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Abstract

Introduction: Batch differences in cerebrospinal fluid (CSF) biomarker measurement

can introduce bias into analyses for Alzheimer’s disease studies. We evaluated and

adjusted for batch differences using statistical methods.

Methods: A total of 792 CSF samples from 528 participants were assayed in three

batches for 12 biomarkers and 3 biomarker ratios. Batch differences were assessed

using Bland-Altman plot, paired t test, Pitman-Morgan test, and linear regression. Gen-

eralized linear models were applied to convert CSF values between batches.

Results: We found statistically significant batch differences for all biomarkers and

ratios, except that neurofilament light was comparable between batches 1 and 2. The

conversion models generally had high R2 except for converting P-tau between batches

1 and 3.

Discussion:Between-batch conversion allowsharmonizedCSFvalues to beused in the

same analysis. Such methodmay be applied to adjust for other sources of variability in

measuring CSF or other types of biomarkers.
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1 BACKGROUND

Cerebrospinal fluid (CSF) biomarkers play an increasingly impor-

tant role in the early diagnosis of Alzheimer’s disease (AD),1–8 and

have the potential to improve risk estimates of AD,9 identify indi-

viduals for early intervention who are in the pre-clinical period of

AD,10 and monitor response to interventions.11 A challenge in using

CSF biomarkers for longitudinal AD research is the variability in

CSF biomarker measurements.12–15 CSF quality control (QC) stud-

ies have identified various factors contributing to measurement

variability.5,12,15–21 International collaborations are working to mini-

mize such variability by developing standardized reference materials,

guidelines, and procedures for CSF collection, processing, storage,

and assay techniques.11,13 However, even when most factors are

addressed by the application of standardized procedures andmethods,

between-batch differences, that is, differences between analytical

runs at varied time points, can still contribute to non-trivial variability

in CSF results,5,12,21–24 possibly due to subtle assay variations in

reagents and in the technical performance of the instrument.5,12,21,23

When data generated from CSF samples assayed in different batches

are combined for analysis, between-batch differences can confound

inter-individual and longitudinal intra-individual differences, leading

to bias in estimating AD risks and longitudinal trajectories in CSF

biomarker changes.

Statistical approaches have been proposed for assessing mea-

surement differences between methods and can be applied to

evaluating the batch differences. These approaches include Bland-

Altman plots,25–28 testing differences in means, testing ratios of

variances,29–31 and linear regressions.32,33 However, these methods

are generally limited to the clinical chemistry and statistics literature,

and are not widely known in the AD research field. A possible reason

could be the underestimation of the severity of measurement varia-

tion in CSF biomarkers. Thus the first pair of the study aims were to (1)

increase the awareness of this measure variability issue and (2) illus-

trate how to use these approaches to evaluate the batch differences.

Few statistical approaches have been developed to adjust for batch

differences. A traditional approach to adjust for batch differences is

to include the batch indicator as a covariate in the analysis.34 How-

ever, this approach is applicable only when CSF biomarker variables

serve as outcomes (not as predictors). Moreover, it is valid only when

the batch difference is constant for all CSF samples. To overcome

these barriers, linear regression can be used to convert CSF val-

ues between batches.34–36 However, such analysis commonly violates

model assumptions on normality and homoscedasticity (ie., homogene-

ity of variance).34 Therefore, logarithm or square root transformations

canbeapplied to theCSFbatch values used as the regressionoutcomes

to solve this problem.34,35 When the converted values are included

in the analysis, raw values measured in the base batch need transfor-

mation as well to be on the same scale with the converted values. In

studies that include more than two batches, a unique transformation

likely exists for each additional batch relative to the original batch. As

a result, the values converted from different batches would be on dif-

RESEARCH INCONTEXT

1. Systematic Review: We conducted literature review

using PubMed and identified several studies that eval-

uated batch differences in amyloid beta (Aβ) and tau

cerebrospinal fluid (CSF) biomarker measurement. Few

studies addressed how to adjust for batch differences.

These studies have been cited.

2. Interpretation: Consistent with previous findings on Aβ
and tau, we found significant batch differences in 12 CSF

biomarkers and 3 biomarker ratios. With the application

of generalized linear models (GLMs), we developed con-

versionmodels to adjust for batchdifferences.GLMshave

advantages over linear regression and with batch indica-

tor included as a covariate.

3. Future Directions: The conversion models could be

improved by increasing the comparability between sam-

ples used for model development and samples to be con-

verted. Simulation studies could be used for evaluating

the performance of conversion models under various sit-

uations in terms of accuracy and efficiency.

HIGHLIGHTS

∙ We evaluated batch differences using four statistical

approaches.

∙ We found significant batch differences for 12 CSF

biomarkers with the least for neurofilament light (NfL).

