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Abstract
Purpose Surveillance of patients with high-grade glioma (HGG) and identification of disease progression remain a major
challenge in neurooncology. This study aimed to develop a support vector machine (SVM) classifier, employing combined
longitudinal structural and perfusion MRI studies, to classify between stable disease, pseudoprogression and progressive disease
(3-class problem).
Methods Study participants were separated into two groups: group I (total cohort: 64 patients) with a single DSC time point and
group II (19 patients) with longitudinal DSC time points (2-3). We retrospectively analysed 269 structural MRI and 92 dynamic
susceptibility contrast perfusion (DSC) MRI scans. The SVM classifier was trained using all available MRI studies for each
group. Classification accuracy was assessed for different feature dataset and time point combinations and compared to radiol-
ogists’ classifications.
Results SVM classification based on combined perfusion and structural features outperformed radiologists’ classification across
all groups. For the identification of progressive disease, use of combined features and longitudinal DSC time points improved
classification performance (lowest error rate 1.6%). Optimal performance was observed in group II (multiple time points) with
SVM sensitivity/specificity/accuracy of 100/91.67/94.7% (first time point analysis) and 85.71/100/94.7% (longitudinal analysis),
compared to 60/78/68% and 70/90/84.2% for the respective radiologist classifications. In group I (single time point), the SVM
classifier also outperformed radiologists’ classifications with sensitivity/specificity/accuracy of 86.49/75.00/81.53% (SVM)
compared to 75.7/68.9/73.84% (radiologists).
Conclusion Our results indicate that utilisation of a machine learning (SVM) classifier based on analysis of longitudinal perfusion
time points and combined structural and perfusion features significantly enhances classification outcome (p value= 0.0001).
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Introduction

High-grade gliomas (HGGs) are the most common type of
malignant primary brain tumours, representing 80% of newly
diagnosed cases, the majority of which (>50%) correspond to
glioblastoma (GB) [1, 2]. Current reference standard treatment
includes maximal safe resection, radiation therapy and con-
current temozolomide (TMZ) [2, 3]. Poor prognosis and het-
erogeneous response to treatment warrant imaging surveil-
lance for these patients [4].

Differentiation of progressive disease (PD) from
pseudoprogression (PsP) remains critical for patient manage-
ment [5]. Structural MRI, even under evolving diagnostic
criteria, has been inefficient to reliably differentiate PD from
PsP [2, 5–7]. Perfusion MRI has been previously shown to
improve this classification [8–10]. Studies aiming to differen-
tiate PD from PSP using dynamic susceptibility contrast
(DSC) MR perfusion with a single perfusion time point pro-
duced initially promising, albeit conflicting results [8, 10]. A
recent meta-analysis on the differentiation between PD and
PsP by DSC MR perfusion indicates a pooled sensitivity and
specificity of 90% and 88% respectively [11].

The combination of perfusion and structural metrics with
the use of multiparametric MRI has been successfully applied
to differentiate between PD and PsP in treated GBs [12], to
predict the location of recurrence postoperatively [13] and to
enhance prediction of overall survival [14]. The addition of
perfusion time points combined with multiparametric histo-
gram analysis has been shown to enhance prediction of tu-
mour progression and survival [9]. Similarly, longitudinal
DSC perfusion assessment for glioma surveillance has been
previously shown to identifymalignant transformation of low-
grade gliomas [15] including oligodendrogliomas [16, 17].
Studies have applied longitudinal MR perfusion to differenti-
ate between PD and PsP, demonstrating that DSC perfusion
parameters such as relative cerebral blood volume (rCBV) are
potentially superior to conventional MRI parameters such as
trends in enhancing tumour volume [18, 19].

The analysis of multiparametric MRI datasets has been fur-
ther enhanced by the use of machine learning. Such techniques
have been successfully employed for the differentiation of PsP
from tumour recurrence in patients with resected GB [20, 21],
glioma classification by grade and mutation status [22], predic-
tion of overall survival, molecular subtyping of GB [23, 24] and
differentiation of tumour from non-tumour components in HGG
[25]. Support vector machine (SVM) classifiers have been suc-
cessfully applied on multiparametric MRI datasets for the clas-
sification between PD and PsP based on perfusion MRI [26].
More recent studies demonstrate improved classification accura-
cy by including perfusion features in multiparametric MRI
datasets for radiomic model analysis [27, 28].

