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Abstract

We study the problem of learning a cluster-
ing of an online set of points. The specific
formulation we use is the k-means objective:
At each time step the algorithm has to main-
tain a set of k candidate centers and the loss
incurred by the algorithm is the squared dis-
tance between the new point and the closest
center. The goal is to minimize regret with
respect to the best solution to the k-means
objective in hindsight. We show that pro-
vided the data lies in a bounded region, learn-
ing is possible, namely an implementation of
the Multiplicative Weights Update Algorithm
(MWUA) using a discretized grid achieves a

regret bound of Õ(
√
T ) in expectation. We

also present an online-to-offline reduction that
shows that an efficient no-regret online algo-
rithm (despite being allowed to choose a dif-
ferent set of candidate centers at each round)
implies an offline efficient algorithm for the
k-means problem, which is known to be NP-
hard. In light of this hardness, we consider
the slightly weaker requirement of compar-
ing regret with respect to (1 + ε)OPT and
present a no-regret algorithm with runtime
O
(
Tpoly(log(T ), k, d, 1/ε)O(kd)

)
. Our algo-

rithm is based on maintaining a set of points
of bounded size which is a coreset that helps
identifying the relevant regions of the space
for running an adaptive, more efficient, vari-
ant of the MWUA. We show that simpler
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online algorithms, such as Follow The Leader
(FTL), fail to produce sublinear regret in the
worst case. We also report preliminary ex-
periments with synthetic and real-world data.
Our theoretical results answer an open ques-
tion of Dasgupta (2008).

1 Introduction

Clustering algorithms are one of the main tools of un-
supervised learning and often form a key part of the
data analysis pipeline. Unlabeled data is ubiquitous
and discovering structure in such data is essential in
several online applications. This work focuses on the
online setting where data arrive one at a time and need
to be assigned to a cluster (either new or existing) with-
out the benefit of having observed the entire sequence,
or knowing the “correct” labels of the elements that
have already arrived. Hence, our setting captures fully
unsupervised scenarios where the user does not have
to provide any feedback to the decisions made by the
algorithm at any point in time. We model the accu-
racy of a given clustering using the popular k-means
objective, although our results can be generalized to
most center-based objectives.

The analysis of online algorithms comes in two flavors
involving bounding either the competitive ratio, or the
regret. An online algorithm makes irrevocable decisions
and its performance is measured by the value of an
objective function. The competitive ratio is the ratio
between the objective value achieved by the online al-
gorithm and the best offline solution (for minimization
problems). In the case of clustering, without strong
assumptions on the instance, no algorithms with non-
trivial bounds on the competitive ratio can be designed.
In regret analysis, the difference between the objective
value of the online algorithm and the best offline so-
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lution (in hindsight) is sought to be bounded by a
function that grows sublinearly with the number of
data elements. We focus on the latter, seeking to an-
swer the following fundamental question, also asked
by Dasgupta (2008): Can an online algorithm learn
the optimal clustering of a dataset?

More precisely, in the case of online k-means clustering,
the online algorithm at time t produces a set of k
candidate cluster centers, Ct = {ct,1, . . . , ct,k} before
observing the datum xt that arrives at time t. The
loss incurred by the algorithm at time t is `t(Ct, xt) =
minc∈Ct

‖xt− c‖22. The regret is the difference between
the cumulative loss of the algorithm over T time steps
and the optimal fixed solution in hindsight, i.e. the
optimal k-means solution for the entire input. More
formally, the regret is defined as,

Regret =

T∑
t=1

`(Ct, xt)− min
C:|C|=k

T∑
t=1

min
c∈C
‖xt − c‖22.

Our Contributions: We consider the setting where
the data xt all lie in the unit box [0, 1]d ⊆ Rd (any
bounded box suffices). We summarize our principal
contributions:

1. We show that a multiplicative weight-update algo-
rithm (MWUA) over size k sets of candidate centers
drawn from a grid over [0, 1]d achieves expected re-

gret Õ(
√
T ); the Õ(·) notation hides factors that are

poly-logarithmic in T and polynomial in k and d.
The algorithm and its analysis are along standard
lines; although the algorithm is computationally
inefficient, it shows that information-theoretically
achieving Õ(

√
T ) regret is possible.

