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Beam Drift in Millimeter Wave Links: Beamwidth
Tradeoffs and Learning Based Optimization
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Abstract—Millimeter wave (mmwave) communications, envis-
aged for the next generation wireless networks, rely on large
antenna arrays and very narrow, high-gain beams. This poses
significant challenges to beam alignment between transmitter
and receiver, which has attracted considerable research attention.
Even when alignment is achieved, the link is subject to beam
drift (BD). BD, caused by non-ideal features inherent in practical
beams and rapidly changing environments, is referred to as the
phenomenon that the center of main-lobe of the used beam
deviates from the real dominant channel direction, which further
deteriorates the system’s performance. To mitigate the BD effect,
in this paper we first theoretically analyze the BD effect on the
performance of outage probability as well as effective achievable
rate, which takes practical factors (e.g., the rate of change of the
environment, beam width, transmit power) into account. Then,
different from conventional practice, we propose a novel design
philosophy where multi-resolution beams with varying beam
widths are used for data transmission while narrow beams are
employed for beam training. Finally, we design an efficient learn-
ing based algorithm which can adaptively choose an appropriate
beam width according to the environment. Simulation results
demonstrate the effectiveness and superiority of our proposals.

Index Terms—Beam drift, Bayesian contextual bandit, perfor-
mance analysis, beam training, millimeter wave communication.

I. INTRODUCTION

THANKS to abundant bandwidth resources of mmwave,
mmwave communications have recently attracted con-

siderable attention [1]. However, the propagation features
of mmwave signals are different from the conventional mi-
crowave counterparts, which makes it difficult to reap the
benefits of mmwave communications. In particular, compared
to microwave channels, the path-loss of mmwave channels is
much larger. Fortunately, the wave-length of mmwave signals
is small, and thus it is convenient to pack a large number of
antennas into a small space, which provides large array gains
via beamforming to combat the large path-loss. However, the
large number of antennas poses great difficulties in obtaining
channel state information (CSI) via beam training, especially
in dynamic environments.

In view of the sparsity and large dimension of mmwave
channels, an effective approach to obtain CSI is beam training
[2]–[4]. In beam training, candidate beams at the transmitter
and/or receiver are directly trained via exhaustive or adaptive
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search to select the ones that optimize some performance
metric, e.g., the strength of received signals or signal-to-noise
ratio (SNR) [3]–[5]. In particular, as a non-adaptive approach,
the hierarchical search based beam training approach has
been studied deeply and a variety of algorithms have been
proposed to design hierarchical codebooks [2]–[4], [6]–[8].
Nevertheless, the training overhead of the hierarchical search
based beam training algorithms is still very high in systems
with large-scale antenna arrays. Furthermore, beam tracking
techniques can be used to track beams in some cases (e.g.,
when channel correlation is available), so as to further reduce
the training overhead [9]–[12]. Although beam tracking tech-
niques can reduce the training overhead, for most practical
scenarios the assumptions of channel modeling required by
channel tracking are often too stringent to meet [12].

To reduce the training overhead, the core approach is to
reduce the beam search space for the training process via
extracting and exploiting the information from the training
history, which leads to machine learning (ML) based beam
training algorithms [12]–[21]. According to the underlying ML
approaches or principles, these beam training solutions roughly
fall into two categories. The first category is designed based
on supervised learning and occupies most of the existing ML
based methods [12]–[17]. The key of the supervised learning
based beam training solutions is to prepare for a sufficiently
large database of training samples. As for the second category,
it is designed based on reinforcement learning, or more
generally, Markov decision process [18]–[21]. An important
benefit of the second category is that the burden of collecting
training samples can be relieved to a great extent.

Note that in previous studies and also in practical system
designs, it is almost always assumed that channels (also chan-
nel directions) remain unchanged within any given time-slot,
and most of the subsequent system designs are based on this
assumption. However, this assumption may be problematic,
since it ignores beam drift (BD) effect. BD is referred to as
the phenomenon that angle of departure (AoD) or angle of
arrival (AoA) deviates from the beam center angle aligned at
the beginning stage of each time-slot, which leads to a low
beamforming (or array) gain. The causes of BD are two-fold.
On the one hand, AoD or AoA, which depends only on exterior
physical environments (e.g., transmitter and/or receiver and
their motions), almost always changes continuously. On the
other hand, the beams used for data transmission (e.g., the
DFT beams constructed by sampling the beam space) are non-
ideal (e.g., large transition band and ripples), which results in a
low beamforming gain even if the AoD or AoA deviates from
only a bit the beam center angle. In fact, as long as the AoD
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or AoA changes and thus invokes beam switching, the beam
center angle aligned at the beginning stage of each time-slot
is bound to deviate from the AoD or AoA, which has already
leaded to a low beamforming gain.