Our aim was to comparatively assess the performance of an
SVM classifier trained to differentiate PD from PsP for

different radiomic feature combinations: (I) combined perfu-
sion and structural radiomic features compared to standalone
features and (II) longitudinal compared to single time point
radiomic features. Furthermore, we aimed to compare the per-
formance of the SVM classifier against radiologists’
interpretation.

To the best of our knowledge, this is the first study to
examine the potential advantage of applying combined struc-
tural and perfusion MRI datasets both on single and longitu-
dinal time points, for SVM enhanced classification between
PD and PsP in patients with HGG.

Materials and methods

Study participants

We retrospectively analysed imaging studies of patients with
HGG, investigated in our department with perfusion MRI be-
tween 2012 and 2018. Institutional research ethics review ap-
proval was obtained. The requirement for informed consent
was waived by the UCL research ethics committee. We in-
cluded patients with histologically confirmed primary diagno-
sis of HGG, availability of DSC MR perfusion on at least one
time point following any treatment and of structural MRI be-
fore and after each perfusion time point. We excluded patients
who did not have histological confirmation of HGG, had in-
adequate imaging studies prior and after DSC MR perfusion,
or underwent surgery and/or antiangiogenic agent treatment
(e.g. bevacizumab) between perfusion time points. Two
groups were created for analysis: “group I” consisting of all
patients with a single DSC MR perfusion time point (total
cohort 64 patients) and “group II” consisting of patients with
multiple (2 or 3) DSCMR perfusion time points (19 patients).

MRI protocol

Structural MRI studies were acquired on a clinical 3T MRI
system (Magnetom Prisma Siemens Healthcare, Erlangen,
Germany) including the following sequences: T2 fluid-
attenuated inversion recovery (FLAIR) [TR/TE/IR 6500/88/
2130 ms, slice/gap 5/6.5 mm, field of view (FOV) 165 × 220
mm2]; T2WI [TR/TE 4610/99.5, slice/gap 5/1.5 mm, FOV
210 × 210 mm2]; T1WI [TR/TE 415/20 ms, slice/gap 5/1.5
mm, FOV 210 × 210 mm2]; DWI [TR/TE 3700/55 ms, slice/
gap 4/5 mm, acquisition matrix 192×192, FOV 220×220
mm2]; T1WI post-contrast (Dotarem, Guerbet, Villepinte,
France) [TR/TE 6.8/450 ms, slice/gap 5/6.5 mm, acquisition
matrix 256×256, FOV 217×240 mm2].

Perfusion-weighted MRI studies were acquired on the
same system using a standard dynamic susceptibility weighted
contrast perfusion MR imaging protocol consisting of a gra-
dient echo-EPI sequence, TR/TE 1370/30, slice/gap 4/5.2
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mm, field of view (FOV) 220x220, acquisition matrix
128x128, flip angle 65, scan time: 2 min 20 s. EPI data were
acquired following injection of a 0.1-mmol/kg body weight
bolus of gadoterate meglumine (Dotarem, Guerbet, Villepinte,
France) followed by a 20-ml bolus of saline, both at a constant
rate of 5 ml/s. Pre-load with half-dose gadolinium was ap-
plied. All externalMRI scans included in the study were based
on similar protocols.

DSC perfusion analysis

Postprocessing of DSC PWI studies was performed using
Olea Sphere 3.0 (Olea Sphere®

3.0, Olea Medical®) following correction for patient mo-
tion using the built-in software feature. The arterial input func-
tion was selected automatically using a cluster analysis algo-
rithm [29] and manually corrected in cases of discrepancy
with the anatomical images. Deconvolution-based perfusion
parameters were calculated using Bayesian probabilistic
methods, following contrast leakage correction with the
built-in software feature [30]. Relative cerebral blood volume
(rCBV) and relative cerebral blood flow (rCBF) maps were
calculated on DSC MR perfusion studies. Normalised values
(z-scores) of both rCBV and rCBF were calculated respective
to the ipsilateral basal ganglia. Perfusion normalisation with
similar methodology has been previously shown to decrease
variability of rCBVmeasurements. Based on previous studies,
the basal ganglia have been used for normalisation to allow
automated segmentation and reduce variability related to per-
fusion variations within the white matter and user-dependent
selection of regions of interest [31–33].

