
Matérn Gaussian Processes on Graphs

A Appendix: experimental details

Probabilistic graph interpolation of traffic data

Here we consider the problem of interpolating traffic congestion data over a road network, consisting of San Jose
highways. We build the road network, a weighted graph, from OpenStreetMap data (OpenStreetMap contributors,
2017) obtained using the OSMnx library (Boeing, 2017).

We obtain traffic congestion data from the California Performance Measurement Systems database (Chen et al.,
2001). This system maps sensor location and time & date to (among other factors) traffic flow speed in miles
per hour measured by the given sensor at a particular time and date. We chose the specific date and time to be
17:30 on Monday, the 2th of January, 2017. We bind the traffic congestion data to the graph by adding additional
nodes that subdivide existing edges of the graph at the location of the measurement points. The edge weights are
assigned to be equal to the inverse travel distances between the corresponding nodes. When we encounter two
nodes connected by multiple edges, we remove all but one edge between them, and set its weight to be the inverse
mean travel distance between the pair of nodes. After this, the graph is processed by (1) twice subsequently
removing hanging nodes, and (2) removing two other nodes located particularly far away from data. We end up
with 325 labeled nodes on a sparse connected graph with 1016 nodes and 1173 edges.

For the model, we employ a GP with a graph Matérn kernel and the graph diffusion kernel. Both kernels are
approximated using 500 eigenpairs of the graph Laplacian. The eigenpairs required to build graph kernels are
computed using TensorFlow’s eigenvalue decomposition (tf.linalg.eigh) routine and are thus exact up to a
numerical error arising from the floating point arithmetic. We train by optimzing the kernel hyperparameters κ
(length scale), σ2 (variance) and for the case of the graph Matérn kernel, ν (smoothness), as well as the Gaussian
likelihood variance ς2. We use the following values for initialization: ν = 3/2 for the graph Matérn kernel, κ = 3,
σ2 = 1, ς2 = 0.01. We randomly choose 250 nodes with traffic flow rates as training data. The likelihood is
optimized for 20000 iterations with the ADAM optimizer, with learning rate set to the TensorFlow default value
of 0.001.

We repeat the experiment 10 times. The average MSE over the 10 experiments and its standard deviation are
presented in Table 1 for the graph Matérn kernel and for the graph diffusion kernel. The smoothness parameter ν
after optimization varies across the runs. Its mean is 1.8 and the standard deviation is 0.9. One of these ten runs
is visualized in Figures 3 and 4.

Multi-class classification in a scientific citation network

Here we consider multi-class classification on the largest connected component of the Cora citation network.

There are 2708 nodes corresponding to scientific publications in the Cora citation network. Usually, each node
of this graph is attributed by a 0/1-valued word vector indicating the absence/presence of the corresponding
word from the dictionary of 1433 unique words in the abstract—we discard this portion of data to focus on other
problem aspects.4 Two nodes are connected by an edge if one paper cites another. The edges are unweighted and
undirected, and there are 5429 edges overall. The nodes are labeled into one of seven classes. We concentrate on
the largest connected component of the Cora graph, which has 2485 nodes and 5069 edges.

We consider a Gaussian process V → R7 with independent components as a latent process for the classification
task. The process is then combined with the robust max function ϕ(·) to yield a vector of probabilities over the
classes. Let f = (f1, .., f7) denote the values of 7-dimensional latent process. Then we have

ϕ(f) = (ϕ1(f), .., ϕ7(f)) ϕc(f) =

{
1− ε, if c = arg maxc fc

ε/6, otherwise,
(24)

where ε is fixed to be 10−3. For the likelihood, we employ the categorical distribution. We use the graph Matérn
kernel and the graph diffusion kernel for the prior. Both kernels are approximated using 500 eigenpairs of the graph

4It’s also possible to use a separable kernel given by the product of a graph Matérn kernel and a Euclidean kernel
operating on word vectors, but this model is unlikely to perform well due to usual GP difficulties in high dimension.
Incorporating this portion of the data effectively therefore necessitates additional modeling considerations, so we do not
focus on it here.
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Laplacian. The eigenpairs required are computed using TensorFlow eigenvalue decomposition (tf.linalg.eigh)
and are thus exact up to a numerical error arising from use of floating point arithmetic. We use 140 random
nodes as a training set and predict labels for the remaining 2345 nodes.

