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Abstract 

Objective 

To illustrate how to evaluate the need of complex strategies for developing generalizable 

prediction models in large clustered datasets. 

 

Study Design and Setting  

We developed eight Cox regression models to estimate the risk of heart failure using a large 

population-level dataset. These models differed in the number of predictors, the functional 

form of the predictor effects (non-linear effects and interaction) and the estimation method 

(maximum likelihood and penalization). Internal-external cross-validation was used to 

evaluate the models’ generalizability across the included general practices.  

 

Results 

Among 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart 

failure during a median follow-up time of 5.8 years. For discrimination, the simplest 

prediction model yielded a good concordance statistic, which was not much improved by 

adopting complex strategies. Between-practice heterogeneity in discrimination was similar in 

all models. For calibration, the simplest model performed satisfactorily. Although accounting 

for non-linear effects and interaction slightly improved the calibration slope, it also led to 

more heterogeneity in the observed/expected ratio. Similar results were found in a second 

case study involving patients with stroke. 

 

Conclusion 

In large clustered datasets, prediction model studies may adopt internal-external cross-

validation to evaluate the generalizability of competing models, and to identify promising 

modelling strategies. 

 

Keywords 

Prediction model; Calibration; Discrimination; Validation; Heterogeneity; Model comparison 
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Running title: Internal-external cross-validation in large clustered datasets 

 

Word count: 2993 

 

What is new? 

Key findings 

Flexible modelling strategies did not improve prediction model performance across different 

settings and populations. 

Although the inclusion of additional predictors marginally improved the model’s 

discriminative performance, it also increased between-practice heterogeneity (thereby 

impairing model generalizability). 

 

What this adds to what was known 

In contrast to traditional internal validation methods, internal-external cross-validation 

(IECV) can quantify the generalizability of a prediction model across different settings and 

populations.  

 

What is the implication and what should change now? 

When developing prediction models using large clustered datasets, both their internal and 

external validity should be studied. 

IECV can be used to compare the practical benefits of different modelling strategies, and to 

simplify model complexity.  
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1. Introduction 

In medicine, there are an increasing number of clinical prediction models [1]. These models 

aim to predict a risk of having a certain condition or experiencing a health event in the future. 

Prediction models are often developed using a single and small dataset. This leads to 

prediction models that are more prone to overfitting with the dataset used for its development, 

which leads to poor accuracy and less generalizability of risk predictions when the model is 

validated or used in new individuals.  

For this reason, there has been a growing interest in prediction model studies using 

large datasets from electronic health records (EHRs), multi-center studies or individual 

participant data [2–5]. An advantage of such large datasets is that parameters of the 

prediction model can accurately be estimated, thereby facilitating the development of 

complex models with many predictors, interaction terms and/or non-linear effects.  

Furthermore, a common feature of these large datasets is that individuals are often clustered 

within hospitals, primary care practices, or even within countries. Clusters may differ with 

respect to included participants, variable definitions and measurement methods, all of which 

may affect the generalizability of developed prediction models. The presence of clustering, 

however, also offers an important opportunity, as the performance of a prediction model can 

be examined on multiple occasions and thus be used to explore its generalizability across 

different settings and populations. Recently, various strategies for such analyses using large 

clustered data have been proposed [2, 5–8].  

The aim of this study was to illustrate how advanced methods can be used to evaluate 

the need of complex strategies for developing generalizable clinical prediction models in 

large clustered datasets.  

  

2. Methods 

For illustration purpose, we used two case studies.  

 

2.1. Case study 1 
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We compared various modelling strategies using an example of a prediction model for the 

incidence of heart failure (HF). In the field of cardiovascular diseases (CVD), HF is one of 

the most relevant outcomes due to its high morbidity and mortality [9–12].  

