and ran-
dom effects jointly distributed as a multivariate scale mixture of skew-normal
distributions (Lachos et al., 2010), which makes the residual errors and the ran-
dom effects dependent. Jara et al. (2008) model both the residual errors and
the random effects using multivariate skew–elliptical distributions, and Dunson
(2010) and Jara et al. (2009) use Bayesian nonparametric approaches. Although
flexible, Bayesian nonparametric approaches tend to be more computationally
expensive than simpler flexible parametric models, while leading to similar con-
clusions as shown in our examples.

In a Bayesian framework with improper priors, Hobert and Casella (1996)
and Sun et al. (2001) present conditions for the propriety of the posterior under
a certain improper prior structure for the parameters of model (1) with normal
assumptions on both the random effects and the residual errors. When using
improper prior structures, it becomes essential to check the propriety of the
posterior distribution in order to justify their use and interpretation in a prob-
abilistic framework. Hobert and Casella (1996) characterise cases where certain
improper prior structures used in practice lead to proper posteriors. The use of
such priors was becoming common at that time since they do allow for the con-
struction of a Gibbs sampler. However, Hobert and Casella (1996) show that the
posterior may still be improper in some cases and, consequently, their use is not
theoretically justified. Rubio (2015) presents extensions of these propriety re-
sults to the use of certain classes of flexible random effects distributions. Hobert
and Casella (1996) and Rubio (2015) assume independence of the random ef-
fects, while Sun et al. (2001) assume a specific structure for the covariance of the
random effects. Fernández et al. (1997) proposed an improper prior structure
which allows for using arbitrary random effects distributions, as long they are
proper. More specifically, they adopt the following stochastic structure

u ∼ p(u),

ε | σε ∼ Nn(0, σ
2
εIn)

π(β, σε) ∼ π(β)

σb+1
ε

, b ≥ 0, (3)

where p(u) is proper, and π(β) is proper or bounded. The condition that p(u)
is proper is rather mild as this allows for using any parametric distribution for
the random effects u with proper priors on the “deeper” parameters that index
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the random effects distribution. The propriety of p(u) is essential since an im-
proper p(u) never leads to a posterior (see Theorem 2 from Fernández et al.,
1997). The prior structure on (β, σε) is interesting as it includes priors with
useful properties such as invariance with respect to reparameterisation under
affine transformations. In this paper, we extend (3) by relaxing the assumption
of normality of the residual errors and derive conditions for the existence of
the corresponding posterior distribution that also allow for censored observa-
tions, covering virtually all models in the recent literature. Before presenting
our results, we clarify our main contributions relative to our previous work in
flexible linear regression models. Rubio and Genton (2016) study linear regres-
sion models with skew-symmetric errors and improper priors, covering the case
with censored observations. Analogous results are presented in Rubio and Yu
(2017) in the context of linear regression models with two-piece residual errors.
Both papers focus on the effect of using skewed residual error distributions in
terms of the prediction of the residual life of censored individuals. They do not
study the propriety of the posterior distribution of linear regression models with
random effects, which requires special attention as shown in this paper.

The Appendix includes proofs not mentioned in the text (Appendix A), con-
ditions on the mixing distributions (Appendix B) and a further simulation study
with skewed errors and random effects (Appendix C). The R codes used in the
real data examples are available at http://www.rpubs.com/FJRubio.

2. Multivariate scale mixtures of normals: a warning

In the context of linear regression, a common strategy for relaxing the assump-
tion of normality of the residual errors consists in using multivariate scale mix-
tures of normals (Lachos et al., 2010). Recall that a p-variate scale mixture of
normal distribution (SMNp(μ,Σ, δ;H)) with location parameter μ, symmetric
positive definite scale matrix Σ, and parametric mixing distribution H(· | δ) is
defined through

f(x | μ,Σ, δ) =

∫ ∞

0

τp/2

det (2πΣ)1/2
exp

[
−τ

2
(x− μ)�Σ−1(x− μ)

]
dH(τ | δ).

For example, when H(τ | δ) is a Gamma distribution with parameters (δ/2, δ/2)
(and mean one), we obtain the p-variate Student-t distribution with δ degrees of
freedom. Osiewalski and Steel (1993) and Breusch et al. (1997) have pointed out
inferential peculiarities using such error distributions, both in Bayesian and clas-
sical regression settings. Here we explore the implications of using multivariate
scale mixtures of normal in the context of LMM.

Consider the following hierarchical structure for model (1)

u ∼ p(u), (4)

ε | σε, δε ∼ SMNn(0, σ
2
εIn, δε;Hε), (5)

where p(u) is proper. For our theoretical results, it does not matter whether
p(u) is assumed to be a fixed distribution without further recourse to deeper

http://www.rpubs.com/FJRubio
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parameters or whether it is a marginal distribution obtained from a proper
joint distribution. In practice, the latter is typically the case and it is derived
from a proper parametric distribution with a proper prior on its parameters.
Throughout Sections 2 and 3, we will only refer to p(u) for the sake of simplicity
of notation.

We adopt the following prior structure

π(β, σε, δε) ∼ π(β)π(δε)

σb+1
ε

, (6)

where b ≥ 0, π(β) is bounded, and π(δε) is a proper prior with support Δ ⊂ R.
The following result shows that the marginal likelihood of the data for this
hierarchical model can be factorised as the product of the marginal likelihood
under normality multiplied by a quantity that does not depend on the data.

Remark 1. For model (1), (4)-(6) the marginal likelihood of the data can be
written as

m̃(y) = m(y)

∫
Δ

∫
R+

τ−
b
2 π(δε)dHε(τ | δε)dδε, (7)

where m(y) is the marginal likelihood corresponding to model (1), (3).

The factorisation of the marginal likelihood of the data can be used to obtain
conditions for the propriety of the posterior distribution as follows.

Corollary 1. Consider the model (1), (4)-(6) and let (X : Z) denote the entire
design matrix, and suppose that p(u) is proper. Consider also the following
conditions:

(a) rank(X : Z) < n,
(b) b ≥ 0,

(c)
∫
Δ

∫
R+

τ−
b
2π(δε)dHε(τ | δε)dδε < ∞.

Then, conditions (a) and (c) are necessary for the propriety of the posterior and
conditions (a), (b), and (c) are sufficient for the propriety of the posterior.

Proof. From Remark 1 we have that the marginal density of the data can be
written as in (7). The finiteness of m(y) in this expression, under assumptions
(a)–(b), is proved in Theorem 1 from Fernández et al. (1997). The second factor
in (7) is finite by assumption (c).

For b = 0, condition (c) is satisfied by any mixing distribution. However,
for b > 0 this condition may rule out the use of some mixing distributions
and/or priors on δε, as discussed in the Supplementary Material (Appendix
B). Remark 1 and Corollary 1 point out some issues with this extension. If we
use Bayes factors to compare two models M1 and M2 of the type described
in Remark 1, with different distributions for the residuals and corresponding
marginal likelihoods m̃1(y) and m̃2(y), we obtain (using obvious notation)

B12 =
m̃1(y)

m̃2(y)
=

∫
Δ

∫
R+

τ−
b
2π1(δε)dHε,1(τ | δε)dδε∫

Δ

∫
R+

τ−
b
2π2(δε)dHε,2(τ | δε)dδε

.
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Therefore, the Bayes factor is determined solely by the mixing distributions and
their priors, but not by the data (!). Intuitively, these results indicate that the
data do not contain information about the additional shape parameter δε. The
factorisation (7) indicates that the use of this kind of multivariate extension is
vacuous, in the sense that the additional shape parameters do not really help
model selection. Similar issues with the use of certain classes of multivariate dis-
tributions and priors have been studied in Maruyama and Strawderman (2014)
for linear regression models. The next section presents an alternative extension
that overcomes such problems.

