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Abstract 

Photoacoustic microscopy (PAM) is classified as a hybrid imaging technique based on 

the photoacoustic effect and has been frequently studied in recent years. Photoacoustic 

(PA) signals are inherently recorded in a noisy environment and are also exposed to 

noise by system components. Therefore, it is essential to reduce the noise in PA signals 

to reconstruct images with less error. In this study, an image reconstruction algorithm 

for PAM system was implemented and different filtering approaches for denoising were 

compared. Studies were carried out in three steps: simulation, experimental phantom 

and blood cell studies. FIR low-pass and band-pass filters and Discrete Wavelet 

Transform (DWT) based filters (mother wavelets: "bior3.5", "bior3.7", "sym7") with 

four different thresholding techniques were examined. For the evaluation purpose, Root 

Mean Square Error (RMSE), Signal to Noise Ratio (SNR) and Contrast to Noise Ratio 
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(CNR) metrics were calculated. In the simulation studies, the most effective methods 

were obtained as; sym7/heursure/hard thresh. combination (low and medium level 

noise) and bior3.7/sqtwolog/soft thresh. combination (high-level noise). In experimental 

phantom studies, noise was classified into five levels. Different filtering approaches 

perform better depending on the SNR of PA images. For the blood cell study, based on 

the standard deviation in the background, sym7/sqtwolog/soft thresh. combination 

provided the best improvement and this result supported the experimental phantom 

results. 

Keywords Photoacoustic (PA), Photoacoustic Microscopy (PAM), Discrete wavelet 

transform (DWT), Signal-to-noise ratio (SNR), Signal denoising  

 

1. INTRODUCTION 

Photoacoustic imaging (PAI) is a new and emerging method, based on the measurement 

of ultrasonic acoustic waves produced by thermoelastic expansion. The generation of 

photoacoustic effect begins with the conversion of the electromagnetic radiation energy 

to heat by the tissue which is stimulated by short-pulsed laser beams. After the energy is 

converted to heat, the tissue temperature rises. The rising temperature causes the 

thermal expansion in the tissue and acoustic pressure occurs [1], [2]. To generate 

acoustic pressure, nonionizing waves such as short laser pulses or rf pulses are mostly 

used [3]. 

 

In the last decade, PAI studies and development of the PAI systems have shown 

significant progress. Several studies have been conducted in the last decade, both in 

system development and application fields. A few examples can be briefly mentioned as 
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follows. In 2008, Kolkman et al. [4] conducted a PAI study to follow the growth of 

pancreatic tumor cells in a rat. In 2011, Jansen et al. [5] demonstrated a study on the 

intravascular photoacoustic imaging of human coronary atherosclerotic plaque using a 

custom build catheter. In 2013, Papadopoulos et al. [6] presented an optical-resolution 

photoacoustic imaging system, which uses a multimode fiber as the source of the optical 

excitation field and in 2018, Allen et al. [7] demonstrated a laser scanning optical 

resolution photoacoustic microscopy system based on a stationary fiber optic sensor. 

Combining high ultrasonic resolution and optical contrast, PAI is able to present deep 

imaging with high resolution beyond the optical diffusion limit using the low scattering 

feature of the ultrasonic waves in biological tissues [8]. Photoacoustic (PA) signals are 

nonlinear and non-stationary signals and are affected by noises which are produced by 

different sources such as, thermal acoustic noise from the medium, thermal noise from 

the ultrasonic transducer or electromagnetic (EM) interference [9],[10]. Noise in PA 

imaging has specific features. For example, while the thermal acoustic noise has a 

random distribution which can be modeled as Gaussian noise [11], noise arises from the 

ultrasonic transducer can be modeled as Johnson noise [12]. The fixed pattern noise 

produced by EM interference also has its own noise characteristics [11].    

 

To reduce the thermal noise in the medium, one approach can be to cool the 

environment. This attempt, however, brings a tradeoff between noise and PA signal 

amplitude [9]. Some signal processing methods to enhance PA signals have been 

presented in the literature. For reducing the random noise, averaging is commonly used. 

