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ABSTRACT This paper studies the impact of demand-prioritization on Space-Division Multiplexing Elastic
Optical Networks (SDM-EON). For this purpose, we solve the static Routing, Modulation Level, Spatial
Mode, and Spectrum Assignment (RMLSSA) problem using 34 different explainable demand-prioritization
strategies. Although previous works have applied heuristics or meta-heuristics to perform demand-
prioritization, they have not focused on identifying the best prioritization strategies, their inner operation,
and the implications behind their good performance by thorough profiling and impact analysis. We focus on
a comprehensive analysis identifying the best explainable strategies to sort network demands in SDM-EON,
considering the physical-layer impairments found in optical communications. Also, we show that simply
using the common shortest path routing might lead to higher resource requirements. Extensive simulation
results show that up to 8.33 % capacity savings can be achieved on average by balanced routing, up to a
16.69% capacity savings can be achieved using the best performing demand-prioritization strategy compared
to the worst-performing ones, the most used demand-prioritization strategy in the literature (serving demands
with higher bandwidth requirements first) is not the best-performing one but the one sorting based on
the path lengths, and using double-criteria strategies to break ties is key for a good performance. These
results are relevant showing that a good combination of routing and demand-prioritization heuristics
impact significantly on network performance. Additionally, they increase the understanding about the inner
workings of good heuristics, a valuable knowledge when network settings forbid usingmore computationally
complex approaches.

INDEX TERMS Elastic optical networks, space-division multiplexing, resource assignment, network
capacity, physical-layer impairments.

I. INTRODUCTION
The overall Internet traffic continues to grow due to the
ever-increasing popularity of established and emerging net-
work services and applications [1]. Nowadays, such traffic
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growth can only be supported by the current installed optical
network infrastructure. However, several researchers have
alerted about the imminent capacity exhaustion of core opti-
cal networks, a situation known as ‘‘capacity crunch’’ [2].

Among the several possible solutions to avoid capacity
exhaustion in core networks, two main courses of action can
be distinguished:
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A. EFFICIENT MANAGEMENT OF NETWORK RESOURCES
Elastic Optical Networks (EON) is a new spectrum usage
scheme that increases the efficiency of spectrum utiliza-
tion [3]–[5]. Such higher efficiency is achieved by dividing
the spectrum into small sections with fixed bandwidth, called
frequency slot units (FSUs). FSUs can be grouped to satisfy
the bandwidth required by each demand adaptively. State-
of-the-art experimental results have shown the feasibility of
spectral widths of 12.5 GHz and 6.25 GHz [6].

B. CAPACITY INCREASE
Using already deployed fibers, their capacity can be increased
by extending the operation band from the usual C-band
(between 1530 nm and 1565 nm) to the L, S, E, and O
bands [7], [8]. Alternatively, current single-mode fibers can
be replaced by novel fibers that support Space Division Mul-
tiplexing (SDM). The most straightforward SDM approach
is based on the transmission of information over multiple
traditional single-mode fiber (SMF) pairs, known as SMF
bundle (SMF-B) [1]. However, newly emerging fiber types
are designed explicitly for SDM, comprising multiple fiber
cores (i.e., multicore fibers - MCF), supporting several prop-
agation modes over one fiber core (i.e., multimode fibers -
MMF), or a combination of both as in few mode-multicore
fibers (FM-MCF) [1]. MMF is made of a single fiber core
of enlarged diameter and a modified refractive index profile
that enables parallel transmission of several co-propagating
spatial modes [9]–[11]. In MCF, multiple cores are placed
within a single fiber cladding, with each core behaving like a
separate fiber cable [1], [12].

Both EON and SDM technologies offer complementary
solutions to confront the ‘‘capacity crunch’’ problem in opti-
cal communications [13]. Therefore, research on the poten-
tial benefits of their joint operation has already started [1],
[10]. However, they also introduce a wide range of new
challenges in terms of equipment such as fiber, multiplex-
ers/demultiplexers, amplifiers, and ROADMs able to work
over the new spatial dimensions [14]. Also, the multitude
of spatial modes introduces new physical layer impairments
that need to be taken into account when modeling the quality
of transmission in SDM fiber links [15]. From a resource
allocation point of view, the main challenge in establish-
ing optical connections is the efficient usage of spectrum
resources despite the detrimental effect of the spectrum
continuity and contiguity constraints and the spatial-mode
parallelism [1], [5].

Such efficient spectrum usage must be enabled by a good
resource allocation algorithm to establish optical connec-
tions. In a multi-spectrally and spatially elastic optical net-
work, this algorithm is known as the Routing, Modulation
Level, Spatial mode, and Spectrum Assignment (RMLSSA)
algorithm [16]–[19]. An RMLSSA algorithm is in charge of
finding a path - an optical connection between two network
nodes - to each network demand (routing), a modulation
format that achieves a good trade-off between spectrum usage

and optical reach (modulation level) [20], a specific fiber
core (spatial mode) and a set of contiguous and continuous
FSUs (spectrum) on the selected route and core.

For transparent optical communications, RMLSSA algo-
rithms must comply with the following constraints: first,
each FSU can host only one demand; second, the set of
FSUs assigned to a given demand must be maintained along
the entire origin-destination route, known as the ‘‘continuity
constraint’’; also, if the demand’s bandwidth requirement
must be satisfied allocating more than one FSU, the assigned
FSUs must be consecutive in the spectrum, known as the
‘‘contiguity constraint’’ [5]. Finally, depending on the SDM
technology used and the distance between cores, crosstalk
could prevent the simultaneous use of the same FSUs in
adjacent cores.

