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Abstract

The parallel structure is one of the basic system architectures found in process networks. This paper formulates control
strategies for such parallel systems when the states are unmeasured. The competitive coupling and competitive constraints are
addressed in the control design. A distributed buffer and pre-estimatorare proposed to solve problems relating to coupling and
timely communication whilst a distributed moving horizon estimator is employed tofurther improve the estimation accuracy in
the presence of the constraints. An output feedback robust distributedmodel predictive control algorithm is then developed for
such parallel systems. The Lyapunov method is used for the theoreticalanalysis which produces tractable linear matrix inequalities
(LMI). Simulations and experimental results are provided to validate the effectiveness of the proposed approach.
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I. I NTRODUCTION

In modern industrial chemical plants, a process network is comprised of many process units arranged in a complex structure
[1]. Such a process network can be divided into elements with a series structure and elements with a parallel structure depending
on the process interactions. A series structure is characterised by each subsystem being connected in series [2] so that the
output of the former subsystem is the input of the latter subsystem [3], [4], [5]. The parallel structure covers the case where all
subsystems are connected in parallel i.e. the inputs are obtained from the same bus while the corresponding outputs converge
to another bus. In this case each subsystem is competing withthe other subsystems because of resource limitations and there
are couplings between information, mass and energy among all the subsystems. These couplings and constraints in the parallel
system architecture are different from those in a series system. It is necessary to clearly describe the couplings and constraints
within a parallel system before embarking on a control design [6], [7]. The authors have previously studied the parallel system
and proposed a state-feedback based distributed model predictive control (DMPC) in which the competitive couplings and
constraints have been initially defined to describe characteristics of the parallel system [8]. Assume that two subsystems are
connected in parallel in the same bus. It is obvious that the sum of the inputs of the two subsystems must be less than or equal
to the total input of the whole system. When the sum of the inputs of the two subsystems is equal to the total input of the
whole system (this is the most common case in practice[9], [10]), it is the case that when the input of one subsystem increases,
the input of the other subsystem must be correspondingly reduced. If the outputs of each subsystem are also connected in
parallel, the outputs have the same characteristics.The system will not achieve the control objective and may even become
unstable if the competitive couplings and constraints are not addressed appropriately.

The authors have solved the competitive coupling and competitive constraint problems by designing a state feedback DMPC
for a parallel system in [8]. In this paper all of the states are assumed to be measurable. Note that it is almost impossible
to measure all the states in practice. In this case a state observer may be a good choice to recover the unmeasured states.
There are many output feedback MPC methods that have been developed [11], [12], [13]. Most of these approaches use
observers in the control design, such as, Kalman filter [14], tube-based minimax observer [15], Luenberger observer [16],
[17] and a moving horizon observer [18]. The Kalman filter approach uses the state equation and observer equation to obtain
an optimal solution according to the linear unbiased minimum mean square error estimation criterion [19]. The tube-based
minimax observer employs local feedback around a nominal orreference trajectory and keeps the trajectories resultingfrom
the disturbance sequences in a possibly small neighbourhood of the nominal trajectory [20]. The closed loop poles of the error
system when a Luenberger observer is used have negative realparts which ensures that the observation error converges to
zero asymptotically [21]. However, these observers cannot address the constraintsin a parallel system effectively and solutions
may not be optimal. Note that moving horizon estimation (MHE) can cope with system constraints [22] and can make full
use of the known information about the constraints to improve the accuracy of observation [23]. In essence, MHE is an online
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optimization method based on the most recent data [24] whereby the constraints can be expressed directly in the optimization to
reformulate a quadratic program [25]. The approach has been successfully applied in practical process networks; for example,
an MHE strategy has been proposed for detectable linear systems to solve the constraint problems in [26]. Note that most of
the mentioned designs are for centralized control and the couplings among the subsystems have not been considered.

Output feedback distributed model predictive control (OFDMPC) is worthy of attention. There are two main problems to
be solved when the output feedback control is distributed, one is the coupling problem, the other is the problem of timely
communication. To date, very little literature has reported work in this field. An OFDMPC algorithm has been presented for
a polytopic uncertain system subject to randomly occurringactuator saturation and packet loss [27]. In this work the authors
assumed that the system parameters could be designed in advance so that the couplings can be known apriori and without
any need for state estimation; the work has not considered the timely communication problem. A cooperative DMPC has been
proposed for a class of large-scale systems composed of discrete-time linear subsystems which are coupled via the states [28].
Each subsystem was associated with a local MPC unit, a local predictor and a local observer. The coupling problem was
solved by these local model predictive controllers which exchanged predicted input sequences via a delayed communication
network. An OFDMPC algorithm has been proposed for a team of linear discrete-time subsystems which are coupled by the
cost function [29]. Here the optimisation problem was reformulated despite the presence of couplings of cost function and
dynamic state couplings.

Although the above work has addressed OFDMPC issues, it has not considered timely communication amongst the subsystems
and the characteristics of the parallel system as defined in [8]. There will be considerable computation and even degraded
control performance if the competitive couplings and competitive constraints of parallel systems are not dealt with appropriately.

In order to design OFDMPC for parallel systems, the competitive couplings and competitive constraints are defined by
using observed states and predicted control laws. Then, a data buffer is introduced which can store the most recent data.
Before each iteration, this data can be used to generate a pre-estimate and to give an initial value for the MHE iteration at
the current instant. In this way state information can be transferred to other subsystems in a timely way. The MHE approach
is well-aligned with the proposed characteristics of the buffer. In this paper, an OFDMPC is derived for a parallel system
which may be subject to uncertainty. The current states are estimated by distributed MHE (DMHE). By taking this route, a
formulation of OFDMPC for parallel systems is established which possesses the following core features: competitive couplings
and competitive constraints are described using the observed states of the parallel system; a pre-estimator is used formaking a
preliminary estimate of the states and the predictor is usedfor making an initial prediction of the control law. This information
will be sent to the corresponding buffers which are proposedto store the most recent data about the competitive couplingand
competitive constraints in the parallel system. Then the controller can use this information to calculate competitivecouplings.
The DMHE can use these pre-estimated states to further estimate the current states and improve the accuracy. The performance
of the OFDMPC is guaranteed when the controller is applied tothe parallel system. For this special class of system, application
of the result and verification of the underlying assumptionsare computationally tractable. The following is then achieved: A
robust output feedback DMPC is proposed based on the predicted and estimated states. The robust stability of the closed loop
parallel system is analyzed. A step by step control algorithm is given to realize its straightforward implementation. Finally,
the effectiveness and performance is validated by extensive simulations and an experimental trial. When compared with the
previous results of references [27] [28] [29], the main advantages are focused on (i) the competitive couplings can be calculated
by using the pre-estimators and predictors. (ii) The information is communicated in a timely fashion among all the subsystems
by using the buffers.

The paper is organized as follows. In SectionII the parallel system with state estimation problem is formulated and the
essential assumptions and definitions are given. In SectionIII the estimation errors are analysed. The ROFDMPC algorithm is
proposed and its stability is addressed in SectionIV. The results of simulations and an experimental trial are demonstrated in
SectionV to validate the proposed approach. Finally, some conclusions are drawn in SectionVI .

II. PROBLEM FORMULATION

Consider the linear discrete time parallel system composedof N subsystems coupled via states and inputs in Figure1.
Subsystemi can receive information from all the other(N − 1) subsystems. The dynamic model with uncertainties in theith
subsystem is given by the following:







xi(k + 1) = Aiixi(k) +Biiui(k) +Diwi(k)

+
N∑

j=1,j 6=i

[λij
T (xi(k)− χijxj(k))Aijxj(k) + δij

T (ui(k)− σijuj(k))Bijuj(k)]

yi(k) = Cixi(k) + vi(k)

(1)

wherexi(k) ∈ Xi ⊆ R
nxi is the state vector,ui(k) ∈ Ui ⊆ R

nui is the control input andyi(k) ∈ Yi ⊆ R
nyi is the output

vector,wi(k) ∈ Wi ⊆ R
nxi is an unknown disturbance andvi(k) ∈ Vi ⊆ R

nyi is measurement noise.Xi, Ui andYi are
polyhedral and polytopic constraint sets, respectively,Wi andVi areC-sets.Aii ∈ R

nxi
×nxi ,Bii ∈ R

nxi
×nui ,Aij ∈ R

nxi
×nxj ,

Bij ∈ R
nxi

×nuj , Ci ∈ R
nyi

×nxi ,Di ∈ R
nxi

×nwi , the pairs(Aii, Bii) are assumed to be controllable and(Aii, Ci) are assumed
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Fig. 1: Parallel structure in process networks.

to be observable.σij ∈ R
nui

×nuj , χij ∈ R
nxi

×nxj , i, j = 1, · · · , N, j 6= i are weighting matrices representing the competitive
strength of the control input and system state respectively, δij ∈ R

nui λij ∈ R
nxi , i, j = 1, · · · , N, j 6= i are weighting vectors

of the competitive coupling of the control input and system state respectively where all elements in the vectors are positive.
Definition 1: For theith subsystem of the parallel system, define

cSi =

N∑

j=1,j 6=i

λij
T (xi − χijxj)Aijxj(k) (2)

and

cIi =
N∑

j=1,j 6=i

δij
T (ui − σijuj)Bijuj(k) (3)

as the competitive couplings.
Definition 2: The system with competitive coupling must satisfy

∑
‖ui‖ ≤ ‖u‖,

∑
‖yi‖ ≤ ‖y‖, δij

T (ui − σijuj) > 0 and
λij

T (xi−χijxj) > 0, whereu is the total input,y is the total output,i, j = 1, · · · , N . These constraints are called competitive
constraints.

