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An emerging paradigm proposes that neural computations can be under-
stood at the level of dynamic systems that govern low-dimensional tra-
jectories of collective neural activity. How the connectivity structure of a
network determines the emergent dynamical system, however, remains
to be clarified. Here we consider a novel class of models, gaussian-
mixture, low-rank recurrent networks in which the rank of the connec-
tivity matrix and the number of statistically defined populations are
independent hyperparameters. We show that the resulting collective dy-
namics form a dynamical system, where the rank sets the dimensionality
and the population structure shapes the dynamics. In particular, the col-
lective dynamics can be described in terms of a simplified effective circuit
of interacting latent variables. While having a single global population
strongly restricts the possible dynamics, we demonstrate that if the num-
ber of populations is large enough, a rank R network can approximate
any R-dimensional dynamical system.

1 Introduction

A newly emerging paradigm posits that neural computations rely on col-
lective dynamics in the state-space corresponding to the joint activity of all
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1573

neurons in a network (Churchland & Shenoy, 2007; Rabinovich, Huerta, &
Laurent, 2008; Buonomano & Maass, 2009; Saxena & Cunningham, 2019;
Vyas, Golub, Sussillo, & Shenoy, 2020). Experiments in behaving animals
have found that trajectories of neural activity are typically restricted to
low-dimensional manifolds in that space (Machens, Romo, & Brody, 2010;
Mante, Sussillo, Shenoy, & Newsome, 2013; Rigotti et al., 2013; Gao, Gan-
guli, Battaglia, & Schnitzer, 2015; Gallego et al., 2018; Chaisangmongkon,
Swaminathan, Freedman, & Wang, 2017; Wang, Narain, Hosseini, & Jaza-
yeri, 2018; Sohn, Narain, Meirhaeghe, & Jazayeri, 2019) and can there-
fore be described by a small number of collective, latent variables. It has
been proposed that these collective variables form dynamical systems that
implement computations through their responses to inputs (Eliasmith &
Anderson, 2003; Hennequin, Vogels, & Gerstner, 2014; Rajan, Harvey, &
Tank, 2016; Remington, Egger, Narain, Wang, & Jazayeri, 2018; Reming-
ton, Narain, Hosseini, & Jazayeri, 2018). How synaptic connectivity shapes
the effective dynamics of collective variables, and therefore computations,
however remains to be clarified.

Recurrent neural networks (RNNs) trained to perform neuroscience
tasks are an ideal model system to address this question and further de-
velop the theory of computations through dynamics (Sussillo, Churchland,
Kaufman, & Shenoy, 2015; Rajan et al., 2016; Barak, 2017; Wang et al., 2018;
Yang, Joglekar, Song, Newsome, & Wang, 2019). A recently introduced class
of models, low-rank RNNS, directly embodies the idea of low-dimensional
collective dynamics, opens the door to relating connectivity and dynamics,
and provides a framework that unifies a number of specific RNN classes
(Mastrogiuseppe & Ostojic, 2018). Low-rank RNNs rely on connectivity
matrices that are restricted to be low rank, which directly generate low-
dimensional dynamics. The rank of the network determines the number
of collective variables needed to provide a full description of the collective
dynamics. While previous works have shown that other specific classes of
RNNSs can approximate arbitrary dynamical systems (Doya, 1993; Maass,
Joshi, & Sontag, 2007), the range of collective dynamics that can be imple-
mented by low-rank RNNs remains to be clarified.

In this work, we focus on low-rank RNNs in which neurons are orga-
nized in distinct populations that correspond to clusters in the space of
low-rank connectivity patterns. Each population is defined by its statis-
tics of connectivity, described by a multivariate gaussian distribution, so
that the full network is specified by a mixture of gaussians. The total num-
ber of populations in the network is a hyperparameter distinct from the
rank of connectivity. Previous works have considered low-rank networks
consisting of a single, global gaussian population (Mastrogiuseppe & Os-
tojic, 2018, 2019; Schuessler, Dubreuil, Mastrogiuseppe, Ostojic, & Barak,
2020). In the opposite limit, by increasing the number of populations, a
gaussian mixture model can approximate any arbitrary low-rank connec-
tivity distribution. Here we examine how the number of populations and
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1574 M. Beiran et al.

their structure determine and limit the resulting collective dynamics in the
network.

We first derive three general properties of gaussian-mixture low-rank
networks: (1) in an autonomous network of rank R, dynamics are char-
acterized by R collective variables that form a dynamical system; (2) the
dynamics are determined by an effective circuit description, where col-
lective variables interact through gain-modulated effective couplings; and
(3) the resulting low-dimensional dynamics can approximate any arbitrary
R-dimensional dynamical system if the number of populations is large
enough. We then illustrate how increasing the number of populations in
a network extends its dynamical range. For that, we specifically focus on
fixed points of the dynamics. While a network consisting of a single pop-
ulation can generate at most a pair of stable fixed points, independently
of its rank, we show that adding populations allows the network to im-
plement arbitrary numbers of stable fixed points embedded in a subspace
determined by the rank of the connectivity matrix. Finally, we propose a
general algorithm to approximate a given R-dimensional dynamical system
with a multipopulation network of rank R and show one example network
that is designed to implement complex temporal dynamics.

2 Model Class: Gaussian Mixture Low-Rank Networks

In this section, we introduce the class of models we study and define the
key underlying quantities.

We consider a recurrent neural network of N rate units. The dynamics of
the input x; to the ith unit are given by

dx,-

N
Ty T + ;]ijfﬁ () + I (1) (2.1)

where 7 corresponds to the membrane time constant, the matrix element J;;
is the synaptic strength from unit j to unit i, and I (t) is the external input
received by the ith unit. The nonlinear function ¢ (x) maps the input of a
neuron to its firing rate activity. Throughout this study, we use the nonlin-
ear activation function ¢ (x) = tanh (x), although the theoretical results in
section 3 hold for any nonpolynomial activation function.

We restrict the connectivity matrix to be of low rank, that is, the number
of nonzero singular values of the matrix ] is R < N. Using singular value
decomposition, any connectivity matrix of this type can be expressed as the
sum of R unit rank terms:

R
1
— § : (), (1)
],‘]' = N T}’lir 1’le . (22)
r=1
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Figure 1: Low-rank connectivity with gaussian populations. (A) The connec-
tivity matrix J, rank-two in this illustration, is decomposed into the sum of
two rank-one terms given by the outer product of the connectivity patterns
m® and n®@, r = 1, 2. The components of the connectivity patterns—the pattern
loadings—are grouped into two different subpatterns (green and purple) with
different population statistics. For visual purposes, the connectivity is shown
only for 12 neurons in each population; the first 12 neurons belong to popu-
lation 1, and the last 12 neurons belong to population 2. (B) Scatter plot of the
distribution of pattern components in the four-dimensional loading space. Each
dot corresponds to one neuron, and each neuron is characterized by its four val-
ues on the patterns m® and n™, r = 1, 2. The color indicates whether the neuron
belongs to the first population (green) or the second population (purple). The
different populations are defined by different multivariate gaussian statistics,
means (white dots) and covariances (dashed lines), and define separate clus-
ters. Population size N = 200, «, = 0.5. (C) Overlap matrix given by the inner
product between connectivity patterns. The overlap matrix is a square matrix
of size given by the rank of the connectivity, in this case 2 x 2. Its eigenvalues
coincide with the nonzero eigenvalues of the N x N connectivity matrix. The
overlap matrix can be expressed as a weighted sum over the overlaps of the
different populations, as shown in equation 2.12.

The connectivity is therefore characterized by a set of R N-dimensional
and n® = [n(r)}
" )i=1.N

forr=1,..., R, where m™ are the left singular vectors of the connectivity
matrix and n® correspond to the right singular vectors multiplied by the
corresponding singular values (see Figure 1A for an example of a rank-two
connectivity matrix). The vectors m® (resp. n®) for r =1,..., R are mu-
tually orthogonal. Without loss of generality, we fix the norm of the left

vectors, or connectivity patterns, m® = [mfr) }

1=1...
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1576 M. Beiran et al.

singular vectors m® to be equal to N. This decomposition is unique, up to
a change in sign of the set of vectors m® and n®.

The external input can be expressed as the sum of Nj, time-varying
terms,

Nin

1) =Y 1Vu(t), 2.3)

s=1

which are fed into the network through a set of orthonormal input patterns

0= 7]
I Il i=1..N . .
of autonomous networks or networks with a constant external input.

Each neuron in the network is therefore characterized by its 2R + Nj,
components on the connectivity patterns m® and n® and input patterns
1), By analogy with factor analysis, we refer to these components as pattern
loadings and denote the set of loadings for neuron i as

([m’(r)}rzl...R’ {n’m}r:L..R’ [I"(S)]s:1..41\1,,1) = (e 1 1. @4

Each neuron can thus be represented as a point in the loading space of di-
mension 2R + Nj,, and the connectivity of the full network can therefore be
described as a set of N points in this pattern loading space (see Figure 1B).

We assume that for each neuron, the set of pattern loadings is gener-
ated independently from a multivariate probability distribution P (1, 1, I).
We moreover restrict ourselves to a specific class of loading distributions:
mixtures of multivariate gaussians. This choice is motivated by the fact
that gaussian mixtures can approximate any arbitrary multivariate distri-
bution, afford a natural interpretation in terms of populations, and allow
for a mathematically tractable and transparent analysis of the dynamics as
shown below.

In this gaussian mixture model, each neuron is assigned to a population
p with probability oy, p = 1... P, so that the connectivity matrix ] is a block
matrix. Within population p, the joint distribution P®) (m, n, I) is a multi-
variate gaussian defined by (1) its mean a'?) avector of dimension 2R + Nj,,
given by the set of means of each pattern loading within population p,

fors =1, ..., Nj. In this study, we focus on the dynamics

a? = (a2 a) ) 29

and (2) its covariance X", a matrix of dimension (2R + Nj,,) x (2R + N,),
whose elements are the pairwise covariances

Zg) =E [(x(”) - a,@) (y(p) - a;p))] , (2.6)

d-ajo11B/008U/NPa W }08IIP//:d1Y WOy papeojumod

B 008U/8/€9161/2LGL/9/ECE/P!

1202 dunr g uo Jasn uopuo abajjo) Ausianiun Aq jpd-L8€1L0



Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1577

where E [ - ] indicates the expected value and x and y represent any pair of
connectivity or input components. Within the loading space, each popula-
tion therefore corresponds to a cluster centered at a”) and of shape specified
by the connectivity matrix 2,(55) (see Figure 1B).

The geometrical arrangement between patterns is a key feature to under-
stand the behavior of low-rank networks (Mastrogiuseppe & Ostojic, 2018).
The connectivity and input patterns are N-dimensional vectors. To quantify
the geometrical configuration between two patterns, we define the overlap,
or normalized scalar product,

1 N
O(cy) =1 > xiyi 2.7)
i=1

where x and y are any two patterns in the set given by m®, n®, and 1®.
The overlap is the projection of pattern x onto y, so that two patterns are
orthogonal if and only if their overlap is zero.