Treatment response assessment

Treatment response assessment included the following cate-
gories: progressive disease (PD), pseudoprogression (PsP),
stable disease (SD), partial response (PR) and complete re-
sponse (CR). Lesion classification was based on histology
following repeat surgery or biopsy where available (13 of a
total cohort of 64 cases: 20%). In the remaining cases, classi-
fication was based on prolonged radiological and clinical sur-
veillance. Radiological surveillance was based on the course
of enhancing lesions on prolonged longitudinal MRI. Clinical
surveillance was based on the final outcome of the local
neuro-oncology multidisciplinary team meeting which
assessed all available clinical and radiological data at the latest
available time point. This classification was considered as
expert consensus ground truth. No complete response cases
were encountered in our cohort. The few preliminary partial
response cases encountered (4), converted to other categories
during surveillance. Therefore, training of the SVM classifier
was based on three categories: PD, PsP and SD (3-class
problem).

Image co-registration, segmentation

Our methodology is outlined in Fig. 1. A common 3D space
was created for each patient using axial T1, post contrast T1W
and FLAIR images of all time points. This was based on a
previously reported method for affine registration following
log-transformation, normalisation, bias field correction and
intensity matching of the skull-stripped images [34]. Images
from all available time points were resampled to a common
space and subtraction datasets of normalised maps were
created.

Segmentation was conducted by a neuroradiologist with 2
years’ experience (L.S), and results were supervised indepen-
dently by a neuroradiologist with more than 10 years’ experi-
ence in brain tumour imaging (S.B). Areas of enhancing tissue
on post-contrast T1W images and non-enhancing T2
hyperintensity were manually segmented for all available time
points. Segmentation was based on T2 FLAIR images over-
laid on post contrast T1W images, excluding any resection
cavities and areas of macroscopic necrosis (www.itksnap.
org) [35].

Feature extraction

The segmentation masks were applied to the common
multiparametric space and utilised for feature extraction for
all patients. Imaging features were derived from multiple se-
quences including T1 (pre- and post-contrast), T2, FLAIR,
rCBV and rCBF at all available time points. Total extracted
features were 130 for the single time point group and 110 for
the multiple time point group. For the multiple time point
group, subtracted features between different time points were
calculated (subtractions included 2-1, 3-2, 3-1). These includ-
ed longitudinal changes in signal intensity on pre- and post-
contrast sequences on structural MRI studies, as well as lon-
gitudinal differences in rCBV and rCBF values on consecu-
tive DSC MR perfusion studies. Distribution and textural fea-
tures over the normalised subtraction images were extracted
and used as features for automated classification. A least ab-
solute shrinkage and selection operator (LASSO) framework
[36] was applied for feature selection preceding the applica-
tion of the SVM classifier for automated lesion classification
(PD, PsP, SD).

SVM classifier

A binary SVM with radial basis function (RBF) kernel was
constructed using all selected features. The code used to gen-
erate results is freely available at https://github.com/csudre/
LongPerfusion. The single time point SVM training dataset
was based on all available structural and perfusion MRI
studies at a single time point. The longitudinal SVM training
dataset included all available normalised images form
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structural and perfusionMRI studies, at every time point (time
points 1, 2, and in some cases 3). K-fold cross validation was
employed for SVM training and validation, and results were
averaged over 250 two-fold cross-validation iterations [37].
Separate classification steps were performed and included
“one vs all” dichotomous classifications between: (a) SD vs
(PD and PsP) and (b) PD vs (SD and PsP). Final SVM anal-
ysis utilised both steps and resulted in a final classification for
each case (SD, PD or PsP).

Diagnostic performance

To assess diagnostic performance, error rates and sensitivity/
specificity/accuracy were calculated for SVM classification
based on different feature datasets (structural, perfusion, com-
bined), different classification steps and different time points
(single and multiple perfusion time points). Comparisons of

classification accuracy were performed based on these metrics
for both groups.

Consequently, radiological reportswere extracted for compar-
ison. These were based on structural and perfusion MRI studies
for all patients, reported by a team of three senior neuroradiolo-
gists (at least 7 years’ experience in neuro-oncology imaging and
core members of the multidisciplinary neuro-oncology board).
Radiological reports included assessment of disease status for
each time point and formed the basis for “radiologist classifica-
tion”. Radiologists had access to all available structural and per-
fusion imaging studies at every time point and were blinded to
lesion classification at the time of reporting.

