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We study objective Bayesian inference for linear regressiodels with residual errors distributed according to the
class of two-piece scale mixtures of normal distributioftsese models allow for capturing departures from the usual
assumption of normality of the errors in terms of heavy tais/mmetry, and certain types of heteroscedasticity. We
propose a general noninformative, scale-invariant, @iarcture and provide sufficient conditions for the pragrie

of the posterior distribution of the model parameters, Whiover cases when the response variables are censored.
These results allow us to apply the proposed models in theexbof survival analysis. This paper represents an
extension to the Bayesian framework of the models propasgtbi. We present a simulation study that shows good
frequentist properties of the posterior credible intenad well as point estimators associated to the proposet prio
We illustrate the performance of these models with real ofetiae context of survival analysis of cancer patients.
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1. Introduction

The use of normal residual errors in linear regression nsodé&Ms) is perhaps the most com-
mon distributional assumption. However, the normalityuasgtion can be inappropriate in prac-
tice given that the inference about the regression parasistaffected when the true distribution
of the errors is asymmetric or heavy tailed. In order to oceste this shortcoming, alternative
distributional assumptions have been proposed. We reerdahader to [16] for an extensive
review of the different distributional assumptions whicitlude, for instance, the family of
scale mixtures of normals (SMN) [8, 20, 21], skew-elliptiaad skew-symmetric distributions
[1, 4, 15, 18], semiparametric approaches such as quaggitession [10, 13, 25], among others.
In a Bayesian framework, it is often of interest to employ inésrmative priors; for instance,
when the prior knowledge about the model parameters is vaduese kinds of priors are func-
tions of the parameters, not necessarily integrable, tithide a well-defined posterior distribu-
tion with good frequentist properties. In this directio] proposed an improper prior structure
for LRMs with residual errors distributed according to thenily of SMN. In the context of sur-
vival regression models, [20] studied the use of Jeffrgpepriors for accelerated failure time
(AFT) models (which are LRMs for the logarithm of a set of suavtimes) with SMN errors.
However, the use of noninformative priors in LRMs with fleeiterrors that allow for captur-
ing skewness has received little attention. In this lind] froposed an improper prior structure
for AFT models with errors distributed according to the gatised extreme value distribution.
They provided a list of sufficient conditions for the propyi®f the corresponding posterior
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distribution which involves truncating the parameter spd®ecently, [15] proposed a general
noninformative prior structure for LRMs with skew-symmniegrrors. They provided conditions
for the propriety of the posterior distribution that covesses where the response variables are
censored.

In this paper, we study the use of the class of two-piece soadeires of normal (TPSMN)
distributions for modelling the residual errors in LRMs rfrca Bayesian perspective. These
sorts of distributional assumptions enjoy several adgagaFirst, this family of error models
contains the class of SMN distributions as a particular caséch has been used to account
for the presence of outliers and certain types of heter@stiity [21]. In addition, TPSMN
distributions can also be used to capture unobserved lyeteedity that induces asymmetry of
the residual errors [16]. The implementation of these nmedgelstraightforward using the R
package ‘twopiece’ (available under request). We propogereral improper prior structure
for the models of interest that covers certain priors oladiby formal rules. We show that the
corresponding posterior is proper under mild conditiora$ dan be extended to cases where the
response variables are censored, a common phenomenowivasanalysis. The contribution
of this paper consists mainly of extending the LRMs in [16hononly consider likelihood-
based inference and prediction, to the Bayesian framevildr&. Bayesian approach provides
natural tools, namely, the posterior predictive distiiut for conducting prediction about right-
censored responses. This paper also presents a tractaipf@tive strategy to that proposed in
[15] to flexibly modelling the errors in LRMs. The rest of thager is organised as follows. In
Section 2, we present the family of distributions of int¢@$SMN) and briefly discuss some
of their properties. In Section 3, we describe the LRMs wifflSMN errors and the proposed
prior structure, and then provide sufficient conditions ttee propriety of the corresponding
posterior distribution. In Section 4, we discuss the preyrof the posterior distribution in cases
when the response variables are censored. We link thedsnegth survival regression models.
In Section 5, we present a simulation study which shows goeguentist performance of the
proposed models. In Section 6 we present two examples vatluega in the context of survival
times of cancer patients. Proofs of the results as well desa@ssociated to the simulation study
in Section 5 are presented in the Supplemental Material.