An important property of rank-R matrices, such as the connectivity ma-
trix J, is that their nonzero eigenvalues coincide with the eigenvalues of the
overlap matrix J* (Nakatsukasa, 2019) that is defined by the overlaps be-
tween pairs of connectivity patterns,

Jw =0 (m(s), n(‘)) , 2.8)

forr,s =1, ..., R. The eigenvalues of the connectivity matrix, and therefore
of the overlap matrix, are an essential property to understand the dynamics
of low-rank networks, as we show in section 4. It is often more convenient
to calculate the eigenspectrum of the overlap matrix J*, of size R x R, than
of the connectivity matrix J, of size N x N.

In a network with P populations, any pattern x of length N can be rep-
resented as a set of P subpatterns xP) for p=1,..., P, where each subpat-
tern has length o, N and includes the components of neurons belonging to
population p. Figure 1 shows an example of a rank-two network with two
populations, where the connectivity patterns can be split into two different
subpatterns of equal size (green and purple). The overlap between two pat-
terns can then be expressed as a weighted average of the overlaps between
subpatterns:

p
O(x.y)= &0 (x<p>, y<p)) ) (2.9)
p=1

Even if the subpatterns are not orthogonal to each other (i.e. the overlap be-
tween two subpatterns is not zero), the patterns can be orthogonal to each
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1578 M. Beiran et al.

other when the subpattern overlaps cancel out. In the limit of large net-
works, the overlap between two subpatterns xP) and y® is given by the
expected value over the distribution of the loadings in the population:

0 <x<p>, y<p>) —F [xw)y(p)] =) + 5. (2.10)

In order to define the overlap matrix in terms of the statistics of the dif-
ferent gaussian populations, we define the matrix

o, ==, @.11)

The matrix 0,,;” is an R x R whose entries contain the covariance between
the connectivity patterns m® and the n® in population p. We call this ma-
trix 0, P a (reduced) covariance matrix, in an abuse of notation, because
it is a subset of the covariance matrix £, and therefore it is not symmet-
ric or positive definite. For example, for a rank-one network, P is justa

scalar that can take any real value. For a rank-two network, o,,,") isa 2 x 2

matrix, whose entries are given by the four covariances an(fi)nl, 0155212/ 0,5,’211,

and 0,1(1’212.

Using equations 2.9 and 2.10, we can characterize the overlap matrix %
as a function of the statistics of the connectivity subpatterns,

P
T
R XAC Rl (212)
r=1

where uﬁlp ) and uf,’f ) are R-dimensional vectors whose entries correspond to
the corresponding subset of elements in a?) (see Figure 1C).

Similar to the covariance matrix o,,, that measures the correlations
between connectivity patterns m® and n(®, we define the covariance oy
between the connectivity patterns n® and the constant external input I as
a vector of length R, where each component is defined as

o = £ 2.13)

nd

forr =1, ..., R. We assume that the input loadings and loadings of the left

connectivity patterns are uncorrelated within each pattern, an(fj ; =0.

3 Dynamics in Gaussian Mixture Low-Rank Networks

In this section, we present three key properties of dynamics in mixture of
gaussian low-rank networks: (1) in a network of rank R, dynamics can be
characterized by R collective variables that form a dynamical system; (2) for
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1579

loadings drawn from gaussian mixture distributions, the dynamics can be
further described as an effective circuit in which collective variables inter-
act through gain-modulated effective couplings; and (3) with a sufficient
number of populations, the resulting low-dimensional dynamics can ap-
proximate an arbitrary R-dimensional dynamical system.

Details of the derivations are provided in appendixes A and B.

3.1 Low-Dimensional Dynamics. In recurrent networks with low-rank
connectivity, the dynamics of the trajectories x (t) are embedded in a linear
subspace of dimension R + N, spanned by the left singular vectors m® and
the external input patterns I) and can therefore be expressed as

R Nin
() =Y k! +Y ke I (3.1)
r=1 s=1

Here «, and «j, are collective variables that are obtained by projecting the
activity x (t) on the patterns m® and I®), that we assume are orthogonal to
each other. Introducing the trajectory x () expressed in this new basis into
equation 2.1, the dynamics of the collective variables are then given by the
following dynamical system:

di,
rd—’; = —ky + k) (3.2)
dky,

Tr = ks ()

N N, R
1 (N6 0
K = N ;ni 1) ;Ii ki, + Emi K| . (3.3)

We focus in the following on networks receiving a constant input, so that
there is only one collective variable «; along the input dimension, the value
of which is constant. The recurrent connectivity contributes to the dynamics
of k, through the term «/*.

The dynamics of collective variables in equation 3.2 are valid for any
finite-size, low-rank network, without any assumption on the values of pat-
tern loadings. We next turn to networks where the pattern loadings are gen-
erated from specific distributions.

3.2 Dynamics in Multipopulation Networks. For low-rank networks
in which pattern loadings are generated for each neuron from a gaussian
mixture distribution, in the limit of large N, the dynamics in equation 3.2
can be expressed in terms of the statistics of pattern loadings over the
populations and become (see appendix A)
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d
t% = —Kkr + K, (3.4)

K[ = ZO‘P |:g < ( ® A(V))>
+ (gﬁ?,q + gg,gfgls,cs) <¢/ (M(p[ A(P))>:|. (3.5)

Here 1P’ and A are the mean and variance of input to population p, given
by

= ‘11 Ve + Zams Ks, (3.6)

AP (P)KZ + Z U(P) 2 (3.7)
In equation 3.5, we used the gaussian integral notation:

(f (n, 0)) = f dx (2m) 2 e 12 f (u + \/Zx). (3.8)

The gaussian integral notation (f (u, A)) represents the expected value of
the random variable obtained after applying the function f to a random
gaussian variable characterized by mean p and variance A.

The factor (¢’ (17, AP))) in equation 3.5 corresponds to the average gain
of neurons in population p in a given state, specified by the mean ;") and

variance A" of the inputs to the population p. For each population, this av-

erage gain multiplies the covariances 0,55217 and O‘]EZ), and the corresponding

average over populations defines an effective connectivity:
P
Gy = Z apU;Ef) <¢/ (M(P)’ A(P))) ) (3.9)
p=1

The contributions of the first-order statistics any) to the recurrent dynam-
ics are modulated by the average firing rate in population p and define an
effective input:

. =Z“ (o (10, 29)). 610
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1581

When the effective connectivity and inputs are introduced into equation 3.4
the dynamics of a low-rank network with uncorrelated constant input take
the simple form of an effective circuit of interacting collective variables:

di _ u ~
TT; = —Kky +d, + ; On,m K1+ (311)

Note that equation 3.11 describes the full nonlinear dynamics in the limit
N — oo. Although the collective variables interact linearly through the ef-
fective connectivity and inputs, those depend implicitly on «,. The overall
dynamics are therefore nonlinear, the nonlinearity being fully encapsulated
in the effective inputs and couplings.

3.3 Universal Approximation of Low-Dimensional Dynamical Sys-
tems. By mapping the dynamics in equations 3.4 and 3.11 to a feedforward
network with a single hidden layer and exploiting the universal approxi-
mation theorem (Cybenko, 1989; Leshno, Lin, Pinkus, & Schocken, 1993),
we can show that a gaussian mixture network of rank R receiving a con-
stant input is a universal approximator of R-dimensional dynamical sys-
tems (appendix B). More precisely, for a sufficient number of populations,
the low-rank dynamics in equations 3.5 and 3.11 can approximate with ar-
bitrary precision any R-dimensional dynamical system,

dk
i G (k), (3.12)

defined by a vector field,

G ({erdy=1..r) = (G1 ({krdi=1. k) - - Gr (K }21 R)) » (3.13)
over an arbitrary finite domain {x,},_; € [KY’""”, /c,m‘“]. More specifically,
this result requires that the vector field G is bounded and piecewise contin-
uous and the transfer function is not a polynomial (see appendix B).

As an alternative to approximating any vector field over a bounded do-
main, we show that if the transfer function is bounded and monotonic,
a rank-R network with multiple populations can approximate any vector
field G ({x+},=1.r) over the full domain of the collective variables, {x,},_; r €
[—o0, +00], with the restriction that the vector field follows asymptotic
leaky dynamics for large input values:

. r
lim
Ke—F00 BKV'

(K1, .oy k) = =8y (3.14)
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1582 M. Beiran et al.

for any values s, r,7 =1, ..., R, where G, represents the rth component of
the vector field as in equation 3.13 and §;; is the Kronecker delta. This stems
from the fact that for large values of «;, the recurrent dynamics (see equa-
tion 3.5) saturate to a constant value.

Note that the universal approximation theorem does not state how many
populations P are required to implement a given dynamical system and
does not provide an algorithm for finding the statistics of the different
populations.

4 Dynamics in Networks with a Single Population

Having shown that a rank R network with an arbitrary number of pop-
ulations can approximate any R-dimensional dynamical system, we now
illustrate how having a small number of populations in contrast limits the
possible dynamics.

We focus first on the case of networks consisting of a single gaussian pop-
ulation. For simplicity, we focus on autonomous networks with zero-mean
connectivity patterns. Specifically, we show that independent of their rank,
the range of dynamics such networks can implement is restricted. This case
was previously studied for connectivities that combined a rank-one or rank-
two structure and a full-rank random component (Mastrogiuseppe & Osto-
jic, 2018; Schuessler, Dubreuil et al., 2020). Here we provide an overview of
those results and extend them to single-population networks of arbitrary
rank. The fact that we focus on networks whose connectivity is low-rank
allows us to provide a deeper analysis of the dynamics.

In vectorial form, assuming zero-mean connectivity patterns, the collec-
tive dynamics in equation 3.4 for one population read

rj—l; =—Kk+ (d)/ (O, ICTIC))(TmnIC, (4.1)

where we used the vector of collective variables k € RX and the R x R
covariance matrix o,,, as defined in equation 2.11, which is equal to the
overlap matrix, equation 2.12, in the case of zero-mean connectivity pat-
terns. In the following analysis, we show that the eigenvalues of the covari-
ance matrix oy, which for N — oo are identical to the eigenvalues of the
connectivity matrix, determine the dynamics in collective space. Schuessler,
Dubreuil et al. (2020) performed a similar analysis for networks with ran-
dom connectivity and rank-one and rank-two perturbations.