Comparison between radiological and SVM classification
performance was based on sensitivity, specificity, and accura-
cy of classification. Statistical significance was assessed using
McNemar’s statistical test based onmethodology employed in
previous studies [38, 39].

Fig. 1 Summary of methodology and radiomics workflow. I. Study
participants were separated into two groups: group I with a single DSC
MR perfusion time point and group II with multiple (2 or 3) DSC MR
perfusion time points. All patients had structural MRI prior and following
each perfusion time point. Each imaging time point was classified as
progressive disease (PD), pseudoprogression (PsP) or stable disease
(SD). Histology was used as ground truth for lesion classification where
available. In cases without histological confirmation, lesion classification
was based on the final outcome of the local neuro-oncology multidisci-
plinary team meeting which assessed all available serial radiological sur-
veillance studies as well as clinical data at the latest available time point.
This was considered as the expert consensus ground truth. II. Lesion areas
were identified and segmented including hyperintensity on FLAIR (blue),

contrast enhancement (red) and necrosis (yellow—excluded).
Segmentation masks were exported. A common 3D space was created
for each patient using axial T1, post contrast T1W and FLAIR images
from every time point, following log-transformation, normalisation, bias
field correction and intensity matching of the skull-stripped images. The
perfusion maps corresponding to the extracted masks were co-registered
on the common 3D space. III. Feature extraction and SVM training were
based on different combinations of feature datasets (structural, perfusion
and combined) and perfusion time points (single, longitudinal).
Classification performance was assessed by calculating error rates and
accuracy/sensitivity/specificity of classification for each feature dataset.
SVM classification results were compared to radiologists’ predictions
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Results

Study participants - lesion classification

The final analysed cohort included 64 participants (age 48.5 ±
12.8 [mean, SD], 24 female). All time points were selected
following completion of initial chemoradiation therapy. From
an initial group of 187 patients with DSC MRI exams, we
excluded 123 cases due to histological diagnosis other than
high-grade glioma, unavailable or inadequate structural imag-
ing studies prior to and after DSC MR perfusion, or inade-
quate information on lesion histology and patient treatment.
All included patients had histologically proven HGG, at least
one DSC MR perfusion time point, as well as structural MRI
preceding and following each perfusion time point. The final
cohort comprised of 64 patients: 45 cases with a single time
point and 19 cases with multiple DSC time points. Study
participants were separated into two groups: group I (single
DSC time point: 64 patients) and group II (multiple DSC time
points: 19 patients). A flowchart outlining patient selection is
provided (Supplementary Figure 1).

Patient demographics and clinical characteristics are
summarised in Table 1. Lesion histology is available in sup-
plementary material (Supplementary Tables 1 and 2). The
single time point group (group I: 64 patients) included 43
patients with GB (WHO grade 4), 14 patients with anaplastic
astrocytoma (grade 3) and 7 patients with oligodendroglioma
(grade 3). The multiple time point group (group II 19 patients)
included 14 patients with GB, 3 patients with anaplastic as-
trocytoma and 2 patients with anaplastic oligodendroglioma.

In total, we included 269 complete structural MRI and 92
DSC MR perfusion studies. The time interval between the
initial and final imaging studies during surveillance was
(mean, SD [95% CI] days): group I (201, 159 [182–220]),
group II (208, 170 [172–243]).

Treatment response assessment and lesion classification
are summarised in supplementary material (Supplementary
Tables 1 and 2). Lesion classification per group included:
group I (single time point): 37 PD, 13 PsP and 14 SD cases
and group II (multiple time points): 8 PD, 5 PsP and 6 SD
cases.

SVM feature selection—classification error rates

Classification performance of radiomic features was assessed
via an integrative analysis. Features with the highest
predicting accuracy were similar in both groups. The best
performance was identified for subtracted values of these fea-
tures in the multiple time point group including differences in
the 25th percentile (P25) of rCBF (Diff ZrBF First Quartile),
rCBV (Diff ZrBVCorrelation), T2 kurtosis (Diff T2 Kurtosis)
and subtracted signal intensity on T1 post contrast images
(Diff T1Gad sum average).