2. We observe that an online-to-offline reduction that
shows that any online algorithm that runs in time
f(t, k, d) at time t, yields an offline algorithm that
solves the k-means problem to additive accuracy ε
in time polynomial in n, k, d, 1/ε, f(n, k, d). In
particular, for an offline instance of k-means with n
points in a bounded region with OPT ≥ 1/poly(n),
an online algorithm with polynomial running time
would yield a fully poly-time approximation scheme.
We note that there exist such instance families for
k-means which are known to be APX-hard (Awasthi
et al., 2015). This suggests we must relax perfor-
mance requirements for efficient algorithms.

3. As our main result, in light of the above hardness
result, we consider a weaker notion called (1 + ε)-
regret: Let OPT denote the loss of the best solution
in hindsight and LT the cumulative loss of the al-
gorithm; define (1 + ε)-regret of the algorithm as
LT − (1 + ε)OPT. We provide an algorithm that

achieves (1 + ε)-regret Õ(
√
T ) and runs in time

T 1+o(1) · ε−O(k3d3), which is near-linear in the total

number of samples, and fixed-parameter tractable
in d and k.

4. As a means to achieve the above algorithmic guar-
antees, we introduce two techniques that we believe
may be of independent interest. (i) An algorithm
that maintains an insertion only coreset for k-means
for any substream. (ii) A variant of the MWUA al-
gorithm that allows an adaptive set of experts, that
is not known in advance.

5. Finally, we consider online algorithms that have
oracle access to a k-means solver. For instance,
this allows us to implement the Follow the Leader
(FTL) algorithm. We show that there exists data
sequences for which FTL has linear regret. We show
that this construction indeed results in linear regret
in simulations, but also observe that FTL (using
k-means++ as a proxy for oracle) works rather well
on random stream real-world data.

Related Work: Clustering has been studied from
various perspectives, e.g. combinatorial optimization,
probabilistic modeling, and there are several widely
used algorithms such as Lloyd’s local search algorithm
with k-means++ seeding, spectral methods, the EM
algorithm, etc. A popular way to model clustering as
a combinatorial optimization problem that we follow
in this paper is through the k-means objective. The
k-means objective is one of the family of center-based
objectives which uses the squared distance to the center
as a measure of variance. Optimizing the k-means ob-
jective is NP-complete, and assuming the Exponential
Time Hypothesis of Impagliazzo et al. (1998), Cohen-
Addad et al. (2018) showed that there is no exact algo-
rithm running in time f(k)no(k) even for 4-dimensional
Euclidean inputs, for any computable function f . As
a result, theoretical work has focused on approxima-
tion algorithms. Reviewing the entire literature on
the approximation algorithms for k-means clustering
is beyond the scope of this paper. For Euclidean in-
puts, the most important results are the best known
polynomial time algorithm of Ahmadian et al. (2017)
which produces a 6.43-approximation and the (1 + ε)-
approximation algorithm of Cohen-Addad et al. (2019)
which runs in time f(k, ε)nO(1). Designing approxi-
mation algorithm with bounded competitive ratio for
k-means in the online setting is not possible, thus Lib-
erty et al. (2016) have proposed a bicriteria algorithm
for the k-means problem in the online setting: the al-
gorithm produces a clustering with O(k log n) centers
and achieves a constant approximation ratio with re-
spect to the best k-means clustering using k centers
(see also Charikar et al. (2003); Meyerson (2001) for
similar algorithms for the k-median and facility loca-
tion problems in the online setting). For the regret
analysis setting, Dasgupta (2008) asked whether one
could derive bounded regrets bounds for the online k-
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means: we thus answer the question in the affirmative
in this paper. Designing algorithms for streaming data
is closely related to online algorithms. As in the online
setting, the data is received one at a time. The focus in
the streaming setting is to have extremely low memory
footprint and the algorithm is only required to propose
a solution once the stream has been exhausted. In
contrast, in the online setting the learning algorithm
has to make a decision at each time step and incur a
corresponding loss.

Coresets are widely used in computational geometry
to obtain approximation algorithms. A coreset for k-
means is a mapping of the original data to a subset
of the data, along with a weight function, such that
the k-means cost of partitions of the data is preserved
up to some small error using the given mapping and
weights.