∙ We developed between-batch conversion models using

generalized linear models (GLMs).

∙ Wecompared strength and limitations ofGLMswith other

adjustment methods.

∙ We provided recommendations for how to develop and

apply conversionmodels.

ferent scales. Furthermore, data on transformed scales are difficult to

interpret, and more so for more complex models with interactive or

nonlinear terms. Thus the second pair of the study aims were to (3)

implement a statistical approach to adjust for batch differences which

can overcome these limitations and (4)make recommendations on how

to apply this approach.We pursued these aims through our experience

with evaluating and adjusting for batch differences for an extended

panel of CSF biomarkers in a typical AD research sample.

2 METHODS

2.1 Participants and CSF samples

CSF samples included in this analysis were from participants of six

National Institutes of Health (NIH)–funded AD studies. Informed
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consent was obtained from each participant. A total of 792 CSF sam-

ples were collected from 528 participants (mean age = 61.2 years,

SD = 8.7, range 40.8 to 93.1). A total of 351 had one CSF sample, 98

had two, 71 had three, and 8 had four. Multiple samples from the same

participantwere collected at different ages. The clinical diagnosis asso-

ciatedwith the CSF sample collection included 707 (89.3%) cognitively

unimpaired, 44 (5.6%) dementia due to clinical AD, 35 (4.4%) mild cog-

nitive impairment (MCI) due to clinical AD, 4 (0.5%) MCI due to other

causes, and 2 (0.3%) cognitively impaired but notMCI.

2.2 CSF sample collection, processing, and
storage

Following a standard pre-analytic protocol across all included studies,

we collected all CSF samples from participants in the morning after an

overnight fast using a Sprotte 24- or 25-gauge spinal needle to extract

22 mL CSF into polypropylene syringes. The CSF was then combined,

gently mixed, and centrifuged at 2000 g for 10 minutes at 4◦C. Super-

natants were frozen in 0.5 mL aliquots in polypropylene tubes and

stored in a−80◦C freezer. Samples remained frozen until assayed.

2.3 CSF sample assay batches and methods

Over a 3-year period, the CSF samples were assayed in three batches

at the Clinical Neurochemistry Laboratory, Sahlgrenska Academy, Uni-

versity of Gothenburg, Sweden, with a subset of samples re-assayed,

which resulted in 977 batch measures. CSF samples were categorized

into five groups based on their processing batch(es). Groups {1}, {2}, {3}

represent the CSF samples assayed in a single batch 1, 2, and 3, respec-

tively. Group {1-2} represents the CSF samples assayed in both batches

1 and 2, and group {1-3} represents the CSF samples assayed in both

batches 1 and 3. Figure 1 and Table S1 summarize the distribution of

CSF samplesbetween thegroups, andageanddiagnosis for eachgroup.

Twelve CSF biomarkers were assayed, including β-amyloid 1 to 42 pep-

tide (Aβ1-42), total tau (T-tau), phosphorylated tau (P-tau) (assayed by
INNOTEST for batches 1 and 2, Luminex xMAP for batch 3); amyloid-β
peptides ending at the 42nd, 40th, 38th amino acid (AβX-42, AβX-40,
AβX-38, MSD Triplex); soluble amyloid precursor protein-α (sAPP-α)
and protein- β (sAPP-β), chitinase-3-like protein 1 (YKL-40), monocyte

chemoattractant protein-1 (MCP-1, R&D), neurofilament light chain

(NfL), and neurogranin (Ng, not assayed in batch 3). In addition, three

biomarker ratios were calculated: AβX-42/AβX-40, T-tau/Aβ1-42, and
P-tau/Aβ1-42.

2.4 Statistical analyses

2.4.1 Assessment of between-batch differences

Between-batchdifferenceswere assessed forCSFgroups {1-2} (n=96)

and {1-3} (n = 89) separately with a series of four analyses, including

F IGURE 1 Distribution of cerebrospinal fluid (CSF) samples
betweenmeasurement batches. CSF samples included in this analysis
were from participants of six National Institutes of Health
(NIH)–funded Alzheimer’s disease (AD) studies: theWisconsin
Alzheimer’s Disease Research Center (ADRC) Clinical Core,45 the
Wisconsin Registry for Alzheimer’s Prevention (WRAP),46 the
Longitudinal Early Alzheimer’s Detection (LEAD) study, The
Longitudinal Course of Neural Function and Amyloid in People At Risk
for Alzheimer’s Disease (PREDICT) study, the PIB Imaging in People at
Risk for Alzheimer’s Disease (PIPR) study, and the Statins in Healthy,
At Risk Adults: Impact on Amyloid and Regional Perfusion (SHARP)
study.47 A total of 792 CSF samples collected from 528 participants
were assayed in three batches, with a subset of samples re-assayed,
which resulted in 977 batchmeasures. Groups {1}, {2}, {3} represent
the CSF samples assayed in a single batch 1, 2, and 3, respectively.
Group {1-2} represents the CSF samples assayed in both batches 1 and
2, and group {1-3} represents the CSF samples assayed in both batches
1 and 3. The groups with CSF samples assayed in two batches had
smaller sample sizes than the groups with CSF samples assayed in a
single batch. Themean age for each group ranged from 55.5 to 65.2
years. The clinical diagnoses associated with the CSF samples were all
cognitively unimpaired in groups {1-2}, {1-3}, {3}, and weremostly
cognitively unimpaired in groups {1}, {2}. Types and counts
(percentages) of impaired diagnoses for these two groups are
summarized in Table S1