The BD effect poses great impacts on system performance.
In particular, it affects the performance of effective achievable
rate (EAR), i.e., the training overhead is also taken into
account. On one hand, it has been widely accepted that narrow
(and even the most narrow) beams should be used for data
transmission, so as to achieve the highest beamforming gain.
Nevertheless, from a beam training point of view, narrow
beams increase the size of beam search space and the resulting
training overheads. Moreover, the BD effect also has a negative
impact on beamforming gain. This is particularly pronounced
once the environment changes rapidly. In fact, as we will point
out in this paper, the BD effect implies a tradeoff between
the beamforming gain and effective time of data transmission.
This is particularly challenging, as the BD effect is almost
inevitable in mobile scenarios. Although narrowing the length
of each time-slot can mitigate the BD effect, it may also reduce
the EAR performance since beam training is almost essential
and occupies a considerable part of each time-slot.

To mitigate the BD effect and ensure a high beamforming
gain all the time, in this paper we propose a novel design
philosophy for mmwave beam training and data transmission,
along with an efficient algorithm to adapt the beam width.
Specifically, we first theoretically analyze the performances of
outage probability (OP) and EAR, by incorporating practical
factors. Then, to mitigate the BD effect and improve system
performance, a novel design philosophy for mmwave commu-
nication is proposed, where multi-resolution and narrow beams
are used for data transmission and beam training, respectively.
Finally, to enable flexible and fast beam width switching, we
further design an efficient learning based algorithm. The main
contributions are summarized as follows:
• We reveal the BD effect with the aim of improving the

EAR performance. In particular, we derive the analytical
expressions for OP and EAR, which reveal useful insights
via explicitly characterizing the relationship between OP
(or EAR) and practical factors, especially, the beam width
and the rate of change of the environment.

• We propose a novel design philosophy for data trans-
mission and beam training in mmwave communications.
Specifically, multi-resolution beams are advocated for
data transmission so as to mitigate the BD effect, while
narrow beams are employed to perform beam training
which accommodate the beam change.

• To mitigate the BD effect, we further design a learning
based algorithm to achieve the goal of adapting the beam
widths for data transmission. The designed algorithm can
sense the rate of change of the environment quickly and
adaptively choose the optimal beam width from a multi-
resolution codebook.

• Comprehensive simulation results are provided to demon-
strate the effectiveness and superiority of the proposed
algorithm. It is shown that the proposed algorithm can
effectively mitigate the BD effect by intelligently choos-
ing the optimal beam according to the environment, and

achieve a good EAR performance.

The remainder of this paper is organized as follows. System
model of mmwave communication is described in Section II.
In Section III, analytical expressions are derived for both OP
and EAR performances, and useful insights are also revealed.
A novel design philosophy for mmwave data transmission and
beam training is proposed in Section IV. To mitigate the BD
effect, a learning based algorithm is also proposed. Simulation
results and conclusions are given in Section V and Section VI,
respectively. To improve readability, the proofs of all theorems
are deferred to appendices.

Notations: Bold uppercase A and bold lowercase a denote
matrices and column vectors, respectively. Without particular
specification, non-bold letters A, a denote scalars. Caligraphic
letters A stand for sets. E(·) and (·)H denote the mathematical
expectation and Hermitian operators, respectively. I{·} and
card(A) represent the indicator function and the cardinality
of A, respectively. (·)? represents an optimal quantity, e.g.,
an optimal solution of an optimization problem. CN (m,R)
stands for a complex Gaussian random vector with mean m
and covariance matrix R. For an integer n > 0, [n] is the set
containing all integers from 1 to n, i.e., [n] = {1, 2, 3, · · · , n}.
1 and I denote an all-one vector and an identity matrix of
appropriate dimension, respectively.

II. SYSTEM MODEL

Consider a mmwave point-to-point communication system,
which consists of one base station (BS) equipped with N
transmit antennas and a single-antenna user (UE), as illustrated
in Fig. 1. To facilitate practical system implementation, a
codebook based beamforming is considered in this paper [5].
Temporarily, we assume that each transmitting beam is chosen
from a predefined codebook C = {f1, f2, · · · , fM} of size M
(e.g., the DFT codebook constructed by uniformly sampling
beam space [−1, 1]). Later, we will consider a multi-resolution
codebook to improve system performance.

Fig. 1. An illustration of a point-to-point mmwave communication system.

Due to the sparsity of mmwave channels, an extended Saleh-
Valenzuela geometric channel model is adopted in this paper.
The channel vector h ∈ CN×1 between the BS and the UE is
given by

h =
√
N/β

L∑
l=1

gla(φl), (1)
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where a(·) represents array response vector, β is average path-
loss, L is the number of paths, and gl is complex small-scale
fading of the l-th path. In (1), φl = cos(θl), where θl is
physical angle of departure (AoD) of the l-th path. Without
loss of generality, uniform linear array (ULA) is considered
in this paper for simplicity. However, the proposed algorithms
can be extended to other types of antenna array geometries,
e.g., uniform planar array.