Remark 1:In a parallel system under competitive constraints, whenuj(k) increases ,
∑N−1

i=1,i6=j ui may need to reduce
because of the limited total input. The degree of reduction of ui(k) is affected by the weighting of the competitive strength
σij and the weighting of the competitive couplingδij . The outputs have the same characteristics, that is, whenyj(k) increases,
∑N−1

i=1,i6=j yi may need to reduce.
The subsystems are assumed to exchange information via a communication network. In the proposed method, eachDMPCi

packages its state information and predictive control sequence into one packet with a time-label and then sends it to theother
subsystems over the network. Because the states are unmeasured, the competitive couplingscSi and cIi cannot know the state
information corresponding to the other subsystems until the information has been estimated. This increases the communication
time. In order to solve this communication problem, a pre-estimator and corresponding buffer strategy are proposed in this
paper. The details are shown in Figure2. In Figure2, each local controller contains a pre-estimator, a predictor and a buffer.
The buffer consists of two parts which correspond to the(k−1)th part and the(k)th part. For subsystemi, the buffer is named
bufferi. Following implementation of the control laws at sampling time (k− 1), all necessary information on the subsystems
includinguj(k− 1), ui(k− 1), x̂i(k− 1) and x̂j(k− 1) is sent and stored in the(k− 1)th part ofbufferi, wherex̂i(k− 1)
and x̂j(k − 1) are the states estimated by the DMHE at sampling time(k − 1). At sampling timek and before calculating
the control, thepredictori can use this information from thebufferi to preliminarily estimate the statexiprei (k) and control
law uibufi (k). Then thePre− estimatori can usexiprei (k) anduibufi (k) to estimate the states which are defined asxibufi (k).
After that,xibufi (k) anduibufi (k) are sent to the(k)th part of all the buffers. Meanwhile, thebufferi receivesxibufj (k) and
uibufj (k) from the jth subsystem (j 6= i, j = 1, · · · , N ). Then the competitive couplings can be calculated by usingthese
packets. TheDMHEi further estimates the current states on the basis of this pre-estimation. The following dynamic model
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Fig. 2: The structure of the control system.

Fig. 3: The sequence diagram.

for each subsystemi can be rewritten as:

xi(k + 1) = Aiixi(k) +Biiui(k) +Diwi(k) (4)

+
N∑

j=1,j 6=i

[λij
T (xibufi (k)− χijx

ibuf
j (k))Aijx

ibuf
j (k) + δij

T (uibufi (k)− σiju
ibuf
j (k))Biju

ibuf
j (k)]

yi(k) = Cixi(k) + vi(k)

whereuibufi (k) andxibufi (k) are the predicted input and pre-estimated state of theith subsystem,uibufj (k) andxibufj (k) are
the predicted input and pre-estimated state of thejth subsystem, which are all stored inbufferi.

The following assumptions are given:
Assumption 1:The controllers are synchronous.
Assumption 2:The controllers communicate only once within a sampling interval.
These assumptions are not restrictive. Assumption1 is not unduly strong because in process control systems the sampling

interval is long enough when compared to the computational time. Assumption2 is appropriate because a single information
exchange within a sampling interval is consistent with the requirement of minimizing the amount of data exchange via the
network. Under these two assumptions, the logic of one control period can be shown in the sequence diagram Figure3. It
is clear that the coupling and timely communication problemcan be solved by the buffer and the pre-estimator. Further the
estimation accuracy can be improved by theDMHE.

Remark 2:The pre-estimated statesxibufi i = 1, 2, ..., N are calculated by the pre-estimator and the predictor can predict
the control lawuibufi i = 1, 2, ..., N . This information can be used to calculate the competitive coupling. Then, the DMHE is
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designed to accommodate the constraints and improve the estimation accuracy. Finally, a robust output feedback distributed
model predictive controller is designed based on the estimated states.

III. STATE ESTIMATION

In this section, the pre-estimator is initially designed. Then, a DMHE is designed and the bounding sets for the DMHE errors
are derived. Finally, the bounding sets for the pre-estimation errors and the overall estimation errors of the parallelsystem are
derived.

A. Pre-estimator

To pre-estimate the states, it is assumed that there exists aLuenberger type pre-estimator for each subsystem. Consider the
system defined by (1), the ith pre-estimator can be designed as:

xibufi (k + 1) = Aiix
ibuf
i (k) +Biiui(k) + Li[yi(k)− Cix

ibuf
i (k)] (5)

+

N∑

j=1,j 6=i

[λij
T (xibufi (k)− χijx

ibuf
j (k))Aijx

ibuf
j (k) + δij

T (uibufi (k)− σiju
ibuf
j (k))Biju

ibuf
j (k)]

wherexibufi (k) is the current estimate ofxi(k) generated by theith pre-estimator andLi is the pre-estimator gain matrix.
Note that the current estimatexibufi (k) needs state information from all the other subsystems to calculate the coupling terms

N∑

j=1,j 6=i

[λij
T (xibufi (k)− χijx

ibuf
j (k))Aijx

ibuf
j (k)]. However, initially at thekth instant,xibufi (k), i = 1, 2, · · · , N is unknown.

The xibufi (k), i = 1, 2, · · · , N in the coupling terms of (5) is replaced byxiprej (k), i = 1, 2, · · · , N , in which xiprei (k) is
calculated by a local predictor.The predictor uses the explicit form of neighboring subsystems and is given by:

xiprei (k) = Aiix̂i(k − 1) +Biiui(k − 1) (6)

+
N∑

j=1,j 6=i

λij
T [x̂i(k − 1)− χij x̂j(k − 1)]Aij x̂j(k − 1)

+
N∑

j=1,j 6=i

δij
T [ui(k − 1)− σijuj(k − 1)]Bijuj(k − 1)

where x̂i(k − 1) andui(k − 1) for all i = 1, 2, · · · , N are known at time stepk and are stored in the(k − 1)th part of the
buffers. Thenxiprei (k) can be calculated by (6) and these states are sent to theith predictor to predict the inputuibufi (k). The
predictor can be designed by using the method of [8] and the following dynamic model:

xiprei (k + 1) = Aiix
ipre
i (k) +Biiu

ibuf
i (k) (7)

+

N∑

j=1,j 6=i

[λij
T (xiprei (k)− χijx

ipre
j (k))Aijx

ipre
j (k) + δij

T (uibufi (k)− σiju
ibuf
j (k))Biju

ibuf
j (k)]

whereuibufj (k) is the input of thejth subsystem. In (7), uibufi (k) = Kix
ipre
i (k), Ki can be calculated by using the method

proposed in [8]. After xiprei (k), i = 1, 2, · · · , N and uibufi (k), i = 1, 2, · · · , N are calculated by (6) and (7) respectively,
xibufi (k) can be estimated by the following estimator:

xibufi (k + 1) = Aiix
ibuf
i (k) +Biiui(k) + Li[yi(k)− Cix

ibuf
i (k)] (8)

+
N∑

j=1,j 6=i

[λij
T (xiprei (k)− χijx

ipre
j (k))Aijx

ipre
j (k) + δij

T (uibufi (k)− σiju
ibuf
j (k))Biju

ibuf
j (k)]

Then, the pre-estimated state sequencesxibufi (k) and the predicted control sequencesuibufi (k) are obtained. They are stored
in the (k)th part of bufferi and used to calculate the competitive couplings. The above process describes the selection
mechanism ofbufferi which can be summarized in the following algorithm.
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Algorithm 1:
Step 1 ((k − 1)th part-update): At time stepk − 1, after implementation of the control actions,bufferi receives the state

sequenceŝxj(k− 1) and the predicted control sequencesuj(k− 1) from the other subsystemsj = 1, · · · , N, j 6= i, and stores
x̂i(k − 1) andui(k − 1) from the ith subsystem. These valid packets are written in the(k − 1)th part ofbufferi.

Step 2 (Prediction): At time stepk, initially the information in the(k− 1)th part ofbufferi is sent to thepredictori, and
xiprei (k) can be calculated by (6) with the information. Then,uibufi (k) can be predicted by using the method of [8] and the
dynamic model (7).

Step 3 (Pre-estimation): The Luenberger type pre-estimator (8) is solved to obtainxibufi (k) with the information ofxiprei (k)
anduibufi (k).

Step 4 ((k)th part-update): The pre-estimated state sequencesxibufi (k) and the predicted control sequencesuibufi (k) are
stored in the(k)th part of bufferi. Meanwhile,bufferi receivesxibufj (k) and uibufj (k) from the other subsystems,j =
1, · · · , N, j 6= i. The information in the(k)th part of all buffers is used to calculate the competitive couplings.