Bland-Altman plots,25–28 testing differences inmeanswith the paired t

test, testing ratios of variances with the Pitman-Morgan test,29–31 and

linear regressions. As depicted in Figure 2, the Bland-Altman approach

plotted the difference between the two batch values of the same CSF

sample against the average of the two values to detect any hetero-

geneity or trend. Linear regressions tested y = x, that is, y = 0 + 1x,

where x was the CSF biomarker value assayed in one batch and y was

the CSF biomarker value assayed in the other batch of the same sam-

ple. Batch values were considered equivalent if a linear regressionmet

all the following criteria: (1) the test for intercept = 0 was not statisti-

cally significant; (2) the absolute value of the intercept was small, that

is, within 5% of the difference between the minimum and maximum

values of y, analogous to the conventional 5% type I error rate; (3) the

test for slope= 1was not statistically significant; (4) the absolute value

of the slope was small, that is, within 5% of 1 (0.95 to 1.05); (5) model

R2 > .0.90, analogous to the cutoff value for excellent reliability37; and

(6) plotted residuals showed random variation around 0 with constant

variance. Regressions were performed in both directions by switching

x and y.



4 of 12 MA ET AL.

F IGURE 2 Bland-Altman plot for evaluating between-batch differences.We present this example to illustrate how to evaluate and interpret
between-batch differences using the Bland-Altman plot. The differences between the two batch values of the biomarker sAPP-α for the same
cerebrospinal fluid (CSF) sample (Batch 2–Batch 1) are plotted against the average of the two batch values. The dashed line represents the linear
regression fit of the difference on the average. Mean± 2 SD are limits of agreement (LOA).Themean of the differences is above zero, which
indicates that batch 2 on average yielded higher values than batch 1. The negative slope of the linear fit indicates less variability in batch 2, and its
crossing over the zero line indicates that batch 2measurements exceeded batch 1 at the lower end of the range, but at higher levels, batch 1
exceeded batch 2. The variance of these batch differences was non-constant at different biomarker levels, with the largest variance observed in
themiddle of the biomarker level range. Under ideal circumstances, one can evaluate the significance of batch differences by comparing the LOA
against an a priori threshold for a clinically significant difference. However, in this case we had no such a priori thresholds. Furthermore, the
observed non-constant variance of the differences and its marked trend complicate such an interpretation. Consequently we focus on these
descriptive aspects in our report

2.4.2 Development of batch-to-batch conversion
models

Conversionmodels were developed on CSF groups {1-2} and {1-3} sep-

arately, using generalized linearmodels (GLMs)38 with the identity link

function and linear relation between batches. The predictor was the

value assayed in the batch to be converted from, and the outcome was

the value assayed in the batch to be converted to. Conversion mod-

els were developed for both directions by switching the predictor and

outcome to allow flexibility in choosing the converted batch as needed

for a study. We applied three candidate distributions of the outcome,

with each specifying a different variance function, including constant

variance (normal), variance proportional to mean (VPM), and constant

coefficient of variance (gamma), to accommodate non-normality and

heteroscedasticity (ie., heterogeneity of variance).38 Overdispersion

was adjusted for VPM using the deviance statistic. Pearson residuals

were plotted against the predicted values and fitted a locally estimated

scatterplot smoothing (LOESS) line. The best distribution was chosen

by inspection of the residuals such that the LOESS line was most close

to being flat at zero and the residuals were randomly scattered around

zero with constant variance. Outliers were identified as having the top

5% largest Pearson residuals in the absolute value, and models were

refittedwith theoutliers excluded. ThemodelR2 was calculated follow-

ing Zhang’s approach based on themean and variance functions.39

2.4.3 Application of the conversion models
and checking out of range values

Using AβX-42 converting from batch 2 to batch 1 as an example (Fig-

ure 3), only CSF samples assayed in batch 2 but not batch 1 (group {2})