There is also a vast literature on online learning with
experts and related problems have been widely studied,
and we refer to e.g. (Cesa-Bianchi and Lugosi, 2006)
and references therein. The Follow the Leader (FTL)
algorithm always predicts using a solution that would
have been optimal in hindsight at any given time. FTL
achieves low regret for some problems, typically with
strongly convex loss functions (Shalev-Shwartz et al.,
2012). Variants of FTL that optimize a regularized ob-
jective have been successfully utilized for a wider range
of settings. Recent work of Dudik et al. (2017) has
successfully modified the follow-the-perturbed leader
(FTPL) framework to design oracle efficient algorithms
for some combinatorial problems in the online setting.
However, although they can deal with an exponentially
large number of experts, the experts need to be known
in advance. This is not easy in our case, as the num-
ber of experts is either too large if a very fine grid is
used, or not known in advance, if we choose centers
adaptively using the locations of historical data. In the
former case, the separability condition required in their
work, which very loosely stated says that the random-
ness needs to be chosen so that each expert behaves
somewhat differently on the “fake data” created by this
randomness, cannot be met. The interplay between
additive and multiplicative approximations required
to derive approximate regret bounds makes applying
existing frameworks to our problem challenging.

Choromanska and Monteleoni (2012) address a relaxed
version of the problem at hand – a set of batch cluster-
ing algorithms calculate sets of k cluster centers at each
step, and forward the cluster center closest to the next
data point in the stream to an aggregation algorithm,
that in turn obtains an approximate regret guarantee
of log(T ) for the stream. The relaxation lies in the fact
that the auxiliary batch algorithms must observe the
next data point in the stream prior to committing to

the clustering at step t in order to forward the clus-
ter center closest to the next point in the stream. Li
et al. (2018) provide a generalized Bayesian adaptive
online clustering algorithm (built upon the PAC-Bayes
theory). They describe a Gibbs Sampling procedure
of O(k) centers and prove it has a minimax sublinear
regret. They present a reversible jump MCMC process
to sample these centers with no theoretical mixing time
analysis. Moshkovitz (2019) studies a related problem
where the competitive ratio is sought to be bounded
by a constant. However, in this setting the online algo-
rithms is allowed to open more centers than k and the
measure of performance is the number of candidate cen-
ters opened by the online algorithm, which could vary
between O(k) and Ω(Tk), depending on the instance.

2 Preliminaries and Notation

We consider data in the unit box [0, 1]d ⊆ Rd.1 The
datum arriving at time t is denoted by xt and we use
X1:t−1 to denote the data received before time t. The
learning algorithm must output a set Ct ⊆ [0, 1]d of k
candidate centers using only X1:t−1. The loss incurred
by the algorithm at time t is `(Ct, xt) = minc∈Ct

‖xt−
c‖22. The total loss of an algorithm up to time step t is
defined as Lt =

∑t
τ=1 `(Cτ , xτ ). The loss of the best k-

means solution in hindsight after T steps is denoted by
OPT. The regret is defined as LT − OPT and, for any
ε > 0, the (1+ε)-approximate regret as LT−(1+ε)OPT.
The algorithms we design pick cluster centers from a
constrained set, whose elements are referred to as sites,
and multisets of k such sites as experts. The Õ notation
hides factors polynomial in k, d, log(T ).

We denote the best k-means solution, i.e. best k centers,
for X1:t−1 by C?t , hence C?T+1 is the best k-means
solution in hindsight. In this case, the Follow-The-
Leader (FTL) algorithm simply picks C?t at time t.

The weighted k-means loss of a set of cluster cen-
ters µ, with respect to data X, given a weight
function ω : X → R+, is defined as `(µ, X) =∑
x∈X ω(x) minµ∈µ ‖x− µ‖22.

3 The MWUA Algorithm and Lower
Bounds

3.1 MWUA with Grid Discretization

As a warm-up, we provide a simple but inefficient
approach for the problem based on the multiplicative
weights update algorithm (MWUA). While the MWUA
is very widely applicable, some difficulties arise when

1A B-bounded box is sufficient for our results to hold,
but we will get bounds that are worse by a factor polynomial
in B.
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applying it to our problem. In order to obtain a finite
set of experts, we consider any choice of k sites obtained
by a δ-grid of [0, 1]d. In order to obtain meaningful
regret bounds, i.e. sublinear in T , then for any 0 <
α ≤ 1/2, obtaining a regret of Õ(T 1−α) requires δ =
T−α/2. Thus the number of experts is at least TΩ(kd),
i.e. exponential in k and d. However, as the regret of
MWUA only has logarithmic dependence on the number
of experts, this results in a computational, rather than
information-theoretic cost.2 Of course the standard
lower bound of Ω(

√
T ) regret still applies as the usual

worst-case example can easily be formulated in our
setting.