 

2.1.1. Source of the data 

We used an existing large population-level dataset which links three sources of EHRs in 

England: primary care records from the Clinical Practice Research Datalink (CPRD), 

secondary care diagnoses and procedures recorded during admissions in Hospital Episodes 

Statistics (HES), and the cause-specific death registration information sourced from the 

Office for National Statistics (ONS) registry. This study was carried out as part of the 

CALIBER © resource (https://www.ucl.ac.uk/health-informatics/caliber and 

https://www.caliberresearch.org/) [13, 14]. CALIBER, led from the UCL Institute of Health 

Informatics, is a research resource providing validated EHR phenotyping algorithms and 

tools for national structured data sources.  Data were recorded in five controlled clinical 

terminologies: Read version 2 (CPRD diagnoses), International classification of diseases 

(ICD)-9 and ICD-10 (HES diagnoses, ONS causes of death), the Office of Population 

Censuses and Surveys (OPCS)-4 (HES procedures) and British National Formulary (BNF) 

(CPRD medication prescriptions). The study was approved by the MHRA (UK) Independent 

Scientific Advisory Committee (14_246RMnA2), under Section 251 (NHS Social Care Act 

2006).   

 

2.1.2. Population 

The construction of this cohort has been described by Uijl et al [15]. Briefly, we selected all 

individuals that were 55 years or older between 1
st
 January 2000 and 25

th
 March 2010, and 

had at least one year of follow-up by a general practitioner, in a practice that had at least one 

year of up-to-standard data recording in CPRD. The last date of the follow-up between the 

period above was considered cohort entry date (index date). Individuals with a history of HF 

before their index date were excluded. The study flow diagram is shown in Appendix A.  
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2.1.3. Predictors 

We identified predictors that are commonly measured in CPRD or HES, and commonly used 

for prediction of HF [15, 16]:  Age, sex, current smoking, ethnicity (CE, Caucasian ethnicity), 

index of multiple deprivation (IMD), body mass index (BMI), creatinine level (CL), and total 

cholesterol (TC). IMD is a measure of multiple deprivation at the small area level, consisting 

of seven domains [17]. Within this set, we selected those predictors which were least affected 

by missing data. The closest measurement to index date between three years before and one 

year after the index date was used. Detailed information about the definition of each predictor 

is available on the CALIBER website [18]. 

 

2.1.4. Outcomes 

The primary outcome was incidence of HF, based on the first record of HF from CPRD or 

HES after the index date. In CPRD, HF was defined by a diagnosis of HF or chronic left 

ventricular dysfunction on echocardiogram with READ codes. In HES, it was defined by a 

diagnosis of HF during a hospitalization using all positions of ICD-10. If no diagnosis of HF 

was made, censoring was defined as the first event among the following: death, de-

registration from a practice, last practice data collection, or at the study end date. 

 

2.1.5. Statistical analysis 

2.1.5.1. Multilevel imputation 

Multiple multilevel imputation which accounts for potential heterogeneity between the 

included clusters is recommended in the recent methodological guidelines [19], however, due 

to limited hardware processing capacity, we applied single multilevel imputation. The detail 

of the imputation process is described in Appendix B.  

 

2.1.5.2. Derivation and validation of prediction models 

We considered eight modelling strategies to predict the risk of developing HF using Cox 

regression. These models differed with respect to the number of predictors, the functional 

                  



 

8 

form of the predictor effects and the method of estimation. Each model and their estimation 

method are summarized in Table 1.  

 

Table 1. Description of the eight prediction models 

Model Included predictor variables 2-way IT # RC Estimation method 

 Age Male Sex Smoking CE IMD BMI CL TC    

1 L L L L - - - - no 4 Cox regression 

2 RCS L L L - - - - yes 14 Cox regression 

3 L L L L - - - - no 4 Ridge penalized Cox 

4 RCS L L L - - - - yes 14 Ridge penalized Cox 

5 L L L L L L L L no 8 Cox regression 

6 RCS L L L RCS RCS RCS RCS yes 66 Cox regression 

7 L L L L L L L L no 8 Ridge penalized Cox  

8 RCS L L L RCS RCS RCS RCS yes 66 Ridge penalized Cox 

Abbreviations: IT, interaction terms. #RC, the total number of regression coefficients. CE, Caucasian ethnicity. 

IMD, index of multiple deprivation. BMI, body mass index. CL, creatinine level. TC, total cholesterol. L, Linear 

effects. RCS, restricted cubic splines. 

Models 1, 3, 5 and 7 included all predictor variables as linear effects. Models 2, 4, 6 and 8 used RCS with three 

knots for all continuous predictor variables, and interaction terms between all possible combinations of two 

variables. Model 3, 4, 7, and 8 were estimated using a ridge penalty. For all models, the total number of 

regression coefficients is displayed. 