were converted. Conversion was done by applying the mean structure

from the final GLM [converted AβX-42 batch 1 value] = 171 + 1.82 ×

[raw AβX-42 batch 2 value]. Converted values were checked for being

“out of range” by examining if raw batch 2 values to convert (group {2})

were outside the range of raw batch 2 values used to fit the final GLM

(group {1-2}), and if converted batch 1 values were outside the range
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F IGURE 3 AβX-42 converting from batch 2 to batch 1 and checking out of range values. Only samples assayed in batch 2 but not batch 1
(group {2}) were converted. Conversion was done by applying themean structure from the final generalized linear model (GLM): [converted
AβX-42 batch 1 value, represented with red dot]= 171+ 1.82× [raw AβX-42 batch 2 value, represented with blue dot]. The final GLMmodel was
developed using the raw batch 1 and raw batch 2 values of the group {1-2} (representedwith black dot), with 5% outliers excluded (represented
with triangle). The final GLM line deviated from the identity line Y= X, which indicated that raw batch 1 and batch 2 values were not comparable
and conversion was important.We use x to represent the cerebrospinal fluid (CSF) value being checked, and usemin andmax to represent the
minimum andmaximum values of the range being compared to, that is, the range of the raw batch values used to fit the final GLM. POR indicates
the extent a value is out of the range, calculated as a proportion of that range’s width. A negative value represents below the range, a positive value
represents above the range, and zero represents in the range. A larger absolute value indicates being further beyond the range. Thus,
if min ≤ x ≤ max, then POR = 0
If x < min, then POR =

(x−min)

(max−min)
× 100%, POR < 0

If x > max, then POR =
(x−max)

(max−min)
× 100%, POR > 0

For each CSF value being converted, there are two sets of POR values, one for the raw value being converted and the other for the converted value.
The two horizontal dotted lines parallel to the x-axis represent theminimum (Min) andmaximum (Max) of the raw batch 1 values of the group {1-2}.
If a converted value of the group {2} (represented with red dot) is between these two lines, it is in the range of the raw batch 1 values of the group
{1-2}, Converted POR value= 0. If a converted value is below theMin line, it is below the range, Converted POR value< 0. If a converted value is
above theMax line, it is above the range, Converted POR value> 0. The two vertical dotted lines parallel to the y-axis represent theMin andMax of
the raw batch 2 values of the group {1-2}. If a raw value of the group {2} (representedwith blue dot) is between these two lines, it is in the range of
the raw batch 2 values of the group {1-2}, Raw POR= 0. If a raw value is below theMin line, it is below the range, Raw POR< 0. If a raw value is
above theMax line, it is above the range, Raw POR> 0

of raw batch 1 values used to fit the model. Using a similar approach,

conversions from batch 2 to batch 1, from 1 to 2, from 3 to 1, and from

1 to 3 were performed for each biomarker and ratio, by applying the

corresponding GLMmodel to the CSF samples in each batch that were

measured in the batch converting from but not in the batch converting

to. Raw and converted valueswere next checked for being out of range.

Multiple longitudinal CSF samples from the same participant were

treated as independent observations in the analyses, because this clus-

tering would not impact the relationship between the two batch mea-

sures. All analyses were completed using SAS 9.4.40

3 RESULTS

3.1 Between-batch differences

As summarized in Table 1, almost all 29 between-batch comparisons

had significant differences as identified by at least two types of anal-

yses, with 17 showing differences in all four analyses. The only excep-

tionwas thatno significantdifferencewas found forNfLbetweenbatch

1 and batch 2 in any analyses. More detailed results are provided in

Tables S2-S4 and Figure S1.
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TABLE 1 Between-batch comparison of the assayed CSF values for the same CSF sample group