2. Background on two—piece distributions

Let us first recall the definition of two-piece distributiohge refer the reader to [17] and [16] for
a more extensive discussion on these models. A real randoable” is said to be distributed
according to a two-piece distribution, denotg8d~ TP(u, o, d,~; f), if its probability density
function (PDF) can be written as:

o(li00) = ey | (o) 1 <+ (o) 12 2 e

where f is a symmetric PDF with support dd and mode a0, » € R is a location parameter
and the mode of the density, € R, is a scale parametef,¢ A C R is a shape parameter,
v € I' C R is a skewness parameter, af~y), b(+)} are positive functions of the parameter
~. Several parameterisatiofs(-),b(-)} of these models are studied in [2] and [17]. In our
applications we will adopt the parameterisation propoedi2]: {a(v),b(v)} = {1—~,1+~},

~v € (—1,1). Some properties of this family of distributions are preedrbelow.

(1) The tail behaviour of (1) is the same in each direction.

(2) The moments of (1) exist whenever the moments of the im&sBDF f exist.

(3) The Fisher information matrix associated to this sonnofdels is well defined [17], in
contrast to some skew-symmetric models, such as the A¥zakew-normal distribu-
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tion [3].

(4) Despite the fact that the PDF (1) is not twice differeliéaat the mode, [2] showed
that the maximum likelihood estimators of the parameteid phave good asymptotic
properties.

Throughout, we focus on the case wherbelongs to the family of SMN. Recall also that a
symmetric PDFf is said to be a SMN if it can be written as:

fkwﬁié7”%ﬁ”%MHﬁ@, @

where H is a mixing distribution with positive supporb, represents the standard normal PDF,
ando € A C R is a shape parameter. This family contains distributiongreft interest in
practice such as the normal distribution, Logistic disttitn, Laplace distribution, generalysed
hyperbolic distribution, and the Studendistribution.

From the expressions in [2] we can obtain the cumulativeiligion (CDF) associated to (1)

as follows:
Gleli0,0,7) = a(vibivg(v)F (fsz_(vl; (5)]1(;; <#)
b(v) —a(v) 2a(y) z—p
FatrTi i () ez R @

whereF is the CDF associated to the PDFFrom the latter expression we can see hat <

p) =P, = % That is, the parameteris the P, —th quantile ofZ, and the parameter
controls the allocation of mass on either side of the madéhe PDF, CDF, quantile function,
and random number generation of two-piece distributioesimplemented in the R package
‘twopiece’, which is available under request. Some exampfehe shape of the density (1), for
some choices of the baseline dengityare presented in the Supplemental Material.

3. Linear regression with two-piece errors

Consider the linear regression model:

yi =x, B+ej, (4)
wherey; € R, j = 1,...,n, B is ap-dimensional vector of regression parameteysf‘f#d‘

TP(0,0,6,7v; f), fisa SMN, andX = (x{,...,x, )" is a knownn x p design matrix of full
column rank. The resulting model is centred at the mode oflisteibution of the errors (which

is 0), which represents th&, —th quantile. We can re-centre the model at the mean, provided
it exists, or any quantile of interest by adjusting the ioégt after obtaining estimators for the

corresponding parameters. The likelihood function asdedito these assumptions is given by:
S(y|/8707 577) = Hs(yj _X;'I—IB|070-7 577)7 (5)
j=1

wheres is the PDF given by (1). We adopt the prior structure:

()7 (9)

ol ’

7(B,0,0,7) x (6)
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whereq > 0 andn(vy) and~(d) are proper priors. This prior structure covers the strigctfr
some priors obtained by formal rules, for specific choicethefpower hyperparameterand
the priorsm(~) and(8). For instance, for the choices = 1 andn(y) x (1 — )2, the
prior (6) corresponds to the independence Jeffreys prae [§7] for a study of this prior in
the context of location-scale TPSMN). Expressions for #ference prior and the Jeffreys prior
have not been calculated, but we conjecture that they haweilarsstructure to that of prior (6).
Their calculation represents a possible research direcTioe following result provides general
conditions for the propriety of the posterior distributionder the prior (6).