Remark 3:In this paper, the predictor uses the DMPC which is proposed in [8] to predict the input. This method can
be used since following the calculation from (6), all the state information (xiprei (k), i = 1, 2, · · · , N ) can be obtained. The
corresponding state estimation errors will be analyzed in subsection 3.3.

B. Distributed moving horizon estimator

To improve the estimation of the states, a distributed moving horizon estimator is designed for each subsystem by solving
the following constrained optimization problem at each time stepk:

min
x̂i(k−Nei)

1

2

(
k∑

l=k−Nei

‖yi(l)− Cix̂i(l)‖
2
+ ‖x̂i(k −Nei)− xi(k −Nei)‖

2
ϑi

)

(9)

s.t.

x̂i(l + 1 |k ) = Aiix̂i(l |k ) +Biiui(l |k ) +Diwi(l |k )

+
N∑

j=1,j 6=i

Ribuf
ij (l |k )Aijx

ibuf
j (l |k ) +

N∑

j=1,j 6=i

P ibuf
ij (l |k )Biju

ibuf
j (l |k ) + Li[yi(l |k )− ŷi(l |k )]

l = k −Nei, ..., k − 1 (10)

ŷi(l |k ) = Cix̂i(l |k )

l = k −Nei, ..., k (11)

∑

‖ui‖ ≤ ‖u‖
∑

‖x̂i‖ ≤ ‖x̂‖
∑

‖Ψiyi‖ ≤ ‖ψ‖

δij
T (ui − σijuj) > 0

λij
T (x̂i − ρij x̂j) > 0 (12)

whereRibuf
ij (l |k ) = λij

T [xibufi (l |k )− χijx
ibuf
j (l |k )] andP ibuf

ij (l |k ) = δij
T [uibufi (l |k )− σiju

ibuf
j (l |k )] are scalars,(Nei

+1) is the estimation horizon,l is an positive integer,̂xi(k) is the current estimate ofxi(k) by theDMHEi, ϑi is a nonnegative
weight for theDMHEi, Ψi ∈ R

nyi
×nyi is a matrix which is related to competitive coupling,ψis > 0, i ∈ {1, 2, ..., N},

s ∈ {1, 2, ..., nyi
}. x̂i(l |k ) denotes the predicted value ofx̂i at time stepl calculated at time stepk. The optimal solution of

(9)-(12) is shown byx̂i(k −Nei) and the initial value of̂xi(k −Nei) is provided by the pre-estimator. An optimal sequence
of the states is obtained from (9) in which the current optimal state estimate of subsystemi is denoted byx̂i(k). In (9),
‖x̂i(k −Nei)− xi(k −Nei)‖

2
ϑi

is the arrival cost.
The optimization problem (9) can be rewritten as the following convex Quadratic Program(QP):

min
zi

1
2 (x̂i(k −Nei))

THi1x̂i(k −Nei) +Hi2
T x̂i(k −Nei) + ri

s.t. Gix̂i(k −Nei) ≤ Ξi

(13)

whereGi andΞi are constant matrices with appropriate dimensions representing the constraints of (10)-(12). Here,x̂i(k−Nei)
is an unknown vector of optimization (9) andri is a constant term. The corresponding matricesHi1 andHi2 in (13) are:

Hi1 = (Ai(Nei))
TAi(Nei) + ϑi (14)
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Hi2
T = −(yi)

T (Si(Nei))
TAi(Nei) + (ui)

T (Bi(Nei))
TAi(Nei) +

N∑

j=1

(xibufj )
T
(Aij(Nei))

T
Ai(Nei)− (x̂i(k −Nei))

Tϑi

(15)
where

Ai(Nei)
∆
=








Ci

CiAiL

...
Ci(AiL)

Nei







, Aij(Nei)

∆
=










0 0 · · · 0
CiAij 0 · · · 0

CiAiLAij CiAij · · · 0
...

...
. ..

...
Ci(AiL)

Nei−1
Aij Ci(AiL)

Nei−2
Aij · · · CiAij










Bi(Nei)
∆
=








Ci

CiBiL

...
Ci(BiL)

Nei







, Bij(Nei)

∆
=










0 0 · · · 0
CiBij 0 · · · 0

CiAiLBij CiBij · · · 0
...

...
. ..

...
Ci(AiL)

Nei−1
Bij Ci(AiL)

Nei−2
Bij · · · CiBij










Li(Nei)
∆
=










0 0 · · · · · ·
CiLi 0 · · · · · ·

CiAiLLi CiBij 0 · · ·
...

...
. ..

...
Ci(AiL)

Nei−1
Li Ci(AiL)

Nei−2
Li · · · CiLi

0
0
0
...
0










Si(Nei)
∆
= I − Li(Nei)

AiL = Aii − LiCi

In (15), for updating matrixHi2, the current and past measured outputs, past inputs, past predicted state and a prior estimate
of the calculated statêxi(k −Nei) are needed.

Now defining the error between the actual and estimated states asx̃i(k−Nei) := xi(k−Nei)− x̂i(k−Nei), the following
proposition is given.

Proposition 1: For each subsystemi, x̃i(k − Nei) is bounded and there exists aC-set X̃i that if x̃i(k = 0) ∈ X̃i then
x̃i(k) ∈ X̃i for all k > 0.
Proof. Firstly, a dynamic equation based on the QP Active Set Strategy for x̃i(k) is pursued. Applying the Karush-Kuhn-Tucker
(KKT) conditions [30] to the optimization problem (9) yields

x̂i(k −Nei) = −Hi1
−1(Hi2 +GT

iAλiA)
λiA = −(GiAHi1

−1GT
iA)

−1(GiAHi1
−1Hi2 + ΞiA)

λiA > 0
(16)

whereλiA, GiA andΞiA are active Lagrange multipliers and the corresponding matrices, respectively. Notice that from (14),
if ϑi ≥ 0, thenHi1 > 0 andHi1

−1 exists. Substitute (14)-(15) into (16)

x̃i(k −Nei) = Āiex̃i(k −Nei − 1) + D̄iww
k−1
i (k −Nei − 1) + D̄ivv

k−1
i (k −Nei − 1) +Hi1

−1GT
iAλiA (17)

λiA = −(GiAHi1
−1GT

iA)
−1GiA(Āiex̃i(k −Nei − 1)

+ D̄iww
k−1
i (k −Nei − 1) + D̄ivv

k−1
i (k −Nei − 1)− x̃i(k −Nei))

whereĀie
∆
= Hi1

−1ϑiAiL, D̄iw
∆
= Hi1

−1[ϑiDi,−(Ai(Nei))
TDi(Nei)], D̄iv

∆
= Hi1

−1[ϑiLi,−(Ai(Nei))
TSi(Nei)],

wi
k−1(k −Nei − 1)

∆
= col(wi(k −Nei − 1), ..., wi(k − 1)), vik−1(k −Nei − 1)

∆
= col(vi(k −Nei − 1), ..., vi(k − 1)) and

Di(Nei) is defined as

Di(Nei)
∆
=










0 0 · · · · · ·
CiDi 0 · · · · · ·

CiAiLDi CiDi 0 · · ·
...

...
. . .

...
Ci(AiL)

Nei−1
Di Ci(AiL)

Nei−2
Di · · · CiDi










SubstitutingλiA into x̃i(k − Nei), it follows that x̃i(k − Nei) = Āiex̃i(k − Nei − 1) + D̄iwwi
k−1(k − Nei − 1) +

D̄ivvi
k−1(k−Nei − 1) and for time stepk+1, x̃i(k−Nei +1) = Āiex̃i(k−Nei)+ D̄iwwi

k(k−Nei)+ D̄ivvi
k(k−Nei).
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Rewrite (10) for l = k −Nei:

x̂i(k −Nei + 1 |k ) = A
ii
x̂i(k −Nei |k ) +B

ii
ui(k −Nei |k )

+
N∑

j=1,j 6=i

[Ribuf
ij (k −Nei)Aijx

ibuf
i (k −Nei) + P ibuf

ij (k −Nei)Biju
ibuf
i (k −Nei)] + Li(yi(k −Nei)− ŷi(k −Nei |k ))

(18)
Further, (4) can be rewritten in the following form:

xi(k −Nei + 1) = Aiixi(k −Nei) +Biiui(k −Nei)

+
N∑

j=1,j 6=i

[Ribuf
ij (k −Nei)Aijx

ibuf
i (k −Nei) + P ibuf

ij (k −Nei)Biju
ibuf
i (k −Nei)] +Diwi(k −Nei)

(19)

Subtracting (18) from (19): x̃i(k − Nei + 1) = AiLx̃i(k − Nei) + Diwi(k − Nei) − Livi(k − Nei). By iteration, it is
obtained that:

x̃i(k + 1) = (AiL)
Nei x̃i(k −Nei + 1) +DiDwi

k(k −Nei + 1)−DiLvi
k(k −Nei + 1) (20)

whereDiD
∆
= [Di(AiL)

Nei−1, · · · , Di] andDiL
∆
= [Li(AiL)