In a static scenario, demands are known before the net-
work starts operating, and thus, the establishment of optical
connections is done offline. That is, a traffic matrix with the
requested transmission data rates of all connection demands
is given as input data for the resource allocation process [13].
In this type of network, optical paths are assigned quasi-
permanently, that is, connections remain established on time
scales from days to years [21], [22], as is the case in today’s
optical WDM networks. Although dynamic operation might
bring further efficiency in terms of resource usage, previous
work in the context of WDM networks has shown that this is
not the case due to the wavelength continuity constraint [23].
Given the contiguity and continuity constraints imposed by
EONs, the eventual advantages of dynamic operation in
EONs might not compensate for the increased complexity of
devices and the control plane. In fact, the literature discussion
points first to evolution from current static WDM optical
networks towards static EONs (for efficient usage of the
installed spectrum), and then, incorporating SDM techniques
to increase the network capacity [24], [25]. Thus, as in [13],
in this paper, we solve the static RMLSSA problem.

The efficiency of resource allocation algorithms for static
operation networks can be measured in two ways: by eval-
uating the maximum amount of demands that can be served
with a given capacity or by quantifying the minimum network
capacity required to accommodate a given demand [1], [26],
[27]. In this work, we use the former approach. Capacity
minimization as the main objective of a static RMLSSA allo-
cation algorithm can be optimally solved by using optimiza-
tion techniques such as integer linear programming (ILP) or
mixed-integer linear programming (MILP)models [28]–[31].
However, the RMLSSA problem is known to be NP-complete
[1], [32]. As a result, its computational complexity makes
an optimal RMLSSA solution’s execution time prohibitively
high, even for small networks [1], [33]. For example, in [13],
it was shown that the ILP solver running time could be as
high as 72 hours for six-node networks.

On the contrary, heuristic (and meta-heuristic) methods do
not guarantee optimal solutions, but scale to higher order
networks with relatively fast execution times. For exam-
ple, in [13], four different heuristic approaches executed in

63476 VOLUME 9, 2021



P. Morales et al.: Improving the Performance of SDM-EON Through Demand Prioritization

the same six-node networks in less than a second. In [34]
and [35], the authors compare the behavior of an optimal ILP
RMLSA algorithm minimizing the spectrum usage, a heuris-
tic algorithm serving connections one by one using 2 differ-
ent order criteria, and a simulated annealing meta-heuristic
approach. Results indicate that sequential heuristic combined
with an appropriate ordering can give near-optimal solutions
in low running times. In addition, according to [1], although
meta-heuristics are widely used to solve resource allocation
problems in SDM (such as [18], [36]–[38]), heuristics are
extensively used too ([16]–[18], [32], [36], [37], [39]–[42]).
Heuristic solutions for the RMLSSA problem are usually
solved in sequential stages [5], [31]. First, a route is assigned
(typically, the shortest path); then, a suitable modulation
format is chosen (usually, the one that decreases the number
of FSUs required given length of the route); and finally the
FSUs and cores on each link are assigned [43].

As a consequence of the sequential solving of the
RMLSSA problem and the contiguity and continuity con-
straints, it is usual to find unallocated FSUs surrounded
by allocated ones. This situation, known as fragmentation,
is undesirable because it might prevent attending additional
demands due to inefficient capacity usage. Therefore, a com-
mon goal of RMLSSA solutions is to decrease fragmentation
to maximize capacity utilization [29], [30].

Several papers, [1], [13], [16], [18], [32], [34], [35], [41],
[44]–[46], show that the order in which demands are served
impacts the network fragmentation and, thus, the network
capacity requirements. However, they carry out partial stud-
ies where only a handful of prioritization strategies are
researched. Having a strategy that defines what demand will
be allocated resources first (demand-sorting strategy) is rele-
vant when the network operates statically or when a defrag-
mentation operation needs to be performed in a dynamic
environment [47]–[51]. In the latter case, currently estab-
lished connections are re-allocated to increase the available
capacity. In most papers that use a demand-sorting strategy,
demands are sorted by their spectrum requirements [1], [13],
[16], [18], [32], [44], while others sort demands based on
their path lengths (in km or number of links) [1], [41], [45].
Despite the importance of the demand-sorting strategy on the
network capacity requirements, no previous work has carried
out a comprehensive comparative study of the impact of
different demand-sorting strategies on network performance.
Common demand-sorting strategies found in the literature
serve first the demands with the highest FSUs requirements,
without contrasting its performance to other sorting schemes.
Additionally, most previous works have not considered the
physical-layer impairments (PLI) on the analysis. In such an
ideal network environment, the FSU requirements and path
lengths are not related. However, considering the PLI on the
equation introduces a maximum optical reach for each data
transmission, which might restrict the modulation formats
available for each demand to the ones demanding more FSUs
to transmit. This situation leads to a correlation between path
lengths and bandwidth demands. Such a correlation has not

been considered on the way demands are prioritized to be
allocated resources.

In this work, we study for the first time 34 different explain-
able demand-sorting strategies and evaluate their impact on
the network performance for SDM-EON, considering the
PLI found in SDM-EON communications. We analyze dif-
ferent sorting strategies in terms of network fragmentation,
network capacity requirement, and distribution of the mod-
ulation formats in the fiber cores. In this sense, we profile
the strategies used identifying the best ones according to the
topology. Such knowledge is of interest to network operators,
not only because the performance of the network is improved
by efficient usage of network capacity but also because a
further understanding of the inner working of heuristics is
useful when the network setting forbids the use of more
computationally complex approaches.

The remainder of this paper is as follows: Section II
describes the RMLSSA strategy used in this work. Section III
presents the demand-sorting strategies used to test the pro-
posed RMLSSA algorithm. Section IV discusses the numer-
ical results. Finally, conclusions and remarks are drawn in
Section V.

II. RMLSSA AND DEMAND-SORTING STRATEGIES
In this section, the physical layer impairment model used to
determine the number of FSU’s allocated to each demand is
described. Then, the RMLSSA algorithm used to allocate net-
work resources is presented. Finally, the 34 demand-sorting
strategies studied in this paper are detailed.