3. The proposed extension: flexible linear mixed models

The inferential issues pointed out in the previous section are due to the use of a
single mixing variable in the construction of the joint distribution of the residual
errors. In other words, (5) really implies only a single realisation of the mixing
variable, irrespective of the size of n. Thus, we only have a single observation
of the mixing variable, and inference on its (precision) parameter is impossible
from the sample. One way to avoid these issues consists of using one mixing
variable for each individual error. In this case, each observation contributes to
the estimation of the parameter of the distribution of the mixing variable (see
West, 1984 for a discussion in the context of Bayesian linear regression). Thus,
we consider the model in (1) and (4), but replace (5) by

εij | σε, δε, Hε
i.i.d.∼ SMN1(0, σε, δε;Hε). (8)

This is a rather wide class of symmetric and unimodal distributions, with tails
which are either normal or fatter than normal, covering e.g. the normal, Student-
t, logistic, Laplace, Cauchy and the exponential power family with power 1 ≤
q < 2 (see Fernández and Steel, 2000 for more details). These distributions
naturally lead to models that are robust to the presence of outliers (see Rosa
et al., 2003, who also adopt SMN1 residual errors, but restrict their study to
the use of proper priors and normal random effects).

Using the same prior structure (6), we derive the following conditions for the
propriety of the posterior distribution.

Theorem 1. For the model (1), (4), (8) with prior (6), and p(u) a proper
distribution, consider the following conditions:

(a) rank(X : Z) < n,
(b) b ≥ 0,

(c)
∫
Δ

∫
R+

τ−
b
2 π(δε)dHε(τ | δε)dδε < ∞.

(d) y is not an element of the column space of (X : Z).

Condition (a) is necessary for the propriety of the posterior. Conditions (a) –
(d) are sufficient for the propriety of the posterior.

Condition (a) indicates the need for repeated measurements (otherwise n = r
and rank(X : Z) = n for sensible choices of Z), while conditions (b) and (c)
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characterise the priors and mixing distributions that produce a proper posterior.
Given that all the distributional assumptions in Theorem 1 are continuous, it
follows that condition (d) is satisfied with probability one. Condition (d) is
equivalent to saying that y = Xβ + Zu has no solution, which can be checked
numerically.

The only requirement on the distribution of the random effects u is that the
marginal p(u) is proper, so as stated before, we can use an arbitrary parametric
distribution u ∼ F (· | θ), with a proper prior on the parameter θ. This includes,
for example, the use of finite mixtures of normals, scale mixtures of normals,
skewed scale mixtures of normals, truncated distributions, etc. In our examples,
we explore the use of distributions that can capture departures from normality
in terms of asymmetry and tail behaviour.

3.1. Mixed effects accelerated failure time models with censoring

The propriety result presented in Theorem 1 can be extended to models used
in survival analysis. Let T be a sample of n survival times. The MEAFT in
(2) is exactly the same as (1) for the log survival times. However, a common
difficulty that arises with survival regression models is the presence of censored
observations (Komárek and Lesaffre, 2007; Vallejos and Steel, 2015). If the sam-
ple of survival times does not contain censored observations, the existence of
the posterior is provided by Theorem 1. If the sample contains both censored
and uncensored observations, the propriety of the posterior can be based on the
uncensored observations as follows.

Theorem 2. Let T be a sample of survival times where n0 observations are
uncensored, with p + qr < n0 < n. Consider the model (2), (4), (8) with prior
(6), and p(u) a proper distribution. Then, the posterior is proper if the marginal
likelihood of the uncensored observations is finite.

The following result presents conditions for the case when the sample contains
only censored observations.

Theorem 3. Suppose that nc survival times Tj , j = 1, . . . nc, are observed
as closed intervals Ij, and the rest of the observations exhibit another type of
censoring. Thus, let I1, . . . , Inc be finite-length intervals on the positive real line,
nc ≤ n and let (X : Z)nc represent the design matrix associated to the nc

interval–censored observations. Consider the model (2), (4), (8) with prior (6),
p(u) assumed to be proper, and the following condition:

(d′) The set E = I1 × · · · × Inc and the column space of (X : Z)nc are disjoint.

Conditions (a)–(c) from Theorem 1 together with (d′) are sufficient for the pro-
priety of the posterior.

Condition (d′) means that there is no –unobserved– true response that can be
written as a linear combination of the columns of X and Z, and can be relaxed
in terms of the dimensionality as follows.
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(d′′) There exists a set E ′ = Ij1 × · · · × Ijn′ , p + qr < n′ ≤ nc, for some set
of indexes J = {j1, . . . , jn′} ⊆ {1, . . . , n}, such that E ′ and the column
space of (X′,Z′) are disjoint, where X′ and Z′ are the design submatrices
associated to the indexes J .

Another way of checking condition (d′) consists of formulating it as a linear
programming problem. Denote η ∈ R

p+qr, ξ = (ξ1, . . . , ξnc) ∈ E , and Ij =
[lj , uj ], j = 1, . . . , nc. Define the problem:

Find max
η,ξ

1,

Subject to (X : Z)ncη = ξ,

and log(lj) ≤ ξj ≤ log(uj), j = 1, . . . , nc. (9)

Then, condition (d′) is equivalent to verifying the infeasibility of (9), for which
several theoretical and numerical tools are available.

3.2. Stochastic frontier models

The stochastic frontier model with composed error takes the form of (1) where
u ∈ U with U = {u : Zu ∈ R

n
+}. Several specifications of interest in the context

of economics are studied in Fernández et al. (1997). The propriety results in
Theorem 1 apply to this model, which represents an extension of Theorem 1 in
Fernández et al. (1997).

3.3. Asymmetric errors

So far, we have considered symmetric extensions of the standard linear mixed
model with normal errors. We now extend to asymmetric errors by using the
class of two–piece distributions. Let f be a continuous density with a unique
mode at 0, support on R and shape parameter δ. A random variable W is dis-
tributed according to a two-piece f -distribution (denoted W ∼ TP(μ, σ, γ, δ; f))
if its density function can be written as s(w | μ, σ, γ, δ) =

2

σ[a(γ) + b(γ)]

[
f

(
w − μ

σb(γ)

∣∣∣ δ) I(w < μ) + f

(
w − μ

σa(γ)

∣∣∣ δ) I(w ≥ μ)

]
. (10)

where I(·) denotes the indicator function, and {a(·), b(·)} are positive differen-
tiable functions. This density is continuous, unimodal, with mode at μ ∈ R, scale
parameter σ ∈ R+, and skewness parameter γ ∈ Γ ⊂ R. It coincides with the
density f when a(γ) = b(γ), and is asymmetric for a(γ) 
= b(γ) while retaining
the tails of f in each direction. The most common choices for a(·) and b(·) cor-
respond to the inverse scale factors parameterisation {a(γ), b(γ)} = {γ, 1/γ},
γ ∈ R+ (Fernández and Steel, 1998), and the epsilon-skew parameterisation
{a(γ), b(γ)} = {1−γ, 1+γ}, γ ∈ (−1, 1) (Mudholkar and Hutson, 2000). Rubio
and Steel (2014) study other parameterisations as well as some interpretable
choices for the prior of the skewness parameter γ.
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Suppose now that f in (10) is a univariate scale mixture of normals with
mixing distribution Hε and consider the model (1) with the following error
structure

εij | σε, γε, δε
i.i.d.∼ TP(0, σε, γε, δε; f), (11)

and prior

π(β, σε, γε, δε) ∼ π(β)π(γε)π(δε)

σb+1
ε

, (12)

where b ≥ 0, π(β) is bounded, and π(γε) and π(δε) are proper priors with
γε ∈ Γ.