THEOREM 1 Consider the model (4)—(6), where H TR0, 0,8,4; f) and f is a SMN.
Consider the following conditions:

(i) The posterior associated to the linear regression mddlglwith errors distributed accord-
ing to the symmetric baseline distributigintogether with the prior (3, ¢, 0) < o7 (0)

is proper.
. h(,y)n—i-q—l )
(i) Jr WW(’Y)CZ’Y < oo, whereh(y) = min{a(v),b(7)},
H(y)mta-1
i) Jr i 7(y)dy < oo, whereH () = max{a(7), b(v)}.

a(y) +b(y)|"

Then, (i) and (i) are necessary conditions, while (i) anig @re sufficient conditions for the
propriety of the posterior distribution @3, o, 9, ).

This result indicates that, in order to check the propridtjhe posterior of(3, o, 6,~), we
only need to check the propriety of the posterior assoctatdte underlying model with residual
errors distributed according to the symmetric baselingidigion f together with a condition on
the parameterisatiofu(~), b(v)}. In particular, forg = 1, conditions (ii) and (iii) are satisfied
by any choice of a(v), b(+)}. Moreover, if the functiona(-) andb(-) are bounded ang > 1,
conditions (ii) and (iii) are automatically satisfied. Tharameterisatioda(y),b(y)} = {1 —
v,1 + v}, proposed in [12]y € (—1,1), satisfies this boundedness condition. For unbounded
parameterisations amd> 1 (such as the one proposed by [¥d:(v),b(~)} = {v,1/7}, v > 0),
the finiteness condition in (iii) depends on the choice ofgttier 7 ().

The following result presents conditions for the existeatthe posterior for the case when
the baseline density belongs to the family of SMN angl= 1.

CoROLLARY 1 Consider the model (4)—(6) with= 1, wheree; i TP(0,0,0,7; f) and f
is a SMN. Then, the posterior distribution (@, o, ~) is proper provided thay ¢ C(X), where
C(X) denotes the column spaceXfn > p, together with condition (iii) from Theorem 1.

This result is satisfied with probability one since the distion of the residual errors is con-
tinuous. For the case when> 1, conditions for the existence of the posterior associaiee
model with symmetric errors become more restrictive. Nex,present some particular cases
where the propriety of the posterior distribution can belgasecked.

COROLLARY 2 Consider the model (4)—(6) and suppose that the baselinsityefin (1) is
either a normal distribution, a Logistic distribution, a pkace distribution, or a generalised
hyperbolic distribution with fixed shape parameter. Suppbaty ¢ C(X),n > p+ 1 — ¢, and
condition (iii) from Theorem (1) are satisfied. Then, thetpder distribution (3, o, ) is proper.

Model (4)—(6) can be implemented by using the ‘twopiece’ Rka@e. Moreover, several
Markov Chain Monte Carlo (MCMC) samplers have been devaldpethis kind of models.
For instance, [22] propose a blocked Metropolis-withirpk& algorithm that takes advantage of
the representation of SMN distributions. For the case whém (1) is a Laplace distribution,
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[23] proposed an alternative MCMC algorithm based on a umifmixture representation of the
Laplace distribution.

We point out that Bayesian quantile LRMs [25] represent allfaof models closely related
to (4). These models can be interpreted as the LRM (4), syithistributed according to a two-
piece Laplace distribution, where the parametes fixed according to the quantile of interest
specified by the user. We emphasise that, in our context, weotifix the parametet but,
instead, obtain posterior inference about this paramsiaguhe prior structure (6).