This approach is based on the use of multiple data, therefore, it is time-consuming and 

not useful for moving targets. Another conventional method for denoising the random 
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noise is filtering. Usually spectrum of the PA signals and the noise overlap. For this 

reason, filtering a specific frequency band may not be an effective method due to 

potential discarding of useful signal components when there is noise overlapping with 

the frequency band of PA signals [3]. Recently, wavelet transform based filtering has 

become an effective denoising method. The transform decomposes the signals into a 

series of basis functions with different coefficients and the small values of the 

coefficients which correspond to the noise can be removed using thresholding [13]. 

 

In the biomedical field, reducing noise using wavelet transform in biological signals 

such as Electrocardiography (ECG) [14], [15] and Electromyography EMG [16], [17] is 

frequently studied. There are, however, a few studies in the relatively new field of 

photoacoustic imaging using wavelet-based denoising [18]. In this paper, we report the 

results of our comparative analysis of different wavelet basis functions and FIR low-

pass and band-pass filters for PA signal denoising. 

2. MATERIALS and METHODS  

In this section, PA signal generation mechanism, experimental setup, filtering methods, 

image reconstruction algorithm, and evaluation metrics are given in detail. 

2.1 Photoacoustic Signal Generation 

The basic principle of PA effect and signal formation can simply be explained as 

follows: The tissue absorbs the EM radiation energy, the absorbed energy is converted 

to heat, and the temperature increases. As the temperature increases, the tissue 

undergoes thermal expansion and an acoustic pressure is generated. Formation of the 
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acoustic signal depends on parameters such as laser pulse duration, energy, wavelength 

etc. Theoretically, the acoustic signal can be defined by the acoustic wave equation (1). 

          
 

  
 

  

   
         

 

  

 

  
                                                                                          

 

where, p(r,t) is the acoustic pressure at a specific location r and time t. H (r,t) is the 

heating function,  defined as transformed thermal energy in spatial position r and at time 

t; Cp is the isobaric specific heat (J); β is the thermal volume expansion coefficient (K-

1) and Vs is the speed of sound [1]. The solution of the equation for a Gaussian source 

is given in [19]. 

2.2 Data Acquisition System 

In this study, the PAM system developed by Boğaziçi University Medical and 

Biophysics Research Group Laboratory was used. The main blocks of the system are 

shown in Fig. 1. In the system, process starts with the internal trigger signal from the 

laser to trigger the data acquisition. The light rays emitted from the laser are passed 

through a filter selected according to the optical absorption feature of the tissue or 

object, and after collimation, the beam reaches the mirror. The reflected beam focuses 

on the area to be imaged with the microscope objective and the acoustic pressure signals 

generated by the thermal expansion of the tissue are recorded by an ultrasonic 

transducer. These recorded signals are pre-amplified and then transmitted to the receiver 

[20]. A typical PA signal acquired by the PAM system and parts of the signal are given 

in Fig. 2. 

2.3 Image Reconstruction Algorithm 

 



6 
 

The algorithm developed for image reconstruction follows the steps given in Fig 3. The 

trigger signal is a high amplitude and information-free signal recorded by the transducer 

during laser triggering. At the correlation calculation step, oscillations in the triggering 

signal may affect and mislead the results. To eliminate the effect of triggering signal in 

the algorithm, first the spectrograms were generated using Short Time Fourier 

Transform (STFT) in the MATLAB®; then, an integral calculation is made on the 

spectrograms for each pixel and the values over the threshold value were masked. After 

masking the triggering signals, simulated acoustic signal is generated and correlation for 

each pixel is calculated. Then, the maximum correlation interval was found and the 

location of the PA signal was determined. 

 

In the next step of algorithm, the filtering process was applied to the signals or directly 

passed to the last step to generate the original image. In the filtering step, different 

filters were used to denoise the PA signal. In this step, FIR low-pass and band-pass 

filters and DWT based filters using four different threshold selection rules were used. In 

the last step, using trigger signal masked and filtered signals or merely trigger signal 

masked raw signals, images were generated. 

2.4 Photoacoustic Signal Denoising 

MATLAB® Signal Processing Toolbox and Wavelet Toolbox functions were used to 

implement noise reduction step. In this section, FIR filters and Wavelet filters used for 

denoising are explained.   
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2.4.1 FIR filter based denoising 

The filters produced with the FIR1 function in the MATLAB® Signal Processing 

Toolbox uses window-based filtering. This function uses the least squares approach to 

compute the filter coefficients at the filter rank specified for the selected window 

function. The FIR filters in the study were designed using a Hamming window. An 

ultrasonic transducer with a center frequency of 3.5 MHz was used in the PAM system. 