CSF variable n

Bland-

Altman

plot

Difference in

means

Ratio of

variances

Linear regression analyses for testing y= x

Batch 1 is y Batch 1 is x

Model R2
No. of

methodsIntercept Slope Intercept Slope

Comparison between batch 1 versus batch 2 for the CSF sample group {1-2}

sAPP-α 95 ! * * + *+ *+ 0.52 4

sAPP-β 95 ! * *+ *+ 0.45 3

AβX-38 96 ! * * *+ *+ *+ 0.77 4

AβX-40 96 ! * * + *+ *+ *+ 0.70 4

AβX-42 96 ! * * *+ *+ + *+ 0.66 4

MCP-1 96 ! * * *+ *+ *+ 0.70 4

YKL-40 96 * + + 0.92 2

NfL 95 0.95 0

Aβ1-42 96 ! *+ *+ 0.76 2

T-tau 95 ! * * *+ *+ *+ 0.96 4

P-tau 94 * + + *+ *+ 0.64 3

Ng 77 ! * * + + + *+ 0.66 4

AβX-42/AβX-40 96 ! * *+ + + 0.71 3

T-tau/Aβ1-42 95 ! * * *+ *+ 0.97 4

P-tau/Aβ1-42 94 ! * *+ *+ + 0.74 3

Comparison between batch 1 versus batch 3 for the CSF sample group {1-3}

sAPP-α 89 ! * + *+ *+ + 0.51 3

sAPP-β 89 ! * + + *+ *+ 0.49 3

AβX-38 89 ! * * *+ + *+ 0.88 4

AβX-40 89 ! * * *+ *+ *+ 0.77 4

AβX-42 89 ! * * *+ *+ + *+ 0.72 4

MCP-1 89 ! * * *+ *+ *+ 0.71 4

YKL-40 89 ! *+ *+ 0.84 2

NfL 89 ! * * *+ + 0.94 4

Aβ1-42 89 ! * * + *+ *+ *+ 0.53 4

T-tau 89 ! * * *+ *+ 0.93 4

P-tau 88 ! * *+ *+ *+ *+ 0.16 3

AβX-42/AβX-40 89 ! * *+ *+ + + 0.54 3

T-tau/Aβ1-42 89 ! * * *+ *+ *+ 0.88 4

P-tau/Aβ1-42 88 ! * * *+ *+ + 0.44 4

NOTE Difference in means was tested using paired t-test with the null hypothesisM2 -M1 = 0. Ratio of variances was tested using the Pitman-Morgan test

with the null hypothesisV2/V1= 1.Model R2 is the same between the two regressionmodels switching between x and y. Ngwas not available for comparison

between batch 1 versus batch 3 because it was not assayed in batch 3. No. of methods indicates the number of methods that have found batch differences.

!Batch differences were found in Bland-Altman plots.

*Statistical significance, that is., P < (.05/29) for testing difference in means and ratio of variances, and P < (.05/58) for linear regression analyses testing

intercept = 0 or slope = 1. Bonferroni correction was applied to adjust for the inflation of type I error rate due to multiple testing. The critical P-value was
calculated by dividing the conventional P-value .05 by the number of tests.

+Effect size significance for linear regression analyses, that is, |intercept–0| > 5% range of y, or |slope–1| > 5% of 1. The statistical significance of a test

depends on sample size, and the sample sizes were small. It was possible that a large deviation from 0 for the intercept or from 1 for the slope did not yield

a significant P-value. Thus, the effect sizes of these deviations were also evaluated, using 5% as the cut-off value for significance, analogous to using 0.05

for the conventional cut off P-value, that is, 5% type I error rate. For the intercept, because the value range (ie., the difference between the minimum and

maximum values) of y varies a lot between different biomarker variables, the same absolute amount of deviation can represent different extents of deviation

for different biomarkers. Therefore, the intercept was compared against 5% of the value range of y.
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TABLE 2 Generalized linear models for between-batch conversion of CSF values

CSF variable n r Distribution Model R2 Distribution Model R2

CSF sample group {1-2} From batch 2 to batch 1 From batch 1 to batch 2

sAPP-α 95 0.72 Gamma 0.50 Normal 0.62

sAPP-β 95 0.67 Gamma 0.43 Gamma 0.50

AβX-38 96 0.88 Gamma 0.86 Gamma 0.82

AβX-40 96 0.84 Gamma 0.73 Normal 0.78

AβX-42 96 0.81 Gamma 0.69 Normal 0.77

MCP-1 96 0.84 VPM 0.74 Gamma 0.79

YKL-40 96 0.96 Normal 0.95 Gamma 0.95

NfL 95 0.98 Normal 0.96 Normal 0.96

Aβ1-42 96 0.87 Gamma 0.74 Normal 0.81

T-tau 95 0.98 Normal 0.97 Gamma 0.96

P-tau 94 0.80 Gamma 0.66 Gamma 0.71

Ng 77 0.81 Gamma 0.70 VPM 0.75

AβX-42/AβX-40 96 0.85 Gamma 0.77 Gamma 0.77

T-tau/Aβ1-42 95 0.99 Normal 0.98 Normal 0.98

P-tau/Aβ1-42 94 0.86 Normal 0.70 Normal 0.75

CSF sample group {1-3} From batch 3 to batch 1 From batch 1 to batch 3

sAPP-α 89 0.71 VPM 0.57 Normal 0.56

sAPP-β 89 0.70 VPM 0.59 Normal 0.57

AβX-38 89 0.94 Normal 0.91 Gamma 0.88

AβX-40 89 0.88 Gamma 0.81 Normal 0.82

AβX-42 89 0.85 Normal 0.79 Normal 0.79

MCP-1 89 0.84 Normal 0.78 Normal 0.81

YKL-40 89 0.91 Normal 0.94 Normal 0.93

NfL 89 0.97 Gamma 0.96 Normal 0.96

Aβ1-42 89 0.73 Normal 0.57 Gamma 0.56

T-tau 89 0.97 Normal 0.95 Gamma 0.94

P-tau 88 0.40 Normal 0.25 Normal 0.17

AβX-42/AβX-40 89 0.74 Normal 0.64 Normal 0.65

T-tau/Aβ1-42 89 0.94 Normal 0.86 Normal 0.91

P-tau/Aβ1-42 88 0.66 Normal 0.52 Normal 0.35

NOTE. The conversion models were not developed for Ng for CSF sample {1-3} because it was not assayed in batch 3. r is Pearson correlation. All rs are
statistically significant at P< (.05/29).