Theorem 4. Consider the model (1), (4), (11), (12), p(u) a proper distribution,
and conditions (a)–(d) from Theorem 1 together with the following condition:

(e)
∫
Γ
M(γε)

bπ(γε)dγε < ∞, where M(γε) = max{a(γε), b(γε)}.
Then, conditions (a)–(e) are sufficient for the propriety of the posterior distri-
bution.

Condition (e) is automatically satisfied for b = 0 and any parameterisation
{a(·), b(·)}. For the epsilon-skew parameterisation, condition (e) is satisfied for
any b ≥ 0 and any proper prior π(·) given that the functions a(·) and b(·)
are upper bounded. Thus, the introduction of skewness does not destroy the
existence of the posterior distribution while allowing for more flexibility.

4. Numerical examples

4.1. Simulation study I (Student-t errors, skewed random effects)

In this section we conduct a simulation study, inspired by that presented in
Zhang and Davidian (2001), in order to assess the effect of different distribu-
tional assumptions on the random effects and the residual errors. We study the
model:

yij = tijβ1 + wiβ2 + ui + εij , (13)

where i = 1, . . . , r = 100, j = 1, . . . , ni = 5, tij = j − 3, wi = I(i ≤ 50),
β1 = 2, β2 = 1. According to Zhang and Davidian (2001), r = 100 represents a
case where the amount of information available to estimate both the fixed effects
and the random effects is modest. Four scenarios are considered for the distribu-
tion of the residual errors εij and the random effects ui. For the first scenario we
simulate from εij ∼ t(0, 0.5, 2) and ui ∼ TPN(−1.5, 0.5, 0.5); where t(0, 0.5, 2)
represents a Student-t distribution with location parameter 0, scale parameter
0.5 and 2 degrees of freedom, and TPN(−1.5, 0.5, 0.5) represents a two–piece
normal with location parameter −1.5, scale parameter 0.5 and skewness param-
eter 0.5 using the epsilon-skew parameterisation. For the second scenario we
use εij ∼ N(0, 0.5) and ui ∼ TPN(−1.5, 0.5, 0.5). The third scenario consists of
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εij ∼ t(0, 0.5, 2) and ui ∼ N(−1.5, 0.5). The fourth scenario uses εij ∼ N(0, 0.5)
and ui ∼ N(−1.5, 0.5). We simulate 100 data sets under these configurations.
For each of these simulated samples, the model (13) was fitted assuming that
εij ∼ t(0, σε, δε) and ui ∼ TPN(μ, σ, γ) with the prior structure:

π(β1, β2, σε, δε, μ, σ, γ) ∝
π(δε)π(μ)π(σ)π(γ)

σε
, (14)

where π(δε) is the weakly informative priors for the degrees of freedom of a
Student-t distribution proposed in Rubio and Steel (2015), π(μ) is a uniform
prior on [−100, 100], π(σ) is a half-Cauchy density with mode 0 and unit scale
parameter, which has been shown to induce a posterior with good frequentist
properties in the context of Bayesian hierarchical models (Polson and Scott,
2012). Finally, π(γ) is a uniform prior on (−1, 1), which represents a weakly
informative prior as described in Rubio and Steel (2014). The prior in (14) is
consistent with prior (6) and ensures a proper p(ui). The propriety of the pos-
terior is then guaranteed by Theorem 1. For each of the 100 simulated sets we
obtain a posterior sample of size 1, 000 using an adaptive Metropolis within
Gibbs algorithm (Roberts and Rosenthal, 2009) using the ‘spBayes’ R package
(Finley et al., 2007). The posterior samples are obtained after a burn-in period
of 7500 iterations and thinned every 10 iterations in order to reduce correlation
(17, 500 draws in total). Table 1 presents summary statistics of the posterior
samples, the median (over the datasets) Bayes factors in favour of γ = 0 (sym-
metric random effects), calculated using the Savage-Dickey density ratio, and
the average odds p/(1 − p), where p = P(δε > 10), which provides information
about the appropriateness of the assumption of normal tails for the residual
errors. The Savage-Dickey density ratio (Verdinelli and Wasserman, 1995) is
calculated as the ratio of the marginal posterior density function and the prior
density of the parameter under consideration (γ) evaluated at the point of in-
terest (γ = 0). In order to evaluate the posterior density, we employ a kernel
density estimator (with Gaussian kernel) of the posterior samples. The use of
the (standard) Savage-Dickey density ratio is valid in our setting as we are us-
ing independent proper priors for the parameters that differ across models (see
Verdinelli and Wasserman, 1995). Posterior medians are presented instead of
posterior means as the existence of the posterior mean is not guaranteed in all
the scenarios. From this table, we can observe that despite the relatively small
sample size, these Bayesian model selection criteria correctly identify the true
model in each scenario.

In order to assess the impact of the assumption of normality, we implement
the model with normal residual errors and random effects. Table 2 summarizes
posterior inference for this model. The misspecification of the distribution of the
residual errors leads to an overestimation of σε, which is in line with the fact
that this scale parameter has a different interpretation in normal and Student-t
cases, while the presence of unmodelled skewness affects the estimation of the
location parameter μ. Note also that misspecification dramatically increases the
uncertainty about the fixed effects.
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Table 1

Simulation study I: Posterior medians and 95% credible intervals of the median estimators
using the general model. The median odds are calculated after removing the cases where all

of the drawn values are above 10.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Parameter εij ∼ t εij ∼ N εij ∼ t εij ∼ N

ui ∼ TPN ui ∼ TPN ui ∼ N ui ∼ N

β1 1.99 (1.96,2.04) 2.00 (1.98,2.03) 2.00 (1.96, 2.03) 2.00 (1.98,2.03)

β2 0.99 (0.74,1.23) 0.99 (0.80,1.20) 1.01 (0.75, 1.21) 1.00 (0.76,1.19)

σε 0.50 (0.42,0.57) 0.48 (0.44,0.52) 0.50 (0.42,0.57) 0.48 (0.44,0.52)

δε 1.97 (1.61,2.71) 31.54 (13.64, 203.5) 1.96 (1.60,2.70) 30.48 (13.73,203.4)

μ -1.50 (-1.97, -1.20) -1.50 (-1.92,-1.22) -1.47 (-1.91,-1.04) -1.50 (-1.95,-1.11)

σ 0.49 (0.38,0.60) 0.49(0.41,0.57) 0.48 (0.37,0.59) 0.49 (0.41,0.59)

γ 0.50 (0.00,0.79) 0.54 (-0.04,0.79) 0.00 (-0.51,0.58) 0.01 (-0.52,0.41)

Median BF

γ = 0 0.78 0.43 1.98 2.50

Median odds

δε > 10 0 17.54 0 19.02

Table 2

Simulation study I: Monte Carlo medians and 95% credible intervals of the median
estimators using the normal model

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Parameter εij ∼ t εij ∼ N εij ∼ t εij ∼ N

ui ∼ TPN ui ∼ TPN ui ∼ N ui ∼ N

β1 2.00 (1.89,2.09) 2.00 (1.98, 2.03) 2.00 (1.89, 2.10) 2.00 (1.97,2.02)

β2 0.99 (-0.05,2.24) 1.07 (0.13,2.39) 1.08 (-0.05,2.05) 1.01 (0.78,1.20)

σε 1.53 (1.01,3.05) 0.50 (0.47,0.53) 1.53 (1.01,3.05) 0.50 (0.46,0.53)