In Section 5, we apply the MWUA to our problem
in a more data-adaptive manner, which allows us to
significantly reduce the number of sites required—we
don’t put sites in location where there is no data—but
also requires a much more intricate analysis. The price
we pay for adaptivity and computational efficiency is
that we are only able to get regret bounds on the (1+ε)-
regret. A simple result in Section 3.2 shows that this
is unavoidable, assuming RP 6= NP. The proof of the
following is provided in Appendix A.1.

Theorem 1. Let S = {iδ | 0 ≤ i ≤ δ−1}d ⊂ Rd be the
set of sites and let E = {C ⊂ S | |C| = k} be the set of
experts (k-centers chosen out of the sites). Then, for
any 0 < α ≤ 1/2, with δ = T−α/2, the MWUA with the
expert set E achieves regret O(kd ln (T )T 1−α); the per
round running time is O(Tαkd/2).

3.2 Lower Bound

Given the disappointing runtime of the (grid) MWUA
algorithm, one may wonder whether there is a way
to avoid explicitly storing a weight for each of the
exponentially many experts and speed-up the MWUA
algorithm. The following result gives evidence that
it is unlikely that a significant speed-up is possible,
assuming RP 6= NP. In particular, a consequence of
Theorem 2 is that for instances of k-means with data
lying in a bounded region and OPT ≥ 1/poly(n), a per-
round polynomial time online algorithm would imply
an FPRAS.

Theorem 2. Suppose there is an online k-means clus-
tering algorithm A that achieves regret Õ(T 1−α) after
T time steps, and runs in time f(t, k, d) at each time
step t ≤ T , where f is non-decreasing in t. Then, for
any ε > 0, there is a randomized offline algorithm that
given an instance of k-means outputs a solution with
cost at most OPT+ε with constant probability and runs
in time polynomial in n, k, d, 1

ε , f(n, k, d).

The proof follows along standard lines and appears in

2There appears to be some information-theoretic cost in
that we are only able to prove bounds on expected regret.

Appendix A.2. Together with the existence of instance
families for k-means with OPT ≥ 1/poly(n) which are
known to be APX-hard (Awasthi et al., 2015) we can
conclude that a per round polynomial-time algorithm
for the online k-means problem does not exist unless
RP = NP.

4 Follow The Leader : Lower Bounds

The Follow the Leader (FTL) algorithm is an online
algorithm that simply picks the “best in hindsight” so-
lution at time t, and gives optimal regret bounds in
some cases, e.g. when optimizing strongly convex func-
tions. In particular, it follows that the k = 1 version
of the online k-means problem can be solved optimally
using FTL. If we have oracle access to the k-means
problem, one might wonder whether FTL achieves good
regret bounds for k > 1. The previous lower bound is
not applicable due to the oracle access provided to the
online algorithm. We show that any such optimism
is misguided, at least in the worst-case, and establish
a linear regret lower bound for FTL in Theorem 3, a
proof of which appears in Appendix B.

Theorem 3. FTL incurs Ω(T ) regret in the worst case,
for any fixed k ≥ 2 and any dimension d ≥ 1.

Figure 1: Regret– FTL Linear, MWUA-FTL Sublinear.

We performed some simulations, in part to demonstrate
Theorem 3, but mainly to understand the behavior of
FTL on synthetic and real-world data that actually
exhibits cluster structure. For the counter-example
constructed in Theorem 3 it is possible to exactly com-
pute the k-means solution. For other data, we use the
k-means++ implementation in sklearn as a proxy for
a k-means oracle, set to run the k-means++ algorithm
300 times and to output the solution with minimum
k-means cost among them.