Abbreviations: VPM, variance proportional to mean.

3.2 Generalized linear models (GLMs) for
conversion between batches

As summarized in Table 2, Pearson correlations were high and ranged

from 0.66 to 0.99 with an average of 0.85, except for P-tau between

batches 1 and 3, r = 0.40. For the 58 conversion models, 33 were fit

with normal, 4were fit withVPM, and 21were fit with gammadistribu-

tions. Model R2 ranged between 0.17 and 0.98with an average of 0.75.

Model R2s were very high for all four between-batch conversions for

YKL-40 (0.93 to 0.95), NfL (all R2= 0.96), T-tau (0.94 to 0.97), and T-

tau/Aβ1-42 (0.86 to 0.98). The lowestModelR2s (<0.50)were seen for

P-tau conversion between batches 1 and 3 bi-directionally (0.17, 0.25),

P-tau/Aβ1-42 conversion from batches 1 to 3 (0.35), and sAPP-β con-
version frombatches2 to1 (0.43).Conversionmodel intercepts, slopes,

and 95% confidence intervals are provided in Table S5.

3.3 Out of range raw and converted values

As shown in Table 3, of all 58 conversions, only 1 had neither raw nor

converted values out of range (conversion of YKL-40 from batches

3 to 1), 10 had only raw but no converted values out of range, and

the remaining 47 had both raw and converted values out of range.

Among the four sets of conversions, conversion of the CSF group {3}
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TABLE 3 Counts and percentages of the raw and converted batch values that were out of range for the CSF samples being converted

CSF variable n of converted Raw Converted n of converted Raw Converted

Conversion from batch 2 to batch 1 Conversion from batch 1 to batch 2

sAPP-α 202 9 (4.5) 1 (0.5) 332 3 (0.9) 0 (0.0)

sAPP-β 202 7 (3.5) 0 (0.0) 332 5 (1.5) 1 (0.3)

AβX-38 201 12 (6.0) 7 (3.5) 332 27 (8.1) 18 (5.4)

AβX-40 201 9 (4.5) 8 (4.0) 332 14 (4.2) 12 (3.6)

AβX-42 201 10 (5.0) 9 (4.5) 332 35 (10.5) 7 (2.1)

MCP-1 200 4 (2.0) 0 (0.0) 332 2 (0.6) 1 (0.3)

YKL-40 202 5 (2.5) 4 (2.0) 332 9 (2.7) 10 (3.0)

NfL 199 10 (5.0) 4 (2.0) 330 15 (4.5) 20 (6.1)

Aβ1-42 202 7 (3.5) 0 (0.0) 330 12 (3.6) 7 (2.1)

T-tau 202 21 (10.4) 21 (10.4) 330 39 (11.8) 38 (11.5)

P-tau 202 23 (11.4) 23 (11.4) 330 43 (13.0) 23 (7.0)

Ng 202 37 (18.3) 5 (2.5) 326 37 (11.3) 4 (1.2)

AβX-42/AβX-40 201 3 (1.5) 0 (0.0) 332 13 (3.9) 13 (3.9)

T-tau/Aβ1-42 202 14 (6.9) 14 (6.9) 330 38 (11.5) 33 (10.0)

P-tau/Aβ1-42 202 21 (10.4) 19 (9.4) 330 32 (9.7) 25 (7.6)

Conversion from batch 3 to batch 1 Conversion from batch 1 to batch 3

sAPP-α 162 3 (1.9) 0 (0.0) 338 23 (6.8) 0 (0.0)

sAPP-β 162 1 (0.6) 1 (0.6) 338 19 (5.6) 6 (1.8)

AβX-38 162 3 (1.9) 3 (1.9) 339 14 (4.1) 11 (3.2)

AβX-40 162 1 (0.6) 1 (0.6) 339 12 (3.5) 13 (3.8)

AβX-42 162 3 (1.9) 0 (0.0) 339 40 (11.8) 28 (8.3)

MCP-1 162 9 (5.6) 6 (3.7) 339 7 (2.1) 7 (2.1)

YKL-40 162 0 (0.0) 0 (0.0) 339 20 (5.9) 20 (5.9)