Nei−1, · · · , Li]. Multiplying both sides of (20) by (AiL)
−Nei :

x̃i(k −Nei + 1) = (AiL)
−Nei x̃i(k + 1)− (AiL)

−NeiDiDwi
k(k −Nei + 1) + (AiL)

−NeiDiLvi
k(k −Nei + 1) (21)

Rearranging the terms of (21):

x̃i(k + 1) = (Ãi)x̃i(k) + w̃i (22)

whereÃi
∆
= AiL

NeiAieAiL
−Nei ,Aie

∆
= Hi1

−1ϑiAiL, w̃i
∆
= ([0, DiD]+[ÃiDiD, 0]+AiL

NeiDiw)wi(k−Nei)
k+AiL

NeiDiv×
vi(k − Nei)

k+1 and w̃i is considered as a disturbance which lies in theC-set W̃i defined byW̃i = SiwW̄i(Nei) ⊕

SivV̄i(Nei), whereSiw
∆
= [0, DiD] + [ÃiDiD, 0] + (AiL)

NeiDiw, Siv
∆
= [0, DiL] + [ÃiDiL, 0] + (AiL)

NeiDiv, W̄i(Nei)
∆
=

Wi × · · · ×Wi
︸ ︷︷ ︸

Nei+1



 and V̄i(Nei)
∆
=



Wi × · · · ×Wi
︸ ︷︷ ︸

Nei+2



, the symbol⊕ denotes the Minkowski sum. Note thatAiL, Aie

and Ãi are Schur matrices. Therefore, there exists aC-set X̃i that is robust positively invariant for (22)[31]. It follows that
ÃiX̃i ⊕ ω̃i ⊂ W̃i and if x̃i(k = 0) ∈ X̃i then x̃i(k) ∈ X̃i, ∀k ≥ 0. Q.E.D.

C. Stability of state estimation

The estimation error for the DMHE is defined as before:x̃i(k)
∆
= xi(k)− x̂i(k). The estimation errors for the predictor and

pre-estimator are defined as:eiprei (k)
∆
= xi(k)− xiprei (k), eibufi (k)

∆
= xi(k)− xibufi (k), respectively.

Proposition 2:For each subsystemi, if eibufi (0), x̃i(0), x̂i(0) andxiprei (0) are bounded, the pre-estimator gain matrixLi

satisfies:‖Li‖ >
1−‖Aii‖
‖Ci‖

, the state feedback gain matrixK satisfies:‖K‖ < min{−
1−

∥

∥

∥

∥

⌣
A(l)

∥

∥

∥

∥

∥

∥

∥

∥

⌣
B(l)

∥

∥

∥

∥

,−
1−

∥

∥

∥

∥

⌢
A(l)

∥

∥

∥

∥

∥

∥

∥

∥

⌢
B(l)

∥

∥

∥

∥

} , theneibufi (k) is

bounded and there exists aC-setEibuf
i that if eibufi (k = 0) ∈ E

ibuf
i theneibufi (k) ∈ E

ibuf
i for all k > 0, where

⌣

A(l) =











A11 · · · R̂1i(l)A1i · · · R̂1N (l)A1N

...
. . .

...
. . .

...
R̂i1(l)Ai1 · · · Aii · · · R̂iN (l)AiN

...
. . .

...
. . .

...
R̂N1(l)AN1 · · · R̂Ni(l)ANi · · · ANN











, l = 0, 1, · · · , k − 1

⌣

B(l) =











B11 · · · P̂1i(l)B1i · · · P̂1N (l)B1N

...
. ..

...
.. .

...
P̂i1(l)Bi1 · · · Bii · · · P̂iN (l)BiN

...
. ..

...
.. .

...
P̂N1(l)BN1 · · · P̂Ni(l)BNi · · · BNN











, l = 0, 1, · · · , k − 1
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⌢

A(l) =











A11 − L1C1 · · · R1i(l)A1i · · · R1N (l)A1N

...
. . .

...
. . .

...
Ri1(l)Ai1 · · · Aii − LiCi · · · RiN (l)AiN

...
. . .

...
. . .

...
RN1(l)AN1 · · · RNi(l)ANi · · · ANN − LNCN











, l = 0, 1, · · · , k − 2

⌢

B(l) =











B11 · · · P1i(l)B1i · · · P1N (l)B1N

...
. ..

...
.. .

...
Pi1(l)Bi1 · · · Bii · · · PiN (l)BiN

...
. ..

...
.. .

...
PN1(l)BN1 · · · PNi(l)BNi · · · BNN











, l = 0, 1, · · · , k − 2

K =











K1 · · · 0 · · · 0
...

.. .
...

. . .
...

0 · · · Ki · · · 0
...

.. .
...

. . .
...

0 · · · 0 · · · KN











Proof: Subtracting (8) from (1):

ei
ibuf (k + 1) (23)

= xi(k + 1)− xibufi (k + 1) = Aiie
ibuf
i (k)− LiCie

ibuf
i (k)

+

N∑

j=1,j 6=i

{λij
T [xi(k)− χijxj(k)]Aijxj(k)− λij

T [xiprei (k)− χijx
ipre
j (k)]Aijx

ipre
j (k)}

+
N∑

j=1,j 6=i

{δTij [ui(k)− σijuj(k)]Bijuj(k)− δTij [ui
ibuf (k)− σijuj

ibuf (k)]Bijuj
ibuf (k)}

=

N∑

j=1,j 6=i

{[Rij(k)Aij −Rij
ibuf (k)Aij ]x

ipre
j (k) + Pij(k)BijFjxj(k)− Pij

ibuf (k)BijKjx
ipre
j (k) +Rij(k)Aije

ibuf
j (k)}

whereRij(k) = λij
T [xi(k)− χijxj(k)] andPij(k) = δij

T [ui(k)− σijuj(k)] are scalars. For the whole system,ebuf has the
following form:












e1buf1 (k + 1)
...

eibufi (k + 1)
...

eNbuf
N (k + 1)












︸ ︷︷ ︸

ebuf (k+1)

=











A11 − L1C1 · · · 0 · · · 0
...

.. .
...

. ..
...

0 · · · Aii − LiCi · · · 0
...

.. .
...

. ..
...

0 · · · 0 · · · ANN − LNCN











︸ ︷︷ ︸

Abuf












e1buf1 (k)
...

eibufi (k)
...

eNbuf
N (k)












︸ ︷︷ ︸

ebuf (k)

(24)

+












0 · · · P1i(k)B1iFi +R1i(k)A1i · · · P1N (k)B1NFN +R1N (k)A1N

...
.. .

...
. . .

...

Pi1(k)Bi1F1 +Ri1(k)Ai1

... 0 · · · PiN (k)BiNFN +RiN (k)AiN

...
.. .

...
. . .

...
PN1(k)BN1F1 +RN1(k)AN1 · · · PNi(k)BNiFi +RNi(k)ANi · · · 0












︸ ︷︷ ︸

Apre(k)

×
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









e1pre1 (k)
...

eiprei (k)
...

eNpre
N (k)











︸ ︷︷ ︸

epre(k)

+











0 · · · · · ·
...

.. .
...

Ri1(k)Ai1 −Ri1
ibuf (k)Ai1 + Pi1(k)Bi1F1 − Pi1

ibuf (k)Bi1K1 · · · 0
...

.. .
...

RN1(k)AN1 −RN1
Nbuf (k)AN1 + PN1(k)BN1F1 − PN1

Nbuf (k)BN1K1 · · · · · ·
︸ ︷︷ ︸

· · · R1N (k)A1N −R1N
1buf (k)A1N + P1N (k)B1NFN − P1N

1buf (k)B1NKN

. ..
...

· · · RiN (k)AiN −RiN
ibuf (k)AiN + PiN (k)BiNFN − PiN

ibuf (k)BiNKN

. ..
...

· · · 0











︸ ︷︷ ︸

Bpre(k)











x1pre1 (k)
...

xiprei (k)
...

xNpre
N (k)











︸ ︷︷ ︸

xpre(k)

Then the error dynamic equation ofebuf is obtained:

ebuf (k + 1) = Abufebuf (k) +Apre(k)epre(k) +Bpre(k)xpre(k) (25)

Rewrite (6) for k → k + 1:

xiprei (k + 1) = Aiix̂i(k) +Biiui(k) (26)

+

N∑

j=1,j 6=i

{λij
T [x̂i(k)− χij x̂j(k)]Aij x̂j(k) + δTij [ui(k)− σijuj(k)]Bijuj(k)}

Subtracting (26) from (1):

eiprei (k + 1) = xi(k + 1)− xiprei (k + 1) = Aiix̃i(k) (27)

+
N∑

j=1,j 6=i

{λij
T [xi(k)− χijxj(k)]Aijxj(k)− λij

T [x̂i(k)− χij x̂j(k)]Aij x̂j(k)}

= Aiix̃i(k) +

N∑

j=1,j 6=i

[λij
T x̃i(k)Aij x̃j(k) + λij

T x̃i(k)Aij x̂j(k) + λij
T x̂i(k)Aij x̃j(k)]

= Aiix̃i(k) +

N∑

j=1,j 6=i

{[Rij(k)Aij − R̂ij(k)Aij ]x̂j(k) +Rij(k)Aij x̃j(k)}

whereR̂ij(k) = λij
T [x̂i(k)− χij x̂j(k)] is a scalar. Similarly to (24), for the whole system,epre has the following form:
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









e1pre1 (k + 1)
...

eiprei (k + 1)
...

eNpre
N (k + 1)











︸ ︷︷ ︸

epre(k+1)

=











A11 · · · R1j(k)A1j · · · R1N (k)A1N

...
. . .