4.1 Fixed Points. The fixed points of equation 4.1 are given by

1o = (¢ (0, ey K0)) Grnko. (4.2)
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1583

For ¢(x) = tanh (x), the trivial point ko = 0 is always a solution. There
might, however, be nontrivial fixed points depending on the eigenvalues of
the covariance matrix 6,,,. The covariance matrix can have up to R eigen-
values, which we denote A,, with associated eigenvectors u,. Each real and
nondegenerate eigenvalue A, of the covariance o,,, generates a fixed point
K(()r) = p,u,, Where p;, is the radial distance of the fixed point along the di-
rection set by the eigenvector u,. Introducing this parameterization of the
fixed points in equation 4.2, we obtain the following implicit equation for
the value p,:

1=2(¢'(0, p?)). (4.3)

The gain factor (¢’ (0, p?)) is bounded between 0 and 1 for the transfer func-
tion ¢ (x) = tanh x. Therefore, eigenvalues 1, > 1 generate two nontrivial
fixed points, symmetrically located around the origin (see Figures 2A to 2D,
bottom row, for a rank-one example). Smaller eigenvalues do not generate
any nontrivial fixed point (Figures 2A to 2D, first row).

In order to determine the stability of the fixed points, we linearize the
dynamics and obtain the Jacobian S, at the fixed point corresponding to the
eigenvalue A, of 6,,, (see appendix C),

1
S =—I+ —om +{¢" (0, 7)) Arppuet,” (4.4)

r

where I denotes the R x R identity matrix. The eigenvalues of S, determine
the stability of the fixed points: if any positive eigenvalue exists, the dynam-
ics will diverge away from the fixed point in the direction of the correspond-
ing eigenvector of S,. Negative eigenvalues correspond to attractive modes
of the dynamics around the fixed point. If all eigenvalues of the stability
matrix are negative, the fixed point is stable.

When the eigenvectors of the matrix ¢, are orthogonal to each other
(see Figures 3A to 3D), the R eigenvalues of the matrix S,, denoted as y,
for ¥ =1,..., R, can be calculated analytically: the eigenvalue y, has an
associated eigenvector equal to the eigenvector u, of the covariance matrix
0 and reads

Ay
Yy =—1+ )TI +<¢w (07 ,0,2)>)»r,0r25rr’~ (4.5)
T

Remarkably, the eigenvalues of the Jacobian around any nontrivial fixed
point are therefore directly determined by the eigenvalues of connectivity
and covariance matrices (Schuessler, Dubreuil et al., 2020). If ' = 7, the two
first terms cancel out, and the third term is always negative (see appendix
C). This implies that all nontrivial fixed points are stable in the direction u,
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Figure 2: Dynamics in rank-one networks with a single gaussian population.
(A) Scatter plot of the loadings of left singular vectors mg’) and right singular
vectors nl@. Top: Covariance o,,,, indicated by the slope of the dashed line, be-
low the critical value for nontrivial fixed points (solid line). Bottom: Covariance
oum beyond the critical value. (B) Dynamics of the activation variable x; (t) of 10
units in the network for the two different networks initialized at random values.
The network with o,,, larger than one (bottom) converges to a heterogeneous
fixed point, while the other one decays to zero. (C) One-dimensional dynamics
corresponding to the right-hand side of equation 4.1. Filled dots correspond to
stable fixed points. For a weak covariance between connectivity patterns (top),
the trivial fixed point is the only fixed point. For a strong covariance (bottom),
the recurrent connectivity generates two nontrivial stable fixed points. (D) Evo-
lution of the collective variable k as a function of time in a finite-size network,
defined as the projection of the activity x (t) onto the connectivity pattern m.
Each curve corresponds to a different realization of the random connectivity
matrix. N = 1000, top row: o, = 0.34; bottom row o, = 1.52.

that points toward the origin. However, if there are other nontrivial fixed

points corresponding to eigenvalues A, > X, of 6y, the fixed point lc((,r) is
destabilized in the directions of the eigenvectors with larger eigenvalues.

When the eigenvectors of a,,, are not orthogonal to each other, the eigen-
vectors of 6,,, are not eigenvectors of the linear stability matrix S,. However,
the eigenvalues of S, are still given by equation 4.5 (see appendix D), so
that the same stability properties hold (see appendix D): every fixed point
is stable in the direction toward the origin, and the fixed point in the direc-
tion given by the largest eigenvalue is stable while the other ones become
unstable.

In summary, if all eigenvalues of the covariance matrix are real and
nondegenerate, only the pair of nontrivial fixed points corresponding
to the largest eigenvalue is stable. All the other nontrivial fixed points
of the dynamics are saddle points. This implies that low-rank networks

d-ajo11B/008U/NPa W }08IIP//:d1Y WOy papeojumod

©008U/8/€9161/ZLGL/I9/EE/P

1202 dunr g uo Jasn uopuo abajjo) Ausianiun Aq jpd-L8€1L0



Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1585

A M M B m® m? C D

12 00 p® 1

i
o o

(1

n,

00 (16 n®

K2

°
peads 0THo|

K2

n’m
o o
N
°
N 2
. C
N
£
>
e

m,m

F mb @
A 16 0.8 pv
o % Omn =

08 16 n?

20 2
m’gzi

16 00 M

_A, A,
5 ARP Tmn =
. 0/ ‘ 00 16 @
-5 . 2
20 2
m(li

(1)

n

Azuz

Auy

Figure 3: Dynamics in rank-two networks with a single gaussian population.
(A) Scatter plot of the loadings of left singular vectors ml@ and right singular
vectors nlm. (B) Covariance matrix o,,, of the population (top), and its eigen-
vectors (bottom). (C) Vector field corresponding to the mean-field dynamics in
the plane k1 — «» of collective variables (see equation 4.1). The color map repre-
sents the speed of the dynamics, defined as the norm of vector Z—’;, in different
points of the collective space. Two nontrivial fixed points are generated in the
direction of each eigenvector. Black dots correspond to stable fixed points, while
white dots are unstable or saddle points. The pair of fixed points corresponding
to the largest eigenvalue is stable. (D) Finite-size simulations of the dynamics.
Three different connectivity realizations are shown from each initial condition.
N = 1000. (E-G) Similar to panels A to C for a network with complex eigenval-
ues (overlap matrix given by equation 4.6). The network generates a limit cycle.
Gray curves in panel G correspond to trajectories from finite-size networks. The
dots represent the final state after a fixed time elapsed. (H) Frequency of the limit
cycle for different values of the symmetric part of the connectivity o and fixed
imaginary part o, = 0.8. The dots show the numerically estimated frequency
of oscillations in finite-size simulations for five different network realizations.
The line corresponds to equation 4.10. The triangle indicates the parameter o
used in panels E to G. (I-L) Similar to panels A to D for a network with degen-
erate eigenvalues: any vector in the plane spanned by vectors m® and m® is
an eigenvector of the connectivity. This symmetry leads to a continuous attrac-
tor in the mean-field dynamics. In finite size simulations (two connectivity ma-
trix realizations shown in panel L, in different shades of gray, with filled points
corresponding to the stable fixed points) the continuous attractor corresponds

to a slow manifold on which usually two stable fixed points lie. Parameters:
O'n% = 124, Gn% =1.63.
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1586 M. Beiran et al.

consisting of a single gaussian population can have at most two stable fixed
points independent of their rank.

4.2 Limit Cycles. Complex eigenvalues of the covariance matrix oy, if
they exist, always appear in conjugate pairs. They lead to spiral dynamics
around the origin, in the plane spanned by the real and imaginary part of
the corresponding eigenvectors. If the real part of the complex eigenvalues
is smaller than unity, Re (%,) < 1, the spiral dynamics decay back to the ori-
gin. Otherwise, if Re (,) > 1, there is a limit cycle on the plane, around the
origin. Similar to the case with only real eigenvalues of the covariance ma-
trix, if the real part of the complex eigenvalue is larger than the real part
of any other eigenvalue of o, any trajectory will converge to the plane
defined by the real and imaginary parts of the corresponding eigenvectors.
On this plane, we then find that the limit cycle is stable.

To illustrate this case, we consider a rank two network with a covariance
matrix of the form

o —0,
Omn = ( ) B (46)
0y O

which has eigenvalues o + io,,. Figures 3E and 3F show an example of a
network with such connectivity.

We can then write the equations for a rank-two network in polar form.
Any state k = [«1, k2] in a rank-two network can be mapped to the radial
distance p and an orientation 6 using the mapping «; := pcos6 and «y :=
psind. The dynamics in equation 4.1 become

Ti—f =—p+po (¢ (0.p)). 4.7)
do
T =0 (#' (0, p?)). (4.8)

When the real part o of the eigenvalues is larger than one, the flow in the
radial direction cancels at a value py given by equation 4.3, which yields

ot =(¢'(0,07)). 4.9)

Based on equation 4.7, we observe that any perturbation in the plane
away from the limit cycle makes the radial component p go back to py. The
limit cycle is therefore stable, as shown in Figure 3G.

Introducing this result into equation 4.8, we obtain that the oscillations
of the limit cycle are generated at a frequency

Ow

wic = 2. (4.10)
o
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In this analysis, equation 4.10 is derived for the particular covariance
matrix 6,,, in equation 4.6, which is the sum of an isotropic matrix (propor-
tional to the identity) and an antisymmetric matrix. However, this equation
is valid more generally for any connectivity matrix with a pair of complex
eigenvalues (see appendix D). When the covariance matrix is not antisym-
metric but still has complex eigenvalues, the limit cycle is no longer a circle
but resembles an ellipse, while the frequency of oscillation appears to still
be given by equation 4.10.

Complex eigenvalues can be combined with real eigenvalues in net-
works with rank larger than two. The same stability properties are kept:
only the fixed point or the limit cycle generated by the eigenvector with the
largest real part is stable. The unstable fixed points or limit cycles remain
attractive within the dimensions spanned by the corresponding eigenvec-
tor (see Figure 9 in appendix D) for an example of a rank-three network
combining an unstable limit cycle and two stable fixed points).

4.3 Slow Manifolds. When the covariance matrix o,,, has degenerate
eigenvalues, low-rank RNNs can lead to phenomena other than discrete
fixed points or limit cycles. As an example of degenerate eigenvalues, we
study the network dynamics when the covariance matrix o,,, is diagonal:

Oonn = Oyl (4.11)

This covariance matrix has one single real eigenvalue o,,,, which is degener-
ate, since it has R linearly independent eigenvectors. Introducing the covari-
ance matrix in equation 4.11 into the dynamics in equation 4.1, we obtain
the fixed-point equation

Ko = (@' (0, e K0)) Ounnkco. (4.12)

To solve the fixed-point equation, as in the previous section, we use the
ansatz ko = potty,, Where u,, is an arbitrary unitary vector in collective
space. Introducing the ansatz in the fixed-point equation 4.12, we find
that there is a nontrivial solution given implicitly by the scalar equation
(#" (0. p3)) = 0,1, which is independent of the particular direction #,,. Fur-
thermore, we find that the fixed point is stable in the direction u,,. Therefore,
in the mean-field limit given by equation 4.1, this degenerate connectivity
leads to a continuous manifold of attractive states that are at an equal dis-
tance pp away from the origin. In the case of rank-two connectivity, this
degenerate covariance matrix leads to a stable ring attractor (see Figures 31
to 3K), and in rank-R, to a stable R-spherical attractor.

