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Abstract

Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB)
attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral
equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null.
Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not
been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates
covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this
goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence
of gBGC. We infer neutral CUB under mutational equilibrium to quantify “adaptive codon preference,” a nontautologous
genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying
selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring
the independence from gBGC. Expression-associated “preference” largely matches adaptive codon preference but does
not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated
specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping
adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for
inferring the sources of selection that shape CUB across different contexts within the genome.
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Introduction
Codon usage bias (CUB), where synonymous codons are not
used in equal frequencies, is well documented across species
from all three domains of life (Duret 2002; Chen et al. 2004).
Alternative explanations for CUB have played a central role in
the decades long neutralist–selectionist debate. On the one
hand, a purely neutral framework has been proposed in which
CUB arises simply as a consequence of mutational bias
(Kimura 1968; King and Jukes 1969; Sueoka 1988; Palidwor
et al. 2010). This framework can explain a large proportion of
variation in CUB across taxa, including bacteria, archaea,
plants, and animals, where mutational bias has presumably
shaped GC% at third codon positions (GC3) to vary from
near zero to nearly 100% across species (Knight et al. 2001;

Palidwor et al. 2010). Across this range, we see a correspond-
ing shift in CUB such that the use of the same codon can go
from near zero to near 100% use as genomic composition
changes (see Knight et al. 2001). This process can even explain
intragenomic (between gene) variation if there are different
mutational biases in different genomic regions (Wolfe et al.
1989; Wolfe 1991; Duret and Galtier 2009; Jinks-Robertson
and Bhagwat 2014). On the other hand, it has been proposed
that selection operates on synonymous mutations because
they affect a variety of processes, some linked to transcription
and translation (Ikemura 1981; Ikemura 1982; Stoletzki and
Eyre-Walker 2007; Plotkin and Kudla 2011; Zhou et al. 2016).
For example, the translational selection model is often in-
voked to explain observations where commonly used codons
match the most abundant tRNAs (Ikemura 1981; Ikemura
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1982; Bulmer 1991; Sharp et al. 1995; Duret 2002). More gen-
erally, transgenes with “foreign” codon usage profiles (i.e.,
which deviate strongly from the endogenous pattern) often
show reduced transcription or translation rates (Kudla et al.
2006; Plotkin and Kudla 2011; Mordstein et al. 2020).
Functional support for the selectionist perspective also comes
from the discovery of synonymous mutations that cause dis-
ease (Chamary et al. 2006; Sauna and Kimchi-Sarfaty 2011;
Sauna and Kimchi-Sarfaty 2013), which also indicates the
importance of identifying and understanding the drivers un-
derlying adaptive codon use.

One way to distinguish between neutral and selectionist
models is to develop a framework that can accurately identify
the action of selection in the presence of neutral/mutational
bias. In this framework, deviations from the neutral pattern of
CUB would capture the signatures of natural selection driving
adaptative CUB (Knight et al. 2001; Palidwor et al. 2010).
Therefore, this framework relies on the ability to accurately
define an unbiased neutral expectation such that deviations
from neutrality can be accurately characterized (Eyre-Walker
1993). One approach is to measure nucleotide content in
genomic domains assumed to evolve neutrally, such as in
introns, intergenic regions, and pseudogenes or use nucleo-
tide biases at some codon third sites to predict others (Karlin
and Mr�azek 1996; Urrutia and Hurst 2001). In principle, be-
tween species comparisons (e.g., using nucleotide triplets) can
allow substitutional processes to be inferred, again often using
sequences predefined as neutrally evolving.

An alternative is to make no assumptions about mutation
bias but instead to presume that selection must be stronger
in highly expressed genes. The codon usage profile of the
most highly expressed genes is then used to infer the optimal
codon set and thence the degree of codon adaptation of any
given gene, measured in terms of the gene’s usage of the
“optimal” codon set (Sharp and Li 1987). However, it is pos-
sible that genes with lower expression are also under selection
to optimize their ability to produce sufficient protein product
(e.g., mRNA stability). Importantly, this pattern of selection
may deviate from that in the most highly expressed genes,
which may themselves experience very specific selective con-
straints that shape codon usage that are not imposed on
most other genes in the genome, as supported by transgene
studies (Kudla et al. 2006; Mordstein et al. 2020). Hence, in-
ferring adaptive codon preference from the profile of the
most highly expressed genes could potentially reflect a tau-
tology that fails to capture the more general profile of natural
selection that shapes codon use in most genes in the genome.
Nonetheless, such a methodology has claimed support from
observations that synonymous rates of evolution are lower in
genes with high CUB (Shields et al. 1988; Sharp and Li 1989;
Moriyama and Hartl 1993; Powell and Moriyama 1997).
However, this conclusion may well, at least in some inciden-
ces, be an artifact of inaccurate estimation methodology that
is itself skewed by CUB (Dunn et al. 2001).

Although these methods appear logical, GC-biased gene
conversion (gBGC) presents a major challenge (Marais 2003;

Duret and Galtier 2009; Galtier et al. 2018). In this process, an
AT:GC mismatch is preferentially repaired in favor of the GC
residue during heteroduplex mismatch repair through mei-
otic double strand break repair. For example, in the human
genome A:G mismatches are repaired to G about 70% of the
time during noncrossover recombination events (giving CG)
(Halldorsson et al. 2016). gBGC appears to be an important
force that can mimic the influence of selection (Gutz and
Leslie 1976), but which can operate on any sequence, regard-
less of whether it is considered to be neutral or under selec-
tion (Gl�emin et al. 2015). Importantly, the level of
recombination also increases with GC content (Eyre-Walker
1993; Fullerton et al. 2001), which may be a consequence of
gBGC (Eyre-Walker 1993) or caused by high GC (Marsolier-
Kergoat and Yeramian 2009; Kiktev et al. 2018).
Regionalization of recombination hot and cold spots will,
therefore, result in a correlation between GC3, the GC com-
position of introns, and the GC content of flanking sequence
(Duret and Galtier 2009). There is also evidence for AT! GC
fixation bias in GC-rich/high-recombining domains (Duret
et al. 2002; Lercher et al. 2002). These factors are likely to
have led to the evolution of isochores, which means that
the best prediction of CUB in the human genome is not a
property of the gene but rather, the isochore within which
the gene is found (D’Onofrio et al. 1991; Eyre-Walker and
Hurst 2001; Urrutia and Hurst 2001).

The presence of gBGC represents a major problem for
studies that rely upon measures of observed nucleotide con-
tent or substitutional profiles in putatively neutral sequence
to provide a measure of mutational bias, as neither will reflect
the underlying mutational process, even if the sequence class
is neutrally evolving (when mutations are not subject to
gBGC). Similarly, even if highly expressed genes are indeed
subject to stronger selection, it is also possible that these
genes show a shift in GC content independent of selection
because they are more prone to strong gene conversion, per-
haps due to being in domains of high recombination. Indeed,
in humans, highly expressed genes tend to be GC rich (Kudla
et al. 2006; Mordstein et al. 2020) and located in GC-rich
isochores (Lercher et al. 2003) with high recombination rates
(Fullerton et al. 2001). Given this, basing inference of adaptive
codon preference on CUB in the most highly expressed genes
could potentially be misleading. Attempts have been made to
correct the substitutional profiles to account for biased gene
conversion (Galtier et al. 2018), for example, by examining A
$ T, G $ C changes separately from AT $ GC changes.
With transgene evidence indicating that high GC confers
higher expression levels (Kudla et al. 2006; Mordstein et al.
2020; Zuckerman et al. 2020), these methods are problematic
in ascribing all AT! GC fixation events to gBGC, potentially
overlooking a major source of selection.

An alternative method to determine skew from muta-
tional expectations is one in which the mutational bias is
more directly observed. Perhaps the “gold standard” is to
have data from parent offspring trios. However, to date this
only exists for a handful of species and can be noisy because
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this method usually only identifies a few mutations per trio,
especially in species with small genomes. False-positive mu-
tational inference is hence a problem for such methods.
Consequently, mutation accumulation lines (Long et al.
2018) or analyses of mutational profiles based on rare segre-
gating single nucleotide polymorphisms (SNPs; Hershberg
and Petrov 2010; Hildebrand et al. 2010; Charneski et al.
2011) are more commonly used. For example, such studies
have revealed that the mutational process is GC! AT biased
in humans, which results in a predicted neutral mutational
equilibrium that is strongly AT biased (Smith et al. 2018). This
is also approximately independent of the GC content of the
isochore (Smith et al. 2018), which suggests that codon usage
is GC biased due to a fixation bias, rather than a mutation
bias. More generally, when mutation-derived equilibria are
compared against observed GC content, most genomes
show higher GC3 than the neutral mutational predicted equi-
librium GC (Long et al. 2018).

Even if we can infer the mutational process in a manner
that is not confounded by gBGC, it remains very difficult to
show that observed compositional profile deviations from a
mutational null are due to selection. More generally, we can
identify fixation bias as a deviation from mutational null
(Lercher et al. 2002). Moreover, even if the fixation bias
appears adaptive because of its match to the tRNA pool, it
is possible that the persistent influence of biased gene con-
version skews codon usage and tRNA pools adapt to this
skew not vice versa.

Given the potential impact of various nonadaptive pro-
cesses that can bias base composition, we suggest that it
might be most instructive to examine patterns of CUB in
species in which the role of gBGC is a priori thought to be
minimal. This would allow for the impact of natural selection
on CUB to be more cleanly characterized and the validity of
common functional assumptions to be tested in a nontau-
tologous fashion (e.g., whether preference inferred from the
most highly expressed genes represents an adaptation that
applies across most genes). Here we exploit the social amoeba
Dictyostelium discoideum to implement such an analysis.