 

Model 1 included four predictors (age, sex, current smoking, and CE) as linear effects. 

Model 2 was an extension of Model 1 that included non-linear effect for age and for all 

possible two-way interactions between the four predictors. Model 3 and 4 included the same 

predictors as Model 1 and 2, respectively, but were estimated using a ridge penalty. Model 5 

was an extension of Model 1 that also included IMD, BMI, CL and TC as linear effects. 

Model 6 – 8 were extended from Model 5 as similar to Model 2 – 4 from Model 1. In models 
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with a ridge penalty (Model 3, 4, 7 and 8), all regression coefficients were shrunk towards 

zero by penalizing the partial log-likelihood for the magnitude of the squared coefficients 

(L2-norm) [20]. This strategy has been recommended to avoid overfitting, and to improve 

prediction model performance, particularly when it is applied in new population. We used the 

degree of penalty (lambda) which minimized the mean square error in ten-fold cross 

validation. The proportional hazards assumption of all models was checked using the 

Schoenfeld residuals. 

We performed internal-external cross-validation (IECV) to compare the performance 

of the aforementioned eight prediction models at multiple occasions [2, 6]. In contrast to 

traditional internal validation methods (e.g., bootstrapping, cross-validation) which evaluate 

the model’s performance in new individuals from the same population (i.e., reproducibility), 

IECV assesses model performance in new individuals from different but related practices as 

compared to the original development sample. These practices (i.e., taken as cluster) may 

differ with respect to case-mix, variable definitions and measurement methods, and thus 

allow to investigate the model’s generalizability [21]. Using IECV, the data from all but one 

practice are used for estimating the prediction model, after which its performance is evaluated 

in the remaining practice. The procedure is repeated by rotating the omitted practice, 

resulting in multiple estimates of prediction model performance. For each prediction model, 

we assessed the model’s discrimination performance using Harrell’s concordance (c-) statistic. 

For calibration, we constructed calibration plots in the overall population. We also estimated 

the calibration slope and the ratio of observed versus expected events (O:E ratio) at five years 

of follow-up [22]. Interpretation of each performance measure is described in Appendix C.  

The performance measures resulting from IECV were pooled using random-effect 

meta-analysis [2, 23, 24]. This approach not only accounts for the precision of practice-

specific performance estimates, but also quantifies the between-practice variability 

(heterogeneity) of model performance. Heterogeneity is quantified by the between-practice 

standard deviation of model performance (τ) [7]. Meta-analysis results were reported as point 

estimates with 95% confidence intervals (CI) and 95% prediction intervals (PI). The CI 

indicates the precision of the model’s average performance across all practices. Conversely, 
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the PI accounts for heterogeneity between practices and therefore indicates what performance 

can be expected when the model is applied within a specific practice.  

 

2.2. Case study 2 

In this case study, we used patient-level data from a large international, multi-center, 

randomized controlled trial [25]. Because the missingness proportion was very low (6.0%), 

we performed a complete case analysis. Eight modelling strategies using ridge penalized Cox 

regression model were considered to predict the risk of mortality from CVD in patients with 

acute ischemic stroke. These models differed with respect to the number of predictors, the 

functional form of the predictor effects (non-linear effects and/or interaction terms). We 

illustrated the advantage of IECV by comparing it with bootstrap internal validation. More 

detailed information is available in Appendix D.  

 

All analyses were performed using R version 3.6.1. 

 

3. Results 

3.1. Case study 1 

The cohort included 871,687 individuals from 225 general practices. Among these, 43,987 

(5.5%) developed HF during a median follow-up time of 5.8 years (interquartile range [IQR] 

2.7 – 9.9), with a median time-to-event of 3.7 years (IQR 1.8 – 6.4). Baseline characteristics 

are shown in Table 2. 