Considering the center frequency of the ultrasonic transducer, the cut-off frequency for 

the low-pass filter was set to 5 MHz and the cut-off frequencies for the band-pass filter 

were set to 1.2 to 5 MHz 

2.4.2 Discrete wavelet transform based denoising 

In discrete wavelet transform denoising, first a suitable mother wavelet must be selected 

and then decomposition, thresholding and reconstruction steps are performed. Mother 

wavelet selection is the most critical step and depends on the wavelet characteristics or 

the similarity between the signal and mother wavelet [21]. For this study, bior3.5, 

bior3.7 and sym7 wavelets in the MATLAB® wavelet toolbox were selected as the 

mother wavelets, considering their similarity to the PA signal. The decomposition step 

is carried out by selecting the appropriate degree of decomposition. In decomposition 

steps, low-pass and high-pass filters are used based on the characteristics of the mother 

wavelet. The output of these filters respectively called as approximation and detail 

coefficients. Depending on decomposition level filters are applied to the detail 

coefficients at each step. In the process of denoising, the next step is thresholding. 

Thresholding is a signal estimation technique that uses the properties of the wavelet 

transform [22]. Traditional thresholding methods are soft and hard thresholding 

proposed by Donoho and Johnstone, [23]. In hard thresholding, the wavelet coefficients 
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smaller than the threshold value is set to zero and higher values than the threshold stay 

unaltered. In the soft thresholding method, if the absolute value of the wavelet 

coefficients are less than or equal to the threshold value, then the coefficients are set to 

zero. If the absolute value is greater than the threshold value, the coefficients are shrunk 

towards the zero. Hard and soft thresholding equations expressed as follows: 

 

                  

  
                     
                    

                                                                                         

        

                  

  
                                         

                                                              
                                               

        

There are different threshold selection rules in MATLAB® Wavelet Toolbox and four 

of the commonly used are selected for this study. These are: 

 

 Rigrsure: Rigrsure thresholding uses the principle of Stein’s unbiased risk 

estimate (SURE) to select the threshold.  

 Sqtwolog: The threshold value is proportional to the noise σ (estimated from 

data) and N the number of samples            . 

 Heursure: Heursure thresholding is a combination of Rigrsure and global 

(sqtwolog) thresholding method.  
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 Minimaxi: Minimaxi selection rule uses a fixed threshold to obtain the 

minimum error in root mean square error calculation. 

 

The last step for the denoising is reconstruction. The filtered signal is reconstructed 

using unchanged approximation coefficients and thresholded detail coefficients. 

 

2.5 Performance Evaluation Metrics 

For the performance evaluation of filtering methods different metrics were used in the 

study. In the literature, Root Mean Square Error (RMSE) is frequently used for the 

performance analysis when the original signal is known. In this study, RMSE 

calculation was used to evaluate the performance of the filters at the simulation study. 

The formula of the RMSE expressed as follows: 

 

        
 

 
      

                                                                                                         

Where xi is i. element of the original signal x and x’i is the i. element of the denoised 

signal x’i and N is the number of signal samples. 

 

PA signals acquired from the PAM system inherently contain noise and calculation of 

the RMSE becomes meaningless. In the phantom study step, images of phantom 

material, generated using denoised signals and raw signals were used. Signal-to-Noise 

Ratio (SNR) and Contrast-to-Noise Ratio (CNR) metrics were calculated on the images 

for the evaluating of filter performance. The formula of the metrics expressed as 

follows: 
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Where ‘std’ is standard deviation, ‘mean’ is mean value, ‘background’ and ‘object’ are 

selected region of interest on the reconstructed image. 

3. RESULTS 

This section includes the results of the PA signal denoising process. In the study, 

filtering studies were carried out in three steps.  In the first step, the synthetic noise was 

added to simulated time signals and SNR improvement was observed in the controlled 

environment. RMSE calculated between filtered signal and the actual signal 

(analytically calculated) was used for SNR improvement evaluation.  Then the 

algorithms were applied on experimental phantom signals. For these cases, the original 

signal is not known and therefore noise improvement cannot be calculated using RMSE 

value. Therefore, the improvement was evaluated using SNR and CNR values 

calculated from reconstructed images, before and after filtering. Finally, the data 

recorded from the blood cell experiment were used and results are presented in 

subsequent sections. 