μ -3.41 (-4.21,-2.82) -3.51 (-4.28,-2.97) -1.53 (-2.18,-0.92) -1.50 (-1.65,-1.35)

σ 2.57 (2.18,3.00) 5.27 (2.24,2.94) 2.44 (2.07,2.86) 0.50 (0.42,0.59)

4.2. Simulation study II (Student-t errors and random effects with
censoring)

In this section, we present a simulation study with censored responses. We
consider a model which is used in practice for modelling the evolution of a
marker in longitudinal studies (see e.g. Vaida and Liu, 2009), in particular

yij = βj + ui + εij ,

where εij and ui are mutually independent, i = 1, . . . , 100, and j = 1, . . . , 5. We

generate data using two scenarios: (I) εij
i.i.d.∼ N(0, 0.5), and ui

i.i.d.∼ N(0, 0.25);

and (II) εij
i.i.d.∼ t(0, 0.5, 2), and ui

i.i.d.∼ t(0, 0.25, 2). The theoretical values
of the regression parameters are (β1, β2, β3, β4, β5) = (2.5, 3.0, 3.5, 4.0, 4.5). We
simulate 100 data sets under these two configurations and truncate the values
that are greater than log10(75000). This truncation strategy produces samples
with 7%–18% censored observations. Then, we fit the following four models:
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Table 3

Simulation study II with Scenario I: Posterior medians and 95% credible intervals of the
median estimators.

Parameter Model 1* Model 2 Model 3 Model 4

β1 2.49 (2.37,2.61) 2.50 (2.37,2.61) 2.50 (2.38,2.61) 2.49 (2.37,2.61)

β2 2.99 (2.90,3.08) 2.99 (2.91,3.08) 2.99 (2.91,3.07) 2.98 (2.90,3.07)

β3 3.51 (3.39,3.60) 3.51 (3.39,3.60) 3.51 (3.39,3.60) 3.51 (3.39,3.60)

β4 3.99 (3.90,4.14) 3.99 (3.90,4.14) 3.99 (3.89,4.14) 4.00 (3.90,4.14)

β5 4.49 (4.40,4.62) 4.50 (4.41,4.63) 4.49 (4.40,4.63) 4.49 (4.40,4.62)

σε 0.50 (0.47,0.54) 0.49 (0.46,0.53) 0.50 (0.47,0.54) 0.48 (0.44,0.53)

δε – 59.51 (29.15,201.12) – 32.73 (11.28,212.87)

σ 0.25 (0.20,0.31) 0.25 (0.20,0.31) 0.22 (0.15,0.28) 0.22 (0.16,0.28)

δ – – 11.33 (4.64,97.28) 10.77 (4.41, 18.78)

Table 4

Simulation study II with Scenario II: Posterior medians and 95% credible intervals of the
median estimators.

Parameter Model 1 Model 2 Model 3 Model 4*

β1 2.45 (2.06,2.67) 2.49 (2.33,2.68) 2.49 (2.18,2.69) 2.50 (2.35,2.66)

β2 2.96 (2.55,3.26) 3.00 (2.83,3.22) 3.00 (2.65,3.34) 3.00 (2.85,3.20)

β3 3.43 (3.08,3.70) 3.48 (3.31,3.68) 3.47 (3.22,3.70) 3.49 (3.34,3.65)

β4 3.98 (3.68,4.21) 4.00 (3.80,4.20) 4.00 (3.71,4.24) 4.01 (3.82,4.20)

β5 4.54 (4.18,4.87) 4.50 (4.31,4.67) 4.57(4.20,4.92) 4.50 (4.33,4.64)

σε 1.10 (0.87,2.64) 0.50 (0.41,0.58) 1.09 (0.87,2.47) 0.50 (0.43,0.58)

δε – 1.91 (1.33,2.84) – 1.96 (1.52,2.86)

σ 0.52 (0.26,1.52) 0.48 (0.34,0.76) 0.20 (0.06,0.40) 0.28 (0.18,0.41)

δ – – 1.65 (0.97,5.07) 2.17 (1.31,6.55)

Model 1, εij
i.i.d.∼ N(0, σε), and ui

i.i.d.∼ N(0, σ), Model 2, εij
i.i.d.∼ t(0, σε, δε),

and ui
i.i.d.∼ N(0, σ), Model 3, εij

i.i.d.∼ N(0, σε), and ui
i.i.d.∼ t(0, σ, δ) and Model

4, εij
i.i.d.∼ t(0, σε, δε), ui

i.i.d.∼ t(0, σ, δ). For the most general model (Model 4)
we adopt the prior structure:

π(β, σε, δε, σ, δ) ∝
π(δε)π(σ)π(δ)

σε
, (15)

where π(δε) and π(δ) are the weakly informative priors for the degrees of freedom
of a Student-t distribution proposed in Rubio and Steel (2015), π(σ) is a half-
Cauchy density with mode 0 and unit scale parameter. For Models 1-3 we use the
obvious reduction of this prior. The propriety of the posterior is then guaranteed
by Theorem 2.

Tables 3 and 4 (with a star indicating the model used to generate the data)
give a summary of the posterior results.

Table 3 suggests that using a more complex model than necessary does not
affect the inference on the parameters in the simple model (Model 1), which is
encouraging, as we do not really seem to lose anything by allowing for flexibility.
We merely find out that the assumed Student-t distributions have large degrees
of freedom parameters, which makes them close to normal.
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From Table 4 we conclude that wrongly assuming normality of the distribu-
tions tends to make inference less precise, especially if we get the tails of the
residual errors wrong. It also seems that the (more latent) tail parameter of the
random effects is harder to estimate than that of the εij ’s.

4.3. Framingham heart study

We now illustrate the performance of the proposed models with real data. We
use the data set reported in Zhang and Davidian (2001), which consists of mea-
surements of the cholesterol level for 200 randomly selected individuals from
the Framingham heart study. The measurements were taken at the beginning
of the study and then every 2 years for 10 years. We are interested in the re-
lationship between the cholesterol level and the age (at baseline) and gender of
the patients. Zhang and Davidian (2001) model this relationship through the
LMM:

yij = β1 + β2agei + β3sexi + β4tij + u1i + u2itij + εij , (16)

where yij represents the cholesterol level divided by 100 at the jth time for
subject i and tij is (time − 5)/10, with time measured in years from baseline.
Zhang and Davidian (2001) assume normal residual errors εij and the density
of the random effects ui = (u1i, u2i)

� is represented by a semi-nonparametric
truncated series expansion.

Model (16) is simply the LMM in (1) with p = 4 and q = 2. Here we adopt
the following hierarchical structure:

εij | σε, δε
i.i.d.∼ t(0, σε, δε),

ui | θ1,θ2, ρ ∼ GC(F1, F2 | ρ),

where GC denotes a bivariate Gaussian copula with marginals F1 and F2, and
correlation parameter ρ. For these marginal distributions we use a two-piece
sinh-arcsinh distribution with the epsilon–skew parameterisation (Rubio et al.,
2016; Rubio and Steel, 2015) which contains a scale parameter σi > 0, a skewness
parameter γi ∈ (−1, 1), and a kurtosis parameter δi > 0, i = 1, 2. We denote
this model as Model 1. We adopt the prior structure:

π(β, σε, δε, σ1, σ2, γ1, γ2, δ1, δ2, ρ) ∼ π(δε)π(ρ)

σε

2∏
i=1

π(σi)π(γi)π(δi). (17)

As a weakly informative prior for the degrees of freedom of the Student-t distri-
bution, δε we employ the prior proposed in Rubio and Steel (2015). For each of
the scale parameters (σ1, σ2) we adopt a half-Cauchy prior (Polson and Scott,
2012). The shape parameters (δ1, δ2) are assigned the prior proposed in Ru-
bio and Steel (2015) for a general class of kurtosis parameters. For each of the
skewness parameters (γ1, γ2) we adopt a uniform distribution on (−1, 1). In a
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Table 5

Framingham data: Bayes factors (against the general Model 1) for several hypotheses.