Figure 1 contains the results of running two algorithms
on the data stream generated using the sequence used
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Figure 2: FTL Regret–MNIST and Gaussian Mixtures.

to prove Theorem 3. The regret at time t is computed
using the “best in hindsight” solution on the data
stream X1:t. The first algorithm is an implementation
of FTL; the second is an implementation of MWUA
using the expert sets which C∗t produced by FTL at
time t, this is referred to as MWUA-FTL. Both these
algorithms can be easily implemented exactly for this
simple one-dimensional problem. The staircase-like
line for FTL is caused by the fact that the specific data
used makes FTL suffer a constant excess loss (w.r.t.
the optimal solution) every few rounds, and negligible
excess loss in the remaining rounds. This demonstrates
that the sequence suggested by Theorem 3, though
artificial, is numerically stable and the predicted be-
havior manifests itself in simulations. The MWUA-FTL
presents low asymptotic regret in this case, which is
clearly sub-linear and possibly logarithmic in T .

We also experimented with the behavior of “FTL” on
other synthetic and natural data (using k-means++ as
a proxy for the optimal solution as mentioned before).
The experiments suggest that when the data exhibits
meaningful cluster structure and arrives in “random”
order, FTL actually performs quite well. Figure 2 shows
the time t of FTL vs. log(t) for four different data
sets, all of size 10000. The first is a random sample
from MNIST,normalized to a unit diameter box, using
k = 10. The others three are Gaussian Mixture Mod-
els (GMM) with 3 Gaussians (GMM3) or 4 Gaussians
(GMM4) in two dimensions, with standard deviation
for each Gaussian set to 0.1. The GMM4 case was run
with k = 3, where the 4 Gaussians are well separated
(distance between the means is at least 3 times the
standard deviation) hence labeled WellSepGMM4. The
two GMM3 data sets are labeled WellSepGMM3 for the
well separated case, and IllSepGMM3 for a case where
the Gaussians are ill separated (distance between the
means is at most 0.7 times the standard deviation). In
all cases the “best” k-means solution was calculated us-

ing k-means++ in sklearn with 300 iterations of local
search.

We conjecture that this behavior arises from the fact
that once the k clusters are visible in the data, the
FTL algorithm is essentially solving k parallel online
clustering problems with k = 1. In this case, FTL is
performing well since the problem for k = 1 is convex.
Of course, this behavior relies on the stability of the
data stream and most likely the order in which data
arrives. Theorem 3 clearly shows that this behavior is
not always exhibited. It would be interesting to identify
stability conditions under which FTL could be shown
to be optimal or near optimal for this problem.

5 Approximate Regret Minimization

In this section, we present our main result, an algo-
rithm that minimizes the (1 + ε)-regret for the online
clustering problem. The design of the algorithm and
its analysis are intricate. We begin by giving a high-
level overview with some intuition. The proofs of the
lemmas are deferred to the Appendix.

The algorithm uses three main components which we
describe below.

1. An algorithm described in Section 5.1 that maintains
a monotone sequence of sets {Qt}Tt=0, referred to
as an Incremental εc-Coreset, as Qt is a weighted
εc−coreset for X1:t. Roughly speaking, an εc-coreset
C for a set of points X is a set of points with |C| �
|X| together with a weight function ω, such that
for any set of k points in Rd, the weighted k-means
cost of this solution on C with within a (1 ± εc)
factor of the k-means cost of this solution on X.
The incremental nature is important for designing
and efficient online algorithm as this will allows us
to efficiently refine the space for candidate location
for centers.

Roughly speaking because a coreset C is a relatively
small set, rather than keeping a very fine grid of the
unit cube [0, 1]d, we can keep a relatively small set
of candidate centers such that any solution to the
k-means problem is close enough (in terms of cost)
to a solution that only uses these candidate centers.
The incremental coreset allows us to gradually and
adaptively refine this candidate set of centers. This
is achieved using a hierarchical region decomposition
which is described next.

2. An Adaptive Hierarchical Region Decomposition of
Section 5.3 corresponding to {Qt}Tt=0 and provides
a tree structure Ht related to εhrd-approximations of
k-means. We restrict the set of candidate centers to
be centroids of sub-cubes of the unit cube. Initially,
we start with the entire unit cube with only one
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candidate center. Depending on the current coreset,
if the candidate centers are not sufficient to yield a
(1± εhrd) approximation to some k-means solution
(not necessarily optimal) for the coreset, then we
subdivide some cube into 2d subcubes, and recur-
sively keep doing so until such an approximation is
achieved. The size of the coreset ensures that not
too many such subdivisions have to be performed
in order to obtain a good solution.