...
...

...
Ri1(k)Ai1 · · · Aii · · · RiN (k)AiN

...
...

...
. . .

...
RN1(k)Ai1 · · · RNj(k)ANj · · · ANN











︸ ︷︷ ︸

Ãpre(k)











x̃1(k)
...

x̃i(k)
...

x̃N (k)











︸ ︷︷ ︸

x̃(k)

(28)

+











0 · · · R1i(k)A1i − R̂1i(k)A1i · · · R1N (k)A1N − R̂1N (k)A1N

...
.. .

...
...

...
Ri1(k)Ai1 − R̂i1(k)Ai1 · · · 0 · · · RiN (k)AiN − R̂iN (k)AiN

...
...

...
. . .

...
RiN (k)AiN − R̂iN (k)AiN · · · Rij(k)Aij − R̂ij(k)Aij · · · 0











︸ ︷︷ ︸

Âpre(k)











x̂1(k)
...

x̂i(k)
...

x̂N (k)











︸ ︷︷ ︸

x̂(k)

whereR̂ij(k) = λij
T [x̂i(k)− χij x̂j(k)] is a scalar. For the whole system,epre can be obtained as:

epre(k + 1) = Ãpre(k)x̃(k) + Âpre(k)x̂(k) (29)

Substitute (29) into (25):

ebuf (k+ 1) = Abufebuf (k) +Apre(k)[Ãpre(k− 1)x̃(k− 1) + Âpre(k− 1)x̂(k− 1)] +Bpre(k)Apre(k− 1)xpre(k− 1) (30)

Consider (6), (10) and (22). It follows that (30) can be written as:

ebuf (k + 1) = Abufebuf (k) +Apre(k)Ãpre(k − 1)[Ã(k − 2) · · · Ã(0)]x̃(0) (31)

+Apre(k)Âpre(k − 1)[X̂(k − 2) · · · X̂(0)]x̂(0) +Bpre(k)[Xpre(k − 1) · · ·Xpre(0)]xpre(0)

whereÃ
∆
= diag{Ã1, Ã2 · · · , ÃN} and Ãi has been defined after (22),

Xpre(l)
∆
=











A11 +B11K1 · · · R̂1i(l)A1i + P̂1i(l)B1iKi · · · R̂1N (l)A1N + P̂1N (l)B1NKN

...
. . .

...
. ..

...
R̂i1(l)Ai1 + P̂i1(l)Bi1K1 · · · Aii +BiiKi · · · R̂iN (l)AiN + P̂iN (k)BiNKN

...
. . .

...
. ..

...
R̂N1(l)AN1 + P̂N1(l)BN1K1 · · · R̂Ni(l)ANi + P̂Ni(l)BNiKi · · · ANN +BNNKN











,

l = 0, 1, · · · , k − 1
(32)

X̂(l)
∆
=











A11 +B11K1 − L1C1 · · · R1i(l)A1i + P1i(l)B1iKi · · · R1N (l)A1N + P1N (l)B1NKN

...
. ..

...
. ..

...
Ri1(l)Ai1 + Pi1(l)Bi1K1 · · · Aii +BiiKi − LiCi · · · RiN (l)AiN + PiN (l)BiNKN

...
. ..

...
. ..

...
RN1(l)AN1 + PN1(l)BN1K1 · · · RNi(l)ANi + PNi(l)BNiKi · · · ANN +BNNKN − LNCN











,

l = 0, 1, · · · k − 2
(33)

(32) and (33) can be rewritten as:
Xpre(l) =

⌣

A(l) +
⌣

B(l)K, l = 0, 1, · · · , k − 1 (34)

X̂(l) =
⌢

A(l) +
⌢

B(l)K, l = 0, 1, · · · , k − 2 (35)

From (31), it can be seen that ifebuf (k+1) = Abufebuf (k), according to the condition:‖Li‖ >
1−‖Aii‖
‖Ci‖

, then
∥
∥Abuf

∥
∥ < 1,

ebuf (k + 1) = Abufebuf (k) is convergent. For the second term on the right of (31), according to Proposition1, Ã is a
Schur matrix, if x̃(0) is bounded, then,Apre(k)Ãpre(k − 1)[Ã(k − 2) · · · Ã(0)]x̃(0) is bounded. For the final two terms
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on the right of (31), according to the condition:‖K‖ < min{−
1−

∥

∥

∥

∥

⌢
A(l)

∥

∥

∥

∥

∥

∥

∥

∥

⌢
B(l)

∥

∥

∥

∥

,−
1−

∥

∥

∥

∥

⌢
A(l)

∥

∥

∥

∥

∥

∥

∥

∥

⌢
B(l)

∥

∥

∥

∥

}, then,
∥
∥
∥X̂(l)

∥
∥
∥ =

∥
∥
∥

⌢

A(l) +
⌢

B(l)K
∥
∥
∥ ≤

∥
∥
∥

⌢

A(l)
∥
∥
∥+
∥
∥
∥

⌢

B(l)
∥
∥
∥ ‖K‖ < 1 and‖Xpre(l)‖ =

∥
∥
∥

⌣

A(l) +
⌣

B(l)K
∥
∥
∥ ≤

∥
∥
∥

⌣

A(l)
∥
∥
∥+
∥
∥
∥

⌣

B(l)
∥
∥
∥ ‖K‖ < 1, if x̂(0) andxpre(0) are bounded,

then,Apre(k)Âpre(k−1)[X̂(k−2) · · · X̂(0)]x̂(0) andBpre(k)[Xpre(k−1) · · ·Xpre(0)]xpre(0) are bounded atk time. Hence
ebuf (k) is bounded. Furthermore, there exists aC-setEibuf

i such that ifeibufi (k = 0) ∈ E
ibuf
i then eibufi (k) ∈ E

ibuf
i for all

k > 0. Q.E.D.
Let ēi(k) =

[

x̃i(k)
T eibufi (k)T

]T
denote the estimation error for theith subsystem at time stepk, where the stability

is addressed in Theorem1.
Theorem 1:For each subsystemi, there exists aC-setĒi such that ifēi(k = 0) ∈ Ēi, thenēi(k) ∈ Ēi, ∀k ≥ 0. Furthermore,

Ēi ⊆ Ei.
Proof:

Substitutexi(k + 1) and ŷi(k) into x̂i(k + 1):

x̂i(k + 1) = Aiix̂i(k) +Biiui(k) +

N∑

j=1,j 6=i

[Ribuf
ij (k)Aijx

ibuf
j (k) + P ibuf

ij (k)Biju
ibuf
j (k)] + LiCix̃i(k) + Livi(k) (36)

Subtracting the above equation fromxi(k + 1):

x̃i(k + 1) = Aiix̃i(k) +

N∑

j=1,j 6=i

Aije
ibuf
j − LiCix̃i(k)− Livi(k) (37)

Subtracting (8) from the equation obtained by rewritingxi(k + 1) for the ith subsystem:

eibufi (k + 1) = Aiie
ibuf
i (k) +Bii(ui(k)− uibufi (k)) +

N∑

j=1,j 6=i

Aije
ibuf
j (k) +Aiix̃i(k) (38)

For each subsystemi, the error dynamic equation is obtained from (37) to (38) in the form:

ēi(k + 1) = Aiēi(k) + Ω̄i(k) (39)

whereΩ̄i(k)
∆
= Bi∆ūi(k) + qi(k)(LiCix̃i(k) + Livi(k)) is considered to be a disturbance where

qi(k) =

[

0 · · · 0
︸ ︷︷ ︸

i−1

−1 0 · · · 0
︸ ︷︷ ︸

nxi
−i

]T

∆ūibufi (k) =

[

∆ui
1buf (k) · · · ∆ui

(i−1)buf (k)
︸ ︷︷ ︸

i−1

0 ∆ui
(i+1)buf (k) · · · ∆ui

Nbuf (k)
︸ ︷︷ ︸

N−i

]T

As described previously,∆uibufi (k) is bounded and there existsπij > 0 such thatmax
k≥0

∥
∥
∥∆u

ibuf
i (k)

∥
∥
∥ ≤ πij , whereπij +

ui(k |k − 1) ∈ Uj . There existsri > 0 such that∆uibufi (k) ∈ riB and∆ūi(k) ∈ riB× · · · × riB
︸ ︷︷ ︸

N−1

. By using Proposition1 and

Proposition2, Ω̄i(k) lies in theC-set and∆i defined by∆i
∆
= Bi



riB× · · · × riB
︸ ︷︷ ︸

N−1



⊕ qi(k)(LiCiX̃i⊕LiVi). If Ai is Schur

then there exists aC-setĒi that is RPI for (39). It follows thatAiĒi⊕∆i ⊆ Ēi and if ēi(k = 0) ∈ Ēi then ēi(k) ∈ Ēi, ∀k ≥ 0.
Furthermore, in order to reduce the upper setĒi and consequently the bounds ofēi(k), RPI approximation of the minimal
RPI (mRPI) can be used [31] and the upper bound of̄ei(k) is made as small as possible by tuning parametersϑi andri [26].
Then, under Proposition2, the two setsX̃i and Ēi are both contained in the origin setEi such thatX̃i ⊕ Ēi ⊆ Ei. It follows
that Ēi ⊆ Ei. Q.E.D.