3.1 Simulation Results 

First, simulated time signal was generated using the analytical solution of wave 

equation for a Gaussian source in [19] using τ = 5 ns, σ = 8 μm, R = 8 μm, r = 16 μm 

(calculated as r = 2R) and Vst = 1520 m/sec. (acoustic velocity in the blood). Then, 

Gaussian synthetic noise with amplitudes 30%, (low level noise) 50% (medium level 

noise) and 100% (high-level noise) of the peak value of the generated signal was added 
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to the original signal. Noisy signals were filtered with Hamming window-based FIR 

low-pass (LPF), band-pass (BPF) filters and DWT based filters, and then RMSE were 

calculated to evaluate the filter performance. Table 1 shows the results for LPF, BPF 

and three different mother wavelets with four different thresholding rules using hard or 

soft thresholding. Fig. 4 shows the simulated signal, noisy signals, and filtered signal 

examples. 

 

In Table 1, the most effective method was obtained to be (sym7/heursure/hard thresh.) 

combination for reducing the low and medium level Gaussian noise cases. This 

combination reduces the RMSE from 0.30 to 0.11 for low-level noise and reduces the 

RMSE 0.50 to 0.17 for medium level noise. The highest improvement for high-level 

noise is obtained by using the (bior3.7/sqtwolog/soft thresh.) wavelet case, which 

reduces the RMSE from 1.00 to 0.30. At this noise level performance of LPF and BPF 

was worse compared to low/medium noise cases.  

3.2 Experimental Phantom Results 

In this section, the USAF Resolution Test Target (Fig. 5) and the system explained in 

chapter 2.2 was used for data acquisition. Test target was immersed in water and then 

scanned with PAM system [20]. Experiments with various wavelength and laser power 

parameters were carried out. For all experiments, 65 kHz pulse repetition rate was used. 

Table 2 provides the list of different cases. In I1 and I2 cases, 2nd element in the 5th 

group, and for I3-I11 cases 6th element in the same group were used. For Element 2, the 

line thicknesses are 13.92 μm and for element 5, the line thicknesses are 8.77 μm. Fig. 5 

shows the test material. 
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Acquired signals were filtered using LPF, BPF and DWT based filters and images of the 

phantom were generated. To evaluate the filter performance, SNR and CNR metrics 

were calculated on reconstructed images. In some imaging studies, three different 

methods gave the similar results. For comparative analysis, Table 3 shows both the 

initial SNR and CNR values of the images and the result of the best of the three 

methods, where the improvement is expressed in terms of percentage noise reduction 

with respect to initial value. 

 

In table 3, it is seen that, three different filtering methods dominate the results. In some 

cases, however, other filtering methods gave similar results in general. For I3 case the 

highest SNR improvement was achieved as 142.55% and the highest CNR improvement 

was achieved as 300.75% when sym7/minimaxi/soft thresh. combination is used. For 

the same case, bior3.7/rigrsure/soft thresh. and sym7/sqtwolog/soft thresh. combinations 

achieved the similar results. 

 

Phantom imaging studies, considering the initial SNR values in Table 3, can be divided 

into five different groups as; very low level noise (SNR ≥ 100), low level noise (100 ≥ 

SNR ≥ 70 ), medium level noise (70 > SNR ≥ 40), high level noise (40 > SNR ≥ 10) and 

very high level noise (10 > SNR).  Fig. 6 and 7 shows the example images generated 

using raw signal and filtered signals.  
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3.3 Blood Cell Study Results 

In this section, PA signals acquired from the PAM system for the imaging of blood cells 

were denoised. In the process, the same procedure was applied as in the first and second 

sections. At this study, an object which has certain boundaries as in phantom imaging 

study was not found. Therefore, for the evaluation of the filter performance, standard 

deviation values in the background are calculated. Table 4 shows the calculated 

standard deviation values for different filtering approaches.  