In finite-size simulations, the sampling of random loadings introduces
spurious correlations in the matrix o,,,, breaking the degeneracy of the
eigenvalues. As a consequence, only a small number of points on the
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continuous attractor predicted by the mean-field theory give rise to actual
fixed points. While the rest of the points on the predicted continuous attrac-
tor are not fixed points of the finite-size network, the dynamics around them
are typically slow. More specifically, any trajectory of activity quickly con-
verges toward the predicted continuous attractor and then slowly evolves
along it until it reaches a fixed point (see Figure 3L) (Mastrogiuseppe & Os-
tojic, 2018). In finite-size networks, the continuous attractor predicted by
the mean-field analysis therefore gives rise to a low-dimensional manifold
in state space, along which the dynamics are slow.

When degenerate and nondegenerate real and complex eigenvalues are
combined, the global stability appears to be given by the criterion in equa-
tion 4.5: each eigenvalue generates its corresponding nontrivial dynamics
(fixed points, continuous attractors or limit cycle) independently. The sta-
bility of these dynamical phenomena depends on the global eigenspectrum:
the eigenvalues with the largest real part generate stable attractors, while
the other eigenvalues lead to repellers.

4.4 Summary. In a low-rank network consisting of a single gaussian
population, the possible nontrivial steady states are a pair of fixed points,
a limit cycle, or a continuous attractor that gives rise to a small number of
fixed points in finite networks. On top of this limited range of stable so-
lutions, increasing the rank leads to additional unstable fixed points and
limit cycles that can potentially be used to control the dynamics, a point
we do not further explore here. We instead proceed to show that increasing
the number of gaussian populations allows networks to implement a larger
range of stable dynamics.

5 Dynamics in Networks with Multiple Populations

As described in the previous section, a major limitation of rank-R networks
consisting of a single gaussian population is that they cannot give rise to
more than two stable fixed points, symmetrically arranged around the ori-
gin. We next show that networks consisting of several gaussian populations
can exhibit a larger number of stable fixed points. We specifically describe
two mechanisms by which multiple fixed points can be generated and con-
trolled and show that classical Hopfield networks (Hopfield, 1982) corre-
spond to a particular limit of gaussian-mixture low-rank networks.

5.1 Nonlinear Gain Control. The first mechanism for generating multi-
ple fixed points is based on having several populations that reach saturation
in different regions of the collective space. The local dynamics in these dif-
ferent regions are then controlled solely by the statistics of the nonsaturated
populations.

For concreteness, we consider a rank-one network consisting of two
populations, defined by different statistics of pattern loadings. Within
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Figure 4: Nonlinear gain control in rank-one networks with multiple popula-
tions. (A) Scatter plot between the components of the connectivity patterns m;
and #; in a rank-one network with two gaussian populations, shown in green
(negatively correlated population) and purple (positively correlated popula-
tion). (B) Average gain within the two populations (green and purple lines) at
different states of the collective variable . The green population (large variance
G,SZ)) saturates at values much closer to the origin than the purple population

(low variance 07;22)). Therefore, for large values of «, the purple population has a
stronger influence on the dynamics. (C) Mean-field dynamics generated by the
two-population statistics. Three stable fixed points (filled gray dots) emerge in
the 1D recurrent dynamics. Close to the origin «o, the fixed point is stable be-
cause the green population dominates, and it has a negative correlation o <.
Therefore, the origin is stable. At values of « far from the origin, the purple pop-
ulation dominates, and it creates nontrivial stable fixed points. (D) Dynamics of
the collective variable « in a network with N = 1000 units, initiated at different
initial values. The dynamics converge to one of the three stable fixed points. Pa-
rameters: o) = —10, 04 = 4.5,0') =1.98,6% =0.02,0;) =59.5, 0% = 1020,
and o] =0y = 0.5.

population p, for p =1, 2, the joint distribution of n and m values over
neurons is specified by a 2 x 2 covariance matrix £¥). For simplicity, we
take the mean of the distribution to be zero. In the two-dimensional load-
ing space defined by m and , the two populations correspond to different
gaussian clusters, both centered at zero but with different shapes and ori-
entations (see the green and purple dots in Figure 4A).

The dynamics of the collective variable « in equation 3.11 read:

rd—: = —K 4 Gk, (5.1)

with the effective feedback 6,,, defined as

G = %a,ﬁlln) <¢' <0, K20'15112)>> + %Urfn) <</)' (O, Kzorfz)» . (5.2)

This effective feedback &,,, is set by the average of covariances a,gfi,) for each
population p, weighted by the gain of the population. Low gain implies
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that the population is at a saturated state. The parameter an(f? controls the

range at which a population saturates as the collective variable « increases.

If the two populations have different variances O‘}LZ), their gains will vary

differently with « (see Figure 4B). If, moreover, the different populations

have covariances on(f;) of different signs, the total effective feedback will vary

strongly at different ranges of k, while this is not the case in networks with
uniform populations or a single one. Therefore, by manipulating the vari-
ance of the m connectivity pattern within each population and the overlap
between the left and right connectivity patterns, it is possible to generate
more flexible dynamics.

In particular, the network can have three stable fixed points: one at the
origin and a pair of symmetrical nontrivial fixed points. First, the origin
x =0 is always a fixed point of dynamics in equation 5.1. The origin is,
moreover, a stable fixed point if the effective feedback at zero, which is given

by % (o,(nl,f + a,ff,f) ,is smaller than 1. Second, at large values of «, the effective

feedback 6,,, should be positive to cancel the contribution of the leaky term
—« and generate a nontrivial fixed point. Therefore, one of the populations,
which we define to be the first one (p = 1), must have a strong, negative
overlap, o) <262 <0. Given equation 5.2, this implies that the gain
of the positively correlated population two should be large, whereas the
gain of the negatively correlated population one should be close to zero. A

small gain is achieved in the first population by having a large value 015112),
1)

so that the second condition reads 0’512 > 071(122). Figures 4C and 4D show the
dynamics of such a network given by the mean-field equation and in finite-
size networks.

More generally, with more than two populations, this mechanism can be
extended to produce a larger number of stable fixed points in rank-one net-
works. The two key components of this mechanism are (1) an independent
control of the gain of the different populations, so that the contribution of

each population to the effective feedback takes place in different ranges of

the collective variable «, and (2) covariances on(ﬁq) of different signs, so that

the effective feedback can flexibly take both positive and negative values
in different ranges of «. These mechanisms can also be applied to networks

with rank higher than one. In that case, the overlap between loadings is

given by a matrix ol) instead of a scalar, while the gain of each population

is a scalar value. Populations with different covariance matrices and gains
that vary at different ranges of the collective variables are able to generate
multiple fixed points in different regions of the collective space, or combina-
tions between stable limit cycles and stable fixed points (Dubreuil, Valente,
Beiran, Mastrogiuseppe, & Ostojic, 2020).

5.2 Symmetries in Loading Space. A second mechanism for generating
multiple fixed points is to exploit symmetries in the distribution of loadings
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1591

P (m, n). Such a symmetry in the connectivity induces a symmetry in the
dynamics of the collective variables. In consequence, if a network generates
one nontrivial stable fixed point, additional stable fixed points appear at
symmetric points in the collective space.

We focus here on networks where the overlap between the connectivity
patterns is given by the nonzero means of the loadings, which is comple-
mentary to the previous section where the connectivity patterns had zero
mean and the recurrent dynamics is determined by the covariances between
the loadings. We introduce a symmetry in the distribution of loadings by
arranging the means of the loadings accordingly. Note, however, that sym-
metrical distributions of loadings can also be generated in the zero-mean
case.

As an illustration, we consider first a rank-two network, with units
evenly split into P populations. In each population, the loadings mg ) P

2 9
ngp ), n” have a different set of means a,&’fl), a,(fz), a,(f;), a,(f; , and the covari-

ances 0,55215 are zero. The variance, of the loadings, 0,2 and 0,2, are identical

in all populations. As a consequence, different populations correspond to
clusters of identical spherical shape, but centered at different points in the
four-dimensional loading space.

We specifically arrange the means of the different populations (centers
of the different clusters) symmetrically at the vertices of a regular polygon
in the planes of loadings m; — my and 1y — ny:

2 2
a?) = R, co s,(%p), o) — R, sm<%”>, (5.3)

2 2
”1(11 = R, cos (?) , a,(f;) R, sin (%) , (5.4)

where p is the population index, p =1...P for P > 2. The radial distance
R, is fixed so that the patterns m¥ and m® have unit variance, while the
free parameter R, controls the overlap between the connectivity patterns.
Figure 5A shows an example with six populations, P = 6. This distribution
has a discrete rotational symmetry of order P, since rotations of angle 27 /P
in the planes m; — n, and my — ny leave the distribution unchanged.

When the mean-field description in equation 3.4 is used, the dynamics
of the two collective variables now read

P
r% = Z:: ( (”ml K1+ ‘Zmz K2, o,,21 (Kl2 + K22)>> (5.5)
P
r% = —Kkp + Z ( (ﬂml K1+ a,(qu K2, U,%l (/{12 + Kzz))> (5.6)
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Figure 5: Discrete rotational symmetry in rank-two networks with multiple
populations. (A) Scatter plot between the components of the connectivity pat-
terns in a rank-two network. The network consists of six populations, with cen-
ters located on the vertices of a regular hexagon. The distribution is invariant
to rotations of an angle 27 /6 in the m;—n, and m,-n; planes. (B) Mean-field dy-
namics of the network, the color map represents the speed of the dynamics Q
(blue: slow dynamics, yellow: fast dynamics). The hexagonal symmetry in the
loadings produces a solution with hexagonal symmetry, with six stable fixed
points (black dots) symmetrically arranged along a ring. Saddle points (white
dots) appear between the stable fixed points. (C) Trajectories of the collective
variables in finite-size simulations, initiated at different initial conditions. All
trajectories converge to one of the six stable fixed points. Two different network
realizations are shown for each initial condition. Parameters: centers arranged
as in equations 5.3 and 5.4 where p = 6 and R, = 1.5. Variance 0,, = 0.2, equal
in each population. Network size N = 1000.

Given the symmetry in the distribution, if we identify one nontrivial sta-
ble fixed point, there will be at least P — 1 other fixed points with the same
stability. When the direction given by «x, = 0 is focused on, the velocity in
the «, direction, given by equation 5.6 is always zero due to the symmetry
in the distribution. Therefore, we obtain a fixed-point equation for «1 on the
k> = 0 direction using equation 5.5:

1< 2rp 2mp
a=s ;Rn cos (T) <¢ (Rm cos (T) K1, o,ﬁ/cf)>. (5.7)

The right-hand side is a sum of P monotonically increasing bounded func-
tions of 1. If the slope at the origin is larger than one, the right-hand side
will intersect with the function «; at a nontrivial point. The slope of the
right-hand side at the origin, obtained by differentiating the right-hand side
with respect to k1 and evaluating atx; =0, is %Ran, so that a condition for
a nontrivial fixed point is

RuR,, > 2. (5.8)
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1593

Because of the symmetry, if R,,R, > 2, there are at least P stable fixed
points arranged symmetrically on a circle (see Figures 5A to 5C for a net-
work with P = 6 populations and Figures 6A to 6C for a network with P = 4
populations). If the number of population pairs is odd, there are 2P stable
fixed points symmetrically arranged on a circle, because there is also a sym-
metry with respect to the origin, imposed by the symmetry in the transfer
function. Otherwise, if P is even, P stable fixed points are generated by the
network.