Dictyostelium discoideum offers a compelling system for a
number of reasons. The impact of gene conversion can be
particularly problematic for inferences of selection on codon
usage, but, although it is typically profound in mammals
(Halldorsson et al. 2016) and birds (Smeds et al. 2016), this
is rarely the case in single-celled species (Liu et al. 2018). For
example, the net bias in yeast has been estimated from tetrad
analysis to be weakly (0.03%) in favor (but not significantly so)
of AT! GC repairs (Liu et al. 2018). Second, it has one of the
most extreme base composition biases recorded for eukar-
yotes to date (�22.4% GC; Eichinger et al. 2005), second only
to the human malaria parasite Paramecium falciparum
(�19.4% GC; Gardner et al. 2002). It is logical, therefore, to
assume that the impact of gBGC to counteract the strong GC
!AT-biased mutational profile must be small. Moreover, the
extreme base composition bias provides for a clear and strong
expectation for the neutral pattern of CUB driven by muta-
tion–drift. Finally, we can exploit the available genome
sequences from 67 strains that enable analyses of patterns

of SNP variation (de Oliveira et al. 2019), which allow for
inference of mutational profiles and rates and the signatures
of selection on synonymous changes. We can also exploit the
extensive expression data available, which allows us to char-
acterize how patterns of CUB relate to the expression prop-
erties of genes.

To achieve this goal, we first investigate whether we can
discern any of the classical fingerprints of gBGC conversion in
D. discoideum, namely a GC-recombination correlation and
local GC correlations (GC3 vs. GC intron, GC3 vs. intergenic
GC). Having found no coherent evidence of gBGC (or any
effects are miniscule), we next defined the mutation profile
(at mono and dinucleotide level of resolution) from SNPs,
which allows us to infer the expected neutral pattern of co-
don usage. As expected (Long et al. 2018), AT mutation bias
dominates the pattern of CUB. However, accounting for the
neutral pattern allows us to infer the influence of selection
driving the relative use of synonymous codons away from the
neutral expectation, which we interpret as providing a mea-
sure of the direction and strength of selection. Using these
measures of “adaptive codon preference,” we test whether
classical expectations of drivers of CUB hold and whether the
pattern differs from what would be inferred using alternative
approaches. In particular, we ask whether we can recover the
expected correlation between our measure of adaptive codon
preference and levels of gene expression, which provides a
rare direct test of the hypothesis that selection is stronger in
highly expressed genes. To understand how the pattern of
selection on codon usage varies by context, we compare the
patterns of adaptive codon preference with the shifts in CUB
associated with levels and conditionality of gene expression
and with variation in codon position within genes (in terms of
relative distance from start and stop site). Together our
results show that deviations from the neutral pattern of co-
don use provide a clear inference for how selection shapes the
use of alternative codons and how this pattern of selection
changes across contexts. Finally, we show that this pattern is
similar to but deviates from the pattern that would be in-
ferred solely based on the association with high expression.

Results

gBGC Has Little Impact on GC Composition in D.
discoideum
In mammals, local biased gene conversion hotspots can cause
CUB to vary across the genome and reflect the local compo-
sition in the genomic region where it is found (D’Onofrio et al.
1991; Urrutia and Hurst 2001). To determine whether gBGC
also introduces heterogeneity into patterns of codon usage
across the D. discoideum genome, we implemented five com-
plementary analyses. In the first, we used a sliding window
analysis to examine variation in GC content across the ge-
nome. GC content is largely evenly distributed across all
chromosomes apart from a few peaks that are associated
with genomic regions enriched in transposable elements
(TEs; supplementary fig. S1, Supplementary Material online).
After removing the areas from small sections of chromo-
somes 1 (bases 1–200 kb) and 6 (bases 850–900 kb), we
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find that there is no relationship between GC content in
surrounding noncoding regions (introns and intergenic
regions) and the base composition of coding regions (R2 <
0.01, P< 0.1142) within each window. These results indicate
that processes shaping global, rather than local, base compo-
sition account for GC content and potentially synonymous
codon usage in coding sequences (CDSs). Second, we exam-
ined the relationship between variation in the local recombi-
nation rate inferred from natural sequences and local GC
content. We found no evidence for an association between
the number of recombination events in a region and the GC
content of that region across the whole genome (R2< 0.0003,
P< 0.34; see supplementary fig. S2A, Supplementary Material
online) or on any of the individual chromosomes (see sup-
plementary fig. S2B, Supplementary Material online). Third,
we implemented a gross-scale test based on the observation
that the proximal half of chromosomes tend to show more
crossover events than the distal half (Bloomfield et al. 2019).
For this, we used total GC and GC3 (log10 transformed) of
genes in each region (excluding TEs, which tend to have
higher GC and tend to be proximally located) and find no
difference between genes located on the proximal or distal
halves of chromosomes for total GC (t9563¼ 1.23, P¼ 0.22) or
GC3 (t9563 ¼ 1.9, P¼ 0.06). Fourth, we tested whether the
proportion of GC in introns explains total GC or GC3 pro-
portion (all log10 transformed) in exons and find that intronic
GC explains only 0.4% of the variation in GC3 and<0.01% of
the variation in total GC. These results indicate that there
does not appear to be a strong global process such as gBGC
that simultaneously modulates the intronic and exonic GC.
Finally, we examined whether the frequency spectrum of AT
!GC SNPs differed from the frequency of GC! AT SNPs in
introns (see supplementary table S1, Supplementary Material
online) and find no difference in any properties of the allele
frequency spectrum (two-sample Kolmogorov–Smirnov test,
D¼ 0.04, P¼ 0.33; see supplementary fig. S3, Supplementary
Material online). gBGC would be expected to shift the fre-
quency distribution of AT! GC SNPs above that of GC!
AT SNPs, and hence we see no evidence for its influence here.

Most Variation in Synonymous Codon Use Is Neutral
To characterize the expected neutral pattern of codon usage,
we modeled the expected distribution of codon frequencies at
equilibrium base composition (GCeq), which essentially reflects
mutation–drift balance. Logically, the relative frequency at
which alternative synonymous codons are used will reflect
the balance of mutational bias pushing codon use toward
that expected at GCeq and selection pushing away from that
expected at GCeq. Therefore, to characterize the expected
neutral pattern of codon use, we first needed to establish
the pattern of mutation between nucleotides. Mutation accu-
mulation lines have previously been used to investigate the
mutation rate in D. discoideum (Saxer et al. 2012). However,
the conclusions were drawn from a very small number of
mutations and hence provide limited information on the rel-
ative rates of different types of mutational change (i.e., the
differential mutation rate between the four nucleotides). To
overcome this issue, we instead used estimates based on rare

segregating variants from regions evolving under neutrality or
close to neutrality. SNP data from noncoding regions (inter-
genic and intronic sites) of 67 D. discoideum natural strains (de
Oliveira et al. 2019) were used to extract information about
the underlying mutational process and compute the nucleo-
tide substitution matrix (fig. 1 and supplementary fig. S4,
Supplementary Material online). The estimated substitution
matrix is remarkably stable whether it is based on intergenic or
intronic SNPs (R¼ 0.996; see supplementary table S2,
Supplementary Material online), and hence, we use the com-
bined estimates. This analysis reveals that transitions (which
always change GC class) and interclass mutations (GC! AT
and AT ! GC) are much more common toward AT than
away from it and will thus drive down GC content as muta-
tions arise and drift to fixation.

Genomic GCeq was calculated from the pattern of relative
mutation rates (fig. 1) using a system of linear equations
(Sueoka 1962). This analysis predicts a GCeq content of ap-
proximately 12.2%, which is very close to the value observed in
noncoding regions (14%). This suggests that GC content of
noncoding regions is close to equilibrium, although the role of
selection on some noncoding features (e.g., regulatory sequen-
ces) and/or processes like dinucleotide mutation biases pre-
sumably result in a slightly higher GC content (compared with
the mutational equilibrium). In contrast, GC content in coding
regions (�27.4%) is considerably higher than both GCeq and
GC at non-CDSs. This suggests that recurrent selection is op-
posing the strong mutational bias toward AT accumulation in
CDSs. This is perhaps expected since protein function is de-
termined by amino acid composition, and most amino acids
(14 of 20) require codons with at least one G/C. This is sup-
ported by the fact that relative GC content at position three is
lower than that at other codon positions (GC1¼ 36%,
GC2¼ 32%, GC3¼ 14%). Indeed, if we remove the two amino
acids that have no alternative codon options (methionine and
tryptophan, both of which have a third position G), the GC
content at position three is 12.2%, which exactly matches the
expected GCeq value. Consequently, we see that the overall
pattern of codon use is hugely biased toward the AT-richest
codons, with most frequently used codon for every amino acid
and stop signal always being one of the most AT-rich codons
(supplementary table S3 and fig. S5, Supplementary Material
online). Hence, it appears that selection on synonymous co-
don usage does not show an overall bias toward AT or GC
ending codons such that their overall use matches GCeq.

We used the estimated GCeq value to calculate the
expected synonymous codon frequencies under neutrality,
which assumes that codon use is simply a product of base
composition probabilities at each position of a codon. We
then rescaled expected relative codon usage to the frequency
of the amino acid they encode to obtain relative synonymous
codon frequencies excluding stop codons and amino acids
encoded by only one codon (methionine and tryptophan).
The expected distribution of relative synonymous codon fre-
quencies explains a remarkable 83.3% of the variation in the
observed relative codon frequencies (on a log2–log2 scale
P< 0.0001; fig. 2).
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The deviations in relative codon usage from the neutral
expectation (which represents ca. 17% of the variation in
codon use) are assumed to reflect the action of natural se-
lection. However, it is possible that our model of expected
codon frequencies at mutational equilibrium is an oversim-
plification of the neutral expectation. For example, if more
complex patterns of dinucleotide or trinucleotide mutations
occur, the probability of a given nucleotide triplet could be
more than the simple “sum of its parts.” This would be par-
ticularly important at repeat-rich DNA sequences, because
the repeats increase the chances of polymerase slippage

during DNA replication (Ellegren 2004). Therefore, we tested
whether trinucleotide combinations, which are commonly
found in the D. discoideum repeat-rich genome (Eichinger
et al. 2005), deviate from the predicted product of expected
nucleotide frequencies under mutational equilibrium. The
frequency of trinucleotide combinations under neutrality
was estimated by counting the number of each in noncoding
regions in all three frames. These counts were then treated as
pseudocodons to obtain synonymous codon frequencies un-
der neutrality (as these regions are not translated). The syn-
onymous codon frequencies of these neutrally evolving
pseudocodons can be largely predicted from the frequencies
expected at mutational equilibrium (R2 ¼ 0.87 on a log–log
scale, P< 0.0001), suggesting that mutational processes are
mostly acting on a pointwise manner. The deviations of the
pseudocodon frequencies from that expected at mutational
equilibrium should reflect mutational processes such as bi-
ased insertion/deletion events. These processes are presum-
ably responsible for the fact that the relative frequencies of
these pseudocodons are far worse at predicting relative co-
don use (R2¼ 0.74, P< 0.0001) than is the pattern predicted
from the independent nucleotide mutation pattern (i.e., the
GCeq model; R2 ¼ 0.83, P< 0.0001). This is perhaps unsur-
prising because synonymous mutation is essentially con-
strained to be pointwise, whereas mutations in noncoding
regions may be less constrained, allowing insertion/deletion
processes to play a role.