There remains a final challenge that the set of candi-
date centers increases with time, and as such experts
or good solutions that are available later in the on-
line learning process may not be available earlier
in the process. In order to deal with this, rather
than deal with a fixed set of experts, we allow the
expert set to grow. We do this using a version of the
MWUA for tree-structured experts, that is experts
that can only branch into new experts, but never
merge, described next.

3. We introduce a version of the MWUA for tree struc-
tured expert sets in Section 5.4, referred to as Mass
Tree MWUA (MTMW), that is given Ht at every
step, and outputs a distribution over choices of k
cluster centers. Intuitively at time t = 0, there is
only one expert, with all k centers at the centroid
of the unit cube, and that expert has all the weight.
When a cube is sub-divided and new centers created,
new experts may be created which can be uniquely
mapped to an expert in the previous round before
the subdivision occurred. Intuitively, going forward
we “hypothetically pretend” that the experts were
always present, but were required to use the centroid
that would have been available at that time given
the particular coreset. The weight of the original
expert is divided evenly between the new experts
it creates. This ensures that the simulation of the
MWUA algorithm is faithful notwithstanding the ad-
dition of new experts. Thus, the weight of an expert
may decrease exponentially in terms of the number
of divisions it took to reach that expert. The key
part of the analysis is showing that the number of
divisions is bounded because the size of the corset
only increases logarithmically in T . We remark that
the regret bound depends on the logarithm of the
weight of best expert in hindsight and this allows us
to prove the main result.

We now describe the algorithm formally and provide
a few more technical details. The full proofs of all of
these results appear in the Appendix.

Defining ε∗ := 2i that satisfies ε2

2ak2 log(T 3
√
d)
≤ ε∗ ≤

ε2

ak2 log(T 3
√
d)

, where a ≥ 342 is some arbitrary constant,

we can describe the algorithm. We present our main
theorem below and provide proofs in the appendices.

Algorithm 1 ε-Regret Minimization

1: input: ε, xt (sequentially)
2: t← 1, εc, εhrd ← ε∗(ε, k, d, T )
3: Initialize H0 and MTMW
4: for t← 1, T do
5: Obtain Ct from MTMW
6: Receive xt and incur loss `(Ct, xt)
7: Update Qt to represent xt
8: Update Ht to represent Qt
9: Provide MTMW with Ht and xt

10: end for

Algorithm 2 HRD update step

1: input: t,Rt−1, xt, εhrd
2: Let q(·) be the refinement criteria for xt at t
3: Rt ← ∅, Ut ← Rt−1

4: while Ut 6= ∅ do
5: Pick and remove a region R from Ut
6: if q(R) then
7: Rt ← Rt ∪R
8: else
9: Halve R in all dimension, resulting with H

10: Ut ← Ut ∪H
11: end if
12: end while

Theorem 4. Algorithm 1 has an expected (1+ε)-regret
of

O

(
k
√
d3T log

(
kT 3
√
d

ε2

))
,

and runtime of

T ·O(
√
dk2 log(T )ε−2)k(d+10).

We now give a high-level description of the three main
components, and then combine them.

5.1 Incremental Coreset

We present an algorithm for maintaining an explicit
incremental coreset, whose details are provided in Ap-
pendix C. An explicit incremental coreset is a sequence
of sets C1, . . . , CT together with a sequence of map-
pings of φ1, . . . , φT such that

1. Ci ⊆ Ci+1 for all i, and Ci is a coreset for X1:i.

2. φi is a function mapping the first i elements of the
stream, X1:i to the elements of Ci

3. φi is consistent with φi+1, namely for each element
x of X1:i, φi(x) = φi+1(x).

We show the following lemma, whose proof are provided
in Appendix C.
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Lemma 1. For any ε > 0, the algorithm described
in Section C.1.2 maintains an explicit incremental ε-
coreset of size at most O(k2ε−4

c log4 T ).

In the remaining discussion, we denote by χ(X1:t) the
coreset at time t maintained by the algorithm described
in Section C.1.2,

5.2 Hierarchical Region Decomposition

A region decomposition is a partitionR = {R1, . . . , Rr}
of [0, 1]d, each part Ri is referred to as region. A
hierarchical region decomposition (HRD) is a sequence
of region decompositions {R1, . . . ,Rt} such that Rτ is
a refinement of Rτ−1, for all 1 < τ ≤ t. In other words,
for all 1 < τ ≤ t, for all region R ∈ Rτ there exists a
region R′ ∈ Rτ−1 such that R ⊆ R′.