Choice of the prior for ~

Rubio and Steel [17] proposed a prior elicitation strategythe parametety, based on the
interpretation of this parameter, that can be used to asctstrweakly informative proper prior.
They propose assigning a Bétg, by) prior on a measure of skewness which is an injective
function of the parametey. This strategy induces a proper prior 9rwhich can be used to
construct informative and noninformative priorsen

|’ (v)b(y) — a(y)b' (v)]

ap—1 bo—1
() o O OGS a(y)®b(y)™

whered/(-) and?d'(-) denote the derivatives af(-) andb(-), respectively. For the case when
ap = by = 1/2, coupled with the parameterisation in [12], this strateggds to the Jeffreys
prior of v [17]. If ag = by = 1, this strategy leads to a uniform prior gre (—1, 1). Throughout
this paper we adopt this prior witly = by = 1/2, this isw(y) o (1 — 72)‘5 This prior has
been shown to induce a posterior distribution with gooddeatist properties in the context of
location-scale models [17].

4. Accelerated failure time models

4.1 Propriety results

AFT models are of great interest in survival analysis givet they can be used for modelling

a set of survival time&' = (T3,...,T,) in terms of a set of covariatg$ through the model
equation:

yjzlog(,—rj)zx;rﬁ—i_gja J=1...,n, (7)
whereg is ap-dimensional vector of regression parameters Xind (x/ ,...,x,) )T is a known

n x p design matrix of full column rank. The use of normal and Lagigesidual errors represent
the most common distributional assumptions. Other digtiomal assumptions were discussed
Section 1 and in [16].

We assume that; S TP(0,0,6,v; f), where the baseline densifyis a SMN. If we adopt
the prior structure (6) for this model, then the correspogdgiosterior is proper under the con-
ditions in Corollaries 1 and 2. However, a common challemge arises in the context of the
analysis of time-to-event data is the presence of censdrgehagations (see [16] for a discussion
on this). The following result provides sufficient condit®for the propriety of the posterior
distribution for the case when the sample contains botharedsand uncensored observations.

THEOREM 2 Consider the linear regresion model (7) with prior (6). Sopp thatn, < n
survival times are censored ang, = n — n. are observed. Ley, be the set of uncensored
observations an&X, be the corresponding design matrix. Then, the posteriaribigion of
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(B,0,0,7) is proper provided that the posterior distribution assdeito then, uncensored
observations is proper.

Since this result relies only on the sub-sample of uncedsobservations, we can use the
results in the previous section to check the propriety ofptheterior. Corollary 1 provides con-
ditions for the case whefiis a SMN andy = 1, while Corollary 2 provides conditions for the
case whemg > 1 and certain particular choices ¢f

An extreme case that arises in practice is when the samptainsronly censored observa-
tions. The next result presents sufficient conditions ferdkistence of the posterior distribution
in this scenario.

CoROLLARY 3 Consider the model (7) with prior (6). Suppose tifais a scale mixture of
normals,q = 1, n; < n observations are interval censored, where the length cfelietervals

is finite, and that the othern — n; observations are censored of any other type. Denote the
ny interval-censored observations &%, ...,1,,), and letX,,, be the corresponding design
submatrix. Then, the corresponding posterior is propef &= I; x --- x I, and the column
space ofX,,, are disjoint, together with the conditioty > p, and condition (iii) from Theorem

1.

Similarly, for ¢ > 1 we have the following results.

COROLLARY 4 Consider the model (7) with prior (6). Suppose tlfidgs either a normal, Logis-
tic, Laplace or generalised hyperbolic distribution; < n observations are interval censored,
where the length of these intervals is finite, and that theioth— n; observations are censored
of any other type. Then, the corresponding posterior is prap€ = I; x --- x I,,, and the
column space oK,,, are disjoint, together with the conditiom; > p + 1 — ¢, and condition
(iii) from Theorem 1.