These findings suggest that deviations in codon frequen-
cies from the neutral expectation based on base composition
equilibrium are caused by selection shaping adaptive codon
usage. Hence, codons used more frequently than the neutral
expectation are considered evolutionarily “preferred,”
whereas those used less often than expected are
“unpreferred,” with the magnitude of the deviation from neu-
trality reflecting the relative strength of selection. This quan-
titative measure of “adaptive codon preference” is formally
captured as a log fold change in the use of codons relative to
the neutral expectation, calculated as the difference in the
log2 relative frequency of a codon observed in the genome
from the neutral expectation. This approach therefore pro-
vides a quantitative measure of adaptive codon preference
that is directly tied to the effects of selection, rather than
being inferred from the pattern of codon usage in any class
of genes (e.g., codon usage in the most highly expressed genes,
which is commonly interpreted as codon preference).

Based on this quantitative measure of adaptive preference,
we can investigate the pattern of codon preference to see if
there is any obvious structure. Of the 59 codons included in
this analysis, 25 show positive deviations from neutrality, that
is, are favored by selection (and hence 34 show a negative
deviation). Of the 25 preferred codons, we see no obvious bias
in terms of the nucleotide present at the third codon position
(A¼ 6, T¼ 8, G¼ 3, C¼ 8). Furthermore, even if we restrict
this analysis to the single most preferred codon for each
amino acid (i.e., the codon showing the largest positive devi-
ation from neutrality), we do not see any pattern of prefer-
ence for particular nucleotides (A¼ 3, T¼ 6, G¼ 2, C¼ 7),
with an even split of amino acids having a most preferred
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codon that is GC and AT ending. This same basic pattern
holds at 2-fold amino acids (A¼ 1, T¼ 3, G¼ 2, C¼ 3) and
4-fold (A¼ 1, T¼ 2, G¼ 0, C¼ 2).

Segregating Synonymous Polymorphism Reflects
Selection on Codon Preference
If our measure of adaptive codon preference is indeed adap-
tive, then mutations that lead to less preferred codons should
be removed more rapidly by purifying selection than muta-
tions that lead toward more preferred codons (so the impact
of a mutation on fitness can be inferred from the change in
codon preference it causes). We would therefore expect syn-
onymous SNPs that lead to relatively lower preference codons
to be less common than SNPs that lead to relatively higher
preference codons (since the SNPs leading to higher prefer-
ence codons would experience weaker purifying selection or
could potentially be favored by positive selection). To test this
prediction, we characterized the patterns of naturally occur-
ring levels of synonymous SNP variation associated with each
possible type of synonymous codon change (supplementary
table S4, Supplementary Material online) using a set of 67
genome sequences (de Oliveira et al. 2019). We then charac-
terized the relative proportion of SNPs associated with each
possible type of synonymous mutation (so our analysis is
restricted to codons associated with amino acids for which
there are more than two alternative codons) and the relative
preference of the codons created by those mutations (sup-
plementary table S4, Supplementary Material online). This
approach is based on the hypothesis that the proportion of
mutational variation within each codon can be predicted
based on the expected relative fitness effect of those muta-
tions (so most mutations within a given codon should be in
the class that has the highest preference relative to other
synonymous possibilities). By modeling variation within
each codon, this approach accounts for the variation in the
preference of the “resident” codon and focuses on the pattern
of preference caused by the mutations (hence it examines the
distribution of mutations within codons in relation to the
preference of the codons produced by those mutations).
We find that there is a relatively large positive correlation
between the proportion of polymorphism in a given class
of synonymous mutation and the preference of the resulting
codon relative to the synonymous alternatives (R¼ 0.44,
P< 0.0001; fig. 3). Therefore, we see a clear signature of pu-
rifying selection within codons, with selection removing less
of the mutational variation when it is associated with rela-
tively more preferred codons and vice versa. Even for highly
preferred codons (for which all synonymous mutations re-
duce codon preference), this means that SNP variation will
tend to be associated with the least “harmful” class of muta-
tion (i.e., with the synonymous codon causing the smallest
decrease in preference).

Conditional Selection Reduces the Magnitude of
Codon Preference in Genes
Codons in genes experiencing relaxed selection are expected
to show a pattern of codon usage that shifts toward the
neutral expectation, which corresponds to lower codon

preference (i.e., the pattern predicted at GCeq). To test this
hypothesis, we calculated gene-level measures based on the
preference of the codons within individual genes. This genic
level analysis allows us to examine patterns across nearly all
genes in the genome at the same time (with the only restric-
tion being that the model can only include genes with avail-
able expression data). Using these measures, we tested
whether genes expressed only in the developmental part of
the life cycle (which are therefore conditionally expressed)
show a different level of codon preference compared with
genes expressed in all parts of the life cycle. Previous analyses
have demonstrated that the conditionally expressed
(“sociality”) genes show clear signatures of relaxed selection
compared with the nonconditionally expressed
(“nonsociality”) genes (de Oliveira et al. 2019), presumably
because they are essentially neutral (unexpressed) in most
generations. Therefore, we would expect these genes to
show a shift toward use of less preferred codons since that
corresponds to a shift toward neutrality. Using the gene-level
measures of codon preference for the sociality and nonsocial-
ity genes, we find that, as expected, sociality genes show a
lower average preference (0.070) than nonsociality genes
(0.096) (t7551¼ 10.81, P< 0.0001). Hence, we see a clear pat-
tern where genes experiencing relaxed selection show lower
preference, which corresponds to a shift toward the neutral
expectation.

Highly Expressed Genes Show Higher Levels of Codon
Preference
Our analyses support the conclusion that adaptive codon
preference reflects the direction and strength of selection
on codons. Many previous studies have assumed that highly
expressed genes experience stronger selection, and thus the
pattern of CUB in highly expressed genes can be used to infer
codon preference. However, it is possible that higher levels of
expression impose specific selective constraints such that the
pattern of codon use deviates from that expected solely due
to a shift toward stronger selection. To address this question,
we examined patterns of codon usage in the most highly and
lowly expressed genes.

For this, we compiled publicly available transcriptome data
in D. discoideum (Parikh et al. 2010; Nasser et al. 2013;
Rosengarten et al. 2015) and identified the 1,000 most highly
and lowly expressed genes (based on the average level of
expression throughout the life cycle, excluding the condition-
ally expressed sociality genes and genes showing zero expres-
sion overall). We then counted the total number of times
each codon appears in each class of genes and calculated the
relative frequency with which each codon is used within each
amino acid (following the methods outlined above; see sup-
plementary table S3, Supplementary Material online). For
each gene set, we then calculated a measure of preference
for each codon that is private to each gene class as the log fold
difference between the observed relative codon frequencies
within each gene set and the neutral pattern expected at
mutational equilibrium (based on the genome-wide estimate
of GCeq). We also calculated gene-level adaptive codon
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preference (see above) to compare the average level of codon
preference between expression classes.

The private measures of codon preference calculated sep-
arately for the highly and lowly expressed genes (i.e., those
measuring the deviation in codon use in these classes from
the neutral expectation) closely match the genome-wide pat-
tern (R¼ 0.95 for the highly expressed and R¼ 0.92 for the
lowly expressed genes, P< 0.0001 in both cases; see supple-
mentary table S3, Supplementary Material online).
Furthermore, we find that the average size of the deviations
from neutrality (measured as the absolute value of the private
measures of codon preference in each class) do not differ
between lowly expressed genes and the overall genomic pat-
tern (0.34 for all genes and 0.29 lowly expressed genes, t57 ¼
1.286, P¼ 0.21), indicating that not only is the pattern of
preference within lowly expressed genes highly correlated
to the genome-wide pattern, it is also of a similar magnitude.
However, we find that the deviations from neutrality in the
highly expressed genes are significantly larger than the
genome-wide pattern (0.61 vs. 0.34, t57 ¼ 3.90, P¼ 0.0003),
indicating that the pattern of deviations from neutrality are
similar, but the highly expressed genes are much further from
neutrality.

We see a grossly similar pattern by comparing the gene-
level average preference of codons used in highly and lowly
expressed genes to that of the remaining (intermediate

expression) genes. However, although the difference is small,
we find that lowly expressed genes show significantly lower
mean preference (0.048) than those with an intermediate
level of expression (0.082, t7550 ¼ 17.73, P< 0.0001). In con-
trast, we see that highly expressed genes show significantly
higher mean preference than those with intermediate expres-
sion (0.20, t7550¼ 59.6, P< 0.0001). These results indicate that
the gross pattern of codon preference in highly and lowly
expressed genes mostly mirror the pattern we see across all
genes, with the primary differences being the magnitude of
the deviations from neutrality and a shift in the central ten-
dency. We also see clear evidence that lowly expressed genes
are much more similar to the rest of the genes in the genome
than are the most highly expressed genes.

