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Abstract

The parallel structure is one of the basic system architectures foundogegs networks. This paper formulates control
strategies for such parallel systems when the states are unmeasheedompetitive coupling and competitive constraints are
addressed in the control design. A distributed buffer and pre-estirae¢oproposed to solve problems relating to coupling and
timely communication whilst a distributed moving horizon estimator is employddrtber improve the estimation accuracy in
the presence of the constraints. An output feedback robust distribuee! predictive control algorithm is then developed for
such parallel systems. The Lyapunov method is used for the theoratiaisis which produces tractable linear matrix inequalities
(LMI). Simulations and experimental results are provided to validate teetefeness of the proposed approach.
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I. INTRODUCTION

In modern industrial chemical plants, a process networloieprised of many process units arranged in a complex steictu
[1]. Such a process network can be divided into elements widltiassstructure and elements with a parallel structurert#ipg
on the process interactions. A series structure is charseteby each subsystem being connected in seBesd that the
output of the former subsystem is the input of the latter gsiiesn {3], [4], [5]. The parallel structure covers the case where all
subsystems are connected in parallel i.e. the inputs aeenglot from the same bus while the corresponding outputsecgav
to another bus. In this case each subsystem is competingtivdtbther subsystems because of resource limitations ame th
are couplings between information, mass and energy amoétigeatubsystems. These couplings and constraints in tladigdar
system architecture are different from those in a serietesydt is necessary to clearly describe the couplings andtcaints
within a parallel system before embarking on a control de§s, [7]. The authors have previously studied the parallel system
and proposed a state-feedback based distributed modakttwredcontrol (DMPC) in which the competitive couplingsdan
constraints have been initially defined to describe charestics of the parallel systen8][ Assume that two subsystems are
connected in parallel in the same bus. It is obvious that time af the inputs of the two subsystems must be less than ot equa
to the total input of the whole system. When the sum of the mmiftthe two subsystems is equal to the total input of the
whole system (this is the most common case in prad]c€l0), it is the case that when the input of one subsystem inesas
the input of the other subsystem must be correspondinglycextl If the outputs of each subsystem are also connected in
parallel, the outputs have the same characterisTihe. system will not achieve the control objective and maynevecome
unstable if the competitive couplings and constraints ateaddressed appropriately.

The authors have solved the competitive coupling and cdtiygetonstraint problems by designing a state feedback BMP
for a parallel system ing]. In this paper all of the states are assumed to be measundbte that it is almost impossible
to measure all the states in practice. In this case a staerva@rsmay be a good choice to recover the unmeasured states.
There are many output feedback MPC methods that have beatoded [L1], [12], [13]. Most of these approaches use
observers in the control design, such as, Kalman fillef], [tube-based minimax observetq, Luenberger observerlf],
[17] and a moving horizon observet§]. The Kalman filter approach uses the state equation andhaysequation to obtain
an optimal solution according to the linear unbiased mimmmean square error estimation criteridi®][ The tube-based
minimax observer employs local feedback around a nominakference trajectory and keeps the trajectories resuftimg
the disturbance sequences in a possibly small neighbodrbibtihe nominal trajectoryZQ]. The closed loop poles of the error
system when a Luenberger observer is used have negativ@adal which ensures that the observation error converges to
zero asymptoticallyq1]. However, these observers cannot address the constiiaiatparallel system effectively and solutions
may not be optimal. Note that moving horizon estimation (MH&n cope with system constrain®2] and can make full
use of the known information about the constraints to imerthe accuracy of observatiogd. In essence, MHE is an online



optimization method based on the most recent d2dhwWhereby the constraints can be expressed directly in thien@ation to
reformulate a quadratic prograr@g. The approach has been successfully applied in practicaepsonetworks; for example,
an MHE strategy has been proposed for detectable lineagragsto solve the constraint problems #6]. Note that most of
the mentioned designs are for centralized control and thiploms among the subsystems have not been considered.

Output feedback distributed model predictive control (OHBC) is worthy of attention. There are two main problems to
be solved when the output feedback control is distributed, s the coupling problem, the other is the problem of timely
communication. To date, very little literature has reporeork in this field. An OFDMPC algorithm has been presentad fo
a polytopic uncertain system subject to randomly occurentyator saturation and packet 10&3][ In this work the authors
assumed that the system parameters could be designed incadsa that the couplings can be known apriori and without
any need for state estimation; the work has not consideredirtiely communication problem. A cooperative DMPC has been
proposed for a class of large-scale systems composed oéttisime linear subsystems which are coupled via thess{ag.
Each subsystem was associated with a local MPC unit, a laealigitor and a local observer. The coupling problem was
solved by these local model predictive controllers whickhanged predicted input sequences via a delayed commionicat
network. An OFDMPC algorithm has been proposed for a teannehr discrete-time subsystems which are coupled by the
cost function R9]. Here the optimisation problem was reformulated desgite firesence of couplings of cost function and
dynamic state couplings.

Although the above work has addressed OFDMPC issues, itdia®nsidered timely communication amongst the subsystems
and the characteristics of the parallel system as define@]inThere will be considerable computation and even degraded
control performance if the competitive couplings and cotitipe constraints of parallel systems are not dealt withrapriately.

In order to design OFDMPC for parallel systems, the competitouplings and competitive constraints are defined by
using observed states and predicted control laws. Thentaa kidfer is introduced which can store the most recent data.
Before each iteration, this data can be used to generate-espneate and to give an initial value for the MHE iteratioan a
the current instant. In this way state information can badferred to other subsystems in a timely way. The MHE apfroac
is well-aligned with the proposed characteristics of théfdsuIn this paper, an OFDMPC is derived for a parallel syste
which may be subject to uncertainty. The current states stimmated by distributed MHE (DMHE). By taking this route, a
formulation of OFDMPC for parallel systems is establishddol possesses the following core features: competitivplaays
and competitive constraints are described using the obdestates of the parallel system; a pre-estimator is usechdding a
preliminary estimate of the states and the predictor is fisethaking an initial prediction of the control law. This orimation
will be sent to the corresponding buffers which are propdsestore the most recent data about the competitive couplimty
competitive constraints in the parallel system. Then th&rodler can use this information to calculate competitiveiplings.
The DMHE can use these pre-estimated states to furtheradstitime current states and improve the accuracy. The pexfmen
of the OFDMPC is guaranteed when the controller is appligtiégparallel system. For this special class of system, eguijmin
of the result and verification of the underlying assumptians computationally tractable. The following is then aghie A
robust output feedback DMPC is proposed based on the peeldésid estimated states. The robust stability of the claseul |
parallel system is analyzed. A step by step control algarith given to realize its straightforward implementatioméily,
the effectiveness and performance is validated by extersimulations and an experimental trial. When compared vhigh t
previous results of reference®7] [28] [29], the main advantages are focused on (i) the competitivelzas can be calculated
by using the pre-estimators and predictors. (i) The infation is communicated in a timely fashion among all the sstesys
by using the buffers.

The paper is organized as follows. In Sectibrthe parallel system with state estimation problem is foated and the
essential assumptions and definitions are given. In Selitidhe estimation errors are analysed. The ROFDMPC algorithm i
proposed and its stability is addressed in SectbnThe results of simulations and an experimental trial araalestrated in
SectionV to validate the proposed approach. Finally, some conaigséwe drawn in Sectiow|.

Il. PROBLEM FORMULATION

Consider the linear discrete time parallel system compaged subsystems coupled via states and inputs in Fidure
Subsystem can receive information from all the othéN — 1) subsystems. The dynamic model with uncertainties inithe
subsystem is given by the following:

N
o 12# g (i) = xig (k) Agje (k) + 6557 (wi(k) — oiju; (k) Biju; (k)] (6N
J=177
y,(k) = CZLL'Z(]{?) + ’UZ(]{?)

wherez; (k) € X; C R™: is the state vector; (k) € U; C R™ is the control input and;;(k) € Y; C R"v is the output
vector, w;(k) € W; C R™: is an unknown disturbance and(k) € V; C R"» is measurement nois&;, U, andY, are
polyhedral and polytopic constraint sets, respectiVidlyandV,; areC-sets.A;; € R"=: "=, B;; € R™=: XMwi | A, € R *™e)
B;j € R™=i*™ O € R™i*"=;, D,; € R™=:*™wi the pairs(4;;, B;;) are assumed to be controllable gotl;, C;) are assumed



Communication

T2 !
1 Zuj’zxj u ZHJ’Z"CJ u F=1.2, e N ! u Z”J"ij
1 1j=23- N T 1j=134, N R i A A Je 18 e =1
]i] :
1
DMPC, DMPC, DMPC, | pmPCy,
x1 x2 xl xN:
H
...... !