A. PHYSICAL LAYER IMPAIRMENTS MODEL
The quality of transmission (QoT) of optical signals is
degraded by different phenomena occurring during the mod-
ulation, propagation, and detection processes. In particular,
to solve the RMLSSA problem, we consider the impact
that the amplified spontaneous emission (ASE) noise and
non-linear interference noise have on the QoT. The accumu-
lation of noise during propagation determines the maximum
optical reach that a signal can have for a given modula-
tion level and bit error rate (BER) combination. Complex
modulation formats, with a high number of bits per symbol,
increase the transmission sensitivity to degradation. Thus,
the transmission reach is shorter for higher modulation
levels compared to simpler formats [13]. To consider this
route length - modulation level trade-off, the most common
approach is to associate any modulation format available
at the transponder to its maximum transmission reach for a
given BER value [1], [29]. This is also the approach used in
this work.

The modulation formats considered in this study are binary
phase-shift keying (BPSK), quadrature phase-shift keying
(QPSK), and3-quadrature amplitude modulation (3-QAM),
where 3 takes the values 8, 16, 32, and 64, as shown in
the first column of Table 1. The second column in the table
shows the maximum achievable reach (MAR) - assuming
single-polarization - as a function of the modulation format
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FIGURE 1. Schematic of the RMLSSA algorithm: input data, intermediate steps and output data.

TABLE 1. Maximum achievable reach (MAR) per modulation format and
FSU requirements per bit-rate and modulation format pair, for a BER
value equal to 10−6.

available at the transponders. The optical reach values were
obtained using the GN model [52] to estimate the received
signal-to-noise ratio (SNR) degraded by ASE noise and
non-linear interference noise. The SNR calculated based on
the GN model is compared with the minimum SNR value
required to guarantee a BER threshold for each available
modulation format. This procedure allows us to determine
the maximum number of spans that can be transmitted at
optimum launch power. Thus, the MAR for each modula-
tion format shown in Table 1 corresponds to the maximum
length, in kilometers (a multiple of the number of 100-km
spans), that an optical signal can travel without exceeding
a BER of 10−6. The MAR was calculated considering a
worst case scenario, fully-loaded C-band with 320 FSU
slots occupied by signal with a bandwidth equal to one
FSU. For more details about the optical reach calculation,
the reader is referred to [20], Section III. In this work crosstalk
between spatial modes was not considered. That is, the reach
was estimated for a SDM channel formed by MCF with
reduced crosstalk, e.g. trench-assisted or increased core-
to-core distance, or a SMF-B. Remark that crosstalk reduces
the transmission reach in a SDM channel, however, this
has a limited impact on the strategies to sort the demands
studied herein. The remaining columns in Table 1 show the
required number of FSUs necessary to form a super-channel
with different bit rates for each modulation format under
consideration.

B. RMLSSA ALGORITHM
Figure 1 shows an schematic of the RMLSSA solver used in
this study, which employs well-known spectrum assignment
and routing algorithms, but introduces a demand-sorting step

prior to spectrum allocation (step 3 ‘‘Demand sorting strat-
egy’’ in Figure 1).
In our RMLSSA solver the inputs are:
• graph G = (N , E,K), whereN is the set of nodes in the
network, E the set of unidirectional links - each with a
capacity expressed in number of FSUs - andK the set of
cores in all the network links (represents the number of
cores to assign all demands), with cardinality N , E y K
respectively.

• the demand vector EU , with elements in the form
〈su, du, bu〉, where su is the source node, du the desti-
nation node, and bu the bit rate associated to demand u.

The first step computes a route for each demand in EU ,
storing them on the vector ER. Each element in ER has the
form 〈ru, `u〉where ru and `u represent the route and its length
(in kilometers), respectively, for demand u. These routes are
fixed and can be computed by any algorithm available in
the literature [53]–[56]. In algorithmic form, we symbolically
write ER := Routing(G, EU).

The second step uses the route length information from ER
and the required bit rate from EU to determine - using Table 1 -
the most efficient modulation format and the number of FSUs
needed. In Table 1, the modulation formats are sorted in
increasing order of spectral efficiency. Therefore, the most
efficient modulation format with a MAR value equal to or
higher than the route length is selected. As a result, the vec-
tors EM and EF are generated. The vectors EM and EF are
comprised of mu the modulation format and fu the number of
FSUs required for each demand, respectively. In algorithmic
form, we symbolically write { EM, EF} :=ModFSU(R,U).
Next, the demands in EU are sorted according to one or

more criteria. Different strategies consider different crite-
ria to perform the sorting. Depending on the strategy used,
the information contained in the vectors ER, EM and EF might
be used to sort the demands. As a result, the vector ES =
sort( ER, EM, EF) is generated, which now contains the ordered
demands. In algorithmic form, we symbolically write ES :=
Sorting( ER, EM, EF).

Finally, for each element in ES, the First Fit SSA procedure
is executed to allocate FSUs and one core along the route.
The FSU allocation procedure must comply with spectrum
continuity and contiguity constraints [5], [12]. In SDM tech-
nologies an additional core continuity constraint might also
be taken into account. In that case, only one core needs to be
allocated. The core continuity constraint has the potential to
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simplify the node architecture [57]. In this work, we analyze
the network performance considering that the core continuity
constraint is in place.

The output of the SSA is the allocation vector EA. Each
element in EA has the form 〈ru, iu, fu, EV〉 where ru is the route
for demand u, iu is the identification of the first FSU where
the demand must be allocated in every link, fu is the number
of FSUs required by the demand u, and EV is the core vector.
Each element in EV corresponds to the core where each route
link of the demand was assigned. Under the core continuity
constraint, the core vector collapses to a single element.

Algorithm 1 shows the pseudo-code of the proposed
RMLSSA algorithm, including the intermediate steps
explained above.

Lines 2 to 3 perform the calculation of all demand paths ER,
their modulation formats EM, and their corresponding FSU
requirements EF .