With the assumption that beam i (i.e., fi ∈ CN×1) is chosen
by the BS, the signal received at the UE is given by

yi =
√
PhHfis+ ni, (2)

where P denotes transmit power, s ∈ C denotes pilot symbol
(e.g., s = 1), and ni ∼ CN (0, 1) denotes random noise
variable. The SNR is calculated as

SNR = P
∣∣hHfi

∣∣2. (3)

Let TB represent the duration of beam training within a time-
slot and TS be the duration of any time-slot. The metric EAR
for a time-varying channel environment is defined as

RE = T−1
S

∫ TS

TB

log(1 + SNR(t))dt. (4)

Note that T−1
S in (4) is introduced to keep consistent with

the definition in the literatures [12]. 1 The definition in (4)
is extended from the conventional case (i.e., SNR(t) is a
constant) to more general cases (e.g., SNR(t) is a function),
by leveraging the technique of taking the limit. Since no extra
or special assumption is involved, it can apply to various
complicated cases.

Apparently, to achieve a high throughput, one the one hand,
SNR(t) should be as large as possible in the whole phase of
data transmission, and on the other hand, TB should be as
small as possible, so as to reserve more effective time for data
transmission. Note that as a time-varying quantity occurring
in the phase of data transmission, SNR(t) is significantly
affected by the BD effect. Meanwhile, TB is closely related to
beam training. Therefore, to improve the EAR performance,
both data transmission and beam training should be carefully
designed, which is the focus of this paper.

III. PERFORMANCE ANALYSIS WITH BEAM DRIFT

In this section, we construct a mathematical model for BD
via Gaussian processes (GPs) and mathematically analyze its
influence on the system EAR performance.

A. Beam Drift and Mathematical Modeling

To facilitate study, it is often assumed that the AoDs {φl}
keep fixed within each time-slot, while vary across different
time-slots only, as shown in Fig. 2-(a). 2 However, the AoDs,

1In fact, without considering the BD effect, the definition in (4) is simplified
as RE = (1− TB/TS) log(1 + SNR), which was adopted in [12]. Note that
(1− TB/TS) is incorporated to take the training overhead into account.

2In practice, θ (in the angular domain) and φ = cos(θ) (in the beam
domain) are both referred to as AoD. The unit of θ is the radian, and thus
the range is [0, π] (or [−π, π]), while the range of φ is [−1, 1]. Similar to
[4], AoD/AoA and beam pattern are characterized in the beam domain in this
paper (e.g., to characterize beam width in (9)).

in fact, often continuously change from one time-slot to the
next one, because the UE moves continuously. As a result,
although the chosen beam is optimal at the beginning of each
time-slot, it gradually becomes sub-optimal and even interrupts
the communication link (i.e., the beamforming or array gain
is less than a predefined threshold), as shown in Fig. 2-(b). In
this paper, this phenomenon is referred to as beam drift.
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Fig. 2. (a) Beam drift phenomenon - the real AoD φ(t) continuously changes
with time, while the estimated AoD φ̂(t) keeps fixed within each time-slot;
(b) Beam drift may cause a dramatic change of normalized beamforming (or
array) gain, calculated as |aH(φ)a(φ̂)|. φ(t) is sampled as per a GP with
kernel kSE(t, t′) = exp(−|t− t′|2) (See the next page for more details).

It is not difficult to understand that BD has a significant
impact on system performance. Typically, a larger BD leads
to a larger performance loss. Because of its significance, an
in-depth study of BD, in particular, to analyze its influence on
performance metrics, is both required and urgent. To this end,
an appropriate mathematical model has to be chosen to better
characterize BD. To accommodate randomness and analytical
tractability, stationary GPs are considered in this paper [22].
Moreover, since a GP is a non-parametric (stochastic) model,
it provides sufficient universality and flexibility.