SVM classification error rates were calculated for both
groups following multiple iterations, to allow comparison be-
tween different datasets. In an exploratory way, classification
performance was also assessed for different combinations of
lesion status as follows: (PsP/SD vs PD and SD vs PsP/PD).

Classification results for group I (single time point, 64 pa-
t ien t s ) a re provided in supplementary mate r ia l

Table 1 Patient demographics,
tumour histology and lesion
classification

Patient population – tumour type Group II (multiple DSC
time points)

Group I (single DSC
time point)

Total number of patients 19 64

Sex ratio (M/F) 11/8 40/24

Mean age 45 48.5

Tumour type

Glioblastoma (WHO grade 4) 13 43

Anaplastic astrocytoma (WHO grade 3) 4 14

Anaplastic oligodendroglioma (WHO grade 3) 2 7

Progressive disease (PD) 8 37

Pseudoprogression (PsP) 5 13

Stable disease (SD) 6 14

Surgical treatment

Gross total resection, N (%) 13 (68%) 38 (60%)

Sub-total resection, N (%) 2 (11%) 13 (20%)

No surgery, N (%) 4 (21%) 13 (20%)

Follow up interval (days)

Mean, SD [95% CI]:

208, 170 [172–243] 201, 159 [182–220]

Follow up interval in days

Mean, SD [95% CI] [PsP cases]

272, 218 [149–395] 216, 176 [61–370]

Neuroradiology



(Supplementary Figure 2). In this group, the combination of
structural and perfusion features outperformed both
standalone perfusion and structural feature datasets for the
clinically relevant classification of PD versus PsP/SD (median
error rates: combined structural and perfusion features 2%,
perfusion features 4%, structural features 15.6%. Mean error
rates: 23%, 27% and 28% respectively).

Classification in group II (multiple time points, 19 patients)
was performed via sampling all combinations of different time
points and feature datasets (structural and perfusion) for each
time point. When a single perfusion time point was employed
(Fig. 2), the combination of perfusion and structural features
resulted in lower final classification error rates compared to
standalone modalities. Specifically, for the clinically relevant
classification of PD vs PSP/SD, the lowest error rate was
achieved when the combination of structural and perfusion
features was employed (median error rate: 1.6%, mean error
rate: 5%).

In group II, classification performance was also
assessed for subtracted datasets from different perfusion
time point combinations (i .e. , f irst and second
time points, first and third time points etc.). Overall,
the input of combined perfusion and structural features
consistently resulted in lower classification error rates
for all time point combinations. Classification based on
the first time point resulted in a mean error rate of
10.5%, which was improved to 9.8% when a second
time point was introduced (mean interval of 88.2 days).
The introduction of an additional, third time point

(mean interval of 287.5 days from the initial time point)
further reduced the mean error rate to 9.3%. The lowest
achievable error rate for stepwise classifications was ob-
served for combined subtracted features between the
third and first perfusion time points (median error rate:
0.4%, mean error rate: 0.7%).

Comparison between radiological reports and SVM-
based classification

We calculated sensitivity, specificity and accuracy of lesion
classification by radiologists and the SVM classifier. Results
are summarised in Table 2. In group II (multiple DSC time
points), the SVM outperformed radiologists’ classification.
The sensitivity/specificity/accuracy for the SVM classification
was 100/91.67/94.7% (analysis based on the first perfusion
time point) and 85.71/100/94.7% (longitudinal analysis based
on multiple time points) compared to 60/78/68% and 70/90/
84.2% for the respective radiologist classifications. In group I
(single perfusion time point), the SVM also exceeded radiol-
ogist classification performance, albeit by a smaller margin
and resulted in sensitivity/specificity/accuracy of 86.49/
75.00/81.53% (SVM) compared to 75.7/68.9/73.84% (radiol-
ogists). Combined perfusion and structural features consis-
tently outperformed standalone datasets for SVM-based clas-
sification for all time point combinations.

Statistical assessment using McNemar’s statistical test
rejected the null hypothesis of equal performance between

Fig. 2 Box plots illustrating the
calculated error rate for the
clinically relevant SVM
classification (SD/PsP vs PD) for
group II ( multiple DSC perfusion
time points), per feature category.
The combination of structural and
perfusion features outperformed
standalone structural or perfusion
feature datasets yielding the
lowest classification error rate
(median error rate: 1.6%, mean
error rate: 5%). Error rate
differences were statistically
significant (Wilcoxon/Kruskal-
Wallis test: p value = 0.0001)
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the radiologists and the SVM classifier (p value < 0.05 for the
respective comparisons, provided in Table 2).