For the variational GP, we employ the standard SVGP model of GPflow (Matthews et al., 2017; van der Wilk
et al., 2020). We fix the the coordinates of inducing points, which are located on the graph, to the data locations,
and do not optimize them. We restrict the covariance of the inducing distribution to a diagonal form, since this
results in the best performance in this setting. The inducing mean is initialized to be zero and the inducing
covariance is initialized to be the identity. The prior hyperparameters are initialized to be ν = 3 for the Matérn
kernel, κ = 5, σ2 = 1. The variational objective is optimized for 20000 iterations with the ADAM optimizer
whose learning rate set to 0.001. Convergence is usually achieved in a significantly lower number of iterations.
The SVGP batch size is equal to the number of training data points, and whitening is enabled.

We repeat the experiment 10 times. Each time, we additionally randomly choose a test set of 1000 nodes. The
average (over the 10 experiments) accuracy (fraction of the correctly classified points) and its standard deviation
are presented in Table 1 for the graph Matérn kernel and for the graph diffusion kernel. The value of the
smoothness parameter ν after optimization varies considerably across runs. The mean ν is 3.2 and the standard
deviation is 2.7. The results of one of said ten runs are visualized on Figures 6, 7, 8. Note that Figures 6 and 8
repeat Figure 5 (a), (b) at a higher resolution.

B Appendix: graph Fourier features

Assume that ∆ = UΛUT with U orthogonal and Λ diagonal. For a set of of locations x ∈ V n define U(x) to be
the n× d submatrix of U with rows corresponding to the elements of x. Define also Ψ(λ) = Φ(λ)−2, where Φ is
given in (10). Then, if f is a graph Matérn process and Kxx is the covariance matrix of f(x), we have

Kxx = U(x)Ψ(Λ)U(x)T ≈ Ũ(x)Ψ(Λ̃)Ũ(x)T , (25)

where Ũ(x) and Λ̃ are the approximations of Ũ(x) and Λ̃ with elements in the last d− l rows of matrices Ũ(x)

and Λ̃ set to zero. This approximation arises from finding only the l smallest eigenpairs, which can be done more
efficiently than the full eigendecomposition by employing, for instance, the Lanczos algorithm.

With this, using the Woodbury matrix identity, we get

(
Kxx + σ2I

)−1
= σ−2I− σ−4U(x)

(
Ψ(Λ)−1 +

σ−2I

σ−2U(x)TU(x)
)−1

U(x)T , (26)(
Kxx + σ2I

)−1 ≈ σ−2I− σ−4Ũ(x)
(
Ψ(Λ̃)−1 + σ−2Ũ(x)T Ũ(x)

diagonal

)−1
Ũ(x)T , (27)

where a diagonal matrix is inside the brackets. It is clear that computing
(
Kxx + σ2I

)−1
y when the (approximation

of) eigenpairs are known can be done without incurring the O(n3) cost, resulting in efficient computation.

The resulting kernel can be (approximately) expressed by

k(i, j) =

d∑
s=1

Ψ(λs)us(i)us(j) ≈
l∑

s=1

Ψ(λs)us(i)us(j), (28)

where λs are eigenvalues of ∆, while us(i) and us(j) are the i-th and j-th component of the eigenvector us

corresponding to λs. For Matérn kernels we have Ψ(λ) =
(

2ν
κ2 + λ

)−ν
from which it is clear that differentiating k

with respect to the smoothness parameter ν is straightforward. This allows to optimize the marginal likelihood
over the smoothness parameter ν in the same way this optimization over the length scale parameter κ is usually
done.
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Figure 6: Topic classification for the Cora citation network, using the citation graph. Ground truth.
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Figure 7: Topic classification for the Cora citation network, using the citation graph. Prediction.
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Figure 8: Topic classification for the Cora citation network, using the citation graph. Prediction errors. Red
nodes are misclassified.
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