 

Table 4 shows that sym7/sqtwolog/soft thresh. combination achieved the best 

improvement. Results of the LPF and BPF were very close to each other, however, they 

showed lower performance compared to sym7/sqtwolog/soft thresh. combination. Fig. 8 

shows the example images generated using raw and filtered signal (using 

sym7/sqtwolog/soft thresh. combination) for blood cell imaging study.   

4. DISCUSSION 

In denoising process, simulation studies were planned as preliminary work of other two 

steps.  In this step, simulated PA signals were used. Table 1 shows that in general, 

bior3.5 and bior3.7 wavelets gave similar results whereas sym7 wavelet outperformed 

both, for all noise levels. For LPF and BPF cases, as the noise level increased their 

performance got worse. Using this performance comparison, LPF, BPF and bior3.7 and 

sym7 wavelets (to perform DWT based filtering) were chosen for the next steps.   

 

For a realistic PAM systems, acoustic detectors also generate their own noise [12]. In 

this study, PA signal was simulated only considering PA source. For simulation studies, 
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the effect of the acoustic detector on simulated signal was not modelled; however, the 

effect of the detector was inherently included in all experimental data. 

 

The performance of rigrsure and heursure algorithms, which use standard deviation in 

calculations, vary with the level of noise in the signal. In images with low initial SNR 

value the standard deviation is usually high. For the phantom study, in images which 

have low initial SNR, rigrsure and heursure algorithms achieved similar results but 

showed lower performance than the sqtwolog and minimaxi algorithms. For images 

with high initial SNR value, improvement using rigrsure and heursure algorithms 

approached to the sqtwolog and minimaxi algorithms. Sqtwolog algorithm uses a 

threshold value updated at each level according to the noise coefficient (estimated from 

data) at that level. Thus, the performance of the algorithm depends on the noise in data. 

In images with high-level background noise this algorithm performed well. In images 

with very high-level background noise, however, amplitude loss was increased due to 

increased noise coefficient and performance of the algorithm decreased compared to the 

minimaxi. At this noise level, minimaxi algorithm preserved the amplitude of the PA 

signal and achieved better performance than sqtwolog. Sym7 wavelet adopted well to 

the PA signals regardless of the thresholding method chosen due to the similarity 

between this wavelet and the structure of PA signal. LPF and BPF, however, 

outperformed the performance of sym7 in cases with low/vey-low noise levels. 

 

In blood cell study, results supported the performance results of the filters mentioned 

above. In the reconstructed image, standard deviation of the background was similar to 
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those in I1 and I2 phantom images. For these images the best method was 

sym7/sqtwolog/soft thresh. combination which is consistent with the experimental 

phantom results. 

  

There are few studies on filtering of PA signals in literature. In one of them, Holan and 

Viator [18] used a laser light source with wavelength of 450 nm, 543 nm and a laser 

with pulse energy ranging from 1.3 to 3.5 mJ to generate PA signals. For filtering 

purpose, they used a wavelet transform based (level independent sqtwolog/soft thresh.) 

algorithm and achieved 22% improvement in the blood vessel images they 

reconstructed using recorded PA signals. The results show that our approach achieves 

better improvement for a variety of cases. In other studies, Hill et al. [11] investigated 

the reduction of laser-induced noise by singular value decomposition method and Kong 

et al. [24] used an approach, based on empirical mode decomposition for denoising of 

photoacoustic signals in frequency domain. In these studies, improvement was not 

numerically evaluated, thus it was not possible to make a comparison.   

 

In this work, denoising of the test target signals and blood cell imaging signals from the 

PAM system were studied and discussed in a systematic way. In literature, vascular PA 

imaging has been examined by many researchers [25]-[28]. In future works, concept of 

this study can be extended on denoising and analyzing of PA signals for vascular 

imaging and other common imaging studies.     

4. CONCLUSIONS 
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In this study, we have proposed an image reconstruction algorithm that implements 

different filtering approaches for denoising photoacoustic signals. The study was carried 

out in three steps. In the first step, simulated PA signals were filtered and appropriate 

mother wavelets were selected as bior3.7 and sym7 among a set of mother wavelets. In 

the second step, experimental data collected for eleven different cases were used. 