Symmetrical arrangements of multiple populations can also be used in
higher R-rank networks to obtain multiple stable fixed points located on an
R-dimensional sphere. For example, in rank-three networks, we consider
eight populations whose centers are arranged at the vertices of a cube. The
centers of the eight populations in the three-dimensional space of loadings
m®, forr=1,2,3, correspond to the vertices of a cube with side 2R,,, so
that

(alf), o). al)) = (ERy, £Ryp, £R,) (5.9)

Populations p =1, ..., 8 correspond to one of the eight different possible
combinations of the sign. The variances of the loadings, 0,2, are identical in
all populations. The value of R,, is fixed so that the norm of each connectiv-
ity pattern m® is N.

The centers of the n) loadings follow the same configuration, at the ver-
tices of a cube of side 2R,;:

(o). af), afl’) = (&Ry. Ry, £R,), (5.10)

where each population p corresponds to the same combination of signs as
for the m loadings, so that

sgn (a,(fy)) =sgn (a,(f:)) , (5.11)

with the collective index 7 = 1, 2, 3 and the population index p=1,...,8.
The value R, is, as in the previous case, a free parameter that controls the
overlap between connectivity patterns. This configuration is shown in Fig-
ures 6D, 6E, 6G, and 6H for two different values of R,,. This distribution
exhibits a cubic symmetry in the loading space m; — m, — m3 and in space
ny — np — nz. Thus, if we identify a nontrivial fixed point, these symmetries
require the existence of symmetric solutions in the collective space. Inspect-
ing the direction «, = k3 = 0in the dynamics, we obtain a criterion for hav-
ing a nontrivial stable fixed point:

Za(p) < (aml K1, 02K12>> (5.12)
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Figure 6: Dynamics in rank-R networks with discrete symmetry in multiple
populations: Hopfield networks. (A) Scatter plot between the entries of left sin-
gular vectors m; and right singular vectors #; in a rank-two network with four
populations following equations 5.3 and 5.4, with P = 2, R, = 2.3,and 0, = 0.5.
(B) Corresponding mean-field dynamics. The color map represents the speed
of the dynamics, defined as the norm of vector i (blue: slow dynamics, yel-
low: fast dynamics). Four stable fixed points emerge arranged in a square.
(C) Trajectories starting at different initial conditions in a finite-size network.
Each initial condition shows trajectories for two network realizations. (D) Anal-
ogous to panel A in a rank-three network with loadings arranged as in equa-
tions 5.9 and 5.10. (E) The populations are arranged at the vertices of a cube
in loading space. R, = 2.1. (F) Dynamics of the collective variables. Six sta-
ble fixed points (gray dots) emerge, arranged at the vertices of a dodecahe-
dron (dual polygon of the cube, highlighted in red for visual purposes). Gray
lines correspond to the trajectories of finite-size networks, initialized at different
points in state-space. (G-I) Same as in panels D to F but for a network whose
populations have larger mean values, R, = 7. For such large values, spurious
fixed points that are proportional to the combinations of the three stored pat-
terns (+m; £ m, £ m3) also become stable. Therefore, apart from the six fixed
points in a octahedron (red polygon), eight other spurious fixed points appear
arranged in a cube (blue polygon). Network size N = 1000.
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1595

Equation 5.12 has a nontrivial solution, which is always stable if R,R,, > 1.
When this solution exists, applying a rotation of 7 /2 in the m; — m; plane
and in the m; — ms3, it is possible to determine the other five stable fixed
points that are generated by the symmetry (see Figure 6F). These stable
fixed points are arranged in the collective space at the vertices of an oc-
tahedron, the dual polyhedron of the cube (the dual of a polyhedron A is
the polyhedron B where the vertices of A correspond to the edges of B).
When symmetry principles are applied, the middle point of each triangular
face of the octahedron is also a fixed point. However, the stability of this
fixed point depends on the overlap R,R,,. If R,R,, is larger than one but
low, these fixed points are saddle points (see Figure 6F). Beyond a critical
value of R, R, these fixed points also become stable. This second set of fixed
points consists of eight points arranged on a cube (see Figure 61, blue dots).

In general, any K-dimensional discrete symmetry in the loadings will
generate a dynamical system with stable fixed points on a K-dimensional
sphere, arranged with the symmetry of the dual polytope. A regular poly-
tope is defined as the generalization of a regular polyhedron generalized to
more than three dimensions.

5.3 Relation to Hopfield Networks. Classical Hopfield networks (Hop-
field, 1982) storing R <« N patterns can be seen as a particular limit of
gaussian-mixture low-rank networks, where multiple stable fixed points
are generated based on symmetries in the connectivity. A Hopfield network
is designed to store R binary patterns ml@ = +m, where for every neuron,
the sign of the entry in each pattern is generated randomly and  is a scalar
parameter. A Hopfield network storing these R patterns is defined as a re-
current network with connectivity matrix

R

Hop field

S ) @19
r=1

Such a configuration corresponds to a specific type of low-rank matrix and
can be mapped onto gaussian-mixture low-rank networks. A first specific
property of Hopfield networks (see equation 5.13) is that the connectivity is
symmetric, so that the left and right connectivity patterns are proportional
to each other,

m® = cn®, (5.14)

where cis a positive constant. A second specific property is that the loadings
of the patterns m® and n®, for r = 1,..., R, are binary and of equal sign,
so that each neuron is characterized by 2R loadings that can differ from
each other only in their signs. Therefore, each neuron in a Hopfield net-
work belongs to one of the 2% sign combinations allowed. In terms of the
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low-rank framework, Hopfield networks can therefore be described as low-
rank networks with 28 deterministic populations, which have means

(alf) - al)) = Ry (&1, 1), (5.15)
(uf]j),- af@):Rn(iL...,ﬂ), (5.16)
sgn (a17)) = sgn (). (517)

and where there is no dispersion around the mean of each population, so
that o) = 0P = 0.

Arank-two network with four populations P = 4, characterized by equa-
tion 5.3 (see Figures 6A and 6C), is therefore equivalent to a two-pattern
Hopfield network in the limit of no dispersion around the mean of each
cluster, an(f;) = 0. In this limit, saddle points are located at the midpoints be-
tween neighboring stable fixed points. In the more general rank-two net-
works in equation 5.3, where or(np ) S 0, the saddle points between stable

fixed points move farther away from the origin (such as in Figure 6B, where

o,ff; = 0.3), but the four stable fixed points remain on the Vertlces of a square
along the axes k1 = 0 and x> = 0. In the limit of very large cr the saddle
points between stable fixed points approach the circle that c1rcumscr1bes
the stable fixed points.

The rank-three network presented in equations 5.10 and 5.11 also be-
comes a Classical Hopfield network in the limit of a(’”z) — 0. Allowing for

values om > 0, as illustrated in Figures 6D and 6G, does not change the
number of fixed points generated by the Hopfield network or their direc-
tion in collective space. These networks generate pairs of stable fixed points
along the directions m®, m®, and m®. When R,,R, is large, additional
fixed points become stable along directions 2m™® £ m® + m®. These ad-
ditional fixed points correspond to well-known spurious mixture states in
Hopfield networks (Amit, Gutfreund, & Sompolinsky, 1987).

6 Approximating Dynamical Systems with Gaussian-Mixture
Low-Rank Networks

In the previous section, we focused on generating multiple fixed points in
an autonomous network by means of a few gaussian populations in the
connectivity. More generally, as shown in section 2.3, multipopulation rank-
R networks can approximate any R-dimensional dynamical system. In this
section, we propose an algorithm for that purpose.

Previous works have developed algorithms for training recurrent net-
works to implement given dynamics that effectively used low-rank con-
nectivity (Eliasmith & Anderson, 2003; Rivkind & Barak, 2017; Pollock &
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1597

Jazayeri, 2020). These methods rely on tuning the loadings nlm of individ-
ual neurons, given fixed external inputs Ii(s) and connectivity loadings mfr).
Here we focus instead on networks based on mixtures of gaussian popula-
tions, in which the couplings between individual neurons are not precisely
set but instead sampled from a distribution. We extend previous methods to
find the first- and second-order moments of multiple gaussian populations
that approximate a given dynamical system.

Our goal is to approximate the R-dimensional dynamics specified by a
vector field G (k):

di
= G (k). (6.1)

Our algorithm proceeds as follows. We first fix the number of gaussian
populations in the network and the fraction of neurons included in each
population, «,. Depending on the complexity of the target dynamics and
the required accuracy, a smaller or larger number of populations is required.

Second, we set the mean and variance of the m") vectors in each population,

aify ) and an(fz’), together with the mean and variance of the external input, u§p)

and al(f ) We assign these parameters randomly according to a certain prob-
ability distribution. Finally, we determine the statistics of the n® vectors,
the only unknown in the network, using linear regression.

We define a number of set points {«i};_; g on which we impose that the
effective flow in the low-rank network, given by equation 3.4, be equal to
the target vector field:

P

G ) =~ + Y (a8 (1 00, 07 (1))

p=1
+ ot (¢ (1) (), A (1)) ) (6.2)

These k=1, ..., K set points should be relevant points of the vector field
G (k); they can be fixed points, but can also be chosen within a grid in col-
lective space or based on sampled trajectories of the target system (see equa-
tion 6.1). For simplicity, in equation 6.2, we are considering that the input
pattern Iis orthogonal to the connectivity patterns n. It is straightforward
to extend the algorithm to account for nonzero values of the parameters o, 1.

Note that 1” and A® depend on the statistics of patterns I and m

that are fixed (see equation 3.6), but not on 4’ and 0./}, which we aim to

determine. Equation 6.2 can therefore be written as a linear system of the
form

G =WT'X, (6.3)
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1598 M. Beiran et al.

where, for each individual set point, G is a vector of length R, G = G (ki) +
K, the vector

X = I:ll(l) . a(l) J(l) ...U(l) ...U(l) ...U(l) 11}(111)) U(P) ]

ny ot Yag o Ymgng o ming? mRhy MRNR’ < Ymgng

(6.4)

haslength R (R + 1) P, and the corresponding matrix W of size R (R + 1) P x
R. For the K set points «; on which we want to approximate the dynamics,
we concatenate the vector G and matrix W of each point, so that they will
be of size R- Kand R - K x (R (R 4 1) P), respectively.