As discussed in [15], checking th&tand the column space &,,, are disjoint can be for-
mulated as a linear programming problem (LP). Denpte R?, & = (&,...,&,) € &, and
I; = [lj,u4], 7 =1,...,ns. Define the LP problem:

Find max1,
UES
Subjectto X,,,n = &,
and log(l;) <& <log(u;), j=1,...,n. (8)

Thus, the disjointness condition is equivalent to verifythe infeasibility of the LP problem
(8), for which there are several theoretical and numerwalist(LP solvers) available [6]. It is
importantto notice that the optimisation step in (8) represents jusbbto connect the propriety
conditions in Corollaries 3 and 4 with the feasibility of ttestrictions in a LP problem.

5. Simulation study
In this section we present a simulation study that illussahe performance of the proposed

prior structure. We adopt the simulation scenarios used6hip order to allow for qualitative
comparisons. We study the LRM:

y; = B+ Bex1j + Baxo; +€4, j=1,...,n, 9

where we simulate the variables; andz,; from a standard normal distribution and consider
different combinations of the distribution of the residaaiors and the sample size
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In the first scenario, we simulate the residual errors fromapiece normal distribution with
unit scale parameter and skewness parameter 0,0.25,0.5,0.75, (51, 82,03) = (1,2,3),

andn = 100, 250, 500. We fit the LRM (9) withe; "5 TP(0, 0, ~; f), wheref is the standard
normal PDF. We adopt the product prior structure (6) wite: 1 and the Jeffreys prior on the
parametety. For each of these scenarios, we obtdin= 1,000 samples of siz&, 000 from the
posterior distribution using the R t-walk sampler [5] aféeburn-in period of, 000 iterations
and thinned to everg5th iteration (this is, a chain of lengthb, 000). Then, we calculate the
proportion 0f95% credible intervals that include the true value of the patemé¢he median
posterior estimators, the maximuarposteriori(MAP) estimators, the maximum likelihood es-
timators (MLESs) for comparison, as well as the median of thgd3 factors associated to the
hypothesigi : v = 0 (approximated using the Savage-Dickey density ratio).

In the second and third scenarios, we simulate the residuabedrom a two-piece Student-
t distribution with degrees of freedom= 2, 5. For these scenarios we fit the LRM (9) with

£ i TP(0,0,9,; f), wheref is the Student-PDF withd > 0 degrees of freedom. We adopt
the prior structure (6) witly = 1 and the Jeffreys prior on the parametef~or the degrees of
freedomd, we use the approximation to the Jeffreys prior for this peater proposed in [9]:

2dd

™) = Grap

(10)

We choose the hyperparametier 10, which induces a prior with mode at= 5. In the fourth
scenario, we simulate from the linear regression model:

log(y;) = X;F,B—l—t:”j, ji=1,...,n,

with n = 100, 250, 500, 8 = (1,2,3)", andx; = (1,2;1,2,2)". The second and third entries
of the covariatest; are simulated from a right-half-normal with scale paramef&. The er-
rorse; are simulated from a two-piece normal distribution withgraetersy = 0, o = 0.25,
andy = 0,0.25,0.5,0.75. We truncate the observatiops that are greater thati.5, produc-
ing samples with 15%—-35% censored observations. Reselteported in Tables 1-12 of the
Supplemental Material. In the first scenario we can obseryeca coverage as well as good
frequentist properties of the estimators associated t@tbposed model overall. We can also
observe that the Bayes factors clearly identify the casenvthe errors are symmetric. In the
second and third scenarios we observe a good coverage ofetidle intervals associated to
the regression parameter$, 52, 33) as well as an accurate point estimation. However, in order
to get a decent coverage of the credible intervals assddiatbe scale an tail parametées ),

we need at least 250 observations. This is a well known phenomabout the estimation of de-
grees of freedom of the Studendlistribution. Interestingly, the level of skewness doessaem

to affect the performance of the credible intervals, evenigih for the case when= 0 we are
fitting an overparameterised model. Although the proposedethperforms well even when the
true distribution of the residual errors is symmetric, iagiice, we recommend conducting a
formal model selection between the models with symmetrit @aymmetric errors in order to
avoid overparameterisation, which has a other unpleadf@at®such as increasing the length
of the credible intervals. The presence of mild levels ofsoead observations does not greatly
affect the performance of the Bayes estimators and the agegiroportions as we can see from
Tables 10-12 in the Supplemental Material.
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6. Applications