Model γ1 = 0 γ2 = 0 δ1 = 1 δ2 = 1 ρ = 0 (δ1, δ2) = (1, 1) (γ2, δ1, δ2) = (0, 1, 1)

BF 0.04 0.65 0.77 1.04 0.02 0.63 0.42

bivariate Gaussian copula the Spearman measure of association, rρ ∈ (−1, 1),
can be calculated in closed form as

rρ =
6

π
arcsin

(ρ
2

)
,

for which we assume a uniform prior rρ ∼ U(−1, 1), inducing the following prior
density on ρ

π(ρ) ∝ 1√
1− (ρ/2)

2
.

The propriety of the corresponding posterior distribution is guaranteed by
Theorem 1. We also consider the following submodels: Model 2 (δ1, δ2) = (1, 1)
(two–piece normal marginal random effects); Model 3 (δ1, δ2, γ2) = (1, 1, 0) (one
marginally normal random effect and one marginally two-piece normal random
effect); Model 4 (δ1, δ2, γ1, γ2) = (1, 1, 0, 0) (normal random effects); and Model
5 (δ1, δ2, γ1, γ2, δε) = (1, 1, 0, 0,∞) (normal random effects and normal resid-
ual errors). Finally, Model 6 assumes normality of all distributions as well as
independence between both random effects. A posterior sample of size 5, 000
was obtained after a burn-in period of 15, 000 iterations and thinning every 25
iterations (140, 000 simulations in total). Table 6 presents a summary of the
posterior results.

The Bayes factors, calculated using the Savage-Dickey density ratio, slightly
favour the general model. However, the evidence in favour of this model is not
decisive (see Table 5). The Bayes factors associated to Models 4–6 (against
Model 1) are not shown in Table 5 since they are virtually zero, but the Bayes
factors associated to other sub-models are presented in this table for illustration.
Bayes factors clearly indicate support for skewness of u1t and dependence of both
random effects, which leaves us with Models 1-3. An argument of parsimony
could, then, lead to selecting Model 3. Notice that the intervals for the general
model are more spread out (e.g. for β4 in Table 6). This indicates that the sample
does not contain enough information to accurately estimate all the parameters
of this model. The posterior probability of {δε > 10} in Models 1 and 3 is
approximately 0.005 and for Model 2 is approximately 0.015, which suggests
that models with heavier tails than normal are favoured.

To assess the predictive performance of the different models we use the log
pseudomarginal likelihood (LPML), which is defined as the sum of the log con-
ditional predictive ordinate (CPO) statistic for each observation. The CPO for
subject i is defined as the predictive density of the vector of observations yi

given the rest of the observations. This is, CPOi = π(yi | y\{yi}), where the
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Table 6. Framingham data: Summary of the posterior samples (medians and 95% credible intervals) and LPML.

Model 1 2 3 4 5 6

β1 1.494 (1.218,1.794) 1.649 (1.436,1.973) 1.640 (1.366,1.878) 1.621 (1.336,1.957) 1.610 (1.223,1.939) 1.715 (1.399,1.980)

β2 (age) 0.016 (0.008,0.024) 0.012 (0.005,0.017) 0.013 (0.007,0.020) 0.017 (0.010,0.024) 0.018 (0.010,0.027) 0.015 (0.009, 0.023)

β3 (sex) -0.057 (-0.154,0.044) -0.059 (-0.162,0.040) -0.061 (-0.159,0.042) -0.048 (-0.159,0.074) -0.060 (-0.172, 0.048) -0.015 (-0.123,0.094)

β4 (time) 0.130 (-0.011,0.384) 0.121 (-0.002,0.321) 0.290 (0.243,0.336) 0.289 (0.241,0.337) 0.282 (0.233,0.327) 0.282 (0.235,0.329)

σε 0.163 (.146,0.182) 0.163 (0.147,0.181) 0.164 (0.147,0.182) 0.163 (.146,0.182) 0.209 (0.198,0.221) 0.209 (0.198,0.220)

δε 5.094 (3.513,8.095) 5.116 (3.522,8.153) 5.202 (3.586,8.459) 5.115 (3.524,8.235) – –

σ1 0.275 (0.181,0.412) 0.372 (0.336,0.418) 0.372 (0.335,0.416) 0.384 (0.347,0.428) 0.380 (0.344,0.425) 0.376 (0.340,0.419)

σ2 0.201 (0.075,0.829) 0.186 (0.133,0.244) 0.203 (0.144,0.257) 0.204 (0.147,0.261) 0.193 (0.125,0.254) 0.193 (0.127,0.252)

γ1 -0.331 (-0.524,-0.115) -0.345 (-0.521,-0.145) -0.339 (-0.524,-0.138) – – –

γ2 -0.546 (-0.972,0.277) -0.597 (-0.969,0.086) – – – –

δ1 0.820 (0.656,1.057) – – – – –

δ2 1.047 (0.630,3.407) – – – – –

ρ 0.425 (0.177,0.640) 0.397 (0.158,0.611) 0.383 (0.137,0.620) 0.397 (0.141,0.638) 0.4243 (0.168,0.686) –

LPML -22.81 -25.24 -19.12 -26.75 -30.88 -32.98
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predictive density is evaluated at the vector of observations corresponding to
the ith subject (see Bandyopadhyay et al., 2012). These quantities are approxi-
mated using a harmonic mean estimator as described in Bandyopadhyay et al.
(2012). Table 6 shows the LPML for the different models, which favour Model
3. A larger sample would likely provide stronger evidence for model selection.

The analysis in Zhang and Davidian (2001) suggests departures from nor-
mality in the distribution of random intercepts, while the estimated random
slope distribution can be approximated by a normal density. Our conclusions
are in line with the conclusions of the parametric, semi-nonparametric and the
nonparametric analyses in Zhang and Davidian (2001), Jara et al. (2008), and
Jara et al. (2009). However, the models proposed here also allow us to interpret
the meaning of the parameters, separating those controlling the shape of the
distribution from those controlling the dependence between the random effects.

4.4. HIV-1 viral load after unstructured treatment interruption

Here we revisit the data set analysed in Vaida and Liu (2009), which concerns
the study of 72 perinatally HIV-infected children and adolescents. Some of the
subjects present unstructured treatment interruption, which is a common phe-
nomenon among HIV-infected people, due mainly to treatment fatigue (Vaida
and Liu, 2009). The number of observations from baseline (month 0) to month
24 ranges from 13 to 71. Out of 362 observations, 26 observations (7%) were
below the detection limits and were censored at these values. Vaida and Liu
(2009) proposed the model:

yij = βj + ui + εij ,

where yij is the log10 HIV RNA (HIV Ribonucleic acid, which is used to monitor
the status of HIV) for subject i at time tj , using t1 = 0, t2 = 1, t3 = 3, t4 = 6,
t5 = 9, t6 = 12, t7 = 18 and t8 = 24 months.

We allow for Student-t tails in the random effects and the errors (with zero
locations), and thus use Model 4 in Subsection 4.2 with the same prior structure
as in (15). We also try the simpler models 1-3 as defined in Subsection 4.2.

The propriety of the posterior is ensured by Theorem 2.