In line 4, the demand-sorting procedure is executed.
Remark that the sorting function will output different results
depending on the sorting criteria, as explained in Sub-
section II-C. This procedure returns the vector ES, which
contains the same set of demands in the vector EU , but now
ordered according to some criteria.

In line 5 the assignment vector EA is initialized. This vector
corresponds to the algorithm’s output and stores all the infor-
mation of each demand: route, FSUs, and core allocation.

In lines 6 to 17, an iterative procedure that searches for
a subset of FSUs in a specific core for each demand u is
executed (the so-called SSA algorithm). The iterative proce-
dure ends when all demands have been assigned resources
(line 7). We use a version of the First-Fit algorithm, modified
for the SDM-EON architecture. Thus, we start checking the
availability of the first FSU (iu equal to 0, line 8) on the first
core (k equal to 1, for loop in line 9). Let imaxuk be themaximum
number of FSUs in link e ∈ ru on the k-th core. From lines
10 to 17 we search for a number of fu available FSUs on the
path ru on the k-th core. The set of fu FSUs must comply
with the continuity and contiguity constraints. Therefore,
the search proceeds from the first FSU to the imaxuk − fu − 1
slot (lines 10 and 16). Once a set of contiguous fu FSUs is
found in every link of the route in the k-th core (line 11),
the set of FSUs is assigned to the demand u (line 12), the vec-
tor EA is updatedwith the corresponding information about the
route, FSUs and core for demand u 〈ru, iu, fu, EV〉 (line 13).

By repeating the steps explained above for each demand
in ES (lines 6 to 17), we update the output vector EA (line 18).

C. DEMAND-SORTING STRATEGIES
As previously mentioned in section II-B, we add an explicit
step in the RMLSSA algorithm where the demands are sorted
prior to space and spectrum assignment procedure (SSA).
Sorting demands before performing the spectrum and space
allocation might significantly decrease network fragmenta-
tion, and thus, achieve significant network capacity savings.
We identified 34 demand-sorting strategies that use different
sorting criteria based on the number of FSUs requested by the

demand, the length of the path, and network usage. We classi-
fied these strategies into 6 groups, as shown in Table 2. They
are as follows:

• Group 1:Demands are randomly sorted using a uniform
distribution (Strategy 1). This group represents the case
where demands are not sorted according to any specific
criteria.

• Group 2: Demands are sorted using a single criterion.
Strategies 2, 4, 6 sort demands in descending order of
number of FSUs, route distance (in km), and route num-
ber of links (hop count). Strategies 3, 5, 7 sort demands
in ascending order of number of FSUs, route distance (in
km), and route number of links.

• Group 3: Demands are sorted using either descending
or ascending double criteria. Even-numbered strategies
(8-18) use descending criteria while odd-numbered ones
(9-19) use ascending criteria. The first criterion sorts
the demands and the second breaks ties. For example,
Strategy 8 sorts demands in descending order of number
of route links. If two routes have the same number of
links, then they are sorted in descending order of number
of FSUs.

• Group 4: Demands are sorted using mixed double cri-
teria: one criterion in descending order and the other in
ascending order. As with the previous group, Strategies
20-31 use the first criterion to sort the demands and
the second to break ties. For example, Strategy 20 sorts
demands in descending order of number of route links.
If two routes have the same number of links, then they
are sorted in ascending order of number of FSUs.

• Group 5: Strategy 32 sorts demands in descending order
of link utilization (number of routes using a link). All
demands belonging to the same link are then sorted
in descending order of the number of FSUs times the
number of links in the route.

• Group 6:Mixedmultiplicative criteria. Strategies 33 and
34 sort demands in descending and ascending order of
number of FSUs times the number of links, respectively.

III. SIMULATION SCENARIOS
The performance evaluation of the RMLSSA algorithm was
carried out using an event-discrete simulator written in
Python. Different simulation scenarios defined by 6 differ-
ent network topologies and the 34 demand-sorting strategies
described in the previous section were analyzed (204 sce-
narios). Next, we discuss the characteristics of the networks
used for the simulations, the traffic generation method, and
the performance metrics used.

A. NETWORK TOPOLOGIES
The main network characteristics assumed for the topologies
used for this study are summarized in Table 3. The number
of cores is not limited to any specific value, as the aim of this
study is to quantify the network capacity requirements.

VOLUME 9, 2021 63479



P. Morales et al.: Improving the Performance of SDM-EON Through Demand Prioritization

Algorithm 1 RMLSSA Proposal

1: procedure RMLSSA(G, EU)
2: ER := Routing(G, EU);
3: { EM, EF} :=ModFSU( ER, EU);
4: ES := Sorting( ER, EM, EF);
5: EA = φ;
6: for each demand in ES do
7: while demand not assigned do
8: iu := 0;
9: for all k ∈ K do

10: while iu ≤ imaxuk − fu − 1 do
11: if FSUs from iu to iu + fu − 1 are free in k-th core of ru then
12: Assign the slots to demands u in k-th core of ru;
13: Add demands u and its chosen core and slots in EA
14: Break;
15: else
16: iu := iu + 1;
17: iu := 0;
18: return EA

FIGURE 2. Network topologies.

To evaluate the behavior of the proposed algorithm in
different network scenarios, the 6 real network topologies
shown in Figure 2 were used.
The network capacity of each topology is determined by

the C-band frequency spectrum. Assuming an FSU spectral
width of 12.5 GHz, this leads to a total of 320 FSUs per link in
every core. The number of fiber cores used on the multicore
fibers will not be fixed beforehand, so we can evaluate the
maximumnumber of cores needed to allocate all transmission
requests.