IV. ROBUST OUTPUT FEEDBACK DISTRIBUTED MODEL PREDICTIVE CONTROL FOR PARALLEL SYSTEMS

This section synthesizes a ROFDMPC that brings system (4) to a bounded target set. Since the real statesxi(k) are
unmeasured, the estimated states are adopted when determining the controller. The corresponding robust output feedback
distributed model predictive control law can be designed as:

ui(k) = Fix̂i(k) (40)
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For subsystemi at time stepk, to determine a robust output feedback distributed model predictive control law (40), the
control objective function is defined as:

min
ui(k)

max
wi(k),vi(k)

Ji(k) =
∞∑

l=0

[

‖x̂i(k + l)‖
2
Υi

+ ‖ui(k + l)‖
2
ςi

]

+
N∑

j=1,j 6=i

∞∑

l=0

[

‖x̂j(k + l)‖
2
Υj

+ ‖uj(k + l)‖
2
ςj

]

(41)

s.t.(4), (9)− (12), ui(k + l) ∈ Ui, xi(k + l) ∈ Xi, yi(k + l) ∈ Yi (42)

whereui is the control law to be designed, for alli ∈ 1, 2 · · · , N , Υi, andςi are symmetric positive definite weighting matrices.
The objective is to design a robust output feedback distributed model predictive controller for the parallel system with wi(k)

and vi(k), calculate the competitive couplings (2), (3) in a timely fashion by using the pre-estimator, predictor and buffer,
solve theDMHEi (9) in the presence of competitive constraints (12) to improve the estimate accuracy and finally, solve the
control objective function (41) to determine a robust output feedback distributed model predictive control law (40) at every
sampling time so that the uncertain parallel system meets the feasibility condition and achieves exponential stability.

A. Robust output feedback distributed model predictive control algorithm

The augmented closed loop system is :

x̄i(k + l + 1) = T̄iix̄i(k + l) +

N∑

j=1,j 6=i

T̄ij x̄j(k + l) + H̄iv̄i(k + l) (43)

where

x̄i(k + l) =
[

xi(k + l)
T

xibufi (k + l)
T

x̂i(k + l)
T

eibufi (k + l)
T

x̃i(k + l)
T
]T

v̄i(k + l) =
[

0 vi(k + l)
T

wi(k + l)
T

eibufi (k + l)
T

x̃i(k + l)
T
]T

T̄ii =









Aii 0 BiiFi 0 0
0 Aii +BiiKi 0 0 0
0 0 Aii +BiiFi 0 0
0 −BiiKi BiiFi Aii 0
0 0 0 0 Aii









T̄ij =










Ribuf
ij Aij + P ibuf

ij BijKi 0 0 0 0

0 Ribuf
ij Aij + P ibuf

ij BijKj 0 0 0

0 Ribuf
ij Aij + P ibuf

ij BijKj 0 0 0

0 0 0 Aij Aij

0 0 0 Aij 0

0










H̄ii =









0 Li Di 0 LiCi

0 0 0 LiCi 0
0 Li Di 0 LiCi

0 −Li 0 0 −LiCi

0 −Li 0 0 −LiCi









Assume that there exists a matrixQi which satisfiesQi = QT
i > 0 and a scalarγi which makesJi(k) ≤ γi:

‖x̄i(k + l)‖
2
Q−1

i
≤ 1 (44)

T̄T
iiQi

−1T̄ii −Qi
−1 ≤ −1/γiΥi − 1/γiFi

T ς1Fi (45)

Consider (44), with l = 0, yields:
[

xi(k)
T

xibufi (k)
T

x̂i(k)
T

eibufi (k)
T

x̃i(k)
T
]

Q−1
i

[

xi(k)
T

xibufi (k)
T

x̂i(k)
T

eibufi (k)
T

x̃i(k)
T
]T

≤ 1

(46)
Theorem 2:Suppose there exist scalarsγi, εi, matricesQi12, Gi, Gi12, Gi2, Yi, Mi and symmetric matricesQi11, Qi22,

then (44) and (45) are satisfied when:

Qi =

[

Qi11 Qi12
T

Qi12 Qi22

]

≥ 0, Fi = YiG
−1
i (47)
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Proof: Let G̃i =

[
Gi 0
Gi12 Gi2

]

. The following LMIs are given:













Gi +Gi
T −Qi11 ∗ ∗ ∗ ∗ ∗ ∗

Gi12 −Qi12 Gi2 +Gi2
T −Qi22 ∗ ∗ ∗ ∗ ∗

LiCi(Gi +Gi12) +Mi +BiiYi LiCiGi2 Qi11 ∗ ∗ ∗ ∗
(Aii − LiCi)(G1 +Gi12)−Mi + (Bij −Bii)Yi (Aii − LiCi)Gi2 Qi12 Qi22 ∗ ∗ ∗

Υi
1/2Gi 0 0 0 γiI ∗ ∗

Υi
1/2Gi12 Υi

1/2Gi12 0 0 0 γiI ∗
ςi
1/2Y 0 0 0 0 0 γiI













≥ 0 (48)





1 ∗ ∗
x̂i(k) Qi11 ∗
εi Qi12 Qi22



 ≥ 0 (49)

Multiply the left and right sides of (46) by G̃T
i andG̃i, respectively, apply the Schur complement lemma and consider (48).

Utilizing the fact thatG̃i + G̃T
i − Qi ≤ G̃T

i Qi
−1G̃i, it can be shown that (48) guarantees (45). Moreover, by applying (43)

and the Schur complement lemma, it is shown that (47) guarantees (44).
Then, (44), (45) hold by parameterizing (47).Q.E.D.
The constraints need to be handled. Suppose there exist matricesQi12, Gi, Gi12, Gi2, Yi, Mi and symmetric matricesQi11,

Qi22, Θi, Zi, Γi such that (49) and the following LMIs are satisfied:




Gi +Gi
T −Qi11 ∗ ∗

Gi12 −Qi12 Gi2 +Gi2
T −Qi22 ∗

(Ai − LiCi)(Gi +Gi12)−Mi +BiYi (Ai − LiCi)Gi2 Θi



 ≥ 0,Θijj ≤ x̃2ij , j ∈ {1, ..., nxi
} (50)





Gi +Gi
T −Qi11 ∗ ∗

Gi12 −Qi12 Gi2 +Gi2
T −Qi22 ∗

Yi 0 Zi



 ≥ 0, Zijj ≤ uij
2, j ∈ {1, ..., nui

} (51)





Gi +Gi
T −Qi11 ∗ ∗

Gi12 −Qi12 Gi2 +Gi2
T −Qi22 ∗

Ψi(AiGi +AiGi12 +BiYi) ΨiAiGi2 Γi



 ≥ 0,Γijj ≤ ψij
2, j ∈ {1, ..., nyi

} (52)

Then, (42) is guaranteed through the parameterization (49). By considering Theorem2 and constraints handling, problem
(41)-(42) can be solved by the following LMI optimization problem:

min γi
γi,Mi,Yi,Gi,Gi12,Gi2,Qi11,Qi12,Qi22,Θi,Γi,Zi

s.t.(48), (49), (50)− (52) (53)

Based on the aforementioned analysis, the proposed output feedback DMPC can be summarized as the following step by
step algorithm .

Algorithm 2:
Step 1 (Pre-estimation and buffer-update): At time stepk − 1, subsystemi receives the state sequencesxj(k − 1) and the

predicted control sequencesuj(k − 1) from the other subsystemsj = 1, · · · , N, j 6= i, and stores its ownxi(k − 1) and
ui(k − 1). These valid packets are written in the(k − 1)th part ofbufferi. Thekth part ofbufferi is updated according to
Algorithm 1.

Step 2 (Estimation): The constrained optimization problem(9-12) is solved to obtainx̂i(k − Nei) based on the state
information in thekth part of bufferi. An optimal sequence of the local states is obtained where the current optimal state
estimate of subsystemi is denoted bŷxi(k).

Step 3 (Robust DMPC): The constrained optimization problem(53) is solved to develop the control lawui(k) using LMIs.
Remark 4:Algorithm 2 computes output feedback controls for each subsystem.It has been validated that the performance

of the state feedback robust DMPC is the same as the centralized robust MPC in [8] for parallel systems. Indeed, the proposed
output feedback method can achieve a similar control performance as that of the state feedback developed in [8] as the accuracy
and timeliness of the state estimation can be guaranteed. This will be verified experimentally in SectionV.