In this section we present two examples with publicly alddaeal data to illustrate the useful-

ness and performance of the proposed Bayesian LRMs. Bothg®a concern the study of the

survival times of cancer patients. In the second examplaliseiss the impact of using flexible

errors in terms of prediction. For the models with two-pieegidual errors, we employ the pa-

rameterisation in [12]. Posterior samples are obtainedgusie R twalk sampler [5]. Since the

implementation of the log-posterior associated to the risodleinterest is very tractable, other

samplers (such as Metropolis-Hastings or MetropolisiwitBibbs samplers) can also be easily
implemented. R codes and data used for these examples dedbbvapon request.

Model comparison is conducted in terms of three formal madédction tools: Bayesian
information criterion (BIC), Bayes factors, and log-predie marginal likelihood (LPML, [19]).
Bayes factors are calculated using an importance samgictogntque. The use of the Bayes
factors with the proposed improper prior structure is fieslisince we are employing improper
priors only on the common parameters of the different mgdelsle the priors on the shape
parameters have the same interpretation across the diffeadels (see [20] for a discussion on
this point). Bayes factors and BIC are useful to identify tin@del that provides the best fit. On
the other hand, LPML is a measure that ranks the models aEstten terms of their predictive
performance [19]. Therefore, these two variables provioimmementary information. Their
combination is particularly relevant in survival analygigen that we are interested on selecting
the best model for the data but, since this model is often tmegrediction of the residual life
of patients that survived beyond the end of the study (sel, [1& important to check that the
model also has a better predictive performance than the etitmpmodels.

6.1 Small Cell Cancer Data

We analyse the data set from [24] about a lung cancer studytwit different types of treat-
ment. The data set contains= 121 survival times (in days) of patients with small cell lung
cancer (SCLC) that were administrated two types of thesajier patients with SCLC the stan-
dard treatment consists of a combination of etoposide (& x&platin (P); however the optimal
order for the administration of these two treatments hasren established [24]. The group
of patients was splitted into two groups: Arm A (62 patientghose therapy consisted of P
followed by E, and Arm B (59 patients), whose therapy coesisif E followed by P. The co-
variates used for this study are the “Entry age” (in years) te type of treatment (Arm A
and Arm B). The sample contaims = 23 right-censored observations. We fit an AFT model
(7) with 4 distributional assumptions for the residual esrawo-piece Laplace (TP Laplace),
two-piece Normal (TP Normal), as well as corresponding swinict submodels (Laplace and
Normal). The propriety of the corresponding posteriorrihstions is guaranteed by Theorem 1
and Corollary 2. We adopt the prior structure (6) wjth= 1 and the Jeffreys prior on the skew-
ness parameter € (—1,1). For each of these models, a sample of di2e)00 was obtained
from the posterior distribution after a burn-in period5f 000 iterations and thinned to every
25 iterations (this is300,000 MCMC iterations in total). Table 1 presents a summary of the
posterior samples as well as the model comparison toolsTPHeaplace model performs better
overall (closely followed by the TP Normal model) in termsBIC, LPML and Bayes factors,
which suggests the need for a model with heavier tails thamaland asymmetry.
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Model TP Laplace TP Normal Laplace Normal
Intercept 6.690 (5.964,7.445) 7.150 (6.282,8.150) | 7.114(6.168,8.294) | 7.633 (6.560,8.653)
Entry age -0.009 (-0.021,0.004) | -0.016 (-0.031,-0.002)| -0.011 (-0.029,0.004)| -0.017 (0.033, -0.0003)
Treatment -0.446 (-0.682,-0.197) | -0.387 (-0.660,-0.107)| -0.403 (-0.683,-0.137)| -0.408 (-0.703,-0.139)

o 0.650 (0.517,0.792) 0.785 (0.664,0.915) 0.648 (0.532,0.795) 0.759 (0.660,0.890)
~ -0.395 (-0.599,-0.1872 )| -0.383 (-0.639,-0.116) - -
BIC 283.09 284.75 292.49 287.59
Bayes factor - 0.721 0.016 0.174
LPML -134.893 -136.416 -141.0203 -138.1511