Subsystem N

Qubsystem 1

y 1 H]

Limited resources

Fig. 1: Parallel structure in process networks.

to be observabler;; € R™“ ™", x,;; € R"= "= 4 j=1,--- N, j # i are weighting matrices representing the competitive

strength of the control input and system state respectivglys R \;; € R"=:, 4,5 =1,---, N, j # i are weighting vectors

of the competitive coupling of the control input and systdatesrespectively where all elements in the vectors aretipesi
Definition 1: For theith subsystem of the parallel system, define

N
of = > N (wi — xiwj) Aij (k) @
and N
cf = Z 5ijT(“i — oiju;) Biju;(k) ®)
J=1,5#i

as the competitive couplings.

Definition 2: The system with competitive coupling must satisfy||u;|| < ||ull, 3 [lv: | < ], 0i;" (wi — o4juj) > 0 and
)\ijT(xi —Xxij;) > 0, whereu is the total inputy is the total outputj, j = 1,--- , N. These constraints are called competitive
constraints.

Remark 1:In a parallel system under competitive constraints, whefk) increases 'Zf\/:;lzﬁ;éj u; may need to reduce
because of the limited total input. The degree of reductibm,0k) is affected by the weighting of the competitive strength
o;; and the weighting of the competitive couplidg. The outputs have the same characteristics, that is, wii@n increases,
Y1 is; vi May need to reduce.

The subsystems are assumed to exchange information via mwoication network. In the proposed method, eddW PC;
packages its state information and predictive control eege into one packet with a time-label and then sends it tother
subsystems over the network. Because the states are umewathie competitive couplings’ and ¢! cannot know the state
information corresponding to the other subsystems urtilitifiormation has been estimated. This increases the coratiom
time. In order to solve this communication problem, a prisegtor and corresponding buffer strategy are proposedhis t
paper. The details are shown in Figiteln Figure?2, each local controller contains a pre-estimator, a prediahd a buffer.
The buffer consists of two parts which correspond to(the 1)th part and the€k)th part. For subsystem the buffer is named
buf fer;. Following implementation of the control laws at sampliimgé (k — 1), all necessary information on the subsystems
includingu;(k — 1), u;(k — 1), 2;(k — 1) andz;(k — 1) is sent and stored in th@g — 1)th part ofbuf fer;, wherez;(k — 1)
andi;(k — 1) are the states estimated by the DMHE at sampling tifne- 1). At sampling timek and before calculating
the control, thepredictor; can use this information from thie.f fer; to preliminarily estimate the staté” “(k) and control
law u"*/ (k). Then thePre — estimator; can user’?" (k) andu'""/ (k) to estimate the states which are defined:24’ ().
After that, ="/ (k) andu;"*/ (k) are sent to thék)th part of all the buffers. Meanwhile, the.f fer; receivesz'"/ (k) and
ué.b“'f(k) from the jth subsystemj(# i,57 = 1,---,N). Then the competitive couplings can be calculated by utiege
packets. TheD M H FE; further estimates the current states on the basis of thiggmation. The following dynamic model
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Fig. 2: The structure of the control system.
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for each subsysterncan be rewritten as:

N
+ > T @ (k) = e (k) Ay (k) 4 657 (ug™ (k) — osul™ (k) Biju ™ (k)]
j=1j7#i
yl(k‘) = Cz:nz(k:) + Ui(k?)
whereu;"" (k) and "/ (k) are the predicted input and pre-estimated state oftthesubsystemy!"/ (k) and %"/ (k) are
the predicted input and pre-estimated state of jtinesubsystem, which are all storediinf fer;.

The following assumptions are given:

Assumption 1The controllers are synchronous.

Assumption 2The controllers communicate only once within a samplingnveil.

These assumptions are not restrictive. Assumptios not unduly strong because in process control systemsatinglag
interval is long enough when compared to the computatiana.tAssumptior? is appropriate because a single information
exchange within a sampling interval is consistent with teguirement of minimizing the amount of data exchange via the
network. Under these two assumptions, the logic of one obipieriod can be shown in the sequence diagram Figuré
is clear that the coupling and timely communication problean be solved by the buffer and the pre-estimator. Further th
estimation accuracy can be improved by thé/H E.

Remark 2:The pre-estimated stateé,b“fi =1,2,...,N are calculated by the pre-estimator and the predictor cadigir
the control IaWuZ’”“'fi =1,2,...,N. This information can be used to calculate the competitwgpting. Then, the DMHE is



designed to accommodate the constraints and improve theagisin accuracy. Finally, a robust output feedback disted
model predictive controller is designed based on the egtignstates.

[1l. STATE ESTIMATION

In this section, the pre-estimator is initially designetiei, a DMHE is designed and the bounding sets for the DMHE®rro
are derived. Finally, the bounding sets for the pre-estonagrrors and the overall estimation errors of the paraNstem are
derived.

A. Pre-estimator

To pre-estimate the states, it is assumed that there exlatgrberger type pre-estimator for each subsystem. Cantfide
system defined byljj, the ith pre-estimator can be designed as:

ﬁww+n:AMMMm+aMwH¢mmm—aﬁ”w1 ®)

+72twﬂﬁ”m Xiga (k) Ayl (k) + 6457 (u”™ (k) — oiul”™ (k) Bijul™ (k)]
J=1,j#i

wherex“’“f (k) is the current estlmate of;(k) generated by théth pre-estimator and.; is the pre-estimator gain matrix.
Note that the current est|majiél ) needs state information from all the other subsystems tultzke the coupling terms

N

S g T @ (k) = g ’b“f(k))A”x’b“f(k)] However, initially at thekth instant,z "/ (k),i = 1,2,--- , N is unknown.
J=1,j#i ,
The mf’“’f(k:),z' = 1,2,--- , N in the coupling terms off) is replaced byx’f’”(k),i =1,2,---,N, in which 2"(k) is
calculated by a local predlctoThe predictor uses the explicit form of nelghborlng subsyst and is given by:
2P (k) = Aydi(k — 1) + Byug(k — 1) (6)

3

N
+ Y ATk — 1) = X (k — 1)] Ay (k — 1)

J=1,j#i
N
+ Z 5ijT[Ui(]€ — 1) - O'ij’u]‘(k‘ - 1)]Bijuj(k: — 1)
J=1,j#i
wherei;(k — 1) andu;(k — 1) for all i = 1,2,--- , N are known at time step and are stored in thék — 1)th part of the

buffers. Thenz*"“(k) can be calculated btﬁl and these states are sent to ttiepredictor to predict the mput“’” (k). The
predictor can be designed by using the method8bfahd the following dynamic model:

ek +1) = A”x”’“(k) + Byul™ (k) 7)
+ j{j w7 (k) = g () Ayl (k) + b3 ("™ (k) = o™ () Bigea?™! (k)]
Jj=Lj#i

whereu!" (k) is the input of thejth subsystem. In7), u"*/ (k) = K;{""*(k), K; can be calculated by using the method
proposed in §]. After 2*"“(k),i = 1,2,--- ,N and uﬁb“f(k)J = 1,2,---,N are calculated by6) and ) respectively,
27 (k) can be estimated by the following estimator:

ﬁW@+D—MﬂMW+&MW+me—@ﬁ”®] ®)
+ Z a7 (k) — xij® lpTe(k))AiﬂC;pTe(k)+5ijT(Ufbuf(k)—Uijuzbuf(k))Bijuébuf(k)]
J=1,j#i

Then, the pre-estimated state sequemé@’sf(k) and the predicted control sequen@é@"f(k) are obtained. They are stored
in the (k)th part of buf fer; and used to calculate the competitive couplings. The aboweeps describes the selection
mechanism obu f fer; which can be summarized in the following algorithm.



Algorithm 1:

Step 1 (k — 1)th part-update): At time step — 1, after implementation of the control actioris,f fer; receives the state
sequences; (k — 1) and the predicted control sequeneg$k — 1) from the other subsystems=1,--- , N, j # ¢, and stores
Z;(k — 1) andu,;(k — 1) from theith subsystem. These valid packets are written in(fhe- 1)th part ofbuf fer;.

Step 2 (Prediction): At time step, initially the information in the(k — 1)th part ofbuf fer; is sent to thepredictor;, and
zP"* (k) can be calculated by6) with the information. Thenu”“‘f(k) can be predicted by using the method 8F &nd the
dynamic model 7).

Stepz 2; (Pre-estimation): The Luenberger type pre-estin{8jds solved to obtalr:z”?“f( k) with the information ofz’”"* (k)
andu;"" (k).