The unknown values of vector X can now be obtained by standard linear
regression as

X = (Ww") ' wa. (6.5)

Often it is convenient to regularize the regression algorithm to avoid the
entries of X being exceedingly large, at the cost of increasing the error in the
approximation of the dynamics. Solutions with very large values of X are
less robust because they produce stronger finite-size effects when sampling
from the found mixture of gaussians, potentially affecting the stability of the
solution. One standard possibility among many is to use ridge regression
to find the unknown values,

X = (WWT + 2I) WG, (6.6)

where g is the ridge parameter that controls the amount of regularization.
The number of populations, the level of regularization, together with the

distributions chosen to fix the mean and covariance values aify ), 01:1’;), ugp), and
r

al(f ) are hyperparameters of the algorithm. These hyperparameters can be
tuned progressively by running several iterations of the algorithm. For ex-
ample, a possible goal is to search for the minimal number of populations
required for approximating a given dynamical system within some accu-
racy limits. In general, we observe empirically that the distribution under-
lying the fixed parameters does not play a crucial role in the accuracy of the
algorithm as long as they span a wide range of values.

To illustrate the algorithm, we use a rank-two network to approximate a
Van der Pol oscillator, a two-dimensional nonlinear dynamical system that
generates nonharmonic oscillations. It is defined as

dx
_ = '7
it (6.7)

dt
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Figure 7: Approximation of a Van der Pol oscillation with multiple-population
low-rank networks. (A) Dynamics of a Van der Pol oscillator (1 = 1). The red
square indicates the boundaries of the grid used to approximate the dynami-
cal system. (B) Variance of the obtained parameters X for two different levels
of regularization g (see equation 6.6). The variance grows extremely fast as the
number of populations P is increased in nonregularized networks. Error bars
represent the standard error of the mean (SEM) with 50 realizations. (C) Av-
erage approximation error by the mean-field description as a function of the
number of populations. The error is measured as the average deviation from
the target vector field, assessed at the grid points used for training the algo-
rithm. (D) Average approximation error by a finite-size network, with N = 2000
units per population. The finite-size error quickly grows with no regularization.
(E) Mean-field approximation with P = 15 populations. Left: dynamical land-
scape. The red curve corresponds to a trajectory initiated at state (1, 1). In black,
the corresponding trajectory of the Van der Pol oscillator. Right: trajectories as a
function of time. (F) Finite-size network corresponding to the mean-field solu-
tion found in panel E. (G, H) Similar to panels E and F, with a larger number of
populations, P = 35. The mean-field solution approximates better the Van der
Pol oscillators. However, the finite-size approximation does not improve with
the number of units per population kept constant (N = 2000). Parameters: So-
lutions in E-H are regularized, g = 0.5. Values (Tg;) and al(f ) are initially drawn

7
from an exponential distribution with unit variance, aﬁp) and aﬁ,’fl) are drawn from

a uniform distribution with bounds —2 and 2, and af,f; =0.

where p is a scalar parameter that controls the strength of the nonlinearity.
For this example, we set 1 = 1 (see Figure 7A). Second, we determine the
statistics of the left connectivity patterns and the external input by drawing
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random values for the mean values in each population aip) and aff, ) from

a zero-mean uniform distribution, and the variances ar(n’;) and al(f ) from an
?

exponential distribution, all values of order one. As set points, we use a
K =30 x 30 grid for values x and y ranging between —3 and 3 (see the red
square, Figure 7A).

We first analyze the performance of the algorithm as a function of the
number of populations, for two different levels of regularization. We find
that regularization is necessary to avoid diverging values of the parameters
in X (see Figure 7B, black versus red curve). This is due to the fact that the
matrix WWT is close to singular, so that its inverse reaches very high values.
Interestingly, the error in the approximation increases only slightly with a
strong level of regularization (see Figure 7C). As the number of populations
is increased, the error in the approximation for all levels of regularization
monotonically decreases.

The algorithm is based on the mean-field description in equation 6.2,
which holds in the limit of a very large number of neurons per popula-
tion. We next study whether the obtained mean-field networks describe
well the dynamics in networks with a finite number of neurons per popu-
lation. We therefore sampled the connectivity and input loadings from the
multivariate gaussian distribution that characterizes each population. For

that purpose, it is necessary to set the variances of the right connectivity
(

n?
eral approach, we set those variance” parameters to be as low as possible
but high enough so that the correlation matrix of the multivariate gaussian
distribution is positive-definite. Sampling a finite number of values from
the distribution introduces deviations in the sampled mean and sampled
covariance matrix that introduce additional finite-size errors in the approx-
imated dynamics. We find that when the parameters obtained in X reach
very large values, the approximation error in networks with N = 2000 per
population is very large (see Figure 7D, black curve). However, when the
algorithm is constrained by a strong level of regularization, the finite-size
error remains approximately constant as the number of populations P in-
creases (see Figure 7D, red curve).

We then show the approximated dynamics for two different numbers
of populations, P = 15 (see Figures 7E and 7F) and P = 35 (see Figures 7G
and 7H), in the regularized case. Fifteen populations are enough to obtain a
limit cycle with similar features to the Van der Pol oscillator, although there
are deviations in the shape and frequency of oscillation (see Figure 7E).
The finite-size effects remain small when N = 2000 units are considered
in each population, so that the dynamics of a simulated network resem-
ble the mean-field approximation (see Figure 7F). For a larger number of
populations, the mean-field approximation increases the accuracy consid-
erably (see Figure 7G). However, finite-size effects increase with the number
of populations, when the number of units per population is kept constant,

patterns o} ), which do not influence the mean-field dynamics. As a gen-
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1601

so that the approximation error in finite-size simulations is not necessarily
reduced (see Figure 7H).

The finite-size deviations that contribute to the approximation error de-
pend on the number of units per population N that we chose to fix N = 2000
in Figures 7D, 7F, and 7H. We expect a decrease in finite-size errors as N in-
creases, so that the network dynamics resemble more closely the mean-field
description. Accordingly, with a high enough number of units per popula-
tion N, a finite-size network with P = 35 populations (as in Figure 7F) could
approximate better a Van der Pol oscillator than a finite-size network with
P =15 populations (as in Figure 7H). A full characterization of finite-size
effects is beyond the scope of this study.

This algorithm can be applied to generate any given dynamics in col-
lective space within a finite domain. Beyond this finite domain sampled
through the chosen set points, if the target vector field does not follow the
required asymptotic behavior (see equation 3.14), as is the case for the Van
der Pol oscillator, the network will not extrapolate to the target dynamics
(region outside square |k1, k2| > 3 in Figures 7E to 7H, left). However, in
practice, it may produce qualitatively similar dynamics: in the example of
the Van der Pol oscillator, if the network is initialized at a point outside the
limit cycle, the resulting trajectories still converge to the limit cycle.

7 Discussion

In this letter, we have examined the dynamics in gaussian-mixture low-
rank recurrent neural networks, a class of models in which the connectiv-
ity is defined by a low-rank matrix, with connectivity patterns consisting
of several populations with distinct gaussian statistics. In these networks,
the collective dynamics can be described by R 4 Nj, collective variables,
where R is the rank of the connectivity matrix and Nj, the dimensionality
of the input patterns. These collective variables form a dynamical system,
the evolution of which is determined by the connectivity statistics of the
populations forming the network. The rank of the network and the popu-
lation structure therefore play different roles: the rank of the network sets
the internal dimensionality of the dynamics and defines the corresponding
collective variables, while individual populations shape the dynamics of
these collective variables but do not contribute new ones. We specifically
showed that in the limit of a large number of populations, this class of net-
work displays a universal approximation property and can therefore im-
plement a large range of dynamical systems. Having a small number of
populations instead imposes constraints and limits the achievable range of
dynamics.

We focused here on a specific family of distributions for the connectivity
patterns, mixtures of multivariate gaussians. This choice was motivated by
several considerations. First, this family of distributions can be used to ap-
proximate any multivariate distribution for the pattern loadings. Second, it

d-ajo11B/008U/NPa W }08IIP//:d1Y WOy papeojumod

B 008U/8/€9161/2LGL/9/ECE/P!

1202 dunr g uo Jasn uopuo abajjo) Ausianiun Aq jpd-L8€1L0



1602 M. Beiran et al.

leads to a particularly simple form of dynamics for the collective variables,
where the time evolution is formulated in terms of a simple effective circuit
(see equation 3.11). Remarkably, in this description of the dynamics, which
is exact and nonlinear, the collective variables appear to interact linearly
through effective couplings and effective inputs. This allows for a particu-
larly transparent interpretation of dynamics in terms of gain modulation.
Several of our results are, however, independent of the specific assumption
for the type of distribution; this is in particular the case for the influence
of symmetry in the connectivity on the dynamics. When a large number
of populations is needed to approximate the connectivity structure, other
parametric distributions may be more suitable, and the interpretation in
terms of discrete populations may not be appropriate.

Previous work (Mastrogiuseppe & Ostojic, 2018, 2019; Schuessler,
Dubreuil et al., 2020) has studied the generation of low-dimensional dy-
namics by recurrent neural networks with a low-rank component in the
connectivity, focusing on fixed points and limit cycles. In these studies,
the connectivity matrix contained a random full-rank term and a low-rank
term, where the low-rank loadings are randomly drawn from a single gaus-
sian population. The full-rank term in the connectivity does not allow for
the expression of the emerging dynamics directly as a low-dimensional dy-
namical system, as we have presented in this work (see section 3), and the
study of the potential constraints on the low-dimensional dynamics.

Low-rank networks with arbitrary pattern distributions form a rich and
versatile framework that encompasses a number of previously studied
types of recurrent neural networks. As shown in the last part of the results,
Hopfield networks storing R <« N patterns can be seen as a particular limit
of gaussian-mixture low-rank networks, in which pattern loadings are bi-
nary and exhibit a specific type of symmetry. The neural engineering frame-
work (Eliasmith & Anderson, 2003) and the manifold embedding approach
(Pollock & Jazayeri, 2020) provide algorithms that implement specific low-
dimensional dynamics by controlling the structure of fixed points and Jaco-
bians using linear-regression methods. These algorithms generate recurrent
networks with low-rank connectivity, in which the individual couplings be-
tween individual neurons are set to specific values. In contrast, we focus
on low-rank networks in which individual couplings are sampled from an
underlying distribution, and our algorithm determines the statistics of this
distribution rather than individual couplings. This approach automatically
endows our networks with strong robustness with respect to the deletion
of individual neurons.