A GP {f(t)} is a collection of random variables, any finite
number of which are jointly Gaussian [22]. Specifically, for
any finite number of points t1, t2, · · · , tn, the joint probability
density function p(f(t1), f(t2), · · · , f(tn)) is Gaussian. A GP
is completely specified by its mean function m(t) = E[f(t)]
and covariance function k(t, t′) (also referred to as kernel in
the literatures). Without loss of generality, the mean function
is assumed to be zero, i.e., m(t) = 0. The covariance function
or kernel is defined as

k(t, t′) =E[(f(t)−m(t))(f(t′)−m(t′))]

=E[f(t)f(t′)].
(5)

Accordingly, the GP is denoted by f(t) ∼ GP
(
k(t, t′)

)
. The

kernel is simplified as k(t) at a diagonal point t = t′.
The kernel is crucial for a GP, because it encodes the prior

about the function. The specification of the kernel implies a
distribution over the function and defines similarity or nearness
of the function values at different points. Generally, an arbi-
trary function of input pairs t and t′ may not be an effective k-
ernel. To meet different applications (or scenarios), many kinds
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of kernels have been developed, e.g., Matern kernel, squared
exponential (SE) kernel, periodic kernel, spectral mixture (SM)
kernel. Please refer to [23] for more details. Next, we briefly
introduce two kinds of kernels, which have been widely used
in practice. Note that new kernels can be constructed from the
existing ones via simple mathematical operations, e.g., sum or
product operations. Typically, if {ki(·, ·) | i = 1, · · · , n} are
kernels,

∑n
i=1 ki(·, ·) and

∏n
i=1 ki(·, ·) are also kernels.

1) Squared Exponential Kernel: The SE kernel takes the
form

kSE(t, t′) = σ2
f exp

(
− 1

2l2
|t− t′|2

)
, (6)

where σ2
f and l are signal variance and length-scale, respec-

tively [23]. In particular, parameter l characterizes the rate of
change of the GP. If the GP varies rapidly, the length-scale l
should be shorter. On the other hand, the degree of variation
of the GP can be achieved by adjusting l.

2) Spectral Mixture Kernel: The SM kernel provides more
flexibility and takes the form

kSM(t, t′) =

Q∑
q=1

aq
|Σq|0.5

(2π)0.5
exp

(
−1

2

∥∥Σ0.5
q (t− t′)

∥∥2
)
·

cos
(
2πµq(t− t′)

)
, (7)

where {aq}, {Σq} and {µq} are mixture weights, bandwidths
(inverse length-scales) and frequencies, respectively. The SM
kernel is more expressive, and helps to discover interesting
and important structures and/or models of a stochastic process
(e.g., quasi-periodic stationary mode).
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l=0.25
l=0.25
l=0.25
l=0.75
l=0.75
l=0.75

Fig. 3. Sample functions of a GP with the SE kernel - σ2
f = 1. A GP (with

m(t) = 0) is uniquely characterized by the kernel, based on which sample
functions can be generated. Please refer to [22] or [23] (e.g., Appendix A in
[23]) for more details.

For intuition, some sample functions of a GP with the SE
kernel are shown in Fig. 3. It is observed that a smaller
value of the parameter l corresponds to an environment that
changes more rapidly, which confirms the effectiveness of
using GPs to model AoD/AoA change. Another benefit of
modeling AoD/AoA change via GPs is that it enables us to
derive analytical expressions and further reveal useful insights.
Note that since the SE kernel is infinitely differentiable, a GP
with this kernel is smooth, as shown in Fig. 3.

B. Performance Analysis of Beam Drift

Now, we analyze the BD effect on system performance. To
simplify performance analysis and reveal meaningful insights,
the number of channel paths L in (1) is assumed to be 1, i.e.,
L = 1. Accordingly, the channel vector h is simplified as

h =
√
N/βga(φ),

where all subscripts are omitted for convenience. The rationale
of the assumption is that for mmwave channels with the LOS
link (e.g., in the scenario of fixed wireless access), the effect
of NLOS links is usually marginal, compared to that of the
LOS link [24]. Moreover, although the conclusions are derived
based on the assumption, they still hold for more general cases.

For simplicity, we consider an ideal codebook temporarily.
In Section V, practical codebooks will be considered. For an
ideal codebook, each beam has an ideal beam pattern, e.g., a
beam (or codeword) f has the following beam pattern∣∣aH(x)f

∣∣ =

{
GM (x ∈ IM)

GS (x ∈ IS),
(8)

where GM and GS represent beamforming gains in the main-
lobe IM and side-lobe IS, respectively. 3 In practice, the
beamforming gain in the side-lobe IS is often very small,
which can be approximated to 0 [25] (i.e., GS = 0), so as
to simplify performance analysis. Note that GM depends on
multiple factors and is not a constant. In particular, as the
beam width increases, GM decreases accordingly. To explicitly
characterize this feature, GM is approximated as [25]

GM ≈
1

2b
, (9)

where 2b represents the width of main-lobe IM.
Next, we derive analytical expressions for OP and EAR,

which takes the BD effect into account. First, we focus on the
derivation of OP which is formally defined as

Pout(T ) = P(SNR < T ), (10)

where T denotes the threshold. According to (3), the SNR can
be calculated as

SNR =

{
PN |g|2β−1GM f(t) ∈ IM

PN |g|2β−1GS = 0 f(t) ∈ IS,
(11)

where f(t) ∈ IM (or f(t) ∈ IS) indicates that the direction
of AoD/AoA at time t is within the main-lobe (or side-lobe)
of beam f . The OP Pout(T ) is characterized in the following
theorem.