Step 4 (k)th part-update): The pre-estimated state sequemﬁéé and the predicted control sequeneq’é”f ) are
stored in the(k)th part of buf fer;. Meanwhile,buf fer; recelveSx“’“/( k) and fugb"/( ;) from the other subsystemg, =
1,---,N,j # i. The information in thgk)th part of all buffers is used to calculate the competitiveptimgs.

Remark 3:In this paper, the predictor uses the DMPC which is proposefB]i to predict the input. This method can
be used since following the calculation fror),(all the state informationa(”"“(k),i = 1,2,--- ,N) can be obtained. The
corresponding state estimation errors will be analyzedulvssction 3.3.

B. Distributed moving horizon estimator

To improve the estimation of the states, a distributed ngviarizon estimator is designed for each subsystem by gplvin
the following constrained optimization problem at eachetistepk:

k
. 1 . .
. (D 2( > ||Z/i(l)_Cixi(l)HQ"'||$i(k_Nei)_xi(k_Nei)Hzi) )
Zi(k—Nes) I=k—Ne;
S.t.
Tl +1]k) = Audy (l|k;)+Buul(l|k;)+le(l|k)
+ Z R (1 k) Ay (1) + Z Pk Bijul™ (k) + Lilyi(1 k) — 9i(1|k)]
J=1,j#i Jj=1,j#i
| = k—Neiyok—1 (10)
vi(llk) = Cizi(l|k)
| = k—Neiy, ...k (11)

D llwill <
DMl < (1]
D 1wl < [l
5ijT(ui — O'ijuj‘) > 0
)\'jT(i‘i — piji‘j) > 0 (12)
where R (1K) = X" [ (1K) — xi;a  (1]k)] and P (1 k) = 635" [ul™ (I k) — 035027 (1 k)] are scalars(Ne;
+1) is the estimation horizord,is an posmve integet;; (k) is the current estimate aof;(k) by the DM HE;, ¥, is a nonnegative
weight for the DM HE;, ¥; € R™:*"v is a matrix which is related to competitive coupling;s > 0, i € {1,2,..., N},
se{1,2,...,ny}. ;(l|k) denotes the predicted value &f at time step/ calculated at time step. The optimal solution of
(9)-(12) is shown byz;(k — Ne;) and the initial value of;(k — Ne;) is provided by the pre-estimator. An optimal sequence
of the states is obtained fron®)(in which the current optimal state estimate of subsysteis denoted byz; (k). In (9),
||Z:(k — Ne;) — xi(k — Nei)||129i is the arrival cost.
The optimization problem9) can be rewritten as the following convex Quadratic Prog(@mR):
min § (&;(k — Nei))THﬂ:Ei(k — Nej) + Hip"2i(k — Neg) + 74 13
s.t. G;i;(k — Ne;) < E;
whereG; andZ; are constant matrices with appropriate dimensions reptiegethe constraints oflQ)-(12). Here,i;(k— Ne;)
is an unknown vector of optimizatio®) andr; is a constant term. The corresponding matriégs and H;» in (13) are:

Hy = (A(Nei))" Ai(Ney) + 9 (14)



N
Hip" = —(y)" (Si(Ne;)" Ai(Nei) + ()" (Bi(Nei)) " Ai(Neg) + Y (a u) T (4,5 (Neg) " Ai(Ney) — (3:(k — Neg)) 70
Jj=1

(15)
where ) 0 . 0
CCX CiAy 0 o0
iAirL
Ai(Ney) & : JAij(Ney) 2 Cidip Aij CiAi; e 0
’ Ne; . .
L CZ(A’LL) i i Ci(AiL)NeiflAij Ci(AiL>Nei72Aij . CZAZJ |
_ - i 0 0 e 0
C% CiBij 0 . 0
iBiL
Bi(Ne;) 2 ] ,Bi;(Ney) EY Ci A Bij C; B 0
.
C(BzL) i C (AlL)N&leU Cl(A )N6172B” ClB,L] |
i 0 0 . e 0
C;L; 0 - .. 0
Li(Ne;) 2 CiAirLL; CiBi; 0o - 0
L Ci(A)Y T L Ci(Ai)Y TP, - Gl O

Si(Nej) 21— Li(Ne;)
Air = Ay — LiC;

In (15), for updating matrixH;-, the current and past measured outputs, past inputs, paitied state and a prior estimate
of the calculated state;(k — Ne;) are needed.

Now defining the error between the actual and estimatedsséste; (k — Ne;) := x;(k — Ne;) — @;(k — Ne;), the following
proposition is given.

Proposition 1:For each subsystem z;(k — Ne;) is bounded and there existsGaset X; that if Z;(k =0) € X; then
Zi(k) e X, forall k > 0.
Proof. Firstly, a dynamic equation based on the QP Active Set Sfydts z;(k) is pursued. Applying the Karush-Kuhn-Tucker
(KKT) conditions B(Q] to the optimization problem9) yields

Zi(k — Nej) = —Hj ~'(Hpp + GEN\ia)
Nia = —(GiaHy 'GT) Y GiaHj " Hig +Z44) (16)
Aia >0

where\; 4, G;4 and=; 4 are active Lagrange multipliers and the corresponding iogstr respectively. Notice that froni4),
if 9; >0, thenH,;; > 0 and H;; ' exists. Substitutel@)-(15) into (16)
Zi(k — Neg) = Agei(k — Ne; — 1) + Diyw? 1 (k — Ney — 1) 4+ Do 1 (k — Ney — 1) 4+ Hyy Gy hia (17)
)\iA - _<GiAH7L1_1Gi ) 1G’LA( zexz(k Nez - ]-)
+ Diywf ™ (k — Ne; — 1) + Diyvf ' (k — Ne; — 1) — Zi(k — Nejy))

where A, = a1 "0 AL, Dy 2 ililwz’Dia_(Ai(Nei))TDi(Nei)]y Dy 2 1171[19114,—(Ai(Nei))TSi(Nei)],

w1 (k — Ne; — 1) 2 col(w;(k — Nej — 1), oy wi(k — 1)), 0" 1(k — Ne; — 1) 2 col(vi(k — Nej — 1), ..., vi(k — 1)) and
D;(Ne;) is defined as

0 0
CZD’L 0 M
Di(Ne;) & CiAiLD; CiD; 0
Ci(A)N T D Ci(A)YTPDy - OiD;

_ Substituting A4 into Z;(k — Ne;), it follows that Z;(k — Ne;) Zi(k — Ne; — 1) + Diw;*~1(k — Ne; — 1) +

Divvik_l(k‘—Nei—l) and for time stepk + 1, ji(k—Nel—i—l) /_1 T (k‘ Ne; )-ﬁ-Diwwik(k‘—NGi)—‘rDiv’Ui ( N@z)



Rewrite 0) for [ = k — Ne;:
N . .
+ > [RE(k— Ney) Ay (k — Nel) + P”’“f (k — Ne))Byjul™ (k — Ne;)| + Li(yi(k — Ney) — 4s(k — Ne; k)

. ‘. )
Jj=1,j#i

(18)
Further, @) can be rewritten in the following form:
l’z(k‘ — Ne; + 1) = A“CL’ZU{J — N@i) + Biiui(k: — Nei)
N _ _ _ _

J=1,5#i
Subtracting 18) from (19): Z;(k — Ne; + 1) = A;1%;(k — Ne;) + D;w;(k — Ne;) — Lyv;(k — Ne;). By iteration, it is
obtained that:
Fi(k+1) = (Aip)V%&;(k — Ne; +1) + Dipw;®(k — Ne; + 1) — Dipv(k — Ne; 4+ 1) (20)

whereD,p 2 [D;(A;p)Nei=t, ... D;] and D;p, 2 [Li(A;p)Nei=1 ... | L;]. Multiplying both sides of 20) by (A;z)~ V¢

Lfl(k’ — Ne; + 1) = (AiL)_Nei.i‘i(k + 1) — (AiL)_NeiDiD’wik(k — Ne; + 1) + (AZ‘L)_NQDZ‘L’UZ‘]C(]C — Ne; + 1) (21)

Rearranging the terms o29):
Zi(k + 1) = (A)zi(k) + (22)
A

Wherele AzLN AzeAzL :Aw — 19 AlLl w1 — ([0 DzD] [A~ DzDa ]+A1LN81Dzw)w1(k ) +A1L iDivX
vi(k — Ne;)*1 and wz is conS|dered as a disturbance which I|es in theset W, defined byW = SiwW;(Ney) @
SZ’UVZ(NeZ)I Whereszw : [OyDzD] [AzDzDv ] (Az ) LDzwv Sw - [OaDzL] [AzDzLa ] (AZL)NeiDivr Wz(Nez) é

W; x -+ x W, | and V;(Ne;) 2 W; x --- x W, |, the symbolg denotes the Minkowski sum. Note thal;;, A;.
%,_/ ~—_———

Ne;+1 Ne;+2
and A; are Schur matrices. Therefore, there exist8-setX; that is robust positively invariant for2@)[31]. It follows that
AX; ©@; ¢ W, and if 7;(k = 0) € X; thenz; (k) € X;,Vk > 0. Q.E.D.