Discussion

This study comparatively assessed the performance of an
SVM classifier for the differentiation between PD, SD and
PSP during post-treatment surveillance of patients with high-
grade glioma (HGG). Our results demonstrate improved SVM
classification performance following the application of com-
bined perfusion and structural MRI features and the introduc-
tion of longitudinal perfusion time points. Furthermore, our
results indicate that the optimal SVM classifier outperforms
radiologists’ interpretation in our cohort.

Optimal SVM classification performance was observed
when longitudinal perfusion studies were analysed based on
combined perfusion and structural features, exceeding radiol-
ogists’ classification performance in both patient groups.
Applying the classifier across two groups (group I and II with
either 1 or 2–3 DSC points respectively), we demonstrate that
the sensitivity/specificity/accuracy of the SVM were superior
to radiologists’. Specifically, for SVM-based classification,
these metrics are 100/91.67/94.7% (first perfusion time point
analysis) and 85.71/100/94.7% (longitudinal analysis), com-
pared to 60/78/68% and 70/90/84.2% for the respective radi-
ologists’ classifications. To the best of our knowledge, this is
the first study to comparatively assess SVM classification per-
formance based on single and longitudinal perfusion time
points using combinations of structural and perfusion feature
datasets, and to compare SVM classification performance to
that of expert radiologists.

Our findings highlight the potential of multiparametric
MRI for determining disease progression and are in accor-
dance with previous studies. Several studies utilised perfusion
MRI parameters for discrimination between disease progres-
sion and treatment-related effects predominantly evaluating
either mean rCBV or maximum rCBV, however producing
inconsistent results [8, 40–42]. A recent meta-analysis reports
a pooled specificity and sensitivity of 90% and 88% (95% CI

0.85–0.94; 0.83–0.92) for each study’s best-performing
DSC MR perfusion parameter [11]. However, in contrast to
these studies and similarly to previous studies by Hu et al and
Park et al [43], our methodology is not based on
predetermined perfusion features or cut-off values during
SVM training.

We observed that the combination of perfusion and struc-
tural MRI features consistently improved classification perfor-
mance for both single and longitudinal perfusion time point
group analyses. Recent studies examining the identification of
pseudoprogression based on a single perfusion time point are
consistent with this observation [27, 28, 44].

Extending further than current knowledge, our results indi-
cate that SVM classification based on longitudinal DSC per-
fusion time points outperforms single time point analysis in
predicting lesion destiny, a finding not previously described
by similar studies. The longitudinal analysis in our cohort was
characterised by improved performance both in terms of clas-
sification error rate and sensitivity/specificity/accuracy, al-
though inherent group cofounders may bias direct
comparisons.

Specifically, classification performance appeared to be re-
lated to the number of the DSC MR perfusion time points.
When a single time point was used for SVM training based on
combined perfusion and structural features, sensitivity/speci-
ficity/accuracy were 86.49/75.00/81.53% respectively (mean
error rate 10.5%). The application of a second perfusion time
point (mean interval time 88.2 days) resulted in increased
classification performance (sensitivity/specificity/accuracy
85.71/100/94.73%, mean error rate 9.8%). The introduction
of an additional, third time point (mean interval 287.5 days)
resulted in similarly improved classification performance and
further reduction in error rate (sensitivity/specificity/accuracy
85.71/100/94.73%, mean error rate 9.3%). The limited num-
ber of subjects undergone three longitudinal perfusion scans
in our cohort does not allow definite conclusions. However,
it is worth noting that the lowest achieved error rate
was observed when combined subtracted features of all
three time points were applied for SVM classification
(median error rate 0.4%, mean error rate 7%).