 

Table 2. Baseline characteristics of the cohort 

Predictor variable Individuals with incident HF Individuals without HF Proportion 

of missing 

Total number of patients 43,987 823,700  

Age, years, median (IQR) 75.5 (68.5 – 81.5) 60.6 (55.0 - 70.5) 

 

0.0% 
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Male sex, n (%) 22,618 (51.4) 442,409 (53.7) 0.0% 

Caucasian ethnicity, n (%) 42,065 (95.6) 754,756 (91.6) 39.2% 

Current Smoking, n (%) 10,843 (24.7) 190,851 (23.2) 66.2% 

IMD, median (IQR) 16.2 (9.4 - 27.1) 13.7 (8.3 - 23.4) 0.3% 

BMI, kg/m2, median (IQR) 27.4 (23.9 - 31.0) 26.9 (23.6 - 30.4) 60.2% 

Creatinine, μmol/L, median 

(IQR) 

102.4 (85.0 - 122.4) 88.7 (73.1 - 105.6) 66.5% 

Total cholesterol, mmol/L, 

median (IQR) 

5.3 (4.6 - 6.1) 5.5 (4.8 - 6.3) 72.3% 

Abbreviations: HF, heart failure. IQR, interquartile range. IMD, index of multiple deprivation. BMI, body mass 

index. 

 

The number of patients with HF in each general practice was a median of 197 (IQR 

128 – 282, range 3 – 622). We explored heterogeneity of case-mix across the included 

general practices by comparing their distribution of predicted risk according to Model 5. 

Results in Appendix E indicate that the standard deviation (SD) of the linear predictor (LP) in 

each general practice ranged between 1.09 and 1.41, and that the mean LP in each general 

practice ranged between -0.51 and 0.61.  

The estimated regression coefficients of the eight prediction models, as obtained from 

the entire dataset, are presented in Appendix F. These results indicate that all included 

predictors were significantly associated with HF, and that interactions were present between 

various predictors. The performance of the estimated models, as evaluated using IECV, is 

summarized in Table 3. 

 

Table 3. Meta-analysis results of the model performance 

Model # RC Model Estimation Summary 

Estimate 

95% CI 95% PI SE
*
  τ

*
 

Discrimination performance (c-statistic) 
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1 4 Cox regression 0.792 0.788 0.796 0.741 0.835 0.012 0.145 

2 14 Cox regression 0.793 0.789 0.797 0.742 0.836 0.012 0.144 

3 4 Ridge penalized 

Cox 

0.793 0.789 0.796 0.742 0.835 0.012 0.144 

4 14 Ridge penalized 

Cox 

0.793 0.789 0.796 0.742 0.836 0.012 0.144 

5 8 Cox regression 0.808 0.804 0.812 0.756 0.852 0.012 0.156 

6 66 Cox regression 0.806 0.802 0.810 0.744 0.856 0.014 0.180 

7 8 Ridge penalized 

Cox  

0.808 0.804 0.812 0.757 0.851 0.012 0.153 

8 66 Ridge penalized 

Cox 

0.809 0.805 0.813 0.754 0.854 0.013 0.163 

Calibration performance (O:E ratio at 5 years) 

1 4 Cox regression 0.957 0.926 0.990 0.598 1.532 0.017 0.239 

2 14 Cox regression 0.963 0.926 1.001 0.557 1.665 0.020 0.279 

3 4 Ridge penalized 

Cox 

0.959 0.928 0.991 0.609 1.511 0.017 0.231 

4 14 Ridge penalized 

Cox 

0.958 0.927 0.990 0.609 1.508 0.017 0.231 

5 8 Cox regression 0.950 0.922 0.977 0.640 1.408 0.015 0.200 

6 66 Cox regression 0.935 0.903 0.969 0.572 1.530 0.018 0.251 

7 8 Ridge penalized 

Cox  

0.947 0.921 0.974 0.648 1.385 0.014 0.193 

8 66 Ridge penalized 

Cox 

0.954 0.928 0.981 0.655 1.389 0.014 0.191 

Calibration performance (calibration slope) 

1 4 Cox regression 1.021 1.005 1.036 0.835 1.206 0.008 0.094 

2 14 Cox regression 1.010 0.992 1.028 0.789 1.231 0.009 0.112 

                  



 

13 

3 4 Ridge penalized 

Cox 

1.126 1.108 1.143 0.923 1.328 0.009 0.103 

4 14 Ridge penalized 

Cox 

1.088 1.071 1.105 0.888 1.287 0.009 0.101 

5 8 Cox regression 1.023 1.007 1.039 0.833 1.214 0.008 0.097 

6 66 Cox regression 0.992 0.975 1.008 0.792 1.191 0.008 0.101 

7 8 Ridge penalized 

Cox  

1.138 1.120 1.156 0.917 1.358 0.009 0.112 

8 66 Ridge penalized 

Cox 

1.077 1.061 1.092 0.892 1.261 0.008 0.094 

Abbreviations: #RC, the total number of estimated regression coefficients. CI, confidence interval. PI, 

prediction interval. SE, standard error. 