Table 7 reveals clear evidence for fat tails in both distributions, especially the
residual errors. The predictive criterion LPML also favours the general model
and particularly penalizes model with normal residual errors. Clearly, ignoring
the heavy tails affects the inference on the fixed effects, especially for β1.

Finally, the predictive performance as measured by LPML is substantially
better for our models 4 and 2 than for the best model in Bandyopadhyay
et al. (2012), who obtain LPML = −366.27 on the same data using the Skew-
contaminated normal model of Lachos et al. (2010), which has normal tails for
both random effects and error distributions. Also, their posterior distribution of
β1 is substantially shifted towards smaller values (consistent with our models 1
and 3, which impose normal errors).
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Table 7

HIV data: Summary of the posterior samples (sample median and 95% credible intervals)
and LPML.

Model 1 2 3 4

β1 3.62 (3.36,3.87) 4.00 (3.76,4.24) 3.70 (3.45,3.93) 4.16 (3.95,4.38)

β2 4.19 (3.93,4.43) 4.22 (4.00,4.45) 4.26 (4.02,4.50) 4.37 (4.18,4.56)

β3 4.26 (4.00,4.52) 4.26 (4.04,4.48) 4.34 (4.09,4.59) 4.41 (4.22,4.60)

β4 4.38 (4.12,4.64) 4.43 (4.20,4.65) 4.46 (4.21,4.70) 4.58 (4.38,4.77)

β5 4.61 (4.33,4.89) 4.53 (4.31,4.76) 4.68 (4.41,4.96) 4.68 (4.48,4.87)

β6 4.60 (4.30,4.89) 4.51 (4.28,4.74) 4.67 (4.38,4.95) 4.65 (4.45,4.85)

β7 4.70 (4.36,5.02) 4.70 (4.45,4.95) 4.77 (4.46,5.08) 4.84 (4.61,5.06)

β8 4.81 (4.40,5.22) 4.73 (4.44,5.03) 4.88 (4.47,5.28) 4.88 (4.62,5.14)

σε 0.60 (0.55,0.66) 0.20 (0.16,0.25) 0.61 (0.56,0.66) 0.20 (0.16,0.24)

δε – 1.27 (0.97,1.66) – 1.30 (1.01,1.69)

σ 0.90 (0.75,1.10) 0.88 (0.72,1.07) 0.66 (0.46,0.90) 0.56 (0.37,0.79)

δ – – 3.86 ( 1.65,16.81) 2.48 (1.24,7.71)

LPML -397.4 -291.4 -401.5 -287.6

5. Discussion

This paper focuses on hierarchical linear mixed models which are used frequently
for both longitudinal and survival modelling in a number of application areas,
such as medicine, epidemiology and economics. These models are often based on
simple distributional assumptions, such as normality for both the residual er-
rors and the random effects. There is ample evidence in the literature that such
assumptions can seriously affect inference on the random effects and the predic-
tive distribution (see e.g. Lee and Thompson, 2008; Zhang and Davidian, 2001)
and we add to that evidence in our analysis of simulated data. Misspecification
of the distribution of the residual errors and the random effects tends to have
a substantial effect on the predictive distribution, which explicitly depends on
the aforementioned distributions. The use of normal assumptions when the true
generating model is not normal also has a marked effect on the estimation of
the variance of the residual errors and the random effects, as well as a decrease
in the precision of the estimation of the fixed effects.

We consider Bayesian inference for these models with flexible distributions
and sensible prior structures. These priors are intended to convey a lack of strong
prior information; as they are based on a combination of formal arguments
(such as invariance) and pragmatic common sense, they end up being improper.
Our results provide a formal justification for Bayesian inference in these wide
classes of models: our models accommodate any proper distribution for the
random effects (which could even be dependent, if required) combined with two-
piece scale mixtures of normal distributions for the residual errors, as well as
potential censoring. Our results thus cover all random effects distributions (both
parametric and nonparametric) that were proposed in the literature except for
those that are dependent on the residual errors (such as those in Lachos et al.,
2010, which where used in Bandyopadhyay et al., 2012). The conditions for
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the propriety of the posterior distribution are rather mild and easy to check in
practice, especially compared to those in previous papers (Hobert and Casella,
1996; Sun et al., 2001; Rubio, 2015), which obtain sets of conditions that combine
the sample size, the number of clusters, the design matrix, and the value of the
hyperparameters of the priors on the random effects. This also suggests that
most of the posterior impropriety issues come from assuming improper priors
on the “deeper” parameters of the random effects.

The analysis of simulated datasets leads to quite promising results, which
suggest that priors are well-calibrated and sensible, and Bayes factors seem
to provide reliable indications. In addition, Appendix C in the Supplementary
Material presents results for the case where both the residual errors and the
random effects display skewness, which corroborate the results presented in the
main text.

Inference on both real datasets strongly indicates departures from normality
in that the residual error distributions have much fatter tails than normal. In
addition, the Framingham heart data support dependence between the random
effect components with normal random slope and skew-normal random inter-
cept. The HIV data present clear evidence for heavy-tailed random effects. By
using simple Student-t distributions on both errors and random effects, we ob-
tain considerably better predictive results on the HIV data than those presented
by Bandyopadhyay et al. (2012), using their preferred model. We remind the
reader that the distributions considered in Bandyopadhyay et al. (2012) are
multivariate scale mixtures of skew-normal distributions, so perhaps might be
affected by the kind of issues we describe for multivariate scale mixtures of nor-
mals in Section 2. For the real data, evidence based on Bayes factors points in
the same direction as the predictive performance measured by LPML, which is
reassuring.

Here we have employed the R package ‘spBayes’ in all of our numerical exam-
ples, mainly for reasons of efficiency and simplicity. However, the user can also
implement the models proposed here in any other “general purpose” MCMC
software such as Stan (gradient-based MCMC), PROC MCMC (from SAS,
which implements a random walk Metropolis), or any package which includes a
Metropolis-within-Gibbs sampler.
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Appendix A: Proofs

Proof of Remark 1

The marginal density of the data is given by

m̃(y) =

∫
p(y | u,β, σε, δε)p(u)π(β)

1

σb+1
ε

π(δε) dudβdσεdδε

=

∫
τn/2

σn
ε

r∏
i=1

ni∏
j=1

φ

[
τ

1
2

σε
(yij − x�

ijβ − z�ijui)

]

× p(u)π(β)
1

σb+1
ε

π(δε)dudβdσεdHε(τ | δε)dδε.

Consider the change of variable σ̃ε = σε/τ
1
2 , with corresponding Jacobian

|J | = τ
1
2 . Then,

m̃(y) =

∫
1

σ̃n
ε

r∏
i=1

ni∏
j=1

φ

[
1

σ̃ε
(yij − x�

ijβ − z�ijui)

]

× p(u)
1

σ̃b+1
ε

π(β)π(δε)τ
− b

2 dudβdσ̃εdHε(τ | δε)dδε

= m(y)

∫
Δ

∫
R+

τ−
b
2π(δε)dHε(τ | δε)dδε,

where we can identify the first factor as the marginal density of the data asso-
ciated to the model with normal distributional assumptions on ε.