Table 2 SVM and radiologist classification performance assessment

SVM Radiologists

Group I (single
time point)

Group II (first time
point analysis)

Group II
(longitudinal analysis)

Group I (single
time point)

Group II (first time
point analysis)

Group II
(longitudinal
analysis)

Sensitivity (%) 86.49 100 85.71 75.7 60 70

Specificity (%) 75.00 91.67 100 68.9 78 90

Accuracy (%) 81.53 94.7 94.7 73.84 68 84.2

McNemar’s test, SVM vs radiologist classifications (p value): group I: p value = 0.041, group II (first time point analysis): p value = 0.034, group II
(longitudinal analysis): p value = 0.025
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Another important finding with potential clinical implica-
tion is that the SVM outperformed radiologists’ classification
performance up to 27% in terms of classification accuracy,
more profoundly in the multiple time point group. A similar
observation is described in a recent study employing radiomic
features derived from structural MRI [45]. However, any gen-
eralisation of such comparisons would require confirmation
by studies based on larger patient cohorts, prospective design
and use of external validation.

The identified difference in performance may be attributed
to the ability of the SVM algorithm to detect minute composite
differences in time and space using simultaneously perfusion
and structural imaging parameters, a time-consuming and chal-
lenging task for the reporting radiologist. Indeed, the best-
performing features included differences in rCBV, rCBF, T2
kurtosis and subtracted signal intensity on post-contrast T1
sequences on longitudinal MRI studies. Similar features have
been identified by previous studies as promising for the differ-
entiation of PsP from PD [44–47]. Employing machine learn-
ing, Akbari et al. further demonstrated a correlation between
such features, namely enhancement on post-contrast T1 and
rCBV, with histologically validated tissue characteristics relat-
ed to PsP and PD [48]. Differences in contrast enhancement
and perfusion metrics are routinely employed by radiologists
for lesion characterisation using advanced imaging. However,
the incorporation of longitudinal changes of multiparametric
MRI features in routine clinical reporting poses a time-
consuming and challenging task for human readers.

This study has potential limitations. Importantly, the small
patient cohort and retrospective design of the study potentially
limit generalisability of our results, which should be validated
on larger, well-characterised patient cohorts. To accommodate
for the small number of included studies andmitigate potential
overfitting, K-fold cross validation was employed to derive
training and validation datasets. Histological confirmation of
lesion destiny was not available for all patients, however, this
is rarely available at multiple imaging time points in HGG
patients. Therefore, in such cases, we used expert consensus
as ground truth. A similar approach has been almost univer-
sally employed in similar studies [19, 25–27, 44, 48].
Potential co-occurrence of viable tumour tissue and radiation
necrosis within enhancing lesions poses an additional chal-
lenge for the characterisation of treatment response.
Prolonged serial imaging was employed to account for this
and to allow a more objective final lesion characterisation. A
limited number of external scans were included, introducing
partial heterogeneity of MRI scan protocols. This potential
source of bias is well recognised in clinical practice and was
addressed by the construction of a common 3D space. In gen-
eral, accurate comparison of multiple MRI studies of referred
patients which are frequently inconsistent in imaging protocol
and quality, dictates the creation of a tool to mitigate any bias
and allow assessment of disease evolution despite any

technical or quality differences. We believe that our approach
is promising to address this need. Overcoming the above lim-
itations is crucial towards clinical application of automated
lesion classification based on similar methodologies.
Specifically, confirmation of the clinical value of the de-
scribed approach requires prospective studies incorporating
larger patient cohorts, homogeneous scanning parameters,
higher percentage of histologically confirmed lesion classifi-
cations and external validation of model performance with
independent datasets.

In conclusion, our findings indicate that analysis of perfu-
sion and structural MRI data enhanced by machine learning,
significantly improves classification between SD, PD and
PsP, peaking in performance when multiple perfusion
time points are acquired and taken into analysis. This is, to
date, the first study designed specifically to allow
comparative assessment of classification performance for
standalone and combined structural and perfusion MRI fea-
tures, derived from a single and longitudinal perfusion time
points. Automatic classification of lesions by SVM classifiers
trained on longitudinal perfusion and structural MRI studies,
may also outperform neuroradiological expertise in predicting
lesion destiny. Our preliminary findings warrant confirmation
by larger, ideally prospective, studies.

Abbreviations PD, Progressive disease; PsP, Pseudoprogression; SD,
Stable disease; PR, Partial response; CR, Complete response; rCBV,
Relative cerebral blood volume; rCBF, Relative cerebral blood flow;
SVM, Support vector machine; HGG, High-grade glioma; GB,
Glioblastoma; FLAIR, Fluid-attenuated inversion recovery
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