NfL 162 4 (2.5) 3 (1.9) 337 48 (14.2) 52 (15.4)

Aβ1-42 162 4 (2.5) 5 (3.1) 337 55 (16.3) 6 (1.8)

T-tau 162 2 (1.2) 2 (1.2) 337 39 (11.6) 35 (10.4)

P-tau 162 1 (0.6) 1 (0.6) 337 28 (8.3) 7 (2.1)

AβX-42/AβX-40 162 2 (1.2) 0 (0.0) 339 33 (9.7) 2 (0.6)

T-tau/Aβ1-42 162 7 (4.3) 4 (2.5) 337 41 (12.2) 41 (12.2)

P-tau/Aβ1-42 162 3 (1.9) 0 (0.0) 337 55 (16.3) 40 (11.9)

NOTE. The conversions fromand to batch 3were not performed forNg, because itwas not assayed in batch 3 and thus no conversionmodelswere developed.

from batches 3 to 1 generally had the lowest out of range percent-

ages. On average, raw values had higher out of range percentages than

converted values. Table S6 additionally summarizes the magnitude for

being out of range.

4 DISCUSSION

4.1 Findings of between-batch differences

Almost all CSF biomarkers and ratios had non-trivial between-batch

differences except for NfL being comparable between batches 1

and 2. Between-batch differences may be caused by subtle assay

variations.5,12,21,23 Assay variations can be minimized using speci-

fied acceptance criteria for the release of new kit lots, laboratories

lot-to-lot bridging, and maintenance of instruments and internal

and external QC samples. Nevertheless, subtle drift may occur

before action is taken, due to replacement of kit lot, recalibration,

or service of instrument, and so on. Moreover, for many biomark-

ers there are no certified reference materials that can be used to

recalibrate assays rendering longitudinal stability of the measure-

ments difficult to maintain. Between-batch conversions are thus

important.
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4.2 Recommendations for conversion models

Weprovide the following recommendationswith the application of the

conversion models developed in this study to our center’s research as

an example.

First, researchers should evaluate and understand the batch differ-

ences in the assayed CSF biomarker values. Re-assaying a subset of

samples in subsequent batches would allow such evaluation. A com-

prehensive evaluation can be performed with a combination of exam-

ining Bland-Altman plots, testing differences inmeanswith the paired t

test, testing ratios of variances using the Pitman-Morgan test, and test-

ing value equivalence with linear regressions. Each method assesses

the batch differences from a varying perspective. Whenever possible,

biomarker measurement should be performed using internal QC sam-

ples that are the same between runs. This will allow for detection of

larger drifts in themeasurement (often± 10%but this may vary across

biomarkers and laboratories).

Second,whenCSFbiomarker values are comparable across batches,

raw values can be combined directly in analyses. For example, in this

study, rawNfL values frombatches 1 and2 can be combined given their

batch comparability.

Third, for CSF biomarker values that have significant batch differ-

ences, statistical conversion models can be developed using GLMs to

adjust for thebatchdifferences. Someconversionmodelsmayyield low

R2,warranting cautionwhen conducting analyseswith these converted

values included. When possible, a sub-sample consisting of raw values

from only one batch can be analyzed instead, or at least serve as a sen-

sitivity analysis.

Fourth, the conversion direction (eg., either from batch 1 to batch 2,

or from2 to1) shouldbe chosen such thatmore rawbatchvalueswill be

included in the analysis, because converted values include conversion

model prediction errors even if those errors are minimal, whereas raw

values do not. In this study, the conversion models were developed for

both directions to allow flexibility, given that studies may have more

raw values in different batches.

Fifth, for an analysis that includes CSF samples from multiple study

cohorts, it is possible that no CSF samples are repeatedly assayed in

a pair of batches, and thus conversion models cannot be developed

between these batches. If conversion is necessary, a chained indirect

conversion that involves the application of more than one conversion

model can be applied. For example, in this study no direct conversion

was developed between batches 2 and 3 because noCSF sampleswere

assayed in both of the batches. Conversion from batches 2 to 3 could

be achieved by converting from 2 to 1, and then converting from 1 to

3. However, such indirect conversion is not recommended because of

multiplied chances in prediction errors.

Finally, GLMs may have limited predictive ability beyond the data

range of the sample that the conversion model is based on. Thus the

extent to which it is out of range can be provided for each value

being converted and used for assessing the utility of the converted

values.