Table 1. SCLC Lung Cancer data: Posterior median and 95% credibdeviais and model comparison
tools. The Bayes factors are calculated against the modelW# Laplace errors.

6.2 North Central Cancer Treatment Group (NCCTG) Lung Cancer Data

In this application we analyse the NCCTG Lung Cancer datanggth is available in the ‘sur-
vival' R package. The data set with complete cases (remaviisging covariates) contains the
survival times (in days) of = 227 patients with advanced lung cancer from the NCCTG. The
sample contains. = 63 right-censored observations. The aim of this study was nopaoe the
information from a questionnaire applied to a group of paegainst the information obtained
by the patient’s physician in terms of prognostic power [Mg fit an AFT model with three
covariates (“age” (in years),"sex” (Male=1 Female=2), .gdog” [ECOG performance score,
0=good-5=dead]) as well as an intercept with 4 residual eligtributions: two—piece Logistic
errors (TP Logistic), two-piece normal errors (TP Normahd the corresponding symmetric
sub-models (Logistic and normal). We adopt the prior stme{6) withg = 1 and the Jeffreys
prior on~. The propriety of the corresponding posterior distribugios guaranteed by Theorem
1 and Corollary 2. We obtain a posterior sample of di2g)00 after a burn-in o060, 000 and
thinned to every5th iteration 800, 000 MCMC iterations in total). Table 2 shows a summary of
the posterior samples as well as the model comparison fbloésmodel with TP Logistic errors
performs better overall, which suggests the presence ofrsd&s and slightly heavier tails than
normal.

Model TP Logistic TP Normal Logistic Normal
Intercept | 6.531 (5.514, 7.565) | 6.940 (5.840,7.979) | 5.965 (4.985, 6.962) | 6.477 (5.300, 7.629)
Age -0.010 (-0.025, 0.004)| -0.015 (-0.029, 0.001)| -0.008 (-0.023, 0.006)| -0.018 (-0.034, -0.002)
Sex 0.435(0.188,0.720) | 0.446 (0.197,0.726) | 0.496 (0.222,0.761) | 0.529 (0.231, 0.842)
ph.ecog | -0.363(-0.533,-0.167)| -0.326(0.507,-0.119) | -0.407 (-0.601, -0.221)| -0.359 (-0.571,-0.157)
o 0.495 (0.429, 0.569) | 0.906 (0.806,1.018) | 0.548 (0.479,0.628) | 1.043(0.929, 1.170)
v 0.384 (0.129, 0.600) | 0.481 (0.270,0.669) - -
BIC 556.60 566.50 562.17 580.96
Bayes factor - 0.006 0.019 2x10~°
LPML -268.966 -274.415 -272.91 -283.23
Table 2. NCCTG Lung Cancer data: Posterior median and 95% creditdevials and model comparison

tools. The Bayes factors are calculated against the modelW# Logistic errors.

We now analyse the impact of using more flexible errors in seofiprediction. As discussed
in [16] and [15], it is often of interest to study the distritan of the residual life of patients
that survived beyond the end of the study. In order to obtaésé predictions, consider the AFT

model (7) with a general residual error distribution”*" TP(c(a,v), o, ; f), wherec(a, )
denotes the point at which the AFT model is centred the mode, mean, or median). Denote
by 6 = (3, 0,7) the model parameters, and tetf) be the corresponding prior. Suppose that
the jth subject survived beyond timg;, and therefore the corresponding observation is right-
censored. Then, the posterior predictive CDF of the residador this subject is given by:

IIz(t|T,j) =

t> 1Ty, (11)
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where
t
T ) = [ 7T
0
is the posterior predictive CDF associated to this model, an
1
w(r|T,j) = / ;s[logr|0,xj]7r(9|T)d9, r >0, (12)

is the posterior predictive PDF associated to subjeatdr(6|T) represents the posterior distri-
bution of 8. We recommend centring the model (after sampling from thstqumr distribution)
around the median rather than the mean since the latter miagxisd for certain combinations
of the distribution of the residual errors and priors. Maf@o median estimators are robust to
the presence of outliers. The posterior predictive suhfivaction of the residual life of subject
jis given bySr(¢|T,j) = 1 — IIr(¢|T, ). This estimator takes into account the uncertainty
on the model parameters given that they are integrated ahtrespect to the corresponding
posterior distribution in (12). If we have a sample from thesterior distributionr(0|T), then
we can approximate (11) by using a Monte Carlo approximaifgii2). One advantage of the
predictive estimator (11) over the plug-in estimator prsgubin [16] is that this incorporates the
posterior uncertainty about the model parameters.

Table 3 presents a summary of the quantiles of the residealitributions, for the first 5 cen-
sored patients, using the AFT models with TP Logistic anditigerrors centred at the median.
As we discussed before, the model with TP Logistic errorsipees a better fit and a better pre-
dictive performance. The quantiles higher than 50% astextta the model with Logistic errors
are much larger than those obtained with the model with TRdticgerrors. Therefore, although
the inference on the regression parameters is very sinitdhése two models (see Table 2), the
corresponding prediction intervals are very differente3é differences can be explained using
the expressions (11)—(12) which indicate the dependenitegiredictions on the residual error
distribution and the posterior distribution (which arefeiiént in this case).

Quantile 5% 25% 50% 75% 95%
TP Logistic model
Patient 1 1037.6 | 1163.9 | 1382.0 | 1774.0 | 2976.8
Patient 2 1040.2 | 1126.7 | 1287.3 | 1605.0 | 2641.4
Patient 3 992.4 1117.3 | 13324 | 1719.3 | 2886.6
Patient 4 868.8 | 1078.9 | 1406.8 | 1927.5 | 3358.7
Patient 5 866.5 986.3 | 1187.5 | 1545.6 | 2604.5
Logistic model

Patient 1 1043.9 | 1211.7 | 1549.4 | 2318.6 | 5700.5
Patient 2 1052.9 | 1206.9 | 1520.3 | 2241.5 | 5453.9
Patient 3 997.8 | 1160.0 | 1485.5 | 2225.7 | 5481.2
Patient 4 857.6 | 1034.8 | 1378.8 | 2136.7 | 5387.6
Patient 5 869.3 1013.5 | 1302.4 | 1956.2 | 4829.0

Table 3. NCCTG Lung Cancer data: Quantiles of the predictive reditiigadistribution for the Median
TP Logistic and Logistic models.

7. Discussion

We introduced a flexible class of LRM that can account for depas from normality of the

residual errors in terms of heavy tails, asymmetry and irekiads of heteroscedasticity. We
proposed a general noninformative prior structure andigealeasy to check conditions for the
propriety of the corresponding posterior distribution. ifaslation study suggests a good fre-
guentist performance of the proposed Bayesian models. idpipty results cover cases when

10
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the response variables are censored, which allows for mmai¢ing the proposed Bayesian mod-
els in survival analysis. The implementation of these medelractable using already available
R packages. For instance, the R package ‘twopiece’ proziolesnands for the implementation
of the PDF and CDF associated to TPSMN distributions.

In the real data applications, we have compared the propueddls against appropriate com-
petitors using different sorts of model comparison toaisthle context of survival analysis, we
advocated for the use of model selection tools that prowvifierination about the model that
better fits the data, as well as tools that provide infornmagibout the predictive performance of
the models. This is particularly important in cases wherstiected model is used for predicting
the remaining life of a censored subject.
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