Theorem 1. Let 2b denote the beam width of the used beam.
If PN |g|2β−1GM ≥ T , the OP is upper bounded by

Pout(T ) ≤ I

2π

√
−2k′′(0)

k(0)
exp

(
− b2

4k(0)

)
. (12)

3An ideal or (non-ideal) codebook consists of multiple ideal (or non-ideal)
beams. The beam pattern of a non-ideal beam consists of three parts, i.e.,
main-lobe IM, side-lobe IS and transition band IT, such that IM∪IS∪IT =
[−1, 1], IM ∩IS = ∅, IM ∩IT = ∅ and IS ∩IT = ∅ hold and the ripples in
the main-lobe and side-lobe are greater than zero. To facilitate performance
analysis and derive useful insights, we mainly consider ideal beams/codebook,
whose transition bands are absent and ripples are zero.
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where I = TS − TB is the time or duration of effective data
transmission within a time-slot.

Proof: See Appendix A.
For practical non-ideal beams, similar expressions can be

derived as well, with some modifications. Theoretically, The-
orem 1 shows that the beam width has a significant influence
on system OP performance. In particular, wider beams help to
achieve a lower OP (and therefore a better reliability), which
coincides with our intuition.

Remark 3.1 Theorem 1 also indicates a promising solution
to keep a low OP, i.e., utilizing wide beams. In practice, the
beam width can be changed flexibly (typically, by choosing
an appropriate beam from a multi-resolution codebook).

In general, the more quickly the environment changes, the
larger −k′′(0) is [26]. Hence, Theorem 1, in fact, shows that
a fast-changing environment can incur a higher OP, which is
undesirable in practice. Theorem 1 also indicates that a shorter
time-slot (i.e., a smaller TS) helps to achieve a lower OP, which
coincides with our intuition. However, since beam training also
occupies a considerable part of the time resource, it is not a
good solution to tackle this issue by simply shortening TS,
because it will lead to a low EAR performance.

In practice, we may also be interested in EAR performance.
Next, we proceed to analyze the EAR performance, which is
characterized in the following theorem.

Theorem 2. With the assumption of given beam width, path
gain, transmit power and training overhead (which guarantees
successful alignment), the expected EAR is lower bounded by

E(RE) ≥
(

1− TB

TS

)(
1− 1

2π

√
−2k′′(0)

k(0)
exp

(
− b2

4k(0)

))
·

log
(

1 + PN |g|2β−1GM

)
. (13)

Proof: See Appendix B.
Note that the derived bounds in Theorem 1 and Theorem

2 are attainable (i.e., the inequalities in the two theorems are,
in fact, equalities) if TS is not large. In fact, the key to derive
these bounds is to count the number of up-crossings (See the
appendices for details). However, if TS is not large, the number
of up-crossings is almost always at most 1. In this case, these
inequalities degenerate to the corresponding equalities.

In view of the approximation GM ≈ 1/(2b), the expression
of the expected EAR can be further written as

E(RE) '

(
1− TB

TS

)(
1− 1

2π

√
−2k′′(0)

k(0)
exp

(
− b2

4k(0)

))
·

log

(
1 +

PN |g|2

2bβ

)
. (14)

It can be seen a clear tradeoff between the OP and EAR per-
formance revealed in Theorem 1 and Theorem 2. In particular,
although wide beams can reduce the OP, their beamforming
gains are relatively small, which may deteriorate the EAR per-
formance finally. Therefore, from the perspective of optimizing
the EAR performance, it is important to adaptively choose a
beam of optimal beam width.

An apparent method to obtain the optimal EAR performance
is to maximize RE in (13), maybe with a constraint (e.g., the
OP is no greater than a preassigned value ε). If k′′(0), k(0),
|g| and TB are known or can be estimated from empirical
data or can be computed analytically, it is sufficient to di-
rectly maximize E(RE) by solving an optimization problem.
However, practical communication environments are complex
and often continuously change, it is challenging to estimate
these quantities. For example, although TB can be calculated
explicitly for non-adaptive algorithms (e.g., hierarchical search
algorithm [6]), it depends on beam training strategies, external
physical environments and desirable performance, which is
difficult to obtain generally. To address this issue, we will
propose an efficient algorithm based on ML in Section IV.

IV. BAYESIAN LEARNING TO ALLEVIATE BEAM DRIFT

To alleviate the BD effect, we propose an efficient algorithm
based on Bayesian contextual bandit learning [27]–[29] in this
section. The reader is referred to [30] for a complete exposition
of contextual bandit learning and efficient learning algorithms
(e.g., Bayesian posterior sampling or Thompson sampling).