C. Stability of state estimation

The estimation error for the DMHE is defined as befargk) £ x;(k) — Z;(k). The estimation errors for the predictor and
pre-estimator are defined as?"* (k) £ x;(k) — 27"(k), e/ (k) £ 2;(k) — 2"/ (k), respectively.

Proposition 2:For each subsystem if e/ (0), ;(0), £;(0) and z'P"*(0) are bounded, the pre-estimator gain matfix

—lAam Al
satisfies:|| L;|| > w the state feedback gain matrix satisfies:|| || < min{— H H H H , then e’b“f k) is
. [ro] "~ Joo] !
‘ B(l)
bounded and there existsGasetE:*"/ that if "/ (k = 0) € EI"*/ thene!™/ (k) € E*f for all k > 0, where
Aqy o Ryl )Au o Rin(l )AlN
Al =| RaAn - Ay Rin(DAiw | 1=0,1,- k=1
Ryi()Ant -+ Ryi(DAn: -+ ANN
By - Py()Bu - Pin(DBix
B(l)=| Pai()Ba - Bii o+ Pn()Bin |,1=0.1,-+ k-1

PNl(l)BNl oo Pni(D)Bpn; - Ban



An —L1Cy Ri;(1)Ay; Rin(1)Ain
A= | Ria()Aq Ay — LiC; Rin(DAin |, 1=0,1,--- k=2
Rn1(1)An1 Ryi(1)Ani Ann — LnCy
B P1;(1)By; Pin(l)Bin
B(l)=| Pa1(l)Bn Bi; Pn()Bixy |, 1=0,1,--- k-2
Pni(l)Bn1 Pn;(l)Bn; Byn
Ky 0 0
K = 0 K; 0
0 .- 0 Kn

Proof: Subtracting § from (1):

eiibuf(k + 1)
=zi(k+1) — 2" (k+ 1) = Aye” (k) — LiCie"™ (k)

(23)

N
+ Z (N T (k) — xogag ()] Agjaj (k) — Ni T (w7 (k) — xi@'P"e (k)] Agja?" (k) }

J=1.#i

N
+ > {65 (k) — o (k)] Bijuy (k) — 6 [ui (k) — oiju; " (k)] Biju; ™Y (k)}
=15

N
= Y {[Ri(k) Ay — Rij™™ (k) Aij]aiP™ (k) + Py (k) Bij Fyw; (k) — Py ™™ (k) Bij K" (k) + Rij (k) Agjel™! (k) }

J J J
Jj=1,j#i

whereR;; (k) = \i; " [:(k) — xijz; (k)] and Pij (k) = 8;;" [ui(k) — oiju;(k)] are scalars. For the whole systest/ has the
following form:

[ el (k+1) ] Ay — L0y - 0 0 [ et (k) ]
k1) | = 0 Ajs = LiCi -+ 0 e (k) (24)
e (k+1) | 0 0 Avy —LNOn | | ey™/ (k) |
[ ——
ebuf (k+1) Abuf ebuf (k)
r 0

+ Py (k)BinFr + Rii(k)Ain

| Pni(k)By1Fy + Ryi(k)An

Pyi(k)B1;F; + Ryi(k)Aq;

0

Pyni(k)BniF; + Rni(k)Ani

Pin(kE)BinFn + Rin(k)Ain ]

Pin(k)BinFn + Rin(k)Ain

0

Arre ()
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et e (k) 0
ezpre(/f) + Ri1(k)Asr — Ry ™™ (k)Aiy + P (k)Bin Fy — Py ™™ (k) By Ky e 0
NPT (k) Ry1(k)An1 — Ry N (k) Ant + Pyi (k) By Fy — Py M (k) By1 K
erre (k)
Rin(k)Ain — Rin'"" (k) Ain + Pin (k) BinFy — Pin'"f (k) Bin Ky 2,77 (k)
Rin(k)Aiy — Rin™ (k) Ainy + Pin (k) Bin Fx — Pin™ (k) Bin K ;" (k)
0 NN
Brre (k) zpre (k)
Then the error dynamic equation &f“/ is obtained:
e (k +1) = A" P (k) 4+ APTe(k)ePme (k) + BPTe (k)P e (k) (25)
Rewrite @) for k — k + 1:
Pk +1) = Ayd (k) + Biui(k) (26)
N
+ Z {7 [3(k) — Xij®; (k)| Aiga; (k) + 55[“1‘(7?) — oiju; (k)| Biju;(k)}
J=1,j#i
Subtracting 26) from (1):
Pk +1) = zi(k 4+ 1) — 2P (k + 1) = Aui; (k) (27)

WhereRij(k:) = \i; | [#:(k) — xi;2, (k)] is a scalar. Similarly to24), for the whole systemg?"¢ has the following form:
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e}pre(k_ + 1) A11 e le(k)Alj e RlN(k)AlN i’l(k)
eErk+1) | = | Ra(k)Ax - Aj;i <o Rin(E)Ain z;(k) (28)
enP(k+ 1) Ryi(k)Ain -+ Ryj(k)An; - ANN zn (k)
erre (k+1) Arre (k) z(k)
0 Rui(k)Avi — Rui(k)Avi Rin(k)Ain — Rin(k) Ay 21 (k)
+ Ril(k)Ail - Ril(k)Ail s 0 T RiN(k)AiN - Rz’N(k)AiN fi'z(k)
RiN(k‘)AU\] — RiN(kJ)AiN s R”(k‘)AU — R”(k’)AU s 0 ‘%N(k)
———
Arre (k) & (k)
where R, (k) = \i; " [#:(k) — xi;2;(k)] is a scalar. For the whole systep?’* can be obtained as:
P (k4 1) = AP"(k)i (k) + AP (k)& (k) (29)

Substitute 29) into (25):
et (k4 1) = AYF b (k) 4 AP (k) AP (k — 1)Z(k — 1) + AP (k — 1)@ (k — 1)] 4+ BP"° (k) AP (k — 1)2P"(k — 1) (30)
Consider 6), (10) and @2). It follows that 30) can be written as:
e (k4 1) = AP et (k) 4+ APTe (k) AP (k — 1)[A(k — 2) - - - A(0)]E(0) (31)
+ APTe(k)APTe (k — 1)[X (k — 2) - - X(0)]2(0) + BP(k)[XP"(k — 1) - -- XP¢(0)]2P"¢(0)

where A 2 diag{A,, A - , Ay} and A; has been defined afte22),

A1 + B K, o Ru(DAy + Pu()BuK; -+ Rin(DAin + Poiv()BinKy
XPre(l) = Ril(l)Ail + pz‘l(l)BilKl e Aii + By K; e RiN(l)AiN + piN(k)BiNKN )
Ryni(DAn1 + Pyi()ByiKy -+ Ryi(D)Ani + Pi(l)ByiK; - ANN + Byn KN
[=0,1,- k-1
(32)
A+ Buk, — LGy Ri;(D)An + Pii(1) By K; o Rin(DAin + Pin()BinKn
X(l) = Ri1()Ain + P (1) Bin K e Aii + By K; — LiC; o Rin(DAiN + Pin(l)BinKn ;
Ryi1(D)An1 + Pvi()Byi Ky -+ Ryni(DAni + Pyi()BniK; -+ Ann + BynvEKn — LnCy
1=0,1, k-2
(33)
(32 and @3) can be rewritten as:
Xrre(l)y=Al)+ B()K,l=0,1,--- k-1 (34)
X()=A(l)+B()K,1=0,1,--- ,k—2 (35)

From (31), it can be seen that i/ (k+1) = A*f b/ (k), according to the condition}L;|| > 1]%1"1'”, then|| A"/ || < 1,
e (k +1) = Abfebuf(k) is convergent. For the second term on the right 2f)( according to Propositiod, Ais a
Schur matrix, ifZ(0) is bounded, thenAr e (k)Ar"<(k — 1)[A(k — 2)--- A(0)]Z(0) is bounded. For the final two terms
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on the right of 81), according to the condition| K| < mm{— H l)l’)H HE l')H}, then, HX(Z)H = H?l(l) + E(Z)KH <

[aa |+ B 1K1 < 1 anaixre) = a0 + Box| < | 40| + B 151 < 1, 20 andar(0) are bounded

then, A€ (k) APre(k —1)[X (k—2) - -- X(0)]2(0) andBPTegk)[XPTe(k 1)--- XPre(0)]2Pm¢(0) are bounded at time. Hence
ebuf (k) is bounded. Furthermore, there exist&€aetE!™/ such that ife?*" (k = 0) € E*/ thene!™/ (k) € EI"/ for all
k> 0. Q.E.D.