Proof of Theorem 1

For practical purposes we will work with σ2
ε instead of σε. The marginal density

of the data is given by

m̃(y) =

∫
p(y | u,β, σ2

ε , δε)p(u)π(β)
1

(σ2
ε)

b
2+1

π(δε) dudβdσ
2
εdδε

=

∫ r∏
i=1

ni∏
j=1

τ
1
2
ij√
2πσ2

ε

exp

[
− τij
2σ2

ε

(yij − x�
ijβ − z�ijui)

2

]

× p(u)π(β)
1

(σ2
ε)

b
2+1

π(δε)dudβdσ
2
ε

⎡
⎣ r∏
i=1

ni∏
j=1

dHε(τij | δε)

⎤
⎦ dδε.(18)

Denote τ+ = maxi,j τij and τ− = mini,j τij . Then, we can obtain the following
lower bound

m̃(y) ≥
∫ r∏

i=1

ni∏
j=1

τ
1
2
−√
2πσ2

ε

exp

[
− τ+
2σ2

ε

(yij − x�
ijβ − z�ijui)

2

]
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× p(u)π(β)
1

(σ2
ε)

b
2+1

π(δε)dudβdσ
2
ε

⎡
⎣ r∏
i=1

ni∏
j=1

dHε(τij | δε)

⎤
⎦ dδε.

Consider the change of variable σ̃2
ε =

σ2
ε

τ+

m̃(y) ≥
∫ r∏

i=1

ni∏
j=1

τ
1
2
−√

2πσ̃2
ετ+

exp

[
− 1

2σ̃2
ε

(yij − x�
ijβ − z�ijui)

2

]

× τ+p(u)π(β)
1

(σ2
ετ+)

b
2+1

π(δε)dudβdσ
2
ε

⎡
⎣ r∏
i=1

ni∏
j=1

dHε(τij | δε)

⎤
⎦ dδε

= m(y)

∫ (
τ
n/2
−

τ
n/2
+

)
τ
− b

2
+ π(δε)

r∏
i=1

ni∏
j=1

dHε(τij | δε)dδε,

Using the latter expression together with Theorem 1 from Fernández et al.
(1997) it follows that (a) is a necessary condition for the propriety of the pos-
terior.

Now, define T = diag(τ1, . . . , τn) (the diagonal matrix of mixing variables),

ỹ = T 1
2y, X̃ = T 1

2X, and Z̃ = T 1
2Z, where T 1

2 = diag(
√
τ1, . . . ,

√
τn). Then,

by using that π(β) ≤ K, we can obtain the following upper bound for (18)

m̃(y) ≤ K

∫
det(T )

1
2

(2πσ2
ε)

n
2
exp

[
− 1

2σ2
ε

(ỹ − X̃β − Z̃u)�(ỹ − X̃β − Z̃u)

]

× p(u)
1

(σ2
ε)

b
2+1

π(δε)dudβdσ
2
ε

⎡
⎣ r∏
i=1

ni∏
j=1

dHε(τij | δε)

⎤
⎦ dδε.

Following the proof of Theorem 1 in Fernández et al. (1997) we have

(ỹ − X̃β − Z̃u)�(ỹ − X̃β − Z̃u) = (β − β̂)�X̃�X̃(β − β̂) + c(Z̃, ỹ),

where β̂ = (X̃�X̃)−1X̃�(ỹ − Z̃u) and c(Z̃, ỹ) = (ỹ − Z̃u)�MX̃(ỹ − Z̃u), with

MX̃ = In − X̃(X̃�X̃)−1X̃�. Then, we get

m̃(y) ≤ K

∫
det(T )

1
2

(2πσ2
ε)

n
2
exp

[
− 1

2σ2
ε

(β − β̂)�X̃�X̃(β − β̂)

]
exp

[
−c(Z̃, ỹ)

2σ2
ε

]

× p(u)
1

(σ2
ε)

b
2+1

π(δε)dudβdσ
2
ε

⎡
⎣ r∏
i=1

ni∏
j=1

dHε(τij | δε)

⎤
⎦ dδε.

By integrating β out we obtain

m̃(y) ≤ K

∫
det(T )

1
2

det(X̃�X̃)
1
2 (2πσ2

ε)
n−p

2

exp

[
−c(Z̃, ỹ)

2σ2
ε

]
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× p(u)
1

(σ2
ε)

b
2+1

π(δε)dudσ
2
ε

⎡
⎣ r∏
i=1

ni∏
j=1

dHε(τij | δε)

⎤
⎦ dδε.

Now, after integrating σ2
ε we obtain

m̃(y) ≤ K1

∫
det(T )

1
2

det(X̃�X̃)
1
2

c(Z̃, ỹ)−
n+b−p

2 p(u)π(δε)du

×

⎡
⎣ r∏
i=1

ni∏
j=1

dHε(τij | δε)

⎤
⎦ dδε, (19)

where K1 > 0 is a known constant. Note that det(X̃�X̃) = det(X�T X), and

c(Z̃, ỹ) = (y − Zu)�T 1
2MX̃T 1

2 (y − Zu)

= (y − Zu)�T (y − Zu) + (y − Zu)�T X(X�T X)−1X�T (y − Zu).

From Lemma 1 from Fernández and Steel (2000) we know that det(X�T X)
has upper and lower bounds that are both proportional to

∏p
i=1 τmi =

max{
∏p

i=1 τsi : 1 ≤ s1 < · · · < sp ≤ n and det(xs1 , . . . ,xsp) 
= 0}, where
det(xs1 , . . . ,xsp) denotes the determinant of the submatrix of X corresponding
to the observations ys1 , . . . , ysp . Define also τc = max{τi : i 
= m1, . . . ,mp}.
Using these results we obtain the following inequality

det(T )
1
2

det(X̃�X̃)
1
2

c(Z̃, ỹ)−
n+b−p

2 ≤ K2

∏
j �=m1,...,mp

τ
1
2
j

c(Z̃, ỹ)
n+b−p

2

≤ K2
τ

n−p
2

c

c(Z̃, ỹ)
n+b−p

2

,

where K2 > 0 is a constant. Now, by defining the n× (p+ 1) matrix L = (X :
y−Zu) and subsequently applying the Binet–Cauchy theorem (Fernández and
Steel, 2000), we obtain

c(Z̃, ỹ) =
det(L�T L)

det(X�T X)
=

1

det(X�T X)

×
∑

1≤s1<···<sp+1≤n

⎛
⎝p+1∏

j=1

τsj

⎞
⎠ det2

(
xs1 . . . xsp+1

ys1 − z�s1u . . . ysp+1 − z�sp+1
u

)
.

Given that y−Zu is not in the column space of X we have that c(Z̃, ỹ) > 0.
Consequently

c(Z̃, ỹ) ≥ P (u)τc,

with

P (u) = min
1≤s1<···<sp+1≤n

det2
(

xs1 . . . xsp+1

ys1 − z�s1u . . . ysp+1 − z�sp+1
u

)
,
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where the minimum is taken over the non–zero determinants. Then,

det(T )
1
2

det(X̃�X̃)
1
2

c(Z̃, ỹ)−
n+b−p

2 ≤ K2
τ
− b

2
c

P (u)
n+b−p

2

.

Now, note that P (u), being a quadratic polynomial in q variables, is a con-
tinuous coercive function (see Definition 2.4 in Güler, 2010). Then, by Corollary
2.5 in Güler (2010), it follows that P (u) achieves a global minimum. Given that
P (u) > 0 by assumption, it follows that there exists M > 0 such that P (u) > M
for all u. From this lower bound follows that

det(T )
1
2

det(X̃�X̃)
1
2

c(Z̃, ỹ)−
n+b−p

2 ≤ K3τ
− b

2
c , (20)

for some constant K3 > 0. Using this inequality in (19) and splitting the integral
into the possible orderings of {τ1, . . . , τn} we can identify τc and the result
follows.

Proof of Theorem 2

The result follows by using that the censored observations contribute to the like-
lihood as factors in [0, 1]. Then, we can obtain an upper bound for the marginal
likelihood of the data which corresponds, up to a proportionality constant, to
the marginal likelihood associated to the uncensored observations. The result
then follows from Theorem 1.