A. Adaptive Design for Beam Training and Data Transmission
In this subsection, we propose a novel design philosophy for

beam training (BT) and data transmission (DT) in mmwave
communications. The design goal is to maximize the EAR
performance E(RE). Let Ck =

√
−2k′′(0)/k(0), which only

depends on the communication environment. Let E represent
the event that beam alignment succeeds. For an adaptive BT
algorithm whose training overhead is not fixed, the expected
EAR can be lower bounded by

E(RE)
(1)
=ETBE

(
E(RE |TBE)

)
(2)

≥ETBE

((
1− TB

TS

)(
1− Ck

2π
exp

(
− b2

4k(0)

))
·

log

(
1 +

PN |g|2GM

β

))
.

(3)
=

(
1− Ck

2π
exp

(
− b2

4k(0)

))
·

log

(
1 +

PN |g|2GM

β

)
ETBE

(
1− TB

TS

)
, (15)

where (1) is due to the conditional expectation formula, (2)
is due to Theorem 2, and (3) is due to the fact that b and
GM are constants for a given codebook of data transmission.
In general, the available training time resource TB affects the
probability of successful alignment and further the achievable
rate. However, if the training resources (e.g., transmit power
and available training time) are sufficient, beam alignment
succeeds in a high probability. In this case, ETBE (1− TB/TS)
can be approximated as 1 − E(TB)/TS. Then, E(RE) can be
further simplified as

E(RE) ≥
(

1− E(TB)

TS

)(
1− Ck

2π
exp

(
− b2

4k(0)

))
·

log

(
1 +

PN |g|2GM

β

)
. (16)
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It has been widely accepted that multi-resolution beams are
more plausible for searching optimal beam directions (e.g., via
hierarchical BT), while narrow beams are more suitable for
DT, so as to achieve large array gains. However, the previous
analysis indicates that the design methodology is problematic
if the BD effect is taken into account. The reason is that narrow
beams are vulnerable to the BD effect, which may deteriorate
system performance. To maximize E(RE), based on (16), we
propose the following design philosophy:
• DT Design - mitigate the BD effect: In contrast to the

conventional practice, we advocate that multi-resolution
beams are employed for DT, and adapt the beam resolu-
tion or beam width depending on the rate of change of
the environment. To achieve this goal, the design of DT
is based on ML methodology.

• BT Design - minimize E(TB): Narrow beams are used for
BT, which is in contrast to the conventional practice. In
general, the use of narrower beams often implies a larger
training overhead. To minimize E(TB) and meanwhile
guarantee successful beam alignment, the BT algorithm
needs also to adapt the environment, i.e., it had better be
a learning based algorithm.

Remark 4.1 The rationale behind the BT design philosophy
is locality principle of beam change (LPBC) - in practice the
beam in the current time-slot is more likely to switch to one
of its neighbor beams in the next time-slot, because AoA/AoD
often changes continuously and the amplitude of the change
is limited by maximal speed of the receiver/transmitter. More-
over, narrow beams often have high array gains, which help
to combat the large path-loss in mmwave communications.

Data Transmission

Other 
Compo
nents  

Beam Training

Beam 
Width

Beam 
Training 
Subset Beam 
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Combine
Optimal 

Transmission 
Beam

Historical 
Experience

Effective 
Transmission 

Rate

  

Machine 
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Based 
Solutions
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Fig. 4. The principle of the design of the BT and DT modules.

Based the proposed design philosophy of BT and DT, we
introduce two modules referred to as BT module and DT
module. In a broader sense, the BT and DT modules fulfill the
functions CSI acquisition and precoder design. The sparsity of
mmwave channels enables to acquire CSI via BT, and thus an
arbitrary existing BT algorithm (e.g., hierarchical search or
exhaustive search) can fulfil the function of the BT module.
Besides alleviating the BD effect, the DT module also needs
to fulfill other tasks, e.g., power allocation (or control) and
interference elimination. As shown in Fig. 4, for the specific
single-user scenario in this paper, the BT module is in charge
of finding the optimal beam direction, with a minimum cost
in terms of training overhead. The mission of the DT module

is to mitigate the BD effect (and allocate transmit power), so
as to keep the SNR as large as possible and almost all the
time in the phase of DT.

To achieve the best EAR performance, each of the two
modules shall be designed based on the ML methodology,
in order to sense the state of the environment (e.g., the rate of
change of the environment) and further adapt the environment.
To alleviate the burden of the UE, complex operations (e.g.,
to train the BT and DT modules, estimate beam direction and
adjust beam width) are undertaken by the BS, while the UE
only feeds back simple information (e.g., strengths of received
signals) to the BS to help the BS to make decisions. Although
the best option to realize the two modules is via the ML
methodology, the DT module can also be embedded into the
existing BT schemes which are not based on ML (e.g., the
hierarchical search based algorithm) and helps to enhance the
performance of these schemes. In the next subsection, we
focus on the design of the DT module based on Bayesian
bandit learning (BBL) [27]–[29]. The design of the BT module
is similar, which is omitted due to space limitation. Note that
designing and training the two modules separately to a large
extent help to reduce computational complexity and exploit
different characteristics of the two modules.