B. TRAFFIC GENERATION
One traffic demand per node pair is generated, yielding a total
of |N | ·(|N |−1) demands. However, if a demand has a short-
est path longer than the maximum reach allowed by the less
efficient modulation format (5220 km, please see Table 1),
it is not included in the input set EU . The bit rate of each
traffic demand is generated randomly from the set {10 Gbps,
40 Gbps, 100 Gbps, 400 Gbps, and 1000 Gbps}. To make the
different simulation scenarios comparable, we use the same
seeds in all of them, so the same set of demand requests is
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TABLE 2. Demand-sorting strategies.

TABLE 3. Network characteristics.

generated. For each simulation scenario, a total of 100 simu-
lation runs are executed.

C. PERFORMANCE METRICS
To evaluate the performance of the different demand-sorting
strategies in all the network topologies we used performance
metrics related to: 1) the network capacity required to accom-
modate all demands, 2) spectrum fragmentation and, 3) spec-
trum usage. These are explained in the following.

1) EFFECTIVE NETWORK CAPACITY REQUIREMENT
We store the capacity of all network links in vector EC. The
element ce ∈ EC is the total capacity of link e in number of
FSUs. The value of ce is calculated as ce =

∑
∀K ce,k , where

ce,k is the total amount of FSU on the k-th core of link e.

FIGURE 3. Example of space and spectrum assignment (SSA) on a two
links arbitrary network.

Besides, let us define the effective link capacity ĉe as
the capacity used on link e, including fragmented slots. To
compute the value of ĉe, first, the last fiber core used in
link e, denoted by k̂ , must be identified. Then, the number
of slots between the first slot of core k̂ (FSU = 0) and the
last slot allocated to any demand in core k̂ must be recorded.
This number is the effective core capacity of the last core k̂ ,
denoted by ĉe,k̂ . Then, we compute ĉe for each link as follows:

ĉe =
k̂−1∑
k=1

(ck )+ ĉe,k̂ , (1)

Figure 3 exemplifies the calculation of ĉe. In the figure,
the slot usage of two 8-slot 4-core network links is repre-
sented by means of matrices. Each row represents a core and
each column an FSU. If an FSU is assigned to a demand, its
corresponding square is filled with gray.

In this example, the last core used on link 1 is k̂ = 3, and
thus, ĉ1,3̂ = 5. Consequently, the effective link capacity ce is
equal to 8+ 8+ 5 = 21. Similarly, on link 2 k̂ is equal to 4,
ĉ2,4̂ = 2, and c2 = 26.
The sum of the effective link capacities across all network

links determines the effective network capacity requirement
(Ĉnet ), commonly used to evaluate RSA algorithms [29], [58].
That is:

Ĉnet =
∑
e∈E

ĉe. (2)

Back to the example shown in Figure 3, if links 1 and
2 were all the network links, then the effective network
capacity would be equal to 47. Remark that, any non-used
capacity included in the effective link capacity is considered
as fragmentation (e.g., FSU 3 in core 1 on link 1 or FSU 6,
core 3 on link 2), as explained next.

2) FRAGMENTATION
As mentioned in Section I, fragmented FSUs on the network
links should be avoided because the continuity and conti-
guity constraints make it difficult to use them to allocate
demands [59]. Thus, they usually constitute a waste of net-
work resources.

Network fragmentation in a static scenario [60] is defined
as the number of unused FSUs within the network effective
capacity. In SDM architectures we can recognize two types
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of fragmentation: spectral fragmentation (SpecF) and spatial
fragmentation (SpatF) [1], [13].

Spectral fragmentation is the number of unused FSUs
surrounded by allocated FSUs. For example, in Figure 3
the SpecF of link 1 is equal to 6 FSUs (core 1, FSUs 3;
core 2, FSUs 0,1; core 3, FSUs 0-2) and the total network
SpecF (assuming a network made of these 2 links) is equal to
10 FSUs.

Spatial fragmentation is the number of unused FSUs
located in the last part of the fiber cores 0, 1, . . . k̂ − 1.
Such fragmentation is mainly due to the splitting of the total
capacity into several network cores. For instance, in Figure 3,
the value of SpatF in link 1 is equal to 5 FSUs (core 1,
FSU 7; core 2, FSUs 4-7) and the total SpatF is equal to
11 FSUs. These FSUs are - with a high probability- not useful
to serve more demands since demands would usually require
a number of FSUs larger than those available in that part of
the core.

We consider that the last fiber core used in each link does
not contribute to the spatial fragmentation, since those slots
may still be enough to attend new demands.

The total fragmentation experienced by the overall network
is due to the contribution of the spectral and spatial fragmen-
tation [1], [13].We called this parameter Total Frag, evaluated
using Eq. (3).

Total Frag = SpecF+ SpatF. (3)

In the example of Figure 3 the total fragmentation given by
Eq. (3) is Total Frag= 10+11 = 21. In this sense, we define
the percentage of fragmentation - Total Frag (%) - as the pro-
portion of the effective capacity affected by fragmentation.

Consequently, we compute this metric as follows (Eq (4)):

Total Frag (%) = 100 ·
Total Frag

Ĉnet
. (4)

In the example of Figure 3, Total Frag (%) is computed as
100 · ( 2147 ) = 44.68 %. The lower this value the better the
performance of the allocation algorithm.

3) PERCENTAGE OF SPECTRUM USAGE
Finally, to allow comparison across different topologies,
we define the percentage of used FSUs - Total Used FSUs
(%) - as the proportion of the effective capacity affected by
used FSUs. Consequently, we compute this metric as follows
(Eq (5)):

Total Used FSUs (%) = 100 ·
Used FSUs

Ĉnet
. (5)

In the example of Figure 3, Total Used FSUs (%) is com-
puted as 100 · 26

47 = 55.32 %.
Notice that although the number of used FSUs (Used

FSUs) is the same for all strategies (since the same traffic
demand is served), the number of used FSUs normalized to
the effective capacity does change. As a result, the closer this
value is to 100%, the better the performance of the algorithm.