The dynamics of recurrent networks of rate units that include several
populations have been studied in recent years (Aljadeff, Stern, & Sharpee,
2015; Aljadeff, Renfrew, Vegué, & Sharpee, 2016; Kadmon & Sompolinsky,
2015). In these works, the connectivity consisted of full-rank, random ma-
trices in which populations define the pair-wise connectivity statistics. For
example, in a two-population model of excitatory and inhibitory neurons,
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the inhibitory population is defined by the connectivity statistics (mean
and variance of synaptic strengths) between inhibitory neurons and the
connectivity statistics toward excitatory neurons. In contrast, here we fo-
cus on low-rank structure in the connectivity matrices and specify popu-
lations in terms of the statistics for the low-rank structure vectors within
each population. This allows us to go beyond random connectivity and
study the effects of the rank and the number of populations independently.
Directly relating the two descriptions of connectivity is a topic of ongoing
work.

Our framework is also closely related to echo-state (Jaeger, 2001) and
FORCE networks (Sussillo & Abbott, 2009), which rely on randomly con-
nected recurrent networks controlled by feedback loops. Each feedback
loop is mathematically equivalent to adding a unit-rank component to the
connectivity matrix. Echo-state and FORCE networks therefore correspond
to low-rank networks with an additionnal full-rank, random term in the
connectivity (Mastrogiuseppe & Ostojic, 2018, 2019). Because the feedback
loops are trained to produce specific outputs, the low-rank part of the con-
nectivity is typically correlated to the random connectivity term (but see
Mastrogiuseppe & Ostojic, 2019). Such correlations increase the dimen-
sionality and the range of the dynamics (Schuessler, Dubreuil et al., 2020;
Logiaco, Abbott, & Escola, 2019), although the low-rank connectivity struc-
ture and the number of populations still generate strong constraints. For
instance, for rank-one networks with a random term in the connectivity
but consisting of a single population, the fixed points are restricted to lie
on a one-dimensional but nonlinear manifold, and typically at most two
nontrivial stable fixed points can be generated (Schuessler, Dubreuil et al.,
2020). More generally, random components in the connectivity can strongly
influence learning dynamics during training (Schuessler, Mastrogiuseppe,
Dubreuil, Ostojic, & Barak, 2020).

Gaussian-mixture low-rank networks, the neural engineering frame-
work, and echo-state networks all exhibit universal approximation proper-
ties (Eliasmith, 2005; Maass, Natschldger, & Markram, 2002). It is, however,
important to distinguish between several variants of this property. In our
case, in analogy with the NEF, we started from an R-dimensional dynam-
ical system fully specified by its flow function and showed that gaussian-
mixture low-rank networks can approximate this flow function, provided
a large number of populations is available and the flow function satisfied
specific constraints. Echo-state and FORCE networks instead start by spec-
ifying a target readout, and universal approximation means that any such
readout can be generated by training the feedback (Maass et al., 2007). This
readout corresponds to a low-dimensional projection of a large dynamical
system, and echo-state networks are free to implement any dynamical sys-
tem consistent with the specified output projection. This is a major distinc-
tion with our approach and that of the NEF, where the overall dynamical
system is more tightly constrained.
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In this work, we have examined only networks with fixed inputs. Vary-
ing the inputs instead modifies the low-dimensional dynamics, an effect
that can be understood through modulations of effective couplings that
govern the interactions between collective variables. In a companion pa-
per (Dubreuil et al., 2020), we have used gaussian-mixture, low-rank RNNs
to reverse-engineer networks trained on a range of neuroscience tasks and
found that gain modulation through input control underlies complex com-
putations, such as flexible input-output mappings (Fusi, Miller, & Rigotti,
2016). Varying inputs while keeping connectivity fixed therefore has the po-
tential of implementing a large range of dynamical systems and computa-
tions (Pollock & Jazayeri, 2020), but the full capacity of this mechanism still
remains to be fully elucidated.

Appendix A: Dynamics in Multipopulation Networks

In this appendix, we derive the equation for the dynamics of a multipop-
ulation, low-rank network, equation 3.4. We consider a low-rank network
that consists of P populations, where each population is defined by different
statistics of the probability distribution Py (11, 11, I). We assume that the ex-
ternal input is constant in time and uncorrelated with the left connectivity
patterns at the level of each population. Each neuron in the network is as-
signed to a population according to the probability «,. In the following, we
set the statistics of each population to be drawn from a multivariate gaus-
sian with mean vector a(?), as defined in equation 2.5 and covariance matrix
) (see equation 2.6).

The recurrent dynamics in a low-rank network are determined by equa-
tion 3.3: it consists of a sum over the N units in the network. In the limit of
large networks with defined statistics, by means of the law of large num-
bers, this sum over N i.i.d. elements corresponds to the empirical average
over the distribution of its elements. Therefore, we can replace the sum over
"

network units for i =1, ..., N of loadings {ngr)] , [mi ], and [;, by an in-
tegral over their probability distribution P (1, 1, I). Using this probability

distribution, the recurrent dynamics in equation 3.3 can be expressed as

P R
ke =>"a, / dmdndIP, (m, n, I) n'V¢ (I@K, + Zml‘%) . (A1)
1=1

p=1

Note that we refer to the input loadings I as a single gaussian variable, in-
stead of a set of gaussian variables I, because there can only be one effective
input pattern when the input is constant in time. We then separate the con-
tribution of the mean a,,, and the fluctuations of 1, around its mean into two
terms:
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R
e = Za,, / dldm Py (m, I)al¢ (1@ K1+ Zm,(’”,q)
=1

p=1
(A.2)

This derivation is implicitly conditioned on the values of the collective
variables «,. Under such conditioning, the argument inside the function ¢
in equation A.2 is itself a gaussian variable. Using Stein’s lemma in the sec-
ond term and expressing the argument of the transfer function as a single
gaussian variable, we can express the dynamics as

R
K Zapa / Dx ¢ (l}p)K[ + Zamg Ks + al(f)/c[z + Z a:f?/csz,
s'=1 °
P R
+ Zap (afl)/q + Z a,Sf’,LSKS)
p=1 s=1

R
/ngb a( K1 + Zam; Ks + crl(f)/c[z + Z crn(?/csz, , (A3)
s'=1 ¢
Xz . . . . . .
where Dx = dx (271)_% e~ 7. Finally, using the gaussian integral notation in

equation 3.8, we retrieve equation 3.5.

Appendix B: Universal Approximation of Low-Dimensional
Dynamics

The universal approximation theorem for artificial neural networks
(Hornik, Stinchcombe, & White, 1989; Funahashi, 1989; Cybenko, 1989)
states that any piecewise-continuous bounded function G (x), where x is
a d-dimensional vector, can be approximated to arbitrary precision by a fi-
nite linear combination of nonlinear units having the same transfer function
but different gain and thresholds. More precisely, it is possible to build an
approximation G (x) of G (x),

N

G)=> vig (w/x+1b). (B.1)

i=1

with f1n1te 1ntegerN and real values for v; € R*, w; € R and b; € R, so that
|G (x) = G (x)| < ¢, forany e > 0, given mild assumptions on the nonlinear

R
+Za,,/dnrdlde(p (m, n,,I)( (P aff)q&(l(p) K1+ Zml(p)/q)
1=1
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1606 M. Beiran et al.

activation function ¢ (x). Historically, the universality property has been
shown using a wide range of transfer functions: squashing or sigmoidal
functions (Funahashi, 1989; Hornik et al., 1989; Cybenko, 1989), Heaviside
functions, sinusoidal functions (Gallant & White, 1988), and radial basis
functions (Park & Sandberg, 1991). Years later, it was shown that the nec-
essary and sufficient condition on the transfer function for the universal
approximation property is that ¢ (x) be a nonpolynomial function (Leshno
etal., 1993).

There is a direct mapping between the second term of equation B.1 and
the recurrent dynamics of a low-rank RNN. The recurrent dynamics in
equation 3.3 can be directly mapped to equation B.1: the variables 3.; corre-
spond to v;, m; to w;, and «l; to b;. This implies that the recurrent dynamics
can approximate any flow function within a finite domain. The parameters
%ni, m;, and «il; can be adjusted independently. In particular, «l; is inde-
pendent of all the other collective variables «,, although the opposite is not
true: the collective variables «, obviously depend on the external tonic in-
put «7l;. We are assuming that the temporal profile of the background input
u (t) is constant, so that «; (t) is also constant after discarding a possible ini-
tial transient (see equation 3.2).

The dynamics of low-rank networks with multiple gaussian populations
can also be mapped to the universal approximation theorem. The mean
term contribution to the dynamics in equation 3.4 reads

P
Z ocpan(p) <¢ (amTlc + a;p)/q, Ul(f)/clz + lcTan(f;)lc)) , (B.2)
p=1

so that apun(”) maps to v;, P maps to w;, and ay’)/q is mapped to the bias
term b;. The transfer function is, however, different. In equation B.1, the non-
linear function used is ¢ (x), while in equation B.2, the nonlinear function
used is <¢ (x,A (x))). Both functions are nonlinear and nonpolynomial, so

that the theorem applies in each case. The contribution given by the disor-

der in the population loadings, aff; ) and al(f ), are not required for the uni-

versal approximation. However, quadratic terms like the one introduced
by the variance of loadings improve the approximation in terms of express-
ibility and efficiency (Fan, Xiong, & Wang, 2020). Overall, this means that
a low-rank network with a finite number of populations can approximate
any dynamical system within a bounded domain.

Appendix C: Linear Stability Matrix at Fixed Points in Networks
with a Single Population

The linear dynamics of small perturbations around the fixed point &y (de-
fined in equations 4.2) read

e e [V (0. €7 H) ) omte)]_ €1

dt

K=Ko
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1607

where V is the vector differential operator. We apply the property
V(f(k)Ak)) = f(k)A+ Ak (Vf (k))", based on the chain rule, where A is
an R x R matrix, to obtain

TZ—'; =—Kk+ [(qﬁ’ (0. k7 K)) Gun + Oountc (V' (0, ICTIC))T] _k (C.2)

We then calculate the gradient of the gain factor. To do so, we first write
explicitly the gaussian integral

(Vo' (0. k"k)) = / DV (\/ﬁx) , (C.3)

where Dx is the differential element of a normally distributed variable.
When the chain rule applied,

(Vo' (0, k) = / D (ViTkx) v (xVTr)

= /Dx¢” (v lchcx) X (C4)
KTk
When Stein’s lemma is used, the gradient of the gain factor reads:
(V' (0.k"k)) = /Dxd)” (v ICTICX) P
VKTK
= /qub/” (v ICTICX) k=(¢" (0, k) k. (C.5)

Finally, when introducing equation C.5 into equation C.2, and using the
fact that oyumko = Arko, the dynamics of small perturbation around the fixed
point read

rfl—l; = [—I+(¢' (0, kg k0)) T + (¢ (0, kg ko)) Trnkcokcy | ke, (C.6)
which leads to the linear stability matrix given by 4.4.

It is important to analyze the behavior of the function (¢” (0, A)) to as-
sess the stability. In the limit A = 0, the gaussian integral reduces to the
evaluation of the function at zero. For a transfer function ¢ (x) = tanh (x),
we obtain

iigqo (" (0, A)) =" (0) = 2. (C.7)
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1608 M. Beiran et al.