Before proceeding to details of the DT module design, we
need to underscore the importance of distinguishing time-
scales of optimizing, training or updating the two modules.
We assume that in each time-slot, the BT module is trained or
updated to generate a training beam subset used for sweeping
beam space and further finding the optimal beam direction,
i.e., the time-scale of updating the BT module is 1. However,
if the time-scale of optimizing the DT module is still 1, the
computational complexity of updating the two modules may
be prohibitive, because each module may incorporate a neural
network (NN) and requires intensive computation to train it.

TS 1 TS 2 TS K TS K+1 TS K+2 TS 2K

Time-scale of data 
transmission

Time-scale of data 
transmission

Time-scale of 
beam training

Fig. 5. Time-scales of optimizing the two modules - TS is short for time-
slot. Note that the reciprocal of time-scale is update frequency. Hence, the
frequency of training, updating and optimizing the BT module is K-times of
that of the DT module.

To tackle this issue, as shown in Fig. 5, the time-scale of
optimizing or updating the DT module is set to be larger than
that of the BT counterpart, e.g., the DT module is optimized
every K(K > 1) time-slots. Moreover, by distinguishing the
time-scales, another benefit is that more experiences/data can
be accumulated when updating the DT module.

B. Beam Width Optimization via Bayesian Bandit Learning

In this subsection, we utilize the BBL to design an efficient
algorithm to optimize the beam width for DT. Note that in
many cases optimal decisions depend on not only external
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environments but also internal states of the system. However,
there is no (or only one) state in conventional multi-armed
bandit (MAB) model and decision making relies only on scalar
rewards received from the environments, which inevitably
leads to a large performance loss and even makes the algo-
rithms fail. Hence, the MAB model is inapplicable here. In
contrast, contextual bandit model incorporates both informa-
tion of external environment and internal states of system into
decision making, which enables the contextual bandit model
to be applicable in complex systems and environments.

The core of employing BBL is to formulate the problem
of beam width optimization (BWO) as a BBL problem, i.e.,
define prior and posterior distributions, action space, rewards
and contexts. The role of BWO is to adjust the widths of beams
used for data transmission via interacting with environments.
The adjustment of beam width in this paper is implemented
via multi-resolution codebooks. Therefore, there is a one-to-
one correspondence between the actions and codebooks, and
choosing an action is equivalent to choosing a codebook (for
data transmission). First, based on collected empirical data,
the BS chooses an action (i.e., beam width). Then, combining
with beam direction information provided by the BT module,
the beam used for data transmission can be determined. As
more training data is collected, the chosen actions tend to be
optimal.

Since the DT module is trained every K time-slots, to avoid
confusion, the time range of every K time-slots is referred to
as a time-unit and indexed by u, i.e., each time-unit consists
of K time-slots. As mentioned earlier, to mitigate the BD
effect, the DT module requires a multi-resolution codebook.
Without loss of generality, a dyadic multi-resolution codebook
C = {C1, C2, · · · , CS}, which consists of S subcodebooks, is
considered. Then, the action space is defined as

A = {1, 2, · · · , S}.

Next, we define the rewards {ru} and contexts {Xu}. The
reward ru corresponding to the u-th time-unit is defined by

ru =

K∑
i=1

ru,i, (17)

where ru,i represents the EAR corresponding to the i-th time-
slot within the u-th time-unit. Let h̄u,i, TB

u,i, Pu,i and Gu,i

denote the corresponding equivalent channel coefficient, beam
training overhead, transmit power and beamforming (or array)
gain, respectively. The context Xu, which should reflect the
system state, is defined as

Xu =(h̄u,1, · · · , h̄u,K , TB
u,1, · · · , TB

u,K ,

Pu,1, · · · , Pu,K , Gu,1, · · · , Gu,K). (18)

To complete Bayesian bandit modeling, it is sufficient to
assign posterior distribution models, which is, however, non-
trivial. On the one hand, since communication environments
are dynamic and complex, simple methods (e.g., linear algo-
rithms) are insufficient to make wise decisions due to their lack
of representational power [31]. On the other hand, although
the NNs are sufficiently flexible, to provide estimations of

Context

  

Feature 
Extraction

Historical 
Experience

BLR

x

y

x

y

1a

Sa


BLR

Reward 
(Scalar)

Reward 
(Scalar)

Compare Action

Fig. 6. The internal structure of the data transmission module. BLR is short
for Bayesian linear regression.

uncertainty, the computational complexity may be prohibitive
due to complex Bayesian posterior inference.