B. Closed loop system stability analysis

Define he quadratic function:
V̄i(t, k) = ‖x̄i(k + l |k )‖

2
Pi(k)

(54)

wherePi(k) > 0.
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Theorem 3:For (4), under the output feedback control (40) which is given by Theorem2, the closed loop system (43) will
be asymptotically stable.

Proof: According to Theorem1 and Theorem2:
[

xi(k)
T

xibufi (k)
T

x̂i(k)
T

eibufi (k)
T

x̃i(k)
T
]

Q−1
i

[

xi(k)
T

xibufi (k)
T

x̂i(k)
T

eibufi (k)
T

x̃i(k)
T
]T

≤ 1

T̄T
iiQi

−1T̄ii −Qi
−1 ≤ −1/γiΥi − 1/γiFi

T ς1Fi < 0

According to the Schur complement lemma:

∆V̄i(k + l |k ) = V̄i(k + l + 1 |k )− V̄i(k + l |k ) = ‖x̄i(k + l + 1 |k )‖
2
Pi(k)

− ‖x̄i(k + l |k )‖
2
Pi(k)

≤ −x̄i(k + l |k )T (1/γiΥi + 1/γiFi
T ςiFi)x̄i(k + l |k ) < 0

After Fi, Li have been implementedk times, the closed loop system (43) is asymptotically stable.Q.E.D.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

Two simulation studies and an experimental implementationare undertaken in this section. Firstly, a general parallelsystem
is simulated and the performance is compared with that achieved by other established approaches. Then, a parallel continuous
stirred tank reactor (CSTR) simulation is undertaken. Finally, a parallel CSTR experiment is used to further validate the
proposed approach and the results are compared with a state feedback method.

A. A general parallel system simulation

Consider the following parameterisation of the parallel system in (1):

A11 =

[
0.82 −0.02
6.12 0.93

]

, A12 =

[
0.96 −0.02
−0.67 0.94

]

,

A22 =

[
0.88 0.04
−0.94 0.99

]

, A21 =

[
0.89 0.01
2.77 0.88

]

,

B11 =

[
−0.01
0.16

]

, B12 =

[
−0.03
0.15

]

,

B22 =

[
−0.02
0.09

]

, B21 =

[
−0.02
0.17

]

,

C1 =
[
1 0

]
, C2 =

[
1 0

]

σ21 =

[
0.0156 0.0151
0.3254 0.0695

]

, σ12 =

[
0.0412 0.0651
0.2018 0.0511

]

χ21 =

[
0.0601 0.0628
0.0118 0.1010

]

, χ12 =

[
0.0457 0.0258
0.0498 0.0854

]

δ21 =
[
0.1125 0.2021

]
, δ12 =

[
0.2176 0.1892

]

λ21 =
[
0.0601 0.0628

]
, λ12 =

[
0.0657 0.0854

]

ChooseL1 = [0.51, 0.31]T andL2 = [0.51, 0.41]T , A1L andA2L are Schur matrices and their eigenvalues are(0.5784,
0.7862) and (0.5864, 0.8962), respectively.wi(k) is a random disturbance satisfying the Gaussian distribution, vi(k) is a
random noise satisfying the Gaussian distribution and for all simulation sets, the disturbance and noise effects are considered.
In DMHE design,Nei = 10, ϑi = diag(100, 0.01) for i = 1, 2 are chosen. Assume that the outputs of the two subsystems
are the flow rate. The desired outputs of the two subsystems are 5, the maximum output of the bus is10 and the maximum
input of the bus is5. In the simulations, the proposed approach is compared withthe following two methods:

Method 1. The pre-estimators are not used; all other parts are the same as the proposed approach.
Method 2. A distributed Luenberger framework is utilized toreplace DMHE; other parts are the same as the proposed

approach.
The pre-estimators are used in the proposed approach and in method 2 but are not used in method 1. The state estimation

accuracy is tested by using a square wave response as the desired output trajectory for all three methods. The results areshown
from Figure4 to Figure7.

It can be seen from Figure4 to Figure7 that the proposed approach has better estimation accuracy.The pre-estimators are
not used in method 1, hence the tracking error is larger when the desired output trajectory is changed. Method 2 cannot solve
the constraints effectively. The tracking error is larger than the DMHE when the desired output trajectory is not changed. The
control performance is shown from Figure8 to Figure13.
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Fig. 4: The output tracking of subsystem 1 for the proposed method, method (1) and method (2)
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Fig. 5: The tracking error of subsystem 1 for the proposed method, method (1) and method (2)
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Fig. 6: The output tracking of subsystem 2 for the proposed method, method (1) and method (2)
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Fig. 7: The tracking error of subsystem 2 for the proposed method, method (1) and method (2)



18

0 50 100 150 200 250 300 350 400 450 500

Time(s)

-1

0

1

2

3

4

5

6

7

O
ut

pu
t 1

Output of subsystem 1

Proposed method
Method 1
Method 2

Fig. 8: The output of subsystem 1 for the proposed method, method (1) and method (2)
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Fig. 9: The output of subsystem 2 for the proposed method, method (1) and method (2)
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Fig. 10: The input of subsystem 1 for the proposed method, method (1) and method (2)
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Fig. 11: The input of subsystem 2 for the proposed method, method (1) and method (2)
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Fig. 12: The competitive coupling of the output for the proposed method
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Fig. 13: The competitive coupling of the input for the proposed method
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Fig. 14: Simplified physical model of parallel CSTR system.

The simulation results show that the output feedback RDMPC for parallel systems can effectively deal with problems with
unmeasured states. Figure8 shows that the performance of the proposed approach is better than the other two methods.
The proposed method (solid line) with pre-estimator has a faster response. This is because the pre-estimator can locatethe
eigenvalues closer to the origin and then a faster response results. The pre-estimator is not used in Method 1 (dotted line).
Method 1 has a higher overshoot. A distributed Luenberger framework is utilized instead of the DMHE in Method 2 (dashed
line). The pre-estimator is used in this method and the overshoot is smaller than Method 1. However the Luenberger framework
cannot deal with the competitive constraints effectively;hence Method 2 has a larger oscillation. Figure10 and Figure11
indicate that the proposed approach needs smaller control effort. The computing time of the proposed approach is 1.87s while
that of method 1 is 3.21s and method 2 is 2.96s. Figure12 and Figure13 show the output and robust DMPC control action
for both subsystems. This clearly demonstrates how the competitive characteristics in parallel systems are accommodated by
the proposed method: whenu1 andy1 increase,u2 andy2 correspondingly decrease to accommodate the competitive coupling
and competitive constraints.

B. Parallel CSTR system simulation

The parallel CSTR system is simulated before proceeding to implementation on the experiment. A simplified physical model
of a parallel CSTR system is given in Figure14. The reaction is a temperature control reaction. If the temperature inside the
reactor is low, it will affect the depth and conversion rate of the reaction. This affects the quality of the product. In order to
stabilize the temperature inside the reactor, it is necessary to heat the jacket. The temperature of the material in the reactor
can be controlled to meet the requirements of the process by adjusting the flow rate of the heat agent flowing into the jacket.
The heat agent is water, which is supplied by one water heater. When the two CSTRs are connected in parallel, the system
exhibits competitive coupling and there is a need to consider competitive constraints; when the flow of hot water in one jacket
exceeds a certain amount, the flow of water in the other jacketmust be be reduced. The heat agent flowing into the jacket
must be less than or equal to the total supply of the water heater.

The nonlinear dynamic equations of the plant model which is described in [32] can be reformulated to include the parallel
characteristics as follows:

Ṫ1 =
F0

V1
(T0 − T1) +

Fr

V2
(T2 − T1) +G1(T1 −

ρ2C2

V2
T2)T1 +R1(Q1 −

∆H2k2
ρ2C2

Q2)Q1 +
Qr1

ρscpV1
(55)

ĊA1 =
F0

V1
(CA0 − CA1) +

Fr

V1
(CA2 − CA1)−R1(T1)CA1 −R2(T1)CA3 (56)

Ṫ2 =
F1

V2
(TA0 − TA1) +

F3

V2
(T03 − T2) +G2(T2 −

ρ1C1

V1
T1)T2 +R2(Q2 −

∆H1k1
ρ1C1

Q1)Q2 +
Qr2

ρscpV2
(57)
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TABLE I: Definitions of the variables corresponding to the process parameters
Variables Definitions
F0 Flow rate of fresh material A
Fr Flow rate of recycled material A from reactor 2
F3 Flow rate of additional fresh stream feeding pure A
F1, F2 Effluent flow rate from reactors 1, 2
CA1, CA2 Molar concentration of material A in reactors 1, 2
T1, T2 Temperatures in reactors 1, 2
T0, T03 Feed stream temperatures to reactor 1, 2
Qr1, Qr2 Heat input rate into reactors 1, 2
CA0, CA3 Inlet reactant concentration of reactors 1, 2
V1, V2 Reactor volume of reactors 1, 2
∆Hj , kj , Ej Enthalpies, pre-exponential constants and activation energies of the reaction
ρs, R, cp Heat capacity, gas constant and density of fluid in the reactor

TABLE II: Values of the process parameters
F0 = 5.04m3/h T0 = 0oC k30 = 3× 105h−1 Cs

A1 = 1.67kmol/m3

F1 = 50m3/h T03 = 0oC E1 = 5× 104kJ/kmol T s
2 = 10oC

F3 = 30m3/h ∆H1 = −5× 104kJ/kmol E2 = 6.5× 104kJ/kmol Cs
A2 = 0.63kmol/m3

Fr = 35m3/h ∆H2 = −5.2× 104kJ/kmol E3 = 5.5× 104kJ/kmol Qs
1 = 1.2× 106kJ/h

V1 = 1.0m3 ∆H3 = −5.4× 104kJ/kmol cp = 0.88kJ/kgK Cs
A0 = 0.8kmol/m3

V2 = 1.0m3 k10 = 3× 105h−1 ρs = 1000kg/m3 Qs
2 = 1.6× 106kJ/h

R = 8.314kJ/kmolK k20 = 3× 105h−1 T s
1 = 10oC Cs

A01 = 0.4kmol/m3

ĊA2 =
F1

V2
(CA0 − CA1) +

F3

V2
(CA03 − CA2)−R1(T2)CA2 −R2(T2)CA0 (58)

whereRi(Tj) = ki0 exp(−Ei/RTj) andGi(Ti) = ((−∆Hi)/ρscp)Ri(Tj) for j = 1, 2. The definitions for the variables and
the values of the process parameters can be found in Tables 1 and 2, respectively.