In the limit of infinite A, the gaussian integral can be expressed as

+o00

lim (9”0, 4)) = / dx " (x) = 0. (C.8)

—00

Furthermore, it can be shown analytically that (¢" (0, A)) is never zero
for any finite value A, by studying the minima of its primitive function.
The primitive function of (¢ (0, A)) is proportional to (¢’ (0, A)). The prim-
itive function has no local minima because it is bounded between zero and
one, that is, a monotonically decreasing function of A. We can show that
the function is monotonically decreasing because for sigmoidal transfer
functions, for any fixed value x > 0, ¢’ (VA1x) < ¢’ (v/A2x) if and only if
A1 > Ay. Thus, this property is still conserved when calculating the gaus-
sian average: (¢ (0, A1)) < (¢’ (0, Az)) if and only if Ay > As.

Putting these analyses together, we conclude that the function (¢” (0, A))
is —2 for A = 0, is always smaller than zero and tends asymptotically to this
upper bound as A approaches infinity. This result is used to study whether
the linearized dynamics around fixed points in low-rank networks with a
single gaussian population are stable (see equation 4.5).

Appendix D: Stability Analysis of Rank-Two Networks with
Nonnormal Covariance

In section 4, we analyzed the dynamics generated by a rank-two network
with one single gaussian population when the covariance matrix o, is nor-
mal, that is, the eigenvectors are mutually orthogonal to each other. We
extend here the analysis to nonnormal matrices and show that the main
features of the dynamics are conserved when the correlation matrix is non-
normal.

We first studied the case of normal matrices with real eigenvalues (see
Figures 3A and 3D and equations 4.2 to 4.5). The analysis showed that each
real eigenvector u, of the covariance matrix o,,, leads to a pair of fixed
points when the associated eigenvalue A, is larger than one.

The linear dynamics around fixed points is given by the Jacobian S, in
equation 4.4, where r =1, ..., R. The eigenvectors of S, coincide with the
eigenvectors of o, if the covariance matrix has real eigenvectors mutually
orthogonal to each other. Using this property, we can then determine the
eigenvalues of the linearized dynamics around each fixed point in equa-
tion 4.5. As a conclusion, this analysis showed that all fixed points are sad-
dle points, except for the two fixed points in the direction of the eigenvector
with the largest associated eigenvalue, where the fixed points are stable.

We now extend this analysis to networks where the covariance matrix
Oy is @ nonnormal matrix with real eigenvalues, in other words, a matrix
with nonzero correlations between eigenvectors. Each real eigenvector u,
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1609

with eigenvalue A, > 1 generates two fixed points in the direction it spans,
exactly the same way as in matrices with orthogonal eigenvectors. The fixed
points are also located at the same radial distance along each eigenvector
(see equation 4.3), compared to the case of normal matrices. The Jacobian
matrix at the fixed point is still given by equation 4.4:

1
S, =—I+ O + (8" (0, p?)) Arpiuru,” . (D.1)

r

When the covariance matrix 6,,, is a nonnormal matrix, the eigenvectors of
S, are not equal to the eigenvectors of the covariance. Finding an analytical
expression for the eigenvectors of S, is in general a challenging problem.
However, we can still calculate the eigenvalues of S, and show that they
remain unchanged in networks with normal covariances (see equation 4.5).

We consider the plane spanned by the eigenvector u, and any other
eigenvector of the covariance matrix uy. We consider only the linearized
dynamics around the fixed point along this plane. We project S, onto this
plane and indicate it with the notation [S,], whichis a 2 x 2 block submatrix
of the full Jacobian S,:

1
[S:]=—-1]+ w (0] + <¢W (0, p3)>}\rp3ururT~ (D.2)

7

The vector u, is still an eigenvector of [S,]. Its associated eigenvalue is

v =(@" (0. o)) hrp} (D.3)

which is a negative number. This implies that all fixed points are stable in
the radial direction. Although calculating the second eigenvector is not ob-
vious, we can calculate the second eigenvalue of [S,] by calculating its trace
and subtracting y;:

yr =tr ([S¢]) — »r. (D.4)

Using the linearity of the trace operator, the expression simplifies to

Ao
v =—1+ 7 (D.5)
r

Therefore, the eigenvalues of the full Jacobian S,, given by equations D.3
and D.5 coincide with the eigenvalues of the Jacobian in the case of normal
matrices (see equation 4.5). The fixed points along the eigenvector direction
u, are stable if 1, is the largest eigenvalue of omn. Otherwise, the fixed point
is a saddle point.
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Figure 8: Dynamics in rank-two networks with nonnormal covariances 6.
(A) Covariance matrix o,,, with eigenvalues 1; = 1.2 and 1, = 1.6. The free pa-
rameter € controls the angle between the eigenvectors, as shown in the right.
(B) Stable fixed points (colored dots) and saddle points (white dots) generated
by the nonnormal covariance matrix for different values of €. The colored lines
indicate the trajectories between saddle points and stable fixed points. As € in-
creases, the location of the stable fixed points moves closer to the horizontal line
while keeping the same radial distance. The stability of the fixed points does not
change with €. (C) Example of the full dynamics in collective fixed space for a
fixed value of € = 1. (D) Covariance matrix o,,, with eigenvalues » =1.4 £ 1.
The free parameter € > 1 controls the relative norm of the imaginary part of the
eigenvector u, without modifying the fixed points. (E) Top: Limit cycles that
emerge in the dynamics for different values of €. When the covariance matrix is
normal (¢ = 1, gray line), the limit cycle has a circular shape. As € increases, the
limit cycle loses the circular symmetry and resembles an ellipse. Bottom: Projec-
tion of the collective variable «; as a function of time. As € increases, the activity
loses its sinusoidal shape while keeping the same frequency. (F) Example of the
dynamical landscape in collective space for a fixed value of € = 2.

Figures 8A and 8C show how the dynamics vary when the correla-
tion matrix o,,, is nonnormal but the eigenvalues remain constant. The
parameter € determines the degree of correlation between eigenvectors:
as € increases, the two eigenvectors become more strongly correlated (see
Figure 8A). This correlation moves the direction of the associated fixed
point, while keeping the radial distance constant (see Figure 8B). The eigen-
values of the linear dynamics around the fixed points do not vary. Figure 8C
shows an example of the dynamical landscape in collective space. It is
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Shaping Dynamics With Populations in Low-Rank Recurrent Networks 1611

interesting to note that the trajectories that go from the saddle points
toward the stable fixed points resemble ellipses, similar to the case of nor-
mal o, (see Figures 3A and 3D). However, the stable fixed points are no
longer located at the farthest point of this curve from the origin.

In summary, we showed that the number of fixed points and the sta-
bility in a low-rank network with one single population depends only on
the eigenvalues of oy, and not on its eigenvectors. When the eigenvec-
tors are all mutually orthogonal, we can calculate analytically the eigenval-
ues and eigenvectors of the linearized dynamics around each fixed point.
When the eigenvectors are not all mutually orthogonal, the eigenvectors of
the linearized dynamics change, but not the eigenvalues. This suggests that
increasing the correlation between eigenvectors introduces a continuous
deformation of the collective space while the timescales of the linearized
dynamics around fixed points are preserved.

We observed numerically that the previous result holds as well for
covariance matrices o,,, with complex eigenvalues. Each pair of complex
conjugate eigenvalues A & iw with eigenvector v; + iv, generates a limit cy-
cle on the plane spanned by vi-hv; if A > 1. If 0,y is @ normal matrix, such
that vectors vq and v, have the same norm and are orthogonal to each other,
the limit cycle is a circle. In that case, we showed in section 4 that the fre-
quency of the limit cycle is given by 2.

Adding correlations between the real and imaginary part of the eigen-
vectors vy and v, or changing their relative norm, will change the shape of
the limit cycle to a curve resembling an ellipse. Figures 8D an 8F show an
example of a covariance matrix g,,, where the nonnormality is controlled by
parameter € without affecting the eigenvalues. As € increases, the relative
norm of the imaginary and real part of the eigenvector u changes (see Fig-
ure 8D). This correlation changes the shape of the limit cycle, from a circle
when € is one (normal case; see the gray line in Figure 8E) to a closed curve
resembling an ellipse as € increases (see Figures 8E and 8F, the gray line).
The frequency of oscillation along the limit cycle, however, stays invariant
as € is varied (see Figure 8E bottom).

To sum up, also in the case of complex eigenvalues, the correlations be-
tween eigenvectors deform the collective space, introducing a continuous
mapping between the circular limit cycle and the new limit cycle, which re-
sembles an ellipse. However, the temporal features of the dynamical land-
scape, such as the frequency of the limit cycle, remain constant.

Real and complex eigenvalues are combined in networks with rank three
or larger. The same stability rules hold: the dynamic structure (limit cycle
or fixed point) generated by the eigenvalue with the largest real part is sta-
ble, while the other ones are not stable in all directions. Figures 9A and 9B
show an example of a rank-three network, whose connectivity matrix has
a real eigenvalue A, and a pair of complex conjugate eigenvalues A, and
A3. The real part of all eigenvalues is larger than one, so the real eigenvalue
leads to a pair of fixed points, and the complex eigenvalues generate a limit
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Figure 9: Dynamics in a rank-three network with a single gaussian population -
connectivity matrix combining real and complex eigenvalues. (A) Scatter plot
between the loadings of connectivity patterns m}r) and ngr). o =16ando, =0.8.
(B) Covariance matrix of the singular vectors (top) and sketch of the eigenvec-
tors (bottom). The eigenvalues are ; = 1.6 and 1,3 =1.2+ V2. The real eigen-
vector u, is not orthogonal to the plane spanned by the real and imaginary part
of the complex eigenvectors u,. The real and imaginary parts of the complex
eigenvectors span the horizontal plane (shaded in gray) and do not have the
same norm. (C) Mean-field dynamics (see equation 4.1) for three trajectories
starting at different initial conditions. Each color indicates a different trajectory.
When the network is initialized in the horizontal plane (gray trajectory), the
activity oscillates within the noncircular limit cycle. Otherwise it converges to
one of the two stable fixed points, located in the direction of the eigenvector
u;. (D) Same trajectories as in panel C, in finite-size simulations, for three dif-
ferent connectivity matrices. The trajectories always end up in one of the two
stable fixed points, even if initialized in the horizontal plane (gray trajectories).
Parameters: N = 1000, 0,» = 9.

> Yng

cycle. Given that the real eigenvalue A; is larger than the real part of the
other eigenvalues, the fixed points are stable. The limit cycle is marginally
stable in the plane spanned by the real and imaginary parts of the complex
eigenvector of 1, but unstable in any other direction. Therefore, trajectories
starting in the plane converge to the limit cycle in the mean-field equation
(see the gray trajectory in Figure 9C). Small perturbations, such as those
introduced by finite-size effects, make these trajectories deviate from the
limit cycle and converge to one of the two stable fixed points (see the gray
trajectories, Figure 9D).
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