For all models, summary estimates were obtained using random effects meta-analysis. The SE and between-

study heterogeneity (τ) are given on the scale of the meta-analysis (that is, the logit of c-statistic, the log of the 

O:E ratio and identity for the calibration slope). 

 

3.1.1. Discrimination performance 

The c-statistic across the general practices is shown in Appendix G. All models showed 

similar discrimination, although models that included more predictors yielded somewhat 

larger values for the c-statistic (0.79 in Model 1 – 4 vs. 0.81 in Model 5 – 8). For all models, 

there was notable between-practice heterogeneity in discrimination performance. For instance, 

the 95% PI for a Cox regression model including eight predictors as main effects (model 5) 

ranged from 0.756 to 0.852. Estimates for the between-study standard deviation (τ) were 

similar for all models, but slightly larger for prediction models that included eight predictors 

and allowed for non-linear effects and interactions.  

 

3.1.2. Calibration performance 

3.1.2.1. Calibration plot 
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Calibration plots in Figure 1 indicate that predicted and observed risks were almost in perfect 

agreement for the unpenalized Cox regression model that included non-linear effects and 

interactions between predictors (Model 2 and 6).  
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Figure 1. Calibration plots of the eight prediction models 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted and observed risks are almost in perfect agreement for the unpenalized Cox regression models that included non-linear effects and 

interactions between predictors (Model 2 and 6). Some under-prediction for risk estimates around 10% is observed in the remaining models.  
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3.1.2.2. O:E ratio 

The O:E ratio across the included general practices is shown in Appendix H. All models 

yielded summary O:E ratios at 5 years below one, especially those models that included eight 

predictors (Model 5 – 8). In addition, PIs indicate that all prediction models may substantially 

over- or under-predict the risk of HF when applied to individual patients from a new practice.  

 

3.1.2.3. Calibration slope 

Calibration slope across the included general practices is shown in Appendix I. Unpenalized 

prediction models yielded pooled calibration slopes most close to one (Model 1, 2, 5, and 6). 

Prediction models that adopted a ridge penalty yielded calibration slopes that were slightly 

larger than one, indicating that predicted risks did not vary enough and thus that too much 

shrinkage may have been applied in the development sample. For all models, the calibration 

slope was prone to a limited amount of between-practice heterogeneity. For instance, the 

prediction model that included eight predictors as main effects (model 5) yielded a 95% PI 

from 0.833 to 1.214. Estimates of between-study variance of the calibration slope were 

similar for all models.  

 

Case study 2 

The detailed results are shown in Appendix D. In short, among 16,280 patients from 14 

countries, 2,745 (16.9%) died due to any CVD related conditions. Using bootstrap validation, 

we found that the c-statistic ranged from 0.65 to 0.70 with good reproducibility, and that 

models with more predictors discriminated better. However, results of IECV indicate that the 

inclusion of additional predictors increased the heterogeneity in discrimination performance. 

Results of both bootstrap validation and IECV also indicate that inclusion of non-linear terms 

and/or interaction effects) did not improve discrimination performance. In calibration 

performance, the effect of complex modelling strategies was small in both summary 

estimates of O:E ratio and calibration slope and their generalizability.   

 

4. Discussion 
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We illustrated how evidence synthesis methods can be used to evaluate the need of complex 

strategies for developing generalizable clinical prediction models in large clustered datasets. 

To this end, we applied IECV and quantified the model’s average performance as well as its 

variability between clusters. In contrast to traditional internal validation methods, a major 

advantage of using IECV in large clustered data is that the external validity of prediction 

models can be assessed on multiple occasions, thereby allowing researchers to explore the 

generalizability of different modelling strategies directly during the development process.  