TABLE 4. Average value of total used FSUs(%) for the Shortest Path (SPR)
and Baroni (BR) routing algorithms for the 34 demand sorting strategies
on all network topologies studied here.

IV. NUMERICAL RESULTS
In this section, we report on the simulation results obtained by
executing the RMLSSA algorithm on the topologies shown
in Figure 2 considering the 34 different demand-sorting
strategies shown in Table 2.

We analyzed two main scenarios: one scenario where
the bit rates defined in Table 3 are randomly assigned for
each connection request and a worst-case scenario, where
all demands request 1000 Gbps. Due to the lack of space,
we report on the most critical scenario (1000 Gbps per
demand). Notwithstanding, both scenarios obtained the same
relative results.

A. IMPACT OF THE ROUTING ALGORITHM
In this section, we executed the RMLSSA algorithm (for the
34 different demand-sorting strategies) using 2 routing algo-
rithms found in the literature: Shortest Path Routing (SPR)
and Baroni’s Routing (BR). In the former case, Dijkstra’s
algorithm was executed using the length of the links (in km)
to find the shortest route. In the latter, the heuristic proposed
in [61] is used. This method seeks to balance the number of
routes passing through each link iterating among all possible
shortest paths and possible paths with one extra link found
for each demand.

Figure 4 shows the percentage of Total Used FSUs (%),
corresponding to the value of all allocated FSUs normalized
to the effective network capacity, computed by the RMLSSA
method explained in section II using the SPR and BR routing
strategies, for the 34 demand-sorting strategies analyzed in
this paper for the Eurocore, NSFNet and ARPANet network
topologies. Similar results were obtained for the UKNet,
EONet and, USNet topologies, but we omitted them in the
figure to improve image clarity.

As seen in Figure 4, balancing the demands across the
network links (BR) achieves better efficiency in the use of the
spectrum compared to simply using the shortest path (SPR),
irrespective of the demand-sorting strategy used. Table 4
shows the average value of Total Used FSU(%) achieved
by the SPR and BR routing techniques for the 34 demand
sorting strategies for all topologies. Remark that the highest
difference in percentage of Used FSUs between the SPR and
BR routing strategies occurs in the USNet network topology,
where BR achieves 14.97 % more Total Used FSUs. On the
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FIGURE 4. Percentage of Used FSUs -Total Used FSUs (%)- obtained by the RMLSSA method using Baroni (BR) and Shortest Path (SPR) routing methods
and the 34 demand sorting strategies for Eurocore, NSFNet and ARPANet.

other side, the smallest gap is obtained by the ARPANet
network topology with a 4.20 %. We can see that, in general,
the higher the order of the network, the more significant the
savings achieved (in terms of Total Used FSUs) thanks to
the demand balance across the links. Results show that up
to 8.33 % capacity savings can be achieved on average by
balanced routing.

This situation can be explained by using the shortest path
concentrates the demands on several links -generally on the
core section of the network- while outlying network links
are under-used. The highly loaded links suffer of high frag-
mentation, thus increasing the overall network fragmentation.
Instead, using a balanced routing technique decreases the load
of the highest loaded links, which in the end diminishes the
capacity required and the network fragmentation. Notwith-
standing, for the ARPANET network topology, the routes
obtained by both algorithms (SPR and BR) coincide on a
77.37 %, while for the remaining topologies, the percent-
age of coincidence is much lower. This situation explains
that there is not much difference using SPR and BR on
ARPANET, as previously mentioned.

These results highlight the impact of routing strategies
on the network performance of static SDM-EON networks.
Remark that the standard decision found in the literature to
route the demands is to simply use the shortest path [13],
[16], [32], [33], without applying any load balancing process.
However, as we could see in Figure 4, the shortest path criteria
is not the best choice in terms of effective capacity required
to accommodate the network demands.

Next, we will report on simulation results evaluating the
impact of the topology and the demand-sorting strategies
using the BR routing.

TABLE 5. All network topologies parameters used in this work.

B. IMPACT OF THE NETWORK TOPOLOGY
Figure 5 shows the values of the Total Used FSUs (%) met-
ric for the 34 demands sorting strategies analyzed in this
paper for the Eurocore, NSFNet, EONet, UKNet, USNet and
ARPANet network topologies.

It can be seen that sorting the network demands previous to
the spectrum assignment significantly impacts the Total Used
FSUs obtained by the RMLSSA strategies for SDM-EON
architectures, irrespective of the network topology analyzed.

The worst-performing topology is the ARPANet network,
where the demand sorting strategies with the worst perfor-
mance achieve a Total Used FSUs (%) equal to 43.48 %. The
best performing strategy, 24-Link ↓ Distance ↑, achieves an
increase of 86.22 % in Total Used FSUs (%) with respect to
the worst one.

On the other hand, the best-performing topology is the
Eurocore network, obtaining a Total Used FSUs (%) value
equal to 72.21 % on the worst sorting strategy and equal to
93.06 % for the best strategy.

Broadly speaking, we can recognize that there are some
groups of networks performing similarly. On the first group,
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FIGURE 5. Total Used FSUs (%) obtained by the RMLSSA method using Baroni (BR) routing method and the 34 demand sorting strategies for
Eurocore, NSFNet, EONet, UKNet, USNet and ARPANet network topologies.

Eurocore appears in the higher part of the figure (with a Total
Used FSUs (%) performance ranging from 70 % to 90 %);
secondly, the NSFNet, EONet and UKNet topologies appear
in the middle zone (around 60 % to 70 % of total used FSUs);
and lastly, USNet and ARPANet appear on the lower part of
the figure (with Total Used FSUs (%) values between 45 %
to 60 %).

Table 5 summarizes the parameters of all networks con-
sidered in this work. These parameters are the number of
network nodes N , links E and demands U , the mean length
of the network links L̄, the average length of routes R̄,
the mean value of the number of hops per route H̄, and the
ratio between the number of demands and the number of
networks links U

E . FromTable 5 and Figure 5we can conclude
that the network percentage of Total Used FSUs is inversely
proportional to the size of networks (in terms of average link
distances), as well as the number of connection demands
using each network link.