Adaptive Codon Preference Can Be Inferred from
Highly Expressed Genes, but Not Perfectly
Highly expressed genes show a pattern of codon preference
that suggests they are under stronger selection. Since most
studies base their characterization of codon preference on the
pattern of codon use in highly expressed genes, we next ex-
amined whether the pattern of CUB associated with gene
expression alone (i.e., which is independent of the neutral
expectation) could be used to accurately recapitulate the
pattern of codon preference derived from our evolutionary
model. To test this, we calculated the log2 fold difference in
the relative use of each codon in the highly expressed class
versus the lowly expressed class (using the 1,000 most highly
expressed and 1,000 most lowly expressed as above; see sup-
plementary table S3, Supplementary Material online). We find
that this “expression-associated codon preference” does in-
deed approximate the pattern of adaptive codon preference
derived from our model (R¼ 0.84, P< 0.0001; fig. 4).
However, the two measures of codon preference are not
identical, suggesting that selection on codon usage or differ-
ences in mutational processes that are specific to the context
of highly expressed genes could affect codon use in relation to
expression levels (and potentially lead to misleading infer-
ences). For example, we see a large increase in the use of
the AAC codon for asparagine in highly expressed genes com-
pared with lowly expressed genes (hence positive expression-
associated preference), but this is a codon that shows nega-
tive adaptive codon preference (i.e., is used less frequently
than expected under neutrality across all genes). We see a
similar shift in the AGC codon for serine, where the
expression-associated preference opposes adaptive prefer-
ence. Interestingly, the nine codons that show positive
expression-associated preference, but negative adaptive pref-
erence all end in a C or T (C¼ 6, T¼ 3). Similarly, we see a
number of codons that show a negative expression-
associated preference but positive adaptive preference (e.g.,
the GCA codon for alanine), of which all are A or T ending
(N¼ 4 and 3, respectively). This suggests that codons with
particular properties may be more likely to show opposing
expression-associated and adaptive preferences. Indeed, if we
look across all codons, we see a significant pattern (v2¼ 10.3,
P¼ 0.017) wherein, of the 28 that show higher expression-
associated than adaptive preference, 14 are C ending whereas
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FIG. 3. The relative level of polymorphism in each class of synonymous
mutation is positively correlated to the relative preference associated
with that synonymous change. “The relative level of polymorphism” is
the log10 difference between the proportion of polymorphism in a
mutational class compared with the neutral expectation. The
“relative preference” is defined as the difference between the prefer-
ence of the codon associated with a given synonymous mutation and
the average preference of all synonymous mutational options for the
given resident codon. Individual points correspond to the different
possible synonymous mutational classes. The line represents the best-
fit line from a reduced major axis regression model.
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only one is A ending (T¼ 7, G¼ 6). Likewise, of the 31 codons
showing lower expression-associated preference than adap-
tive preference, 13 are A ending and only 2 are C ending
(T¼ 9 and G¼ 7), which is a significant departure from ran-
dom (v2 ¼ 9.26, P¼ 0.026). These patterns suggests that
selection favors C ending codons and disfavors A ending
codons in highly expressed genes, which is a pattern that
does not appear when we consider deviations from neutrality
across all genes, where codons that have a positive adaptive
preference value are relatively evenly distributed across classes
(A¼ 6, T¼ 8, G¼ 3, C¼ 8, v2 ¼ 1.58, P¼ 0.66). It is also
possible that codon use in highly expressed genes is different
because they experience a different pattern of mutational
input, perhaps mediated by transcription associated repair
or mutational processes (and hence we would have a differ-
ent neutral expectation at mutation–drift balance; see
below).

Deviation of Codon Preference in Highly Expressed
Genes Does Not Reflect Differential Mutational Bias
To understand whether the difference in codon usage in
highly expressed genes could reflect a difference in the mu-
tational profile, we examined the distribution of intronic SNPs
in the set of highly expressed genes (supplementary table S2,
Supplementary Material online). Using these SNPs, we calcu-
lated GCeq for the 1,000 highly expressed genes and find a
value very close to that calculated using all other intronic
SNPs (11.8% for highly expressed genes and 12.1% for all other
genes). Moreover, the observed number of SNPs per

mutational class identified in the introns of highly expressed
genes does not significantly deviate from the number pre-
dicted based on SNP density in the introns of all other genes
(v2 ¼ 16.3, P¼ 0.13). These results provide evidence that
suggests that the pattern of expression-associated preference
deviates from that of adaptive preference because of system-
atic differences in selection specific to the context of high
expression, rather than a difference in mutation. As a result,
measures of preference based solely on expression properties
of genes can lead to inferences about codon preference that
do not apply perfectly across all classes of genes. Furthermore,
it suggests that the mechanisms that underlie selection for
preferred codon usage are likely to be complex and multifac-
eted. Indeed, selection for codon usage has been proposed to
be due to transcription, translation, or both (Ikemura 1981;
Ikemura 1982; Stoletzki and Eyre-Walker 2007; Plotkin and
Kudla 2011; Zhou et al. 2016).

Codon Preference within Genes Suggests Effects on
Ribosome Initiation and Elongation
To understand why selection shapes patterns of adaptive
codon preference, we examined how levels of preference
change with genomic contexts thought to experience differ-
ential selection pressures. For example, codon usage within
genes has been shown to affect interactions between the
mRNA and ribosomes during translation (Tuller et al. 2010;
Bentele et al. 2013). It has been suggested that less “optimal”
codons are found in higher frequencies near to the start of
CDSs (Allert et al. 2010; Tuller et al. 2010; Bentele et al. 2013;
Pechmann and Frydman 2013) in order to facilitate ribosome
initiation (via reduced RNA stability) (Kudla et al. 2009) and
possibly slow elongation at the start of translation (which can
increase accuracy and efficiency). To test this idea, we calcu-
lated the frequencies of codons at each codon position in
genes, both from the beginning of genes (in the 50 to 30

direction; starting after first methionine codon) and at the
end of genes (starting with the position prior to the stop
codon and moving in the 30 to 50 direction). At each position,
we measured the average overall codon preference.

At the beginning of genes, codon preference starts (going
in the 50 to 30 direction) below the genome-wide average.
Codon preference then increases steadily until it reaches (and
then passes) the genome-wide average around codon 120,
after which it asymptotes at a value that is higher than the
genome-wide mean (see fig. 5A). We see a grossly similar
pattern at the end of genes, where average codon preference
is higher than the genome-wide average until about 50
codons from the stop codon, at which point it rapidly
declines approaching the stop codon (in the 50 to 30 direc-
tion) (fig. 5B).

The pattern of codon usage within genes could be taken as
support for the idea that selection acts to favor less preferred
codon usage or that selection is weaker at the beginning and
ends of genes. To distinguish between these possibilities, we
first examined patterns of codon usage across codon posi-
tions in genes with low or high expression to test whether
these patterns change in relation to differences associated
with the constraints imposed by the level of expression
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FIG. 5. Patterns of codon preference across codon positions within genes. (A) the average relative codon preference starting from the beginning of
genes, (B) and leading up to the stop codon (indicated by position zero, so negative positions are distances before the stop codon). In both plots,
the lines represent splines (from an LOESS model), dashed lines represent the genome-wide average preference (zero), and the points represent the
individual estimates at each codon position. Relative codon preference represents the average preference of codons present at each codon
position relative to (i.e., as a deviation from) the genome-wide average (so a value of zero indicates a match to the genome-wide average, whereas
negative values indicate preference below the overall average, etc.).
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FIG. 6. Patterns of codon preference across codon positions within lowly and highly expressed genes. In both plots, the lines represent splines (from
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(and likely the strength of selection). For highly expressed
genes, codon preference is above the genome-wide average
across all positions (as expected, see above), and we see the
same overall pattern in the change in codon preference that is
observed across all genes at both the begging and end of
genes (fig. 6). For lowly expressed genes, average preference
is generally lower than the genome-wide average across all
codons and shows the same overall change by codon position
that we observe in highly expressed and all genes, though the
shift in codon preference is of a lesser magnitude than what
we observe in the other classes. These patterns are thus con-
sistent with being driven by selection.

To further test this idea, we calculated the relative den-
sity of synonymous SNP variation across codon positions
(adjusted to account for any changes in the proportions of
available sites) to examine any signatures consistent with a
shift in the balance of mutation and purifying selection,
either due to changes in mutation rates or the strength of
selection. We see a pattern of SNP density that follows the
pattern of change in average preference at both the begin-
ning (fig. 7A) and ends of genes (fig. 7B). Importantly, the
overall shift away from the use of preferred codons near
the beginning and ends of genes is what would be expected
under either relaxed selection or elevated mutation (be-
cause the shift away from use of preferred codons neces-
sarily means a shift toward the pattern expected at
mutational equilibrium), but the signature of elevated pu-
rifying selection (reflected in reduced segregating synony-
mous polymorphism) strongly suggests that the shift in
codon preference is a consequence of selection on codon
usage rather than an enhanced role for mutation and drift.
This pattern also implies that codon usage in these regions

is experiencing stronger purifying selection than elsewhere
in genes given the reduced level of polymorphism.

Selection on Codon Use Is Partly Explained by tRNA
Availability
Selection for codon usage has also been hypothesized to af-
fect translation by favoring codons that match the availability
of isoaccepting tRNAs (Ikemura 1981; Gouy and Gautier 1982;
Ikemura 1985; Bulmer 1987). To test this idea, we exploited
the finding that tRNA gene copy number is strongly and
positively correlated to cellular tRNA levels (Duret 2000;
Higgs and Ran 2008). To link tRNA levels with patterns of
codon use, we derived a new parameter that measures the
relative synonymous codon adaptiveness (wij). This index is
based on dos Reis et al.’s (2003; 2004) codon adaptiveness
(wi). Because our interest is focused on usage of alternative
codons encoding the same amino acid (and wi is defined
relative to all codons), wij estimates synonymous codon adap-
tiveness for each codon relative to only the other codons
encoding the same amino acid (see Materials and
Methods). We find that this relative codon adaptation index
(square-root transformed) explains 40.7% (P< 0.0001) of the
variation in codon preference (i.e., it explains 40.7% of the
variation in codon use that is not explained by the neutral
expectation at GCeq; fig. 8).