As the hierarchical region decomposition H =
{R1, . . . ,Rt} only partitions existing regions, it allows
us to naturally define a tree structure TH, rather than a
DAG. The nodes of each level τ of the tree correspond
to the regions of Rτ , and the edges connect each region
to the single region that contains it on the previous
level. The bottom-level region decomposition is the
one induced by the leaves of the tree. Moreover, given
a hierarchical decomposition Ht = {R1, . . . ,Rt} and a
set of points S of size k, we define the representative
regions of S in Ht as a sequence of multisets {R̃τ}tτ=1

where R̃τ = {R ∈ Rτ |∃s ∈ S.s ∈ R} with the correct
multiplicity w.r.t. S. Note that these correspond to
a path in TH. We define the Approximate Centers of
S induced by Ht as the sequence of multisets {S̃τ}tτ=1

that consists of the centers of the representative regions
of S in Ht.

5.3 Adaptive Grid Hierarchical Region
Decomposition

We provide Algorithm 2 that computes an Adaptive
Grid Hierarchical Region Decomposition that refines
regions only if they are close enough to the stream
point seen so far, according to some criteria which we
denote q(·), which relates to k-means approximations
of the stream data. The details are presented in Ap-
pendix C. This decomposition admits a tree with low
degree and bounded leaf count, as well as represents
k-means approximations, as explained in Appendix C.

Corollary 1. For the optimal set of candidate centers
in hindsight S∗ and S̃t the approximate centers induced
by the Hierarchical Region Distribution at time step t,
for an unweighted stream X1:t

T∑
t′=1

`(S̃t′ , xt′) ≤ (1 + εhrd)OPT + kdΛ + 2εhrd.

5.4 MTMW : MWUA for Tree Structured
Experts

We present an algorithm which we name Mass Tree
MWUA (MTMW) which obtains low regret in the set-
ting of Prediction from Expert Advice, as described in
Arora et al. (2012), for a set of experts that has the tree
structure that will soon follow. The algorithm will be
a modification of the Multiplicative Weights Algorithm
and we will present a simple modification to the proof
of Theorem 2.1 of Arora et al. (2012), to obtain a regret
bound.

Let `1(·, ·) denote a bounded loss function in [−1, 1].
Consider TT , a tree whose leaves are all of depth T
and the vertices correspond to expert predictions. The
expert set is the set of all paths from the root to the
leaves, denoted P(T ). We say that for a path p =
(v1, . . . , vT ) ∈ P(T ), the prediction that is associated
with p at step t is vt such that we can write the loss
of the path w.r.t. the stream of elements X1:T as
`1(p,X1:T ) =

∑T
t=1 `1(vt, xt).

We associate a mass to any vertex in TT as follows.
Define the mass of the root as 1, and the mass of any

other node v, denotedM(v), asM(v) = M(v′)
deg(v′) , where

v′ is its parent and deg(v′) is the out degree of v′. We
define the mass of a path as the mass of the leaf node
at the end of the path. before we move on to prove the
regret bound, we provide a useful lemma.

Lemma 2 (Preservation of Mass). Let v be a vertex
in the tree, T̃ a subtree of T with v as root, and Ṽ the

leaves of T̃ , then M(v) =
∑
v′∈Ṽ

M(v′).

We move on to bound the regret of the algorithm.

Proposition 1. For a tree TT running MWUA over
the expert set that corresponds to the paths of the final
tree, P(TT ), is possible even if the tree is known up to
depth t at any time step t, provided the initial weight
for path p is modified to M(p). The algorithm has a
regret with respect to any path p ∈ P(TT ) of√

−T ln(M(p))

and runs in time O(|TT |), the number of vertices of TT .

Corollary 2. MTMW for a loss function bounded by
d obtains a regret of d

√
−T ln(M(p)) by using a nor-

malized loss function.