Lete;(k) = [ #;(k)T eﬁb“f(k)T ]T denote the estimation error for thith subsystem at time stép where the stability
is addressed in Theorefn

Theorem 1For each subsystem there exists &-set; such that ife;(k = 0) € E;, thene; (k) € E;, Vk > 0. Furthermore,
E; C E,.
Proof:

Substitutex; (k + 1) andg;(k) into &;(k + 1):

N
i(k +1) = Audi(k) + Biwi (k) + Y[R (k) Ay (k) + P (k) Bijul™ (k)] + LiCii(k) + Livi(k)  (36)
j=1,j7i

Subtracting the above equation from(k + 1):

N
{i,(k + 1) = ”1‘1 -l— Z Ai ‘€Zbuf LZCZ:%Z(k) — lel(k) (37)
Jj=1,j#i

Subtracting 8) from the equation obtained by rewriting (k + 1) for the ith subsystem:

e (k4 1) = Auel™ (k) + Bis(ui(k) — u™ (k Z Agiel (k) + Auii(k) (38)
Jj=1,j#i
For each subsystemi the error dynamic equation is obtained froBY)to (38) in the form:

ei(k+1) = Asei(k) + Qi(k) (39)
whereQ; (k) 2 B;Au; (k) + q;(k)(L;Cid; (k) + Lyv;(k)) is considered to be a disturbance where
0O - 0 -1 0 --- 0 1"
qz(k) = %,_/ —_—
. . T
A‘jb“f(k) _ Autvr (k) - Aui(z—l)buf(k;) 0 Aui(z+1)buf(k) e AN (k) 1
i—1 N—i

lbuf

As described previouslyAu:""/ (k) is bounded and there exists; > 0 such thatmax HAu )H < m;;, wherem;; +

ui(k |k — 1) € U;. There exists; > 0 such thatAu’*"/ (k) € ;B and Aw; (k) € r;B x --- x r;B. By using Propositiori and
—,_/

N—-1
Proposition2, Q;(k) lies in theC-set andA; defined byA; 2 B; (ri]B% X oo X riB) @qi(k)(LiCiXi@LNi). If A;is Schur
~—_— ———
N

-1

then there exists @-setE; that is RPI for 89). It follows that A,E; & A; C E; and if;(k = 0) € E, thene; (k) € E;, Yk > 0.
Furthermore, in order to reduce the upper Egtand consequently the bounds @f k), RPI approximation of the minimal
RPI (mRPI) can be use®]] and the upper bound a; (k) is made as small as possible by tuning parametei@ndr; [26].
Then, under Propositio8, the two setsX; andE; are both contained in the origin st such thatX; @ E; C E,. It follows
thatE, C E;. Q.E.D.

IV. ROBUST OUTPUT FEEDBACK DISTRIBUTED MODEL PREDICTIVE CONTRIOFOR PARALLEL SYSTEMS

This section synthesizes a ROFDMPC that brings systémtq a bounded target set. Since the real statg&) are
unmeasured, the estimated states are adopted when deterritie controller. The corresponding robust output feekba
distributed model predictive control law can be designed as

u; (k) = Fiz;(k) (40)
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For subsystem at time stepk, to determine a robust output feedback distributed modedliptive control law 40), the
control objective function is defined as:

(oo}

min  max J;(k) = Z {H i(k + l)”“f

w; (k) w; (k),v; (k)

2] + > S (W01, + s +012] @)

1=0 j=1,7%#1 1=0
whereu; is the control law to be designed, for alE 1,2--- | N, T;, andg; are symmetric positive definite weighting matrices.
The objective is to design a robust output feedback dideithmodel predictive controller for the parallel systemhwit; (k)
and v;(k), calculate the competitive coupling®){( (3) in a timely fashion by using the pre-estimator, predictod duffer,
solve theDM H E; (9) in the presence of competitive constraint®)(to improve the estimate accuracy and finally, solve the

control objective function41) to determine a robust output feedback distributed modetliptive control law 40) at every
sampling time so that the uncertain parallel system meetdethsibility condition and achieves exponential stapilit

A. Robust output feedback distributed model predictivarobalgorithm
The augmented closed loop system is :

N
Zik+1+1) =Tuzm(k+ 1)+ Y, Tk +1) + Hoi(k +1) (43)
=1
where .
wlk+0) = o+ @G )" wEH)T M h )T Bk

k) =[ 0 wk+)" wik+DT P E+)T @(kH)T]T

Ay 0 Bii F; 0 0
0  Au+ BiK; 0 0 0
Ti=1] 0 0 Aii+BiF; 00
0 —BiiK; B F; Ay 0
0 0 0 0 Ay
R Ajj+ P B K 0 0 0 0
0 R A+ PP ByK; 0 0 0
Tij = 0 Ri“fA +P“’“waKj o 0 00
0 0 0 Aij Aij
0 0 0 Ay 0
0 Li D; 0 LG
0 0 0 LC 0
0 —Li 0 0 —LC

0 —-L; O 0 —L;C;

Assume that there exists a matii which satisfies); = Q7 > 0 and a scalar; which makesJ; (k) < ~;:

|Z:(k + D)l <1 (44)
TEQ:i ' Ty — Qi < =1/%Y; — 1/vF T F; (45)
Consider 44), with [ = 0, yields:
. . . ) T
[ k)™ ™R HET TR w0 |7 kT BT amT R mEm ] <1
(46)

Theorem 2:Suppose there exist scalayg e;, matricesQ;12, Gi, Gi12, Giz2, Yi, M; and symmetric matrice§;11, Qio2,
then @4) and @5) are satisfied when:

_ | Qn QilQT R
QZ ; |: Qi12 Qi,22 :| Z Osz = Y;Gz (47)
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Proof: Let G; = [ Gi 0 } The following LMIs are given:
Giiz Gi
[ Gi+Gi" — Qi * * * ok % ]
Gi12 — Qi12 Gio+Gi" — Qoo % * X ook %
L;Ci(Gi + Gii2) + M; + By Y; L;CiGio Qi * Xk %
(Aii — LiCy)(G1 + Ginz) — M + (Bij — Bi)Y:  (Aii — LiCi)Giz Q2 Qizz % * * >0 (48)
T,'2a; 0 0 0 vl = *
T:12G0s 112G 0 0 0 7l *
| G2y 0 0 0 0 0 ~I ]
1 * *
[ zi(k) Qi * ] >0 (49)
€i Q12 Qi

Multiply the left and right sides of46) by (?ZT andG;, respectively, apply the Schur complement lemma and cen¢i@).
Utilizing the fact thatG; + GT — Q; < GTQ; G, it can be shown that4@) guarantees4). Moreover, by applying43)
and the Schur complement lemma, it is shown td&) guarantees4d).

Then, @4), (45) hold by parameterizingd{).Q.E.D.

The constraints need to be handled. Suppose there existesad; 1o, G;, Gi12, G2, Y;, M; and symmetric matrice®;11,
Qio22, O;, Z;, I'; such that 49) and the following LMIs are satisfied:

G; + GiT - Qin * *
Gi12 — Qi12 Gio+Gi" —Qioa  * > 0,0, < -i?jaj e{l,...,ng,} (50)
(Ai - chz)(Gz + Gi12) - Mi + BiYé (Az - LzCz)Gﬂ @z
Gi+G" — Qi * *
Gi2 — Qi1 Gia+ G —Qina % | 20,75 <uy®j€{l,...,nu} (51)
Y; 0 Z;
Gi+G" —Qm * *
Gz — Qi12 Giz + GisT — Qion | 20,15 <%, 5 € {1,...,ny,} (52)
U, (A;G; + A;Gi2 + BY)) U A;Gio Iy

Then, @2) is guaranteed through the parameterizatidg).(By considering Theoren2 and constraints handling, problem
(41)-(42) can be solved by the following LMI optimization problem:

min 7 5.1.(48), (49), (50) — (52) (53)
Vi Mi,Yi,Gi,Gi12,Gi2,Qi11,Qi12,Qi22,0:,1:,Z;

Based on the aforementioned analysis, the proposed owpdbéck DMPC can be summarized as the following step by
step algorithm .