In order to separate the processes shaping use of preferred
codons into those that act via the interaction with the tRNA
pool and those that appear to be independent of tRNA
interactions, we use the relationship between codon prefer-
ence and relative synonymous codon adaptiveness to parti-
tion adaptive codon preference into tRNA-dependent and
tRNA-independent components. The tRNA-dependent
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FIG. 7. Relative SNP density across codon positions at the beginning and ends of genes. The relative SNP density is the difference between the
observed SNP density at a codon position (as a proportion of all SNPs) and that expected based on the expected local mutation rate, which
depends on the average GC content at the position.
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component, therefore, corresponds to the expected pattern
of codon usage given the square-root transformed values of
wij for a codon and the latter corresponds to the residual from
this expectation (controlling for the pattern expected by mu-
tational bias; i.e., it represents the component of codon pref-
erence that cannot be predicted from wij). As such, the tRNA-
dependent component reflects the influence of selection aris-
ing from tRNA adaptation on adaptive codon preference,
whereas the tRNA-independent component captures other
sources of selection.

Use of Preferred Codons Increases Transcript Stability
Selection can also drive patterns of codon use away from
neutrality because it may favor the use of codons because
of their effect on mRNA stability, which has been observed in
a range of taxa (e.g., Saccharomyces cerevisiae, Trotta 2013;
Presnyak et al. 2015; Escherichia coli, Bo€el et al. 2016; humans,
Hia et al. 2019; Wu et al. 2019), which we refer to as tran-
scriptional selection. For example, such selection could arise
because gene expression levels are determined by the rate of
mRNA production versus the rate of decay, which can be tied
to transcript stability. Since mRNA stability can affect steady-
state mRNA levels, a relationship between codon preference
and transcript stability could partly explain the observed in-
crease in codon preference observed in highly expressed
genes (see above).

To understand the link between codon preference and
mRNA stability, we first estimated a measure of stability per
site (hereafter referred to simply as “stability”), defined as the
global folding Gibb’s free energy (i.e., DG0) divided by CDS
length (Lorenz et al. 2011). Transcript stability increases with
the average preference of codons in the transcript (t7551 ¼

58.4, P< 0.0001, R2 ¼ 0.311). Both tRNA-dependent and
tRNA-independent average codon preference significantly in-
crease transcript stability, but tRNA-independent preference
is far more important than tRNA-dependent preference (t7550

¼ 72.36, P< 0.0001 for tRNA-independent preference,
whereas t7550 ¼ 20.02, P< 0.0001 for tRNA-dependent pref-
erence, corresponding to partial R2 values of 0.406 and 0.031,
respectively). Indeed, by separating total preference into
tRNA-dependent and tRNA-independent components, we
see that tRNA-independent preference explains far more var-
iation than total preference (R2 ¼ 0.406 for tRNA-
independent preference compared with R2 ¼ 0.311 for total
preference), which suggests an adaptive role for tRNA-
independent preference associated with transcript stability
that is unrelated to adaptation to the available tRNA pool.
This finding suggests that selection to optimize expression by
usage of differential codons is, at least in part, achieved
through increased transcript stability. Since this increased sta-
bility is primarily a result of tRNA-independent preference,
this relationship provides a hypothesis for why selection
favors tRNA-independent preference.

Sources of Selection Driving Codon Preference Change
across Codon Positions within Genes
Given that there are relationships between preferred codon
usage and tRNA availability and the position within genes, we
next examined the relationship between these phenomena.
For this, we measured the average relative tRNA-dependent
and tRNA-independent preferences at each codon position
within genes.

At the beginning (going in the 50 to 30 direction) and ends
(in the 50 to 30 direction) of genes the mean tRNA-

FIG. 8. Codon preference is correlated to the relative codon adaptation index (wij; after square-root transformation). Codon preference represents
the deviation of relative codon frequencies from the neutral expectation at mutational equilibrium.
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independent preference shows the same pattern as overall
adaptive preference (fig. 9A, compared with figs. 5A and 9B
compared with fig. 5B). For tRNA-dependent preference, at
the beginning of genes, we see a rapid decline over the first ca.
20 codons, and then a steady increase that matches the pat-
tern overall (and of the tRNA-independent preference)
(fig. 9C). However, at the ends of genes, we see a drastically

different pattern in the tRNA-dependent preference (fig. 9D),
which steadily increases starting about 170 codons from the
stop codon and continues to increase until the stop codon.
This finding is consistent with the expectation that selection
favors use of codons that increase translation rates at the end
of genes to facilitate release from the ribosome (Allert et al.
2010; Tuller et al. 2010; Bentele et al. 2013; Pechmann and

●

●
●

●
●●

●

●
●

●●
●

●●

●

●
●

●

●●
●

●

●

●●

●

●

●

●
●
●●
●●
●●

●

●

●
●
●●
●

●
●

●

●

●

●

●
●
●
●

●

●●●
●

●

●●●
●

●

●

●

●
●●
●
●

●

●
●

●

●●
●

●
●
●●
●

●

●

●

●

●

●

●

●
●●

●
●

●
●
●

●●

●●

●

●

●
●

●

●

●
●

●
●

●●

●●

●
●

●

●●●
●

●
●
●●
●●

●

●

●●●

●
●●
●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●
●

●●
●

●
●
●

●

●
●●
●
●
●
●●
●●
●

●

●

●
●●

●

●●

●
●

●

●●●●●
●

●
●●
●
●
●●
●●

●

●
●
●

●●●
●

●

●

●

●

●●●
●

●
●●●●
●

●
●●●
●

●

●

●

●

●

●
●
●

●

●
●

●
●

●
●

●●
●
●
●

●

●

●●
●

−0.08

−0.05

−0.02

0.00

0.02

0 50 100 150 200 250

Position

R
el

at
iv

e 
tR

N
A

−
in

de
p.

 p
re

fe
re

nc
e

●
●●
●
●

●
●
●
●
●
●●●●

●
●●
●●
●
●

●
●●●
●
●
●

●

●●●●●●
●●●
●●●
●

●●●●●
●
●●
●

●
●●●
●●●

●

●●●
●
●
●●
●
●
●●

●
●
●

●●●●●●●●●
●●
●
●
●●

●
●
●
●
●●●●
●
●

●●
●

●●
●●●
●
●●
●●
●●●●●●●●
●
●●●●
●
●●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●●
●

●●●●
●

●

●●

●

●
●●
●
●●

●
●●●
●

●

●
●●
●
●●●●

●

●
●
●●●●
●
●
●
●●
●
●

●

●●

●

●●●
●
●
●●

●
●●
●

●
●●●
●
●
●
●●●

●
●●●●
●●
●●
●●
●
●●●
●●●●
●●●
●●
●●

●
●●●
●●●

●●●

●
−0.15

−0.10

−0.05

0.00

−250 −200 −150 −100 −50 0

Position

R
el

at
iv

e 
tR

N
A

−
in

de
p.

 p
re

fe
re

nc
e

C

5'

5'

3' 5' 3'

3' 5' 3'

(Start) (Stop)

(Start) (Stop)

A B

●

●
●●

●
●

●

●●

●●

●●

●

●

●

●●
●
●
●

●

●
●

●●

●●

●
●●
●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●
●
●●

●
●
●

●
●●●

●
●

●

●●●●●

●●

●●

●

●●
●
●
●
●

●

●

●●●
●●

●

●

●

●

●

●

●●●

●

●●
●

●
●●
●●
●
●

●●●
●

●
●
●
●●●

●●
●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●
●
●
●
●
●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●
●●
●
●

●
●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●●

●●●●
●
●●

●

●●●●

●
●

●

●

●●●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●●
●●
●●

●

●●

●

●
●

●●
●
●

●

●

0.00

0.02

0.04

−250 −200 −150 −100 −50 0

Position

R
el

at
iv

e 
tR

N
A

−
de

p.
 p

re
fe

re
nc

e

D

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●●●

●

●

●

●●

●

●
●

●
●●
●

●●

●
●

●●

●
●

●

●

●

●●

●

●

●●●

●●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●●●

●
●
●●

●
●●

●●
●

●

●

●

●●
●
●

●

●

●

●

●●●●

●
●

●●
●
●
●

●●

●

●

●
●●

●●●●
●●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●●

●

●

●

●
●
●●

●

●

●

●●●

●●

●
●

●●

●
●

●
●
●
●●
●●
●
●
●

●●

●
●●

●
●

●

●

●

●

●

●

●●●●

●

●

●●
●●
●

●●●

●
●
●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●●

●

●●●

●
●
●

●

●●●●●

●

●
●
●

●

●

●

●

●

●

●

●
●
●●

−0.04

−0.02

0.00

0.02

0 50 100 150 200 250

Position

R
el

at
iv

e 
tR

N
A

−
de

p.
 p

re
fe

re
nc

e

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●●●

●

●

●

●●

●

●
●

●
●●
●

●●

●
●

●●

●
●

●

●

●

●●

●

●

●●●
●●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●●●

●
●
●●

●
●●

●●
●

●
●

●

●●
●

−0.03

−0.02

−0.01

0.00

25 50 75 100

FIG. 9. Patterns of average relative tRNA-dependent and tRNA-independent codon preference across codon positions within genes. The first two
panels (A and B) show patterns of tRNA-independent preference at the beginning (A) and the ends of genes (B). The other two panels (C and D)
show patterns of tRNA-dependent preference at the beginning (C) and ends (D) of genes. At the beginning of genes, codon positions are numbered
from the start codon, whereas at the ends of genes, the negative positions give the distance before the stop codon. In all plots, the lines represent
splines (from an LOESS model), and the points represent the individual estimates at each codon position. All preference values are given as
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Frydman 2013). Thus, by dividing codon preference into
tRNA dependent and tRNA-independent components, we
can see distinct patterns of selection driving codon use
away from neutrality, especially the fact that the ends of genes
appear to show a particularly strong signature of selection
driven by tRNA adaptation.

Discussion
The AT-biased genome of the social amoeba D. discoideum,
coupled with estimated patterns of mutation, and an absence
of gBGC, has allowed us to define codon preference in evo-
lutionary terms. It therefore can be described as a property of
the genome that reflects the degree to which natural selec-
tion has favored the use of some codons, driving their fre-
quency away from neutrality. For example, even though we
see that the overall pattern of codon usage is strongly biased
towards the use of the AT-richer codon alternatives (Sharp
and Devine 1989; Eichinger et al. 2005), this does not mean
that these codons are evolutionarily preferred since this bias is
expected under neutrality (due to background mutational
processes). To identify when codons are used more or less
frequently than the neutral expectation (which reflects mu-
tation–drift balance), we modeled the neutral expectation of
codon frequencies at base composition equilibrium (GCeq)
using patterns of SNP variation (fig. 1). A large majority (83%)
of synonymous CUB can be explained solely by mutational
biases toward AT accumulation in this genome (fig. 2).
However, the remaining variation (ca. 17%) shows signatures
of natural selection shaping synonymous codon usage (sig-
natures of purifying selection, dependence on level of gene
expression, etc.) in order to influence properties associated
with transcription and translation. Therefore, we refer to this
variation as adaptive codon preference to reflect the potential
adaptive value of the pattern.