However, the ARPANet network topology does not fol-
low this rule, due to the fact that it is a highly symmetri-
cal network attending many demands per link (an average
of 6.12 demands per link), and the links are also very long,
as shown in Table 5. The above means that most demands to
be assigned require a high number of FSUs and thus, very few
demands requiring a low number of FSUs which allow occu-
pying the fragmented FSUs. As a result, ARPANet exhibits
the lowest percentage of Total Used FSUs (%), despite not
being the one with the largest number of nodes, links or
demands.

C. IMPACT OF THE DEMAND-SORTING STRATEGIES
Finally, here we evaluate the impact of the demand sorting
strategies included in the RMLSSA algorithm on the network
performance.

We found out that the best strategies, in terms of effective
network capacity and fragmentation, generally are the Strate-
gies 24-Link ↓ Distance ↑, 20-Link ↓ FSU ↑ and 6-Link ↓,
which sort the demands using the number of links/hops on
the connection paths as a primary (or only) sorting criterion
in decreasing order. This conclusion differs from the standard
choice found in the literature, where demands are sorted
in decreased order of bandwidth requirements (number of
FSUs) (Strategy 2: FSU↓). This situation can be explained by
the impact of physical-layer impairments on the modulation
format selection: Physical layer impairment considerations
restrain the modulation formats to be used, to the ones with
a feasible optical reach. Therefore, demands with long routes
require a larger amount of FSUs than shorter path demands.
Besides, routes with a greater number of links request a
larger amount of resources along their paths, being the more
troublesome ones from the spectrum assignment point of
view (adding the bandwidth and length correlation). Then,
they should be the first ones to be allocated.

To zoom in the performance of the different criteria to
sort connection requests, Figures 6, 7, 8 and 9 show the
percentage of FSUs used on each core for the ARPANet,
UKNet, EONet and USNet network topologies, respectively.
Each bar shows the distribution of the modulation formats
used across the different cores together with the spectral and
spatial fragmentation, while the red line represents the num-
ber of demands allocated on each core. In Figures 6, 7 and 8,
the sub-figures (a) and (b) present the best sorting strategies
in terms of the lowest effective capacity, lowest total frag-
mentation and number of cores used, and (c) shows the worst
strategy for each topology. On the other hand, in Figure 9 the
best sorting strategies are presented in (a) and (b) sub-figures,
meanwhile (c) and (d) sub-figure illustrate the worst-case
ones.
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FIGURE 6. Percentage of FSUs used and number of demands in ARPANet network, taking the effective capacity as the total on each core in terms of the
modulation format used and the spatial and spectral fragmentation, for the best (a) and (b), the worst (c) sorting strategies.

FIGURE 7. Percentage of FSUs used and number of demands in UKNet network, taking the effective capacity as the total on each core in terms of the
modulation format used and the spatial and spectral fragmentation, for the best (a) and (b), the worst (c) sorting strategies.

In Figures 6, 7, 8 and 9 we can see that the best strategies
allocate first the connections with the least efficient modu-
lation formats (BPSK and QPSK), distributing them among
the first network cores. The highly efficient ones (32QAM
and 16QAM) are then used to fill the gaps on the network
cores decreasing the fragmentation on the link cores. On the
other hand, bad sorting strategies allocate first the demands
using 32QAM, 16QAM and 8QAM, while leaving the other
ones to be allocated on the next cores. Remark that the
spectrum assignment process is First-Fit, therefore attending
the demands first on the first core, and then searching sequen-
tially among the next link cores.

In addition, Figures 6 to 9 present similarities in terms
of the distribution of demands over the link cores. Gener-
ally speaking, the number of demands per core for the best
sorting strategies is more uniformly distributed. In contrast,

the worst-performance prioritization strategies concentrate
most of the demands on the first link cores. This behavior is
highlighted in Figures 6 and 9 (ARPANet and USNet respec-
tively), because these are topologies using a large number of
cores, evidencing the difference in the number of demands
between the worst and best sorting strategies.

1) MIXED CRITERIA
Groups 3 and 4 in Table 2 present mixed-criteria for sorting
the network demands. To the best of our understanding they
are not found in the literature. Consequently, we will discuss
the impact of using a second criterion to break the ties while
sorting the connection demands.

As mentioned in Section I, several papers sort the connec-
tion requests according to their bandwidth demands (number
of FSUs) or their path lengths (number of links on its path).
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FIGURE 8. Percentage of FSUs used and number of demands in EONet network, taking the effective capacity as the total on each core in terms of the
modulation format used and the spatial and spectral fragmentation, for the best (a) and (b), the worst (c) sorting strategies.

FIGURE 9. Percentage of FSUs used and number of demands in USNet network, taking the effective capacity as the total on each core in terms of the
modulation format used and the spatial and spectral fragmentation, for the best (a), and the worst (b) sorting strategies.

However, our simulation results show, in general, that the
order strategies with the best results in terms of network
capacity (i.e. effective network capacity and the number of

cores required) are strategies 24-Link ↓ Distance ↑, 20-
Link ↓ FSU ↑ and 6- Link ↓, prevailing strategy 24 in
ARPANet and UKNet.
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From the above, it is necessary to highlight how the strate-
gies with double order criteria (20-Link ↓ FSU ↑ and 24-
Link ↓Distance ↑) obtain better results in most of the topolo-
gies than strategies with a single order criterion.