Results show that at different noise levels, different methods are effective for SNR and 

CNR improvements. Methods having similar SNR improvement were evaluated 

according to their performance in CNR improvement. For very low level noise, we only 

observed an improvement in SNR, whereas CNR almost remained the same. Effective 

methods for SNR and CNR improvement were determined as follows;  

 SNR ≥ 100 (very low level noise) : Band-pass filter  (only SNR 

improvement) 

 100 ≥ SNR ≥ 70 (low level noise) : Low-pass filter 

 70 > SNR ≥ 10 (medium and high level noise): sym7/sqtwolog/soft 

thresh. 

 10> SNR (Very high level noise): sym7/minimaxi/soft thresh.  

In the last step, blood cell signals were studied and the standard deviation in the 

background was utilized as the comparison metric. Sym7/sqtwolog/soft thresh. 

combination provided the best improvement and this result is consistent with the ones 

obtained in experimental phantom studies. 
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Table 1. Calculated RMSE values for Gaussian noise 

 

 

 

 

 

 

 

 

 

 

 Low Noise Medium Noise High Noise 

None 0.30 0.50 1.00 

LPF 0.13 0.20 0.40 

BPF 0.13 0.21 0.42 

 Soft
 

Hard
 

Soft Hard Soft Hard 

b
io

r3
.5

 

Sqtwolog 0.13 0.19 0.18 0.34 0.31 0.65 

Rigrsure 0.20 0.28 0.34 0.47 0.69 0.95 

Heursure 0.19 0.22 0.32 0.36 0.64 0.73 

Minimaxi 0.14 0.26 0.22 0.43 0.41 0.86 

b
io

r3
.7

 

Sqtwolog 0.13 0.15 0.18 0.27 0.30 0.52 

Rigrsure 0.19 0.28 0.32 0.47 0.63 0.94 

Heursure 0.18 0.21 0.29 0.36 0.58 0.71 

Minimaxi 0.12 0.23 0.20 0.38 0.36 0.77 

sy
m

7
 

Sqtwolog 0.14 0.13 0.19 0.18 0.31 0.31 

Rigrsure 0.13 0.21 0.19 0.34 0.37 0.69 

Heursure 0.14 0.11 0.19 0.17 0.31 0.31 

Minimaxi 0.13 0.18 0.18 0.29 0.30 0.55 

Table(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. System parameters used in phantom imaging 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study 

Number 

Wavelength 

(nm) 

Laser Power 

(mW) 

Pulse Energy 

(µJ) 

I1 785 32 0.49 

I2 785 32 0.49 

I3 785 32 0.49 

I4 785 34 0.52 

I5 697 33 0.51 

I6 880 33 0.51 

I7 732 28 0.43 

I8 650 34 0.52 

I9 785 35 0.54 

I10 880 32 0.49 

I11 697 34 0.52 



Table 3. Phantom images SNR and CNR improvements 

          