In many analyses, codon preference is inferred solely based
on comparison of codon use in highly versus lowly expressed
genes (i.e., independent of the neutral expectation). This
mode of analysis comes with assumptions, such as the mu-
tation and nonselective fixation processes are no different
between gene classes. It can also be tautologous—lowly
expressed genes are deemed less adapted when their CUB
is not as skewed in the direction of the optimal codon set,
even if for such genes selection may not be favoring “optimal”
codon usage. Because codon preference appears stable across
different classes of genes, differing primarily in the magnitude,
not in overall pattern, we were able to examine whether the
pattern of adaptive preferred codon use matches codon pref-
erence inferred from gene expression. This indicates that in
the absence of a neutral expectation, an approach tied to an
analysis of gene expression variation provides a reasonable
estimate of adaptive codon preference. However, we find
evidence that some of the shift in codon use in highly
expressed genes appears to be shaped by selection that is
specific to the context of high expression, rather than reflect-
ing an overall selective advantage to the use of certain codons
more broadly. At the extreme, this difference is manifested by
an increased use of certain codons in highly expressed genes

that are used less often than the neutral expectation across
the genome overall. This finding suggests that some caution is
therefore needed when basing inferences purely on the as-
sumption that codon use in highly expressed genes entirely
captures the evolutionarily relevant pattern of codon prefer-
ence across the genome.

The pattern of selection reflected in codon preference is
consistent with roles in the optimization of protein transla-
tion (fig. 8). A large fraction (ca. 41%) of adaptive codon
preference can be explained by the relative availability of
isoaccepting tRNAs for the alternative codons within each
amino acid. Codon preference also impacts translation
through its effect on mRNA stability, which increases with
the average preference of the codons within a gene. Stability
increases mRNA steady-state levels and has been reported as
an important mechanism of optimization of expression
(Kudla et al. 2006; Trotta 2013). Interestingly, the effect of
the use of preferred codons on transcript stability is almost
entirely due to the component of preference that is indepen-
dent of the relative tRNA adaptiveness of the codons.
Therefore, the connection between codon use and transcript
stability provides a source of selection shaping codon prefer-
ence that would not be apparent from an analysis focused
solely on adaptation to the tRNA pool.

Our analyses also allow more subtle effects of selection on
codon usage to be detected. For example, we find that pat-
terns of codon preference shift across codon positions in
genes, generating an intragenic “codon landscape,” with pref-
erence lower toward the start codon and approaching the
stop codon of genes (fig. 5). The pattern of reduced codon
preference near the start and end of genes is consistent with
reduced strength of selection or increased mutation, given
that a reduction in codon preference corresponds to a shift in
codon usage toward the neutral (mutation–drift) expecta-
tion. However, the reduction in frequency of preferred codons
near gene boundaries appears to be adaptive. Shifts in the use
of preferred codons are stronger among highly expressed
genes (fig. 6), consistent with highly expressed genes being
under stronger optimizing selection to counteract the influ-
ence of mutation. Furthermore, we see less synonymous poly-
morphism approaching the start codon (in the 30 to 50

direction) and the stop codon (in the 50 to 30 direction) across
all genes (fig. 7), which also strongly suggests that those
regions are experiencing elevated purifying selection, rather
than relaxed selection or elevated mutation. These findings
are thus consistent with the idea that shifts in codon use at
the 50 and 30 ends of genes influences the temporal and spa-
tial nature of interactions between mRNA transcripts with
ribosomes (Quax et al. 2015). In the region near the start
codon, selection for less optimal codons may slow down
transcriptional elongation at the beginning of genes to in-
crease accuracy and ensure more even spacing of protein
synthesis at ribosomes, which reduces ribosomal “traffic jams”
(Quax et al. 2015). The scale of this “ramp” may be dictated by
the length of the exit tunnel of the ribosome (Quax et al.
2015), which is approximately the scale over which we see the
pattern of codon preference shift near the start of CDSs
(Fredrick and Ibba 2010). There is also evidence that codon
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use near the start codon may reflect selection for reduced
mRNA folding, which facilitates initiation of translation (de
Smit and van Duin 2003; Kudla et al. 2006; Studer and Joseph
2006; Bentele et al. 2013; Goodman et al. 2013). Although we
do not have any estimates of the influence of codons on
mRNA folding in our study, it is possible that this phenom-
enon is related to the influence of preferred codons on tran-
script stability, with both potentially reflecting binding
properties of transcripts.

Taken together, our findings suggest that adaptive pre-
ferred codon usage can be measured in D. discoideum as a
deviation from the neutral pattern. This reveals that selection
favoring evolutionarily preferred codons confers a selective
advantage through the optimization of gene expression. We
suggest that the term “codon preference” should be reserved
for departures of codon usage from the neutral expectation
(presumably driven by mutational processes) caused by an
active role of selection arising from differences in codon
fitness.

Materials and Methods

Synonymous Codon Frequencies and GC Distribution
across the Genome
Relative synonymous codon frequencies (i.e., relative to each
amino acid) were estimated from the reference genome
(Eichinger et al. 2005) downloaded from Ensembl (Aken
et al. 2016; Kersey et al. 2016) and using the R package
seqinR (Charif and Lobry 2007). Before computing this codon
table, we excluded all non-protein-coding sequences, genes
from the mitochondrial genome and from a duplication in
chromosome 2, present only in the strain AX4 (reference
genome, Eichinger et al. 2005). This censoring was necessary
because the codon unity is meaningful only when translated
into amino acids, and because genes in these other regions
(mitochondrion and duplication) can evolve under different
dynamics in comparison with the rest of the genome.

GC content was computed in coding and noncoding
regions of all six chromosomes of D. discoideum, in windows
of 50 kb. In a first sliding-window analysis, windows were
separated by step sizes of 1 kb in order to capture patterns
of GC levels across chromosomes. In a second analysis, GC
was computed in 50 kb windows without overlaps, to com-
pare local GC content in coding and surrounding noncoding
regions within each window. In both cases, we used coordi-
nates from Ensembl Protist gene annotation release 46 (Aken
et al. 2016; Kersey et al. 2016) to characterize chromosome
regions as coding or noncoding DNA (intronic and inter-
genic). We also used these coordinates to localize a list of
genes annotated as TEs in Dictybase (Fey et al. 2013) to test
the hypothesis that peaks of elevated GC could be associated
to the presence of such elements. Peaks of both lower and
higher GC (<5th and>95th percentiles of GC distribution in
the 50 kb windows) were identified from noncoding regions,
under the assumption that noncoding DNA evolve close no
neutrality (whereas base composition could be potentially
under selection in CDSs).

Per gene total GC and GC3 content for the coding regions
of each gene, as well as the overall GC content of their cor-
responding intronic regions were also calculated based on
gene and CDSs coordinates from Ensemb Protist. Per gene
total GC, GC3, and intronic GC were then log10 transformed.
To reduce noise in the comparisons between these estimates
for different classes, short genes (length < 500 bp), TEs, and
genes showing conditional expression (de Oliveira et al. 2019)
were excluded from these analyses.

Nucleotide Substitution Matrix and GCeq

Overall nucleotide composition is mostly a result of muta-
tional biases (Sueoka 1962; but see also Rocha and Feil 2010),
so understanding the evolution of such an AT-biased genome
as in D. discoideum must include a detailed investigation of
mutational processes. Because experimental work on muta-
tional patterns in this system resulted in conclusions drawn
from a single SNP (Saxer et al. 2012), we used information
from segregating variation to derive general patterns. This
data set includes 67 natural strains, and details on the geo-
graphical distribution of the strains, sequencing reports, map-
ping, and SNP calling are provided elsewhere (de Oliveira et al.
2019). Briefly, reads were cleaned for adapters and quality
trimmed using Trimmomatic (Bolger et al. 2014). Reads de-
rived from possible contaminants were excluded by binning
and simultaneously mapping them to the reference genome
of D. discoideum, Paraburkholderia xenovorans lb400,
Burkholderia ubonensis, Paraburkholderia fungorum, and
Klebsiella pneumoniae; and assigning them according to the
best mapping score using BBSplit, part of the BBMap package
(version 36.27) (Bushnell 2016). Reads binned with
D. discoideum or not mapped to any of the bacterial genomes
aforementioned were pooled together and mapped to the
D. discoideum reference genome using NextGenMap
(Sedlazeck et al. 2013). SNP calling was then performed using
Genome Analysis Toolkit (McKenna et al. 2010). Resulting
SNPs were filtered with a static threshold for quality by depth
(QD)< 2.0, an FS score (Phred-scaled probability that there is
strand bias at the site, based on a Fisher exact test)> 60.0 and
a root mean square mapping quality (MQ) over all the reads
at the site of< 30.0. Any strain with a missing call rate higher
than 0.3, any site called in<90% of the remaining strains (i.e.,
in < 60 out of 67 strains), and multiallelic site or indel were
also removed. This resulted in a data set of 279,807 SNPs
across 67 strains.