To address this dilemma, we incorporate NN and Bayesian
linear regression, as shown in Fig. 6. Similar to [32], Bayesian
linear regression is performed on top of the representation of
the last layer of the NN [33]. Let r represent the reward. Then,
the regression expression of r can be calculated as

r = wTfX + ε, (19)

where fX = f(X) is the output of the NN for context X (as
the input) and ε is distributed as ε ∼ N (0, σ2). To choose an
appropriate action, we build a prediction model wT

af(X)+σ2
a

for each action a ∈ A, where σ2
a is the power of noise εa

of action a, i.e., εa ∼ N (0, σ2
a). Note that the NN f(·) is

shared by all actions. Then, given a context X , we choose the
action whose prediction reward is maximum, i.e., a? is chosen
if wT

a?f(X) + σ2
a? ≥ wT

af(X) + σ2
a (∀ a 6= a?).

The use of Bayesian learning forces us to assign prior and
posterior for the unknown parameters {wa, σ

2
a | a ∈ A}. To

avoid intractability, the prior of (wa, σ
2
a) is modeled as

πa
0 (wa, σ

2
a) = N (wa |m0, σ

2
aS0) · IGam(σ2

a | p0, q0), (20)

where IGam(x | p, q) represents inverse Gamma distribution
with shape parameter p and scale parameter q. 4 Note that
m0, S0, p0 > 0 and q0 > 0 in (20) are constants and should
be initialized appropriately. The reason for choosing the form
in (20) (i.e., normal-inverse-gamma) is that each prior πa

0 is a
conjugate prior, which facilitates posterior inference.

At time-unit u, after observing context Xa
u and reward rau

of the chosen action a, the posterior πa
u is updated as

πa
u(wa, σ

2
a) = N (wa |ma

u,σ
2
aS

a
u) · IGam(σ2

a | pau, qau). (21)

The parameters ma
u, Sa

u, pau and qau are given by [31]

Sa
u = (S−1

0 + XT
aXa)−1

ma
u = Sa

u

(
S−1

0 m0 + XT
ara
)

pau = p0 + La/2

qau = q0 +
mT

0S
−1
0 m0 − (ma

u)T(Sa
u)−1ma

u + rT
ara

2
,

(22)

4The probability density function of IGam(x | p, q) is given by

h(x | p, q) =
qp

Γ(p)
x−(p+1)e−q/x.
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where Xa = [fXa
(1)
, · · · , fXa

(La)
] and ra = [ra(1), · · · , r

a
(La)]

collect accumulated experiences of action a with La denoting
the number of samples of action a until time-unit u and fXa

(i)

and ra(i) denoting the i-th sample.
Next, we proceed to the training of the NN. The training

dataset, e.g., for action a ∈ A, obtained via interacting with
the environment continuously, is given by{

(Xa
(1), r

a
(1)), · · · , (X

a
(La), r

a
(La)) | a ∈ A

}
. (23)

Note, however, that this training dataset cannot be used to train
the NN directly, because a training dataset which can be used
to train the NN directly should take the form {(Xa

(i), y
a
(i) =

f(Xa
(i))) | i = 1, · · · , La}. To tackle this issue, in view that

r is linear with respect to fX in (19), a linear layer with
identity activation function (i.e., σ(x) = x) is firstly appended
to the NN. Then, the training dataset in (23) can be used to
train the augmented network. After finishing the training of the
augmented network, the original NN has already been trained
as well. When the (original) NN is trained, the samples used
to update the posterior in (21) have to be updated based on
the newly trained NN. More specifically, the samples Xa =
[fXa

(1)
, · · · , fXa

(La)
] are replaced by Xa = [f ′Xa

(1)
, · · · , f ′Xa

(La)
],

with f ′ denoting the newly trained NN.
Remark 4.2 To further reduce the computational complex-

ity of updating the NN, the linear regression model and the
NN can be updated at different time-scales, e.g., the time-scale
of updating the NN is KF with F (> 1) a positive integer.

Algorithm 1: Intelligent Beam Width Optimization via BBL
1: input: multi-resolution codebook C = {C1, C2, · · · , CS};

action space A = {1, 2, · · · , S}; update frequency or
time-scale of NN F

2: initialize prior {πa
0 | a ∈ A} (i.e., m0, S0, p0 and q0);

parameters of NN; memories {Da = ∅}; DT sub-
codebook C1; let u = 1

3: repeat for each time-unit
(a) construct context Xu according to (18)
(b) compute nonlinear feature fXu for Xu via NN
(c) sample πa

u for each action a