The use of mixed (or double) criteria, leads to basically
sorting the demands according to a first sorting criterion, and
then breaking the ties obtained by the first arrangement using
a second criterion. At first glance, the impact might seem
scarce, or even meager. However, we measure the impact of
the use of a second criterion, presenting an extra 1.33 % total
used FSUs on strategies using Link ↓ as a first sorting deci-
sion between theworst-case and best-case ones, averaging the
results of the 6 topologies. Similar results can be obtained
on several mixed criteria comparisons. Therefore, a good
decision on the second criteria, also impacts the network
performance. Even more, neglecting to sort the ties obtained
by the first sorting criteria may result in extra capacity (even
extra cores in extreme cases).

2) SPECIAL CRITERIA
Groups 5 and 6 in Table 2 present special criteria for sorting
the network demands. Again, to the best of our understand-
ing, Group 5 is not found in the literature; and Group 6 is
used in [17]. Consequently, we will discuss their impact on
network performance.

In strategy 32-+ Link ↓ (FSU× Link) ↓, the demands that
are in the most loaded links of the network will be assigned
first, in order to reduce fragmentation in these links, since
they are themost used. This strategy exhibits the highest value
of Total Used FSU(%) (93.06 %) in the Eurocore network
topology.

On the other hand, strategy 33- (FSU × Link) ↓, sorts by
the bandwidth demanded to the network, being one of the best
strategies in the NSFNet network topology, with a total frag-
mentation percentage of 25.54. In this way, the importance of
these special criteria is highlighted.

In general, when comparing the value of Total Used FSU
(%) of the best strategies (71.48 % on average) with the worst
strategies (54.79 % on average) in the 6 topologies discussed,
it can be seen that up to a 16.69 % capacity savings can
be achieved using the best performing demand-prioritization
strategy compared to the worst-performing ones, thus empha-
sizing the importance of order strategies in the static
SDM-EON scenarios. In addition, note that selecting an
incorrect demand sorting strategy can result in an excess
of cores being needed, which can translate into increased
installation costs.

3) LOWER BOUNDS
Conversely, we define an ideal setting where continuity and
contiguity constraints are not in place, therefore providing an
effective capacity lower bound. This optimal value allows us
to quantify the quality of the best performing heuristics pre-
viously analyzed. Then, we evaluate the quality of the results
obtained by applying the best combination of routing and
demand prioritization for each analyzed topology, computing

the proximity of these strategies to the lower bound. In the
Eurocore network topology, the best performing heuristic
needs 6.94 % more capacity than the lower bound setting.
Similarly, for the NSFNet, ARPANet, UKNet, EONet and
USNet, the extra capacity needed compared to the lower
bound were 7.64 %, 18.44 %, 3.65 %, 9.6 % and 17.8 %,
respectively. These values show a very good performance
for Eurocore, NSFnet, UKNet and EONet and acceptable
performance in the ARPANet and USNet topologies.

4) FURTHER DISCUSSION
We have discussed how demand sorting strategies impact the
network in terms of required capacity and network fragmen-
tation. We note that, in general, the worst sorting strategies
serve a large number of demands in a small number of cores
showing more fragmentation on the remaining cores and
demanding more capacity. On the other hand, best sorting
strategies distribute demands across the fiber more evenly,
presenting a balanced amount of connections per core and
requiring less capacity in terms of FSU and the total amount
of cores.

The spatial distribution of the connections may impact
the network in several ways. Among them, the required
node equipment and the quality of the transmitted signals.
The concentration of connections in the first cores increases
the PLI affecting them due to nonlinear effects. Addition-
ally, the crosstalk arising from the heavily loaded cores can
detrimentally impact neighboring cores. Moreover, if a strat-
egy requires a greater capacity (number of cores), the fiber
will present higher levels of inter-core crosstalk due to
the reduced core pitch needed to accommodate them in a
single cladding. Higher crosstalk levels can further reduce
the MAR for all modulation formats, potentially leading to
even greater capacity requirements after the RMLSSA pro-
cedure. This only highlights the importance of using good
demand-prioritization strategies.

Note that, the results of this work - order strategies with
better performance - can be considered as an initial solution
for the design of meta-heuristic algorithms.

V. CONCLUSION
In this work, we analyzed the impact of sorting network
demands, previous to the SSA step in the RMLSSA algo-
rithm, on the network performance for static SDM-EON
architectures. Besides, we examined the routing algorithm’s
impact, concluding that balancing the demands across the
network links improves network performance.

We evaluated the performance of commonly used tech-
niques to solve the RMLSSA algorithm, using 34 differ-
ent sorting strategies. Generally speaking, the best-achieving
approaches in terms of effective capacity and number of cores
required are strategies 6 (Link ↓), 20 (Link ↓ FSU ↑) and 24
(Link ↓ Distance ↑), all of them ordering demands in terms
of the number of hops of their paths.

As a common feature, we find that sorting criteria on a
descending order tends to perform better in terms of frag-
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mentation and spectrum usage, than arranging demands in
ascending order. Accordingly, a good practice applies the first
criteria in descending order when using mixed sorting crite-
ria. Finally, sorting demands according to the number of links
(routes with a longer number of links first) appears as the best
option, as it allows attending first demands with significant
resource demands to then allocate shorter route demands to
fill the gaps left by the most demanding connection requests.
This strategy is not common in the literature.

As seen in the simulation results, the order in which
demands are allocated impacts the network resources needed
significantly, affecting the percentage of used FSUs: a good
selection of order strategy can increase the Total Used FSUs
up to 71.48 % on average. Therefore, choosing proper criteria
is critical for efficient usage of the frequency spectrum and
fiber cores.

Also, the capacity requirements of the best routing algo-
rithm (BR) and the best order strategy for each topology were
compared against a lower bound. This comparison shows
a very good performance of the best demand-prioritization
strategies demanding from 3.65 % to 18.44 % extra network
capacity than the ideal setting in the analyzed topologies.

Finally, knowing which strategy to use in a given topology
offers the added value of knowing how the strategy behaves
in terms of modulation formats, number of demands per core,
percentage of fragmentation, percentage of Total Used FSUs,
which assists network operators in the decision-making of
equipment deployment.
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