Study 

Number 

Initial 

SNR 

Initial 

CNR 

SNR % 

Improvement  

CNR  % 

Improvement  

SNR Improvement 

Methods 

CNR Improvement 

Methods 

I1 36.22 11.41 

409.47 61.25 sym7/sqtwolog/soft sym7/sqtwolog/soft 

191.09 59.94 sym7/minimaxi/soft sym7/minimaxi/soft 

159.66 58.24 BGF bior3.7/sqtwolog/soft 

I2 26.71 11.67 

415.14 41.56 sym7/sqtwolog/soft sym7/sqtwolog/soft 

191.65 35.81 BPF BPF 

170.11 32.67 LPF LPF 

I3 5.28 1.56 

142.55 300.75 sym7/minimaxi/soft sym7/minimaxi/soft 

138.45 298.24 bior3.7/rigrsure/soft bior3.7/rigrsure/soft 

134.28 298.15 sym7/sqtwolog/soft sym7/sqtwolog/soft 

I4 8.47 3.00 

175.47 228.09 sym7/minimaxi/soft sym7/minimaxi/soft 

151.77 209.44 bior3.7/minimaxi/soft bior3.7/minimaxi/soft 

146.29 205.01 bior3.7/heursure/hard bior3.7/heursure/hard 

I5 45.70 6.34 

92.10 15.02 sym7/sqtwolog/soft sym7/sqtwolog/soft 

85.20 11.50 BPF BPF 

81.79 11.40 LPF LPF 

I6 7.80 3.54 

163.95 156.30 sym7/minimaxi/soft sym7/minimaxi/soft 

121.59 153.14 bior3.7/minimaxi/soft bior3.7/rigrsure/soft 

116.53 152.49 sym7/rigrsure/soft bior3.7/rigrsure/soft 

I7 54.143 16.28 

159.39 12.45 sym7/sqtwolog/soft sym7/sqtwolog/soft 

61.56 11.56 BPF bior3.7/rigrsure/soft 

59.45 11.19 LPF bior3.7/rigrsure/soft 

I8 105.60 43.22 

61.77 -8.60 BPF bior3.7/sqtwolog/soft 

60.37 -9.65 LPF sym7/heursure/soft 

54.80 -10.92 sym7/sqtwolog/soft bior3.7/rigrsure/soft 

I9 71.40 22.06 

65.61 15.86 LPF LPF 

64.37 11.42 sym7/sqtwolog/soft sym7/sqtwolog/soft 

60.18 9.11 BGF sym7/minimaxi/soft 

I10 64.12 17.83 

63.04 4.88 sym7/sqtwolog/soft sym7/sqtwolog/soft 

59.44 3.11 BPF sym7/rigrsure/soft 

57.63 2.29 LPF sym7/minimaxi/soft 

I11 44.94 17.16 

182.73 110.02 LPF sym7/sqtwolog/soft 

174.30 100.30 BPF sym7/minimaxi/soft 

150.44 92.33 sym7/sqtwolog/soft bior3.7/minimaxi/soft 



 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Blood cell images background standard deviations 

 

 

 

Filter ---- Std 

None ---- 0.048 

L.P ---- 0.044 

B.P ---- 0.044 

---- Threshold Soft Hard 
b

io
r3

.7
 

Sqtwolog 0.018 0.027 

Rigrsure 0.042 0.058 

Heursure 0.019 0.044 

Minimaxi 0.027 0.062 

sy
m

7
 

Sqtwolog 0.012 0.015 

Rigrsure 0.030 0.056 

Heursure 0.014 0.032 

Minimaxi 0.017 0.051 
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Figure 1. Main blocks of PAM system [20] 

 

 

 

 

 

 

 

 

 

 

 

Figure(s)
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Figure 2. Typical PA signal (1, 3 and 4 show the triggering signal and 2 shows the PA 

signal) 
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Figure 3. Image reconstruction algorithm 
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                                                                   (a) 

 

 

 

 

          (b)                                     (c)                          (d) 

 

 

 

 

 

          (e)     (f)    (g) 

 

 

 

 

          (h)     (i)     (j)  

Figure 4. Simulated signal, noise added signals and filtered signal examples (a) 

simulated signal, (b) 30% noisy signal, (c) 30% noisy - sym7/heursure/hard thresh, (d) 

30% noisy – LPF, (e) 50% noisy signal  (f) 50% noisy - sym7/heursure/hard thresh., (g)  

50% noisy sym7/minimaxi/soft thresh., (h) 100% noisy signal, (i) 100% noisy 

bior3.7/sqtwolog/soft thresh., (j) 100% noisy - sym7/minimaxi/soft thresh. 
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Figure 5. USAF Resolution Test Target [29] 
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  (a)        (b)        (c)  

  

  (d)             (e)        (f)  

Figure 6. I6 imaging study (image matrix size = 61x109, pixel size = 0.001 µm) (a) raw 

image, (b) LPF, (c) BPF, (d) sym7/sqtwolog/soft thresh., (e) sym7/minimaxi/soft 

thresh., (f) bior3.7/minimaxi/soft thresh. 
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  (a)        (b)           (c)  

   

  (d)       (e)                 (f) 

Figure 7. I11 imaging study (image matrix size = 61x109, pixel size = 0.001 µm)  

(a) raw image, (b) LPF, (c) BPF, (d) sym7/sqtwolog/soft thresh., (e) 

sym7/minimaxi/soft thresh., (f) bior3.7/minimaxi/soft thresh.  
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(a)     (b)          

      
Figure 8. Blood cell imaging study (image matrix size = 168x168, pixel size = 0.001 

µm) (a) original image (using raw signal), (b) sym7/sqtwolog/soft thresh. image 

 

 