5.5 Approximate Regret Bound

We will now combine the three components described
above to form the final algorithm. First, we will show
the main property of a Hierarchical Region Decom-
position that is constructed according to the points
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that are added to form the sequence {Qt}Tt=1, which
is analogous to Lemma 1. Next we define the k-tree
structure that corresponds to a Hierarchical Region De-
composition, and show that MTMW performs well on
this k-tree. Lastly we show that an intelligent choice of
parameters for εc and εhrd allows Algorithm 1 to obtain
our main result, Theorem 4.

Lemma 3. Let H be a Hierarchical Region Decomposi-
tion with parameter εhrd that was constructed according
to {Qt}Tt=1. For S∗ the best k cluster centers in hind-
sight and S̃t the approximate centers of S∗ induced by
H we have that

T∑
t=1

`(S̃t, xt) ≤ (1 + εc + 8(εhrd + εc)kΛ)OPT + dkΛ.

Consider the region tree structure THt described in
Section 5.2 that corresponds to the Hierarchical Region
Decomposition Ht at step t defined in (3). We define
a k-region tree induced by HT as a level-wise k-tensor
product of THT

, namely, a tree whose vertices at depth
t correspond to k-tuples of vertices of level t of THT

.
A directed edge from a vertex (v1 ⊗ . . .⊗ vk) of level
t to vertex (u1 ⊗ . . . ⊗ uk) of level t + 1 exists iff all
the edges (vi, ui) exists in THT

for every i ∈ 1 . . . k.
We define the k-center tree induced by HT or k-tree,
as a tree with the same topology as the k-region tree,
but the vertices correspond to multiset of centroids,
rather than tensor products of regions, i.e. the k-region
tree vertex (v1 ⊗ . . . ⊗ vk) corresponds to the k-tree
vertex v = [µ(v1), . . . , µ(vk)] where µ(·) is the centroid
of the given region. The representative regions of any
set S of k cluster centers correspond to a path in the
k-region tree, and the approximate centers correspond
to equivalent path in the k-tree. Importantly, note
that Lemma 3 proves that there exists a path in the
k-tree such that the loss of the sequence of approximate
centers it contains is close to OPT as described therein.

We will now analyze the run of MTMW on the afore-
mentioned k-tree. Let p∗ denote the k-tree path that
corresponds to the best cluster centers in hindsight.

Lemma 4. Using the definitions from Lemmas 4, 5
we have that -ln(M(p∗)) ≤ k2Λβ.

Finally, using our choice of ε∗ we obtain Theorem 4.
The complete proof is provided in Appendix C.

6 Discussion

The online k-means clustering problem has been studied
in a variety of settings; in the setting considered in
this work, we have shown that no efficient algorithm
with sublinear regret exists, even in the Euclidean
setting, assuming P 6= NP, due to k-means being APX-
hard (Cohen-Addad and Karthik, 2019; Awasthi et al.,

2015). That a no-regret algorithm with runtime that
is exponential in k, d, shows that the main obstacle in
devising these algorithms is computational rather than
information-theoretic.

We shown that FTL with a k-means oracle fails to
guarantee sublinear regret in the worst case, but per-
forms very well on natural datasets. This merits further
study, specifically: what stability constraints on the
data stream, e.g., well-enough separated clusters, i.i.d.
data from a mixture model, allow FTL to obtain loga-
rithmic regret? Can a modification of FTPL, like the
one by Dudik et al. (2017), work? The difficulty of
not knowing a (small enough) suitable expert set in
advance makes their results inapplicable in this setting.

We presented an algorithm that obtains
Õ(
√
T ) approximate regret with a runtime of

O(T (k2ε−2d1/2 log(T ))k(d+10)) using an adaptive vari-
ant of MWUA and an incremental coreset construction,
which provides a theoretical upper bound for the
approximate regret minimization problem. The next
steps in this line of research will involve studying
lower bounds for this approximate regret minimization
problem and providing simpler algorithms such as
some regularized form of FTL. Another extension
may reduce the dependency on the dimension by
performing dimensionality reduction for the data
that preserves k-means cost of clusters, such as the
Johnson-Lindenstrauss tranformation (JL); applying
JL to our algorithm is not straightforward, as JL
preserves only the loss of cluster centroids, but not
arbitrary cluster centres, which are used in our
algorithm. The need for additive approximation in
terms of regret bounds make applying coreset and
JL which come with multiplicative approximation
guarantees makes this significantly challenging.
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