In order to calculate an estimate of the expected GC under
equilibrium, SNPs were filtered to include only those from
noncoding regions, since these are expected to be mostly
governed by mutation–drift balance. Directionality was in-
ferred from polarization of rare alleles in comparison with
the common alleles. Relative rates of mutation between dif-
ferent nucleotides were first calculated by scaling SNP counts
to the number of sites and then rescaled again by dividing
these per-site measures by their sum to get a relative rate
(such that the sum of the rates equals 1). This information
was used to generate the nucleotide substitution matrix with
proportion of substitutions in all directions of mutational
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space, which in turn was used to derive the expected GC
under equilibrium using Sueoka’s (1962) equation:

GCeq ¼
AT ! GCð Þ

AT ! GCð Þ þ GC ! ATð Þ : (1)

This same analysis was carried out for a set restricted to
SNPs in the introns of the 1,000 most highly expressed genes
(see below for the definition) to generate a separate estimate
of the mutation profile and GCeq for this category of genes.
Again, intronic coordinates were based on the Ensembl
Protist gene annotation release 46 (Howe et al. 2020). The
pattern of mutations per site calculated for all genes was used
to generate an expected distribution for intronic mutations
(based on the number of different classes of available sites in
the introns), which was normalized to account for a differ-
ence in the absolute level of polymorphism in the introns of
highly expressed genes compared with all noncoding sites
across the genome (with the introns containing about 34%
less SNP variation). For this analysis, we combined the equiv-
alent mutational classes because SNPs cannot be assigned to
strands (e.g., A to C and T to G SNPs are treated as a single
class). We then compared the observed number of mutations
in each class within the introns of highly expressed genes to
those expected based on the genome-wide mutational profile
of noncoding sites using a chi-square test with five degrees of
freedom (reflecting the six classes of mutational change).

Estimation of Rates of Recombination
To assess local variation in recombination rates and its rela-
tionship with local GC content, we estimated population-
scaled recombination rates (Rho, q) for our sample of strains
(de Oliveira et al. 2019) along nonoverlapping sliding win-
dows of 5 kb in length, covering the whole genome, using a
machine-learning approach implemented in the FastEPRR R
package (Gao et al. 2016). To estimate confidence intervals for
q for each window, we ran 1,000 replicates, using default q
values for simulating the training sets. Afterward, 1 � 10�6

was added to the estimated value of q of each window, to
allow for windows with an estimate of q¼ 0 to be included in
subsequent analysis, and estimates of q where then log-
transformed. We furthermore calculated the overall GC per-
centage, over the same genomic windows, using the
Biostrings R package (version 2.52) (Pagès et al. 2020). We
then measured the correlation between the log-transformed
recombination rate estimates and the overall GC percentages
in the genomic windows. This was done for all windows
across the genome as well as separately for each
chromosome.

Expected Relative Frequencies and Identification of
Preferred Synonymous Codons
The estimated value of GCeq (�12.16%) from equation (1)
was first used to calculate the expected absolute codon fre-
quencies from the product of the expected frequencies of the
component nucleotides. For example, the expected frequen-
cies of the two codons for lysine are: E½f AAAð Þ� ¼ E½fðAÞ�3,
and E½f AAGð Þ� ¼ E½fðAÞ�2 � E½f Gð Þ�, where the individual

nucleotide frequencies are those expected at GCeq. The
expected frequency of the amino acid is, therefore, the sum
of the absolute codon frequencies for all codons coding for
that amino acid. For lysine, this would be as follows:

E f Lysð Þ½ � ¼ E f AAAð Þ½ � þ E f AAGð Þ½ �: (2)

The total expected frequency for each amino acid was
then used to rescale the frequency of the codons within
the amino acid to produce the relative frequencies of the
codons. For example, the expected relative frequency of the
AAA codon within lysine would be:

E bf AAAð Þ
h i

¼ E f AAAð Þ½ �
E f Lysð Þ½ � : (3)

The alternative method of estimating expected relative
frequencies by computing the emergence of triplets (pseudo-
codons) under neutrality was performed as follows.
Noncoding regions of all six chromosomes were
concatenated in a single linear sequence, which was divided
in triplets on the three frames. Absolute frequencies of these
pseudocodons were calculated based on the sum of counts of
each pseudocodon in all three frames. These frequencies were
translated into relative frequencies following the methods
above, treating the pseudocodons the same way we treated
the real codons (i.e., as if they were from CDSs).

To estimate the pattern of preference for different codons,
we accounted for the expected frequency of codons driven by
base composition bias by subtracting the relative synony-
mous codon frequencies expected at GCeq (on a log2 scale)
from the observed relative synonymous codon frequencies
(also on a log2 scale). This method assumes that codons used
more often than predicted under neutrality (Obsf > Expf)
must confer an advantage and are favored by selection.
Conversely, codons used less frequently than expected by
neutral evolution (Obsf < Expf) are assumed to confer a dis-
advantage and are therefore unpreferred/avoided. The result-
ing measure of codon preference can be interpreted as a log
fold change from neutrality, which is assumed to be caused by
selection.

Association between Codon Preference and
Segregating Synonymous Polymorphism
To identify synonymous mutations, we used the Ensembl
variant effect predictor (McLaren et al. 2016) to characterize
the consequences of SNPs based on the EnsemblProtist gene
annotation release 46 (Howe et al. 2020). We tested our hy-
pothesis about codon preference by examining the relation-
ship between the properties of codons and the inferred
fitness effects of different types of synonymous mutations.
For this, we assume that signatures of selection on synony-
mous codon usage are captured in the levels of synonymous
polymorphism. This is based on the assumption that codon
preference imposes purifying selection, such that segregating
polymorphism primarily represents deleterious mutational
variation. To understand these relationships, we modeled
the expected neutral distribution of synonymous polymor-
phism based on the pattern of mutation estimated from
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noncoding regions. The expected patterns of mutational var-
iation was compared with naturally occurring patterns mea-
sured from a set of 67 genome sequences (de Oliveira et al.
2019).

We examined the correlation between the relative amount
of synonymous polymorphism and the change in preference
caused by the change in codon associated with each synon-
ymous mutation. To calculate the expected frequency of each
synonymous mutation, we then multiplied the genome-wide
frequency of a given codon (i.e., the frequencies of the mu-
tational targets, fi) by the relative proportion of all mutations
(mj) that are in that class of mutation. For example, consider a
GCA to GCC change (which represents a synonymous mu-
tation for alanine). The GCA codon has a frequency (fi) of
0.0164 and the change requires an A to C mutation, which
represents a proportion (mj) of 0.01 of all mutations (see
fig. 1), making the raw proportion for this change pij ¼ fimj

¼ 0.0164� 0.01. These raw values (pij) were normalized by
dividing by their sum such that each value gives the propor-
tion of all SNPs observed that are expected to be in that given
class as follows:

bpij ¼
fimjP

fimj
¼ pijP

pij
: (4)

These proportions are given in supplementary table S4,
Supplementary Material online. Using the expected relative
proportions of SNPs (eq. 4), we then tested whether the
proportion of synonymous mutations within each codon
(relative to that expected) is associated with the relative pref-
erence of those mutations. This approach controls for varia-
tion in the relative selective impact of synonymous mutations
across different codons, essentially asking whether the prob-
ability of observing different types of synonymous changes
from a given codon depends on the preference of the desti-
nation codon. For three classes of synonymous mutation, all
being very rare codons for arginine (GCA! GCG, CGC!
CGG, CGG ! CGC), we found no synonymous SNPs. We
replaced the zeros with a count of one to allow them to be
included in this analysis, but this change makes no difference
to the result (R¼ 0.446 when they are removed, and
R¼ 0.440 when they are included).

This analysis is necessarily restricted to codons for which
there is more than a single class of synonymous mutation
since it relies on there being alternative mutational “options.”
Therefore, this analysis is restricted to 114 of the full set of 134
possible synonymous mutations (with the eight mutations
being at the first codon position and the remainder at the
third position). For each codon, the expected proportion of
each of the possible synonymous mutations was calculated
from the relative mutation rate. For example, for the GCA
codon coding for alanine, there are three possible synony-
mous mutations resulting in the GCC, GCG, and GCT codons,
respectively. The mutation rate for each of these classes of
mutation (i.e., for the A to C, A to G, and A to T changes
leading to each of these three codons) are approximately 0.01,
0.04, and 0.04. Therefore, we expect to see the three types of
synonymous mutations (leading to GCC, GCG, and GCT) in

the proportions about 0.11, 0.44, and 0.45. These expected
proportions were then compared with the observed propor-
tions (given in supplementary table S4, Supplementary
Material online) by calculating the log10 of the observed pro-
portion divided by the expected, which provides a deviation
measure that was calculated across all possible codons. For
example, in the case of the GCA codon, we observed the
three classes of synonymous mutations (GCC, GCG, and
GCT) in the proportions 0.16, 0.43, and 0.41, resulting in
log10 frequency deviations of 0.17, �0.01, and �0.04. This
result suggests an overabundance of mutations from GCA
to GCC and a possible underabundance to GCG and GCT. To
understand whether the deviations in mutation proportions
per codon reflect selection arising from codon preference, we
tested whether the relative preference of each codon predicts
the relative abundance of that class of mutation. To be able to
analyze patterns across all codons, we scaled the preference
values of possible alternative codons by measuring them as
deviations from the average preference of those particular
codons. For example, in the case of mutations at the GCA
codon for alanine, the three possible synonymous mutations
(leading to GCC, GCG, and GCT) have preference values of ca.
0.82, �1.62, and �0.41 (compared with the preference of
GCA itself, which is 0.31), with a mean of ca. �0.40. These
raw preference values were scaled as deviations from the
mean, giving them relative preference values of ca. 1.22,
�1.21 and �0.01.

Codon Use in Highly and Lowly Expressed Genes
We used publicly available transcriptome data from vegeta-
tive and developmental cycles in D. discoideum (Parikh et al.
2010; Nasser et al. 2013; Rosengarten et al. 2015) to identify
sets of highly and lowly expressed genes. Expression levels
were defined as the average expression after normalization
of vegetative and developmental RNAseq libraries (Parikh
et al. 2010; Nasser et al. 2013; Rosengarten et al. 2015).
Details of the analysis are provided by de Oliveira et al.
(2019) and only briefly outlined here. Libraries were normal-
ized using the TMM method (Robinson and Oshlack 2010)
implemented in edgeR (Robinson et al. 2010), after removing
genes with low counts, following authors’ specifications. Very
short (�500 bp, corresponding to 2,647 genes) and very long
genes (the top 2,647 longest genes) were removed from our
analyses, and the two classes of top 1,000 highest and 1,000
lowest expressed genes were selected among noncondition-
ally expressed genes (i.e., genes whose expression is not re-
stricted solely to the social phase). This allows us to have a
measure of expression that applies throughout the life cycle
and removes the potentially complicating effects of condi-
tionality (see de Oliveira et al. 2019 and below for details on
how conditionally expressed genes were identified). We then
calculated the frequencies of codon use in each of these two
sets of genes and used these frequencies to calculate the
average levels of codon preference for each set. We also
used the log2 transformed relative frequencies to generate a
measure of codon preference that is analogous to the one
based on the deviation of observed relative frequencies from
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the neutral expectation (here calculated as the value in highly
expressed genes minus the value in lowly expressed genes).