4.3 Strengths

Previous studies12,17,22,23 examining CSF measurement variability

focused mainly on three core AD biomarkers—Aβ1-42, T-tau, P-tau,
whereas we studied an extended panel of 12 AD biomarkers and 3

ratios. In addition to comprehensively evaluating between-batch dif-

ferences with multiple approaches, we further developed statistical

conversion models to adjust for batch differences using GLMs. Such

harmonization would allow valid prediction of AD risks and longitudi-

nal trajectories in CSF biomarker changes. Compared to including the

batch indicator as a covariate, the GLM is applicable when the CSF

biomarker variable serves as a predictor and when the batch differ-

ences are not constant. Compared to linear regression, GLM allows

non-normality and heteroscedasticity,38 and thus does not require

transformation, which eases data interpretation and is applicable to

more than two batches.

4.4 Limitations

Three CSF biomarkers including Aβ1-42, T-tau, and P-tau were mea-

sured using different assay methods (INNOTEST vs XMap) between

batches 1 and 3. Unfortunately, the assay difference could not be sepa-

rately assessed from the batch difference in the current study, because

each batch was measured with only one assay method and vice versa.

Of interest, the conversion models R2s were high for T-tau (0.95 and

0.94), but were the lowest for P-tau (0.17 and 0.25). Measuring factors

that contribute to the measurement variability within the same batch

and evaluating how they behave differently between T-tau and P-tau

may shed light on this finding and improve the conversion models for

P-tau.

Similar to any other regression-based approaches, GLM suf-

fers reduced variability in the converted values associated with

regression toward the mean. A non-regression approach is z-score

transformation,41 which would convert each CSF sample’s raw value

to standardized value using the mean and standard deviation of all

CSF samples included in the batch the sample was assayed in. Ideally,

CSF samples measured in different batches could have similar distri-

butions (e.g., similar means and standard deviations) of the underly-

ing true biomarker levels. Correspondingly, a sample would stand at

a similar percentile in the distribution and have a similar z-score if it

were measured in a different batch, allowing the possible harmoniza-

tion using z-score. However, in reality, batches usually include samples

collected from different studies and from participants with different

ages and diagnoses (eg., as shown in the current study), and thus have

different distributions, thereby limiting the application of this method.

Nonetheless, this approach can be applicable for harmonizing different

measurement methods for large epidemiological studies, in which par-

ticipants measured by each method are approximately a random sam-

ple from the population. In summary, continued research is needed to

develop better solutions for adjusting batch differences.
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Compared to the CSF groups used for developing conversion mod-

els, the CSF groups being converted had larger sample sizes (ratio of

ns ranged from1.9 to 4.4), had oldermean ageswith greater variability,

and hadmixed clinical diagnoses (except for group [3]), and thus tended

to have more variability in the CSF biomarker levels and yielded out

of range values. Conversion accuracy may be reduced for out of range

values, as it is functionally extrapolating beyond the range of the fitted

data. In future study design, it will be helpful to expand the value range

of theCSF samples used for developing conversionmodels by including

samples collected at broader age span and diverse clinical diagnosis,

in order to make the samples for developing conversion models more

comparable with the samples to be converted.

Ideally, we would have additional CSF samples that were measured

in both batches but not used for model development to apply the con-

versionmodel and evaluate prediction accuracy. However, because the

number of repeatedlymeasuredCSF sampleswas limited, all such sam-

ples were used for model development to minimize random errors

associated with small sample size and best capture the between-batch

relations. Such validation is encouraged for future conversion model

development if sample size is sufficient to allow the split between the

training (ie., model development) versus testing (ie., model validation)

subsamples. In addition, the performance of conversion models could

be evaluated using simulation studies, which would generate multi-

ple samples for each scenario of interests, and estimate a conversion

model on each sample to produce an empirical distribution of model

parameter estimates. Performance of the conversion would then be

evaluated based on statistical properties of this empirical distribution

in terms of accuracy (ie., bias) and efficiency (ie., empirical standard

error).

5 CONCLUSIONS

In summary, researchers should first try their best to assay CSF sam-

ples in the same batch and minimize factors that contribute to mea-

surement variability by following standard procedures and methods

for CSF collection, processing, and assay. Between-batch conversion

using statistical models can serve as a post hoc treatment to harmo-

nize the CSF values assayed in different batches to be included in the

same analysis if necessary. However, such statistical harmonization

does not lessen the importance of the aforementioned effort to mini-

mize batch differences upfront. The fully automated platforms such as

the Elecsys immunoassays are promising in controlling for batch vari-

ability, as evidence has shown for Abeta1-42, T-tau, and P-tau.42–44

However, as novel CSF biomarkers are being developed, and it takes

time for such platforms to become available for all biomarkers, statis-

tical conversion models remain important for AD studies that include

CSF data. Furthermore, the approaches for assessing and accounting

forbatchdifferences in the current studyhave thepotential application

for evaluating and adjusting for other sources of variability in measur-

ing CSF biomarkers beyond batch difference, or studying other types

of biomarkers such as imaging data.
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