In the case study 1, we found that adopting complex modelling strategies did not 

much improve the external validity of developed prediction models for HF. In particular, 

prediction models that were based on four commonly available variables yielded a c-statistic 

of 0.79, which is comparable to existing models for HF using even more than 10 predictors 

including laboratory tests [10, 11]. Although the inclusion of additional predictors marginally 

improved the discriminative performance, it also slightly increased the between-practice 

heterogeneity. When investigating model calibration, we found that all prediction modelling 

strategies yielded adequate calibration performance on average. However, because of 

between-practice heterogeneity, local revisions were often deemed necessary. In the case 

study 2, we also found that complex modelling did not meaningfully improve the 

generalizability of the prediction models, although the inclusion of additional predictors 

moderately improved their discrimination performance.  

As we found in the case study 1, the incremental value of candidate predictors is often 

small in prediction model studies for the incidence of CVD [26, 27]. For instance, systematic 

reviews have demonstrated a lack of incremental value for cholesterol level [27], BMI [27], 

and even biomarkers (e.g., triglycerides, C-reactive protein) for predicting CVD [26]. For this 

reason, it may sometimes be more advantageous to consider the inclusion of non-linear 

effects or interaction terms, rather than adding more predictors. This strategy is common in 

machine learning, where methods no longer assume additive linear effects and adopt 

penalization to avoid overfitting. We mimicked the use of flexible modelling strategies by 

including non-linear effects and non-linear interaction terms. However, this strategy also 

failed to improve model discrimination. Similar findings also have been reported in 
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prediction model studies for the prognosis of patients with CVD [28, 29]. For instance, a 

recent study adopting advanced machine learning algorithms failed to outperform traditional 

prediction models for readmissions in patients with HF, and yielded c-statistics around 0.60 

[28]. In another study, discrimination performance to predict all-cause mortality in patients 

with coronary artery disease marginally increased from 0.793 (Cox regression model with 27 

predictors) to 0.797 (random survival forests with 98 predictors) and to 0.801 (elastic net Cox 

regression model with 586 predictors) [29]. More generally, there is limited evidence that 

machine learning models can outperform simple prediction models involving additive linear 

terms, especially when predictions are only based on structured epidemiological data [30].  

The following limitations need to be considered. In the first case study, the substantial 

presence of missing data was an important concern. Although we focused on the inclusion of 

variables with relatively few missing values, some were missing for more than 70% of 

participants. Multiple imputation is generally recommended to obtain reliable standard errors 

of the performance measures but only single imputation was pursued due to limited hardware 

processing capacity. There is still limited guidance on how to implement multiple imputation 

when developing and validating a prediction model in large clustered datasets. Key issues 

that remain unclear are (i) how to combine multiple imputation with sampling procedures 

(e.g., IECV) [31, 32], (ii) the order of pooling estimates (across imputations or across clusters 

first) [33]. Another limitation was that we were not able to include non-linear and interaction 

terms in the imputation model due to non-convergence issues. Therefore, continuous 

variables were imputed as a linear term and no interaction term was included in imputation 

models. This strategy may have favored simpler modelling strategies in IECV. For this 

reason, we implemented those modelling strategies in the case study 2 where the presence of 

missing data was much less a concern. And we found similar findings to those in the case 

study 1. 

Second, eligible individuals in both case studies were enrolled more than ten years 

ago. It is possible that population characteristics have substantially changed over time, and 

that complex associations (e.g., non-linear predictor effects or interaction terms) have become 

more common.  
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Third, we focused on regression-based methods and did not evaluate other flexible 

modelling strategies such as neural networks or random forests. It is possible that these 

strategies could yield more promising results, especially if (interaction between) predictor 

effects cannot adequately be described using the regression-based methods considered here. 

 

5. Conclusion 

We recommend the use of IECV in large clustered datasets to assess the generalizability of 

prediction models during their development, and to identify whether complex modelling 

strategies may offer any advantages. In contrast to traditional internal validation methods, 

IECV allows to evaluate model performance in non-random hold-out samples with 

individuals from different settings or populations. In our case studies, we found that accurate 

prediction does not necessarily require complex modelling strategies, and that the need for 

local updating may be inevitable regardless of how much data are at hand during the model’s 

development.  
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