Parameters of Translational and Transcriptional
Selection
Coevolution of codons with the pool of isoaccepting tRNAs is
likely to be an important process shaping codon usage. This
coevolution hypothesis is often tested by estimating the rel-
ative codon adaptiveness (wi) (dos Reis et al. 2003; dos Reis
et al. 2004), which gives a measure of fitness assigned to each
codon. A limitation of this method is that wi is defined rela-
tively to the maximum adaptiveness value across all codons
(Wmax), including codons for different amino acids. This
means that it may not be an appropriate measure for under-
standing the usage of alternative codons, since different indi-
ces of tRNA adaptiveness may be due to differences in amino
acid usage rather than differences on the strength of selection
on synonymous codons to optimize expression. Therefore, to
generate an index that is appropriate for the study of synon-
ymous codons, we rescaled the measure of codon adaptive-
ness such that it measures the relative values for different
synonymous codons for each individual amino acid. Thus,
the relative synonymous codon adaptiveness of a particular
codon (wij) is defined as follows:

wij ¼
Wi

Wjmax
; (5)

where Wi is the absolute codon adaptiveness (tRNA gene
copy numbers after accounting for wobble pairings), and
Wjmax is the maximum absolute adaptiveness among codons
of amino acid j. This parameter (wij) was estimated by adapt-
ing R scripts from dos Reis et al (2003; 2004), after removing
codons for methionine, tryptophan (both with a single co-
don) and stop signal. Following dos Reis et al (2004), we
replaced the measure of wi with the geometric mean of all
codons (prior to calculating wij) with a value of wi> 0 for the
two codons, where wi � 0 (the GCA and GCG codons for
alanine), which prevents these very low values from driving
patterns.

To understand the extent to which codon preference is
explained by coevolution with the tRNA pool or by other
parameters, we partitioned the variation in codon preference
in tRNA-dependent and tRNA-independent components.
The tRNA-dependent component corresponds to the com-
ponent of codon preference that can be predicted based
on wij, whereas the residual value of codon preference (i.e.,
the deviation from the preference value expected based on
wi) gives the tRNA-independent component of codon
preference.

As a measure of transcriptional selection, we estimated
levels of transcript stability based on Gibbs free energy
(DG0), using the RNAfold tool (which calculates the global
folding of a sequence) from ViennaRNA package (Lorenz et al.
2011). Given the same transcript length, transcripts with
lower (more negative) DG0 are more stable. Because tran-
script length can also influence stability levels (longer

transcripts tend to be more stable), we weighted the original
parameter by CDS length to obtain an estimate per site.

Modelling Codon Use across Codon Positions within
Genes
To understand whether the overall model of codon use varies
across genes, we used a data set filtered for gene length
(where very long and very short genes were removed; see
above) and calculated the frequency of each possible codon
across all genes at each codon position within the genes in
both the 50 to 30 and the 30 to 50 directions (meaning genes
were either aligned to the start codon or stop codon before
frequencies were calculated). To avoid overlap between the
analysis from the 50 to 30 and in the 30 to 50 directions, we
restricted our analysis to the first or last 250 codon positions
(depending on the direction). The position-specific table of
codon frequencies was used to calculate the average prefer-
ence (including total preference, and the tRNA-dependent
and tRNA-independent components) of codons by simply
multiplying the vector of frequencies of the codons at each
position and the vectors of codon preference (i.e., the total
preference and tRNA-dependent and tRNA-independent
components, which were all estimated using the overall
genome-wide frequency of codon use).

Codon Use in Conditionally Expressed Genes
Conditionality of the social cycle has been shown to have an
important impact on evolution of the genes expressed only in
the social cycle because it dilutes selection, resulting in the
Red King process (de Oliveira et al. 2019). Therefore, we con-
trasted patterns of codon use in conditionally expressed
“sociality” genes (which are expressed only in the social phase
of the life cycle) with the “nonsociality” genes (which are
expressed throughout the life cycle) as defined in de
Oliveira et al. (2019) by comparing the means of average
preference in the two groups, after removing genes <500 bp.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Quax TEF, Claassens NJ, Söll D, van der Oost J. 2015. Codon bias as a
means to fine-tune gene expression. Mol Cell. 59(2):149–161.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a bioconductor
package for differential expression analysis of digital gene expression
data. Bioinformatics 26(1):139–140.

Robinson MD, Oshlack A. 2010. A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol.
11(3):R25.

Rocha EPC, Feil EJ. 2010. Mutational patterns cannot explain genome
composition: are there any neutral sites in the genomes of bacteria?
PLoS Genet. 6(9):e1001104.

Rosengarten RD, Santhanam B, Fuller D, Katoh-Kurasawa M, Loomis WF,
Zupan B, Shaulsky G. 2015. Leaps and lulls in the developmental
transcriptome of Dictyostelium discoideum. BMC Genomics 16:294.

Sauna ZE, Kimchi-Sarfaty C. 2011. Understanding the contribution of
synonymous mutations to human disease. Nat Rev Genet.
12(10):683–691.

Sauna ZE, Kimchi-Sarfaty C. 2013. Synonymous mutations as a cause of
human genetic disease. In: eLS. American Cancer Society. Chichester:
John Wiley & Sons Ltd.

Saxer G, Havlak P, Fox SA, Quance MA, Gupta S, Fofanov Y, Strassmann
JE, Queller DC. 2012. Whole genome sequencing of mutation accu-
mulation lines reveals a low mutation rate in the social amoeba
Dictyostelium discoideum. PLoS One 7(10):e46759.

Sedlazeck FJ, Rescheneder P, von Haeseler A. 2013. NextGenMap: fast
and accurate read mapping in highly polymorphic genomes.
Bioinformatics 29(21):2790–2791.

Sharp PM, Averof M, Lloyd AT, Matassi G, Peden JF. 1995. DNA sequence
evolution: the sounds of silence. Philos Trans R Soc Lond B Biol Sci.
349(1329):241–247.

Sharp PM, Devine KM. 1989. Codon usage and gene expression level in
Dictyostelium discoideum: highly expressed genes do “prefer” optimal
codons. Nucleic Acids Res. 17(13):5029–5039.

Understanding Sources of Selection Shaping Codon Usage Bias . doi:10.1093/molbev/msab099 MBE

19

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab099/6237909 by guest on 01 June 2021

http://bioconductor.org/packages/Biostrings/
http://bioconductor.org/packages/Biostrings/


Sharp PM, Li WH. 1987. The codon adaptation index: a measure of
directional synonymous codon usage bias, and its potential applica-
tions. Nucleic Acids Res. 15(3):1281–1295.

Sharp PM, Li W-H. 1989. On the rate of DNA sequence evolution in
Drosophila. J Mol Evol. 28(5):398–402.

Shields DC, Sharp PM, Higgins DG, Wright F. 1988. “Silent” sites in
Drosophila genes are not neutral: evidence of selection among syn-
onymous codons. Mol Biol Evol. 5:704–716.

Smeds L, Mugal CF, Qvarnström A, Ellegren H. 2016. High-resolution
mapping of crossover and non-crossover recombination events by
whole-genome re-sequencing of an avian pedigree. PLoS Genet.
12(5):e1006044.

Smith TCA, Arndt PF, Eyre-Walker A. 2018. Large scale variation in the
rate of germ-line de novo mutation, base composition, divergence
and diversity in humans. PLoS Genet. 14(3):e1007254.

Stoletzki N, Eyre-Walker A. 2007. Synonymous codon usage in
Escherichia coli: selection for translational accuracy. Mol Biol Evol.
24(2):374–381.

Studer SM, Joseph S. 2006. Unfolding of mRNA secondary structure by
the bacterial translation initiation complex. Mol Cell. 22(1):105–115.

Sueoka N. 1962. On the genetic basis of variation and heterogeneity of
DNA base composition. Proc Natl Acad Sci U S A. 48:582–592.

Sueoka N. 1988. Directional mutation pressure and neutral molecular
evolution. Proc Natl Acad Sci U S A. 85(8):2653–2657.

Trotta E. 2013. Selection on codon bias in yeast: a transcriptional hy-
pothesis. Nucleic Acids Res. 41(20):9382–9395.

Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, Pan T,
Dahan O, Furman I, Pilpel Y. 2010. An evolutionarily conserved
mechanism for controlling the efficiency of protein translation.
Cell 141(2):344–354.

Urrutia AO, Hurst LD. 2001. Codon usage bias covaries with expression
breadth and the rate of synonymous evolution in humans, but this is
not evidence for selection. Genetics 159:1191–1199.

Wolfe KH. 1991. Mammalian DNA replication: mutation biases and the
mutation rate. J Theor Biol. 149(4):441–451.

Wolfe KH, Sharp PM, Li W-H. 1989. Mutation rates differ among regions
of the mammalian genome. Nature 337(6204):283–285.

Wu Q, Medina SG, Kushawah G, DeVore ML, Castellano LA, Hand JM,
Wright M, Bazzini AA. 2019. Translation affects mRNA stability in a
codon-dependent manner in human cells. eLife 8:e45396.

Zhou Z, Dang Y, Zhou M, Li L, Yu C, Fu J, Chen S, Liu Y. 2016. Codon
usage is an important determinant of gene expression levels largely
through its effects on transcription. Proc Natl Acad Sci U S A.
113(41):E6117–E6125.

Zuckerman B, Ron M, Mikl M, Segal E, Ulitsky I. 2020. Gene architecture
and sequence composition underpin selective dependency of nu-
clear export of long RNAs on NXF1 and the TREX complex. Mol Cell.
79(2):251–267.e6.

de Oliveira et al. . doi:10.1093/molbev/msab099 MBE

20

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab099/6237909 by guest on 01 June 2021