Algorithm 2:

Step 1 (Pre-estimation and buffer-update): At time gtep 1, subsystem receives the state sequencggk — 1) and the
predicted control sequences(k — 1) from the other subsystems= 1,---,N,j # 4, and stores its own;(k — 1) and
u;(k —1). These valid packets are written in thle— 1)th part ofbuf fer;. The kth part ofbuf fer; is updated according to
Algorithm 1.

Step 2 (Estimation): The constrained optimization problg@l2) is solved to obtaini;(k — Ne;) based on the state
information in thekth part of buf fer;. An optimal sequence of the local states is obtained whezectiirent optimal state
estimate of subsysteris denoted byi;, (k).

Step 3 (Robust DMPC): The constrained optimization prob{B8) is solved to develop the control law (k) using LMIs.

Remark 4:Algorithm 2 computes output feedback controls for each subsysiiehas been validated that the performance
of the state feedback robust DMPC is the same as the cepttalibust MPC in§] for parallel systems. Indeed, the proposed
output feedback method can achieve a similar control perdoce as that of the state feedback developefl]iag the accuracy
and timeliness of the state estimation can be guarantees wvilh be verified experimentally in Sectiow.

B. Closed loop system stability analysis

Define he quadratic function: B ,
Vit k) = [1Zi(k + LK) 5, ) (54)

where P;(k) > 0.
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Theorem 3:For (), under the output feedback contrdl0f which is given by Theoren2, the closed loop systend8) will
be asymptotically stable.
Proof: According to Theoremi and Theoren®:

0 R R S 0 K10l [ BT R T R (O RO K R

TEQi 'Tii — Qi ' < —1/%Yi —1/vF"aF; <0
According to the Schur complement lemma:

AVi(k+1k)=Vilk+1+1]k) = Vi(k+1|k) = ||z;(k+ 1+ 1]k)|
< —zi(k+ k)T (17 + 1/ B G F)@i(k + k) < 0
After F;, L; have been implementedtimes, the closed loop system3) is asymptotically stable.Q.E.D.

2 = 2
Pi(k) — sz(k‘ +1 |k)||pi(k)

V. SIMULATIONS AND EXPERIMENTAL RESULTS

Two simulation studies and an experimental implementadienundertaken in this section. Firstly, a general parailstem
is simulated and the performance is compared with that aeetiiby other established approaches. Then, a parallelncanis
stirred tank reactor (CSTR) simulation is undertaken. Ijina parallel CSTR experiment is used to further validate t
proposed approach and the results are compared with a statback method.

A. A general parallel system simulation
Consider the following parameterisation of the paralledteyn in (L):

A (082 —0.02 A [ 096 —002
H=1612 093 ["7127 | —067 094 |’
A, | 088 004] 089 0.01
27 —0.94 0.99 |"7 T | 277 088 |’
~0.01 —0.03
B = | 016 Brz=| g1g ’
—0.02 —0.02
B2 =109 Bar =147 '

Ci=[10],C.=[1 0]

S [ 0.0156  0.0151 } o - { 0.0412  0.0651 }
0.3254  0.0695 0.2018 0.0511
0.0601 0.0628 0.0457  0.0258
X2 = 0.0118  0.1010 } R [ 0.0498  0.0854 }
b1 =[01125 02021 |, 612 =[ 02176 0.1892 |
Aa1 = [0.0601 0.0628 |, Ao = [ 0.0657 0.0854 ]

ChooseL; = [0.51,0.31]7 and Ly, = [0.51,0.41]T , A;; and Ay; are Schur matrices and their eigenvalues (@784,
0.7862) and (0.5864,0.8962), respectively.w;(k) is a random disturbance satisfying the Gaussian distdbyti;(k) is a
random noise satisfying the Gaussian distribution and lasilmulation sets, the disturbance and noise effects ansidered.

In DMHE design,Ne; = 10, 9; = diag(100,0.01) for ¢ = 1,2 are chosen. Assume that the outputs of the two subsystems
are the flow rate. The desired outputs of the two subsystem§, dhe maximum output of the bus i$) and the maximum
input of the bus is5. In the simulations, the proposed approach is compared tivitHfollowing two methods:

Method 1. The pre-estimators are not used; all other paetsher same as the proposed approach.

Method 2. A distributed Luenberger framework is utilizedreplace DMHE; other parts are the same as the proposed
approach.

The pre-estimators are used in the proposed approach andtiodh2 but are not used in method 1. The state estimation
accuracy is tested by using a square wave response as theddesiput trajectory for all three methods. The resultssai@vn
from Figure4 to Figure7.

It can be seen from Figuréto Figure7 that the proposed approach has better estimation accuraeypre-estimators are
not used in method 1, hence the tracking error is larger wherdésired output trajectory is changed. Method 2 cannggesol
the constraints effectively. The tracking error is lardeart the DMHE when the desired output trajectory is not chdngbe
control performance is shown from Figu8eto Figurel3.
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Fig. 14: Simplified physical model of parallel CSTR system.

The simulation results show that the output feedback RDM&érallel systems can effectively deal with problems with
unmeasured states. FiguBeshows that the performance of the proposed approach isrtieta the other two methods.
The proposed method (solid line) with pre-estimator hasséefaresponse. This is because the pre-estimator can lteate
eigenvalues closer to the origin and then a faster respawméts. The pre-estimator is not used in Method 1 (dottegl).lin
Method 1 has a higher overshoot. A distributed Luenbergenéwork is utilized instead of the DMHE in Method 2 (dashed
line). The pre-estimator is used in this method and the teatsis smaller than Method 1. However the Luenberger fraonkew
cannot deal with the competitive constraints effectivdlgnce Method 2 has a larger oscillation. Figl@and Figurell
indicate that the proposed approach needs smaller corftool. 'he computing time of the proposed approach is 1.8fsew
that of method 1 is 3.21s and method 2 is 2.96s. Figirend Figurel3 show the output and robust DMPC control action
for both subsystems. This clearly demonstrates how the etitiye characteristics in parallel systems are accomuneadhy
the proposed method: when andy; increaseus andy, correspondingly decrease to accommodate the competiiveliag
and competitive constraints.

B. Parallel CSTR system simulation

The parallel CSTR system is simulated before proceedinmpdementation on the experiment. A simplified physical miode
of a parallel CSTR system is given in Figutd. The reaction is a temperature control reaction. If the &najprre inside the
reactor is low, it will affect the depth and conversion rafehe reaction. This affects the quality of the product. lalerto
stabilize the temperature inside the reactor, it is necgdsaheat the jacket. The temperature of the material in #aetor
can be controlled to meet the requirements of the processljogtang the flow rate of the heat agent flowing into the jacket
The heat agent is water, which is supplied by one water héateen the two CSTRs are connected in parallel, the system
exhibits competitive coupling and there is a need to comsidenpetitive constraints; when the flow of hot water in onekét
exceeds a certain amount, the flow of water in the other jackedt be be reduced. The heat agent flowing into the jacket
must be less than or equal to the total supply of the waterheat

The nonlinear dynamic equations of the plant model whicheiscdbed in 82 can be reformulated to include the parallel
characteristics as follows:

e AHsks Qr1

. F.
T, = —(1y = T — (15 —T; T, — T5)T: — 55
1 V1( 0 1) + V2( 2 1)+ G1(Th v, 2)Th + Ri(Qq 72C5 Q2)Ql+pSCpV1 (55)
: E) Fr
Car = Vl(cAO —Ca1) + vl(CAQ —Ca1) — Ri(T1)Ca1 — Ra(T1)Cas (56)
: Fi F3 p1C1 AH k; Qr2
Ty = 2 (Tao — Tar) + -2 (Tos — To) + Go(To — LX) Ty + Ro(Qo — )y + 57
2 Vg( ‘A0 ‘A1) Vg( 03 2) 2 (T i )T 2(Q O Q1)Q2 oV (57)
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TABLE I: Definitions of the variables corresponding to thegess parameters

Variables Definitions

Fy Flow rate of fresh material A

F, Flow rate of recycled material A from reactor 2

F3 Flow rate of additional fresh stream feeding pure A

F, Fy Effluent flow rate from reactors 1, 2

Cat, Cas Molar concentration of material A in reactors 1, 2

T, 1o Temperatures in reactors 1, 2

To, Tos Feed stream temperatures to reactor 1, 2

Qr1, Qo Heat input rate into reactors 1, 2

Cao, Cas Inlet reactant concentration of reactors 1, 2

Vi, Vo Reactor volume of reactors 1, 2

AHj, k;, E; Enthalpies, pre-exponential constants and activationg@s of the reaction
ps: R, ¢p Heat capacity, gas constant and density of fluid in the reacto