Choose a sampling interval ofTs = 0.0025h. Considering (55-58), the nominal discrete time linear state space model of
the plant around the mentioned steady state points has the form:

x̄1(k + 1) = A11x̄1(k) +B11u1(k) + λ12
T (x̄1 − χ12x̄2)A12x̄2(k) + δ12

T (u1 − σ12u2)B12u2(k), ȳ1(k) = C1x̄1(k)

x̄2(k + 1) = A22x̄2(k) +B22u2(k) + λ21
T (x̄2 − χ21x̄1)A21x̄1(k) + δ21

T (u2 − σ21u1)B21u1(k), ȳ2(k) = C2x̄2(k)
(59)

wherexi andui are the (dimensionless) state and manipulated input vectors for theith CSTR, respectively:

x̄1(k) =

[
T1−T1

s

T1
s

CA1−CA1
s

CA1
s

]

, x̄2(k) =

[
T2−T2

s

T2
s

CA2−CA2
s

CA2
s

]

u1(k) =

[
Qr1−Qr1

s

Qr1
s

CA0−CA0
s

CA0
s

]

, u2(k) =

[
Qr2−Qr2

s

Qr2
s

CA03−CA03
s

CA03
s

]

The other constant matrices are given by

A11 =

[
0.9600 0.0039
−0.2488 0.8902

]

, A12 =

[
0.0722 0.0002
−0.0134 0.0773

]

,

A22 =

[
0.8312 0.0024
−0.0235 0.5627

]

, A21 =

[
0.0657 0.0002
−0.0201 0.0645

]

,

B11 =

[
0.0072 0.0001
−0.0009 0.0265

]

, B12 =

[
0.0722 0.0002
−0.0134 0.0773

]

,

B22 =

[
0.0097 0.0001
−0.0005 0.0738

]

, B21 =

[
0.0247 0.0003
−0.0200 0.0824

]

,

C1 =
[
1 0

]
, C2 =

[
1 0

]
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Fig. 15: The output temperature of the first CSTR for the proposed method, method (1) and method (2)

σ21 =

[
0.0238 0.0412
0.1428 0.0981

]

, σ12 =

[
0.0351 0.0741
0.1024 0.0427

]

χ21 =

[
0.0416 0.0597
0.0736 0.1328

]

, χ12 =

[
0.0842 0.0718
0.0981 0.0889

]

δ21 =
[
0.1243 0.2004

]
, δ12 =

[
0.2181 0.1411

]

λ21 =
[
0.1024 0.0971

]
, λ12 =

[
0.0518 0.0449

]

A local pre-estimator is designed for each CSTR. ChoosingL1 = [0.6, 0.28]T andL2 = [0.5, 0.4]T , A1L andA2L are Schur
matrices and their eigenvalues are(0.3639, 0.8863) and (0.3430, 0.8163), respectively. In the DMHE design,Nei = 10 and
ϑi = diag(100, 0.01) for i = 1, 2 are chosen.wi(k) is random disturbance satisfying the Gaussian distribution andvi(k) is a
random noise satisfying Gaussian distribution. For all simulation sets, the disturbance and noise are present. In the simulations,
the proposed approach is compared with the two different methods.The desired set-points of the two subsystems are both 10
degrees Celsius, and the initial temperatures of both subsystems are 0 degree Celsius. The control objective is to increase the
temperature of the jacket from0 degree Celsius to10 degrees Celsius by manipulating the flow of water in the jacket. The
results are shown from Figure15 to Figure19.

The simulation results show that the method proposed in thispaper can effectively deal with problems relating to parallel
CSTR systems. Figure15, Figure16, Figure17 and Figure18 show that the performance of the proposed approach is better
than the other two methods and the control effort of the proposed approach is smaller. The computing time of the proposed
approach is 2.21s while that of method 1 is 4.32s and method 2 is 3.95s. Figure19 shows the robust DMPC control action for
both subsystems. This clearly demonstrates how the competitive characteristics in parallel systems are accommodatedby the
proposed method: whenu1 increases,u2 correspondingly decreases to accommodate the competitivecoupling and competitive
constraints. This is different from the parallel system considered in subsection 4.1; the outputs of the CSTR are the temperature
and do not have material couplings between them.

C. Parallel CSTR system experiment

The effectiveness of the robust DMPC algorithm for parallelCSTR systems has been verified by simulation.The effectiveness
will be further validated by two experiments.The Process Modelling and Control Group at the China University of Petroleum
(East China) have developed an experimental rig which is shown in Figure20. The operation interface of the rig is shown in
Figure21. The four reactors, labelled R101, R102, R103, R104, can be connected in numerous ways for controller validation
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Fig. 16: The output temperature of the second CSTR for the proposed method, method (1) and method (2)
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Fig. 17: The inputs of the first CSTR for the proposed method, method (1) and method (2)
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Fig. 18: The inputs of the second CSTR for the proposed method, method (1) and method (2)
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Fig. 19: Control signal for both subsystems when controlledusing the proposed method
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Fig. 20: Experimental equipment

and testing (series, parallel, series and parallel). The chemical reaction is carried out after feeding. The process can implement
continuous operation as well as enable measurement and control of the flow, liquid level and temperature. V111 is the header
tank which contains acetic ether and V112 is the header tank containing sodium hydroxide. These raw materials are processed
in the CSTR at the same time [8]. Unlike the previous simulation, this reaction is an exothermic reaction.Only two reactors
are used in these experiments. The output of the first experiment is temperature. For the reactors R101 and R102, the desired
set-points are both30 degrees Celsius. The coolant flow in the jacket is used as the control variable. The initial temperatures
of R101 and R102 are 24.8 degrees Celsius and 25.2 degrees Celsius, respectively. The control objective is to increase the
temperature of the jacket from the initial temperatures to30 degrees Celsius by manipulating the flow of water in the jacket.
The output of the second experiment is concentration of product C, the desired set-points are both0.8kmol/m3. The initial
product concentrations of R101 and R102 are are0.46kmol/m3 and 0.61kmol/m3, respectively. The control objective is
to increase the concentration of product C from the initial concentration to a desired set-point. The proposed approachis
used for control of the system. The temperature tracking performance is shown in Figure22 and the product concentration
tracking performance is shown in Figure23, which further validate the proposed approach.Figure24 shows the control effect
of the classical DMPC algorithm when the states are measurable. Comparing Figure22 with Figure 24, the output feedback
robust DMPC proposed in this paper can achieve a similar performance to the method proposed in [8], in which the states are
measurable.

VI. CONCLUSION

This paper has proposed an on-line algorithm to implement anoutput feedback robust DMPC strategy that explicitly
accommodates the characteristics of parallel systems withstate estimation.The main contribution of this paper can be
summarized as follows: (1) new buffer, predictor and pre-estimator are presented to solve the competitive couplings and
competitive constraints under the condition that the states cannot be measured; (2) an output feedback robust DMPC algorithm
has been proposed for parallel systems and the stability of the closed loop system has been analyzed.The subsystem performance
takes into account the state estimation, competitive couplings and competitive constraints in order to achieve optimization of
the whole system. The problem can be converted intoN convex problems which can be expressed as linear matrix inequalities
and solved iteratively by using the method of successive iteration to ensure rapid convergence. The simulations show that the
proposed approach can effectively deal with the constraints for parallel systems and can achieve better performance than the
OFDMPC without pre-estimator. The results of an experimental trial further illustrate that the proposed approach is suitable
for control of parallel systems in process networks when thestates are unmeasured.

ACKNOWLEDGEMENT

This work is partially supported by the National Natural Science Foundation of China (61973315) and (61473312).

REFERENCES

[1] P. Garcia-Herreros, A. Agarwal, J. M. Wassick, I. E. Grossmann, Optimizing inventory policies in process networks under uncertainty, Computers &
Chemical Engineering 92 (2016) 256–272.



27
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