Proof of Theorem 3

By condition (d′), it follows that inequality (20) is satisfied for each y = y�,
where y� ∈ E . Thus, the marginal likelihood of the data associated to each y�

is finite (Theorem 1). Given that E is compact, we can obtain a finite upper
bound for the marginal likelihood of the data by integrating out y� over E , and
the result follows.

Proof of Theorem 4

By using the inequality

s(y | μ, σ, γ, δ) ≤ 2M(γ)

σ[a(γ) + b(γ)]
f

(
y − μ

σM(γ)

∣∣∣ δ) ,

and the change of variable σ̃ε = σεM(γε), we can obtain an upper bound for the
marginal likelihood of the data which is a product of the marginal likelihood of
model (1), (4), (8) with prior (6) and the expression in condition (e). Then, the
result follows by using the proof of Theorem 1.
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Appendix B: Conditions on the mixing distributions

Note that the conditions on the mixing distributions in Corollary 1 and Theorem
1 are related to the existence of their marginal moments of negative order.

Gamma mixing distribution

Consider the mixing distribution τ ∼ Gamma

(
δ

2
,
δ

2

)
with density fΓ. This

mixing distribution produces a Student-t sampling model. Let c ≥ 0 and δ > 2c,
then we have that

I =

∫ ∞

0

∫ ∞

0

τ−cfΓ(τ | δ)π(δ)dτdδ =

∫ ∞

0

2cδ−cΓ

(
δ

2
− c

)

Γ

(
δ

2

) π(δ)dδ

If c = 0, it follows that I < ∞ given that π(δ) is proper. For c > 0, it is
necessary to use a proper prior π(δ) with support on (2c+ ε,∞), for any ε > 0.

Beta mixing distribution

Consider the mixing distribution τ ∼ Beta

(
δ

2
, 1

)
with density fβ . Let c ≥ 0 ,

then

I =

∫ ∞

0

∫ ∞

0

τ−cfβ(τ | δ)π(δ)dτdδ =

∫ ∞

0

δ

δ − 2c
π(δ)dδ.

For c = 0, I < ∞ given that π(δ) is proper. However, for c > 0 it is necessary
to employ a truncated prior on δ with support on (2c+ ε,∞) for any ε > 0.

Birnbaum-Saunders mixing distribution

Consider the mixing distribution τ ∼ BS (δ, δ) with density fBS (Birnbaum and
Saunders, 1969). Let c ≥ 0

I =

∫ ∞

0

∫ ∞

0

τ−cfBS(τ | δ)π(δ)dτdδ

=

∫ ∞

0

e
1
δ2 δc−1

(
Kc− 1

2

(
1
δ2

)
+Kc+ 1

2

(
1
δ2

))
√
2π

π(δ)dδ.

where Kn(z) represents the modified Bessel function of the second kind. For
c = 0 it follows that I < ∞, however, for c > 0 this condition may rule out the
use of certain heavy-tailed priors.
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Table 8

Simulation study III: Monte Carlo median, 95% credible intervals of the median estimators
using the two-piece normal model. BF are Bayes factors in favour of symmetry.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Parameter εij ∼ N εij ∼ TPN εij ∼ N εij ∼ TPN

ui ∼ N ui ∼ N ui ∼ TPN ui ∼ TPN

β1 2.00 (1.97,2.03) 2.00 (1.97,2.02) 2.00 (1.97,2.03) 2.00 (1.97,2.03)

β2 0.99 (0.77,1.17) 0.98 (0.79,1.18) 0.99 (0.79,1.18) 0.97 (0.77,1.20)

σε 0.50 (0.46,0.53) 0.50 (0.46,0.53) 0.50 (0.46,0.54) 0.50 (0.46,0.53)

γε 0.02 (-0.15,0.21) 0.53 (0.35,0.78) 0.01 (-0.16,0.20) 0.52 (0.35,0.77)

μ -1.51 (-1.88,-1.06) -1.47 (-1.92,-1.13) -1.46 (-1.84,-1.12) -1.44 (-1.79,-1.14)

σ 0.48 (0.41,0.59) 0.49 (0.41,0.57) 0.49 (0.43,0.56) 0.49 (0.43,0.57)

γ -0.04 (-0.43,0.45) -0.02 (-0.57,0.33) 0.51 (0.10,0.82) 0.52 (0.09,0.763)

Median BF

γε = 0 7.13 2×10−21 7.04 1×10−19

Median BF

γ = 0 2.45 2.81 0.40 0.29

Appendix C: Simulation study III (skewed errors and random
effects)

In this section we study the model (13). Four simulation scenarios are considered
for the distribution of the residual errors εij and the random effects ui. For
the first scenario we simulate from εij ∼ N(0, 0.5) and ui ∼ N(−1.5, 0.5). For
the second scenario we use εij ∼ TPN(0, 0.5, 0.5) and ui ∼ N(−1.5, 0.5). The
third scenario consists of εij ∼ N(0, 0.5) and ui ∼ TPN(−1.5, 0.5, 0.5). The
fourth scenario uses εij ∼ TPN(0, 0.5, 0.5) and ui ∼ TPN(−1.5, 0.5, 0.5). We
simulate 100 data sets under these configurations. For each of these simulated
samples, the model (13) was fitted assuming that εij ∼ TPN(0, σε, γε) and
ui ∼ TPN(μ, σ, γ) with the prior structure:

π(β1, β2, σε, γε, μ, σ, γ) ∝
π(γε)π(μ)π(σ)π(γ)

σε
, (21)

where π(μ) is a uniform prior on [−100, 100], π(σ) is a half-Cauchy density with
mode 0 and unit scale parameter and π(γ) and π(γε) are uniform priors on
(−1, 1). The propriety of the posterior is then guaranteed by Theorem 1. For
each of the 100 simulated datasets we obtain a posterior sample of size 1, 000 af-
ter a burn-in period of 7500 iterations and thinned every 10 iterations (a total of
17, 500 MCMC draws). Table 8 summarizes the posterior samples and presents
the median Bayes factors in favour of γε = 0 or γ = 0 (symmetric errors or
random effects), calculated using the Savage-Dickey density ratio. From this ta-
ble, we can observe that despite the relatively small sample size, these Bayesian
model selection criteria correctly identify the true model in each scenario.

In order to assess the impact of incorrectly imposing normality, we implement
the model with normal residual errors and random effects. Table 9 presents
posterior results for this model. The misspecification of the distribution of the
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Table 9

Simulation study III: Monte Carlo median, quantile intervals of the median estimators
using the Normal model.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Parameter εij ∼ N εij ∼ TPN εij ∼ N εij ∼ TPN

ui ∼ N ui ∼ N ui ∼ TPN ui ∼ TPN

β1 2.00 (1.97,2.03) 2.00 (1.97,2.02) 2.00 (1.97,2.03) 2.00 (1.97,2.02)

β2 1.01 (0.78,1.18) 0.99 (0.81,1.20) 0.99 (0.79,1.23) 0.98 (0.78,1.25)

σε 0.50 (0.46,0.54) 0.53 (0.49,0.57) 0.50 (0.46,0.54) 0.53 (0.49,0.57)

μ -1.51 (-1.65,-1.33) -1.89 (-2.04,-1.73) -1.89 (-2.08,-1.76) -2.28 (-2.45,-2.14)

σ 0.49 (0.41,0.58) 0.50 (0.42,0.58) 0.52 (0.44,0.60) 0.52 (0.44,0.60)

residual errors and the random effects clearly affects the estimation of μ (which
can be interpreted as an intercept).
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