TABLE II: Values of the process parameters

Fy =5.04m3/h Tp =0°C kso =3 x 10°h~! C4%, = 1.6Tkmol/m?
Fy = 50m3/h Tps = 0°C By =5 x 10%J/kmol  T§ = 10°C
F3 =30m3/h AH, = =5 x 10*kJ/kmol Ey = 6.5 x 10%kJ/kmol  C%, = 0.63kmol /m>
F, = 35m3/h AHy = —5.2 x 10%J /kmol Bz = 5.5 x 10%.J/kmol Q5 = 1.2 x 105kJ/h
Vi = 1.0m3 AHjz = —5.4 x 10*kJ/kmol ¢, = 0.88k.J/kgK C5o = 0.8kmol /m?
Vo = 1.0m3 ko = 3 x 10571 ps = 1000kg/m? Q3 = 1.6 x 10°kJ /h
R = 8.314kJ/kmolK koo = 3 x 10°h~} 17 =10°C Cho1 = 0.4kmol /m?
- Fy F3
Caz = VQ(CAO —Ca1) + VQ(CA(B — Caz) — R1(T2)Caz — Ra(12)Cao (58)

where R, (T;) = ko exp(—E;/RT;) and G;(T;) = ((—AH,;)/pscp)Ri(T;) for j = 1,2. The definitions for the variables and
the values of the process parameters can be found in Tabled 2,aespectively.

Choose a sampling interval @f, = 0.0025h. Considering $5-58), the nominal discrete time linear state space model of
the plant around the mentioned steady state points has the fo

T1(k+1) = A1 (k) + Bryug (k) + M2” (Z1 — X1272) A1aT2 (k) + 0127 (w1 — o12us) Braua(k), 71 (k) = C1% (k)
(ig(]i -+ 1) = A22fz2(k') + BQQ’[LQ(k') + )\ng(i'Q — X21ZZ‘1)A21(E1(I€) + (521T(’LL2 — Ugl’ul)Bgl’ul(k),’gQ(k') = CQ(ZQ(k)

wherex; andu; are the (dimensionless) state and manipulated input \&&bortheith CSTR, respectively:

T —=T,° To—T5"
il(k) - CAllflé'Als ‘iQ(k) - CAzljéAQS

(59)

Car® Caz®
Qr1—Qr1* Qra—Qr2°
U’l(k) = CA(?IIC;AOS 71[2(1{;) - CAO:?:QC;AO.%S
Cao® Ca03°
The other constant matrices are given by
4. — | 0.9600 0.0039 ] Ao = [ 0.0722  0.0002 ]
M 02488 0.8902 |7 | —0.0134 0.0773 |
4 0.8312 00024 ) , [ 0.0657 0.0002
27| —0.0235 0.5627 | "7 | —0.0201 0.0645 |’
B 0.0072  0.0001 | o [ 0.0722  0.0002
" —0.0009 0.0265 |7 | —0.0134 0.0773 |
0.0097  0.0001 0.0247  0.0003
Bay = , Bar =

| —0.0005 0.0738 |
Ci=[10],C=[1 0]

—0.0200 0.0824 |~
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Fig. 15: The output temperature of the first CSTR for the psegomethod, method (1) and method (2)

[ 0.0238 0.0412 [ 0.0351 0.0741
921 7 101428 0.0981 |° 712 T | 0.1024 0.0427
[ 0.0416 0.0597 [ 0.0842 0.0718
X2t = 00736 0.1328 | X120 T | 0.0981 0.0889
61 =[0.1243 0.2004 |, 612 =] 0.2181 0.1411 |
Xot =[0.1024 0.0971 ], Az =[ 0.0518 0.0449 ]

A local pre-estimator is designed for each CSTR. Chooging- [0.6,0.28]7 and L, = [0.5,0.4]7 , A, and A,y are Schur
matrices and their eigenvalues &fe3639,0.8863) and (0.3430,0.8163), respectively. In the DMHE desigriye; = 10 and
¥; = diag(100,0.01) for ¢ = 1,2 are chosenw; (k) is random disturbance satisfying the Gaussian distributiodv; (k) is a
random noise satisfying Gaussian distribution. For allétion sets, the disturbance and noise are present. Irirthaagions,
the proposed approach is compared with the two differenhatst The desired set-points of the two subsystems are both 10
degrees Celsius, and the initial temperatures of both stdis)s are 0 degree Celsius. The control objective is to aser¢éhe
temperature of the jacket froih degree Celsius t@0 degrees Celsius by manipulating the flow of water in the jackee
results are shown from Figuks to Figure 19.

The simulation results show that the method proposed inghper can effectively deal with problems relating to patall
CSTR systems. Figuré5, Figure16, Figure 17 and Figurel8 show that the performance of the proposed approach is better
than the other two methods and the control effort of the psedoapproach is smaller. The computing time of the proposed
approach is 2.21s while that of method 1 is 4.32s and methed32bs. Figurd 9 shows the robust DMPC control action for
both subsystems. This clearly demonstrates how the cotmpetharacteristics in parallel systems are accommodayeithe
proposed method: whem, increasesy, correspondingly decreases to accommodate the compatitiyeling and competitive
constraints. This is different from the parallel systemsidared in subsection 4.1; the outputs of the CSTR are thpesture
and do not have material couplings between them.

C. Parallel CSTR system experiment

The effectiveness of the robust DMPC algorithm for pardll8ITR systems has been verified by simulatitime effectiveness
will be further validated by two experimentEhe Process Modelling and Control Group at the China Unityec§ Petroleum
(East China) have developed an experimental rig which isvshia Figure20. The operation interface of the rig is shown in
Figure21. The four reactors, labelled R101, R102, R103, R104, carohaected in numerous ways for controller validation
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Fig. 20: Experimental equipment

and testing (series, parallel, series and parallel). Tleenatal reaction is carried out after feeding. The processiglement
continuous operation as well as enable measurement antkohthe flow, liquid level and temperature. V111 is the hexad
tank which contains acetic ether and V112 is the header tantaming sodium hydroxide. These raw materials are psazks
in the CSTR at the same tim&][ Unlike the previous simulation, this reaction is an exthic reactionOnly two reactors
are used in these experiments. The output of the first expatiis temperature. For the reactors R101 and R102, theedesir
set-points are botB0 degrees Celsius. The coolant flow in the jacket is used asahtat variable. The initial temperatures
of R101 and R102 are 24.8 degrees Celsius and 25.2 degresissCeespectively. The control objective is to increase th
temperature of the jacket from the initial temperature8talegrees Celsius by manipulating the flow of water in the jacke
The output of the second experiment is concentration of ygb&, the desired set-points are bétBkmol /m?. The initial
product concentrations of R101 and R102 are @r$kmol /m> and 0.61kmol /m?3, respectively. The control objective is
to increase the concentration of product C from the init@haentration to a desired set-point. The proposed apprizach
used for control of the system. The temperature trackindopeance is shown in Figur@2 and the product concentration
tracking performance is shown in Figu28, which further validate the proposed approaElgure 24 shows the control effect
of the classical DMPC algorithm when the states are meaur@omparing Figur@2 with Figure 24, the output feedback
robust DMPC proposed in this paper can achieve a similaopegnce to the method proposed 8}, in which the states are
measurable.

VI. CONCLUSION

This paper has proposed an on-line algorithm to implemenbatput feedback robust DMPC strategy that explicitly
accommodates the characteristics of parallel systems stdate estimationThe main contribution of this paper can be
summarized as follows: (1) new buffer, predictor and pravestor are presented to solve the competitive couplings an
competitive constraints under the condition that the stagsnot be measured; (2) an output feedback robust DMP @italgo
has been proposed for parallel systems and the stabilityeaflosed loop system has been analyZée subsystem performance
takes into account the state estimation, competitive @ogpland competitive constraints in order to achieve op@tion of
the whole system. The problem can be converted Mtoonvex problems which can be expressed as linear matrixialitigs
and solved iteratively by using the method of successivatiten to ensure rapid convergence. The simulations shaivthie
proposed approach can effectively deal with the conssdimt parallel systems and can achieve better performarase ttie
OFDMPC without pre-estimator. The results of an experirletital further illustrate that the proposed approach igasle
for control of parallel systems in process networks whenstiages are unmeasured.

ACKNOWLEDGEMENT
This work is partially supported by the National Natural Swe Foundation of China (61973315) and (61473312).

REFERENCES

[1] P. Garcia-Herreros, A. Agarwal, J. M. Wassick, |. E. Gam&nn, Optimizing inventory policies in process networkseunghcertainty, Computers &
Chemical Engineering 92 (2016) 256-272.



27

!u ‘

: E @8

Fle—E T
E(g
H

TICTOTRY. FOV-104

o1
(1%
e e X106

@
@

T

TC0zRY

tH

z
S —

5

Bl |

s
2

=

‘ mh =

Fig. 21: Parallel R101 and R102.

Outputs of two CSTRs
\ \ \

33 T T T
. - - -Desired set-point
32 o —Output of R101 -
il 1
{ L ———Output of R102
) N
31— Na" : _
o bl ! h A»Ju " »,Mf"«m Ry " i 5 P i

O 30F-----f .wu"_f ____________ d‘ Y\ B |¢,‘f\'.|r\ : ‘4“‘%‘(_%"(‘ _ \ ™ \_ o \Wi‘ ol y“".J.I bt .%m 5‘?\‘\*" L
B fA‘N‘ f m ‘gﬂ “l\y(‘ﬁ\ft‘f%w / i W NV h Tl W e il o l!‘ I il
et &
2291 i _
© y
5 i
o280 ,‘«7 7
£ !
27/ i
= i

26 — i _

i
25 [ —
24 \ \ \ \ \ \ \ \ \
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Timel/s

Fig. 22: Temperature tracking performance when the staiegraneasured and the CSTR are controlled using the OFRDMPC.

[2] J.J. Downs, E. F. Vogel, A plant-wide industrial procesmtrol problem, Computers & chemical engineering 17 (3) (}23%-255.

[3] Q. Chen, S. Li, Y. Xi., Distributed decoupling prediaticontrol of a kind of cascade processes, Control and Deddi®)1(2005) 647—-654.

[4] Y. Zhang, S. Li, Networked model predictive control basedneighbourhood optimization for serially connected lesgele processes, Journal of Process
Control 17 (1) (2007) 37-50.

[5] X. Cai, L. Xie, H. Su, Y. Gu., Distributed model predictientrol based on cascade processes, Aata automatica Sti& ®013) 510-518.

[6] Q. Liu, H. S. Abbas, J. M. Velni, An Imi-based approach tstdbuted model predictive control design for spatialljeiconnected systems, Automatica
95 (2018) 481-487.

[7] L. Zhang, J. Wang, Y. Ge, B. Wang, Robust distributed maaedictive control for uncertain networked control systeiST Control Theory &
Applications 8 (17) (2014) 1843-1851.

[8] S. Zhang, D. Zhao, S. K. Spurgeon, Robust distributed rhpdsdictive control for systems of parallel structure wittprocess networks, Journal of
Process Control 82 (2019) 70-90.

[9] L. Liu, B. Huang, S. Dubljevic, Model predictive controf axial dispersion chemical reactor, Journal of Processtrébg4 (11) (2014) 1671-1690.

[10] D. B. Pourkargar, A. Almansoori, P. Daoutidis, Distried model predictive control of process networks: impact ofted architecture, IFAC-

PapersOnLine 50 (1) (2017) 12452-12457.

[11] D. Q. Mayne, S. Rakoti R. Findeisen, F. Allgwer, Robust output feedback model predictive control ofst@mined linear systems, Automatica 42 (7)
(2006) 1217-1222.



28

o
©

Outputs of two CSTRs
I I

o

©

a
I

o
©
'
'
'
1
'
'
'
'
'
'
'
'
]
'
'
'
'
1o
'
'
'
'
'
'
'
'
'
'
'
'
'
1
.

\ A
) 4 (“ POV ATNIE LIRS )
Y Ll ! L L AT
075~ M, oK HER
5N

07k - - -Desired set-point
L —Output of R101

0.65 [+ -—-Output of R102 B

0.6 —

0.55 -

Concentration/kmol/m3

o
3
|

o
»
o

I
|

| | | | | | | | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time/s

o
S

o

Fig. 23: Product concentration tracking performance whendtates are unmeasured and the CSTR is controlled using the
proposed OFRDMPC.

- Outputs of two CSTRs
\ \ \

w
=
T

|

w
o
'
'
'
'
'
'
S
=
==
0=
'
|
'
]
'
|

)
©
I
~Z
|

2 - - -Desired set-point
—Output of R101 _
y ~--Output of R102

Temperature/'C
[ [
|

N
o
|

N
a1
I

|

24 | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Timels

Fig. 24: Tracking performance when the states can be mahame: the CSTR are controlled using classical DMPC.

[12] D. Mayne, S. Rakovic, R. Findeisen, F. Allgower, Robastput feedback model predictive control of constraineédinsystems: Time varying case,
Automatica 45 (9) (2009) 2082—-2087.

[13] A. Rahideh, M. Shaheed, Constrained output feedbackemprkdictive control for nonlinear systems, Control Engimeg Practice 20 (4) (2012)
431-443.

[14] J. Yan, R. R. Bitmead, Incorporating state estimatiom imodel predictive control and its application to networkfficacontrol, Automatica 41 (4)
(2005) 595-604.

[15] Y. Sun, K. K. Tan, T. H. Lee, Tube based quasi-min-max oufpadback mpc for Ipv systems, IFAC Proceedings Volumes 45 (@®)2) 186-191.

[16] C. Xia, M. Wang, Z. Song, T. Liu, Robust model predictiverent control of three-phase voltage source pwm rectifigr anline disturbance observation,
IEEE Transactions on Industrial Informatics 8 (3) (2012) 4581.

[17] C. Martn, M. R. Arahal, F. Barrero, M. J. Dan, Five-phase induction motor rotor current observer fatefinontrol set model predictive control of
stator current, IEEE Transactions on Industrial Electsré3 (7) (2016) 4527—-4538.

[18] C. V. Rao, J. B. Rawlings, D. Q. Mayne, Constrained séatgmation for nonlinear discrete-time systems: Stabilityf amoving horizon approximations,
IEEE transactions on automatic control 48 (2) (2003) 246--258

[19] A. G. Beccuti, S. Maithoz, S. Cliquennois, S. Wang, M. Morari, Explicit modeldgictive control of dc-dc switched-mode power supplies witteaded
kalman filtering, IEEE Trans. Industrial Electronics 56 (8DQ9) 1864-1874.

[20] M. Cannon, Q. Cheng, B. Kouvaritakis, S. V. RakgvBtochastic tube mpc with state estimation, Automatica 4§23)2) 536-541.

[21] D. Luenberger, Observers for multivariable systems,HEEansactions on Automatic Control 11 (2) (1966) 190-197.

[22] C. C. Pantelides, J. Renfro, The online use of firstg@ples models in process operations: Review, current st@tasfuture needs, Computers &
Chemical Engineering 51 (2013) 136-148.



[23]
[24]
[25]
[26]
[27]
(28]
[29]

[30]
(31]

[32]

29

P. D. Christofides, R. Scattolini, D. M. de la Pena, J., [Distributed model predictive control: A tutorial reviewdafuture research directions, Computers
& Chemical Engineering 51 (2013) 21-41.

J. Zhang, J. Liu, Distributed moving horizon state estiorafor nonlinear systems with bounded uncertainties, dalusf Process Control 23 (9) (2013)
1281-1295.

J. Zeng, J. Liu, Distributed moving horizon state estioratSimultaneously handling communication delays and datsels, Systems & Control Letters
75 (2015) 56-68.

D. Sui, T. A. Johansen, L. Feng, Linear moving horizorineation with pre-estimating observer, IEEE Transactions atofatic Control 55 (10)
(2010) 2363-2368.

Y. Song, G. Wei, S. Liu, Distributed output feedback mpichwandomly occurring actuator saturation and packet Ibgsynational Journal of Robust
and Nonlinear Control 26 (14) (2016) 3036—3057.

Z. Razavinasab, M. M. Farsangi, M. Barkhordari, Steséneation-based distributed model predictive control ofiéascale networked systems with
communication delays, IET Control Theory & Applications 15Y12017) 2497-2505.

J. Liu, H. Xiao, Distributed output feedback model pailie control for a team of coupled linear subsystems, IET t@briTheory & Applications
11 (11) (2017) 1807-1812.

A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, Thepécit linear quadratic regulator for constrained systesstomatica 38 (1) (2002) 3-20.
S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, D. Q. Maymhavariant approximations of the minimal robust positivelyanant set, IEEE Transactions
on Automatic Control 50 (3) (2005) 406—410.

Y. Sun, N. H. El-Farra, Quasi-decentralized model-dasetworked control of process systems, Computers and Chefigaheering 32 (9) (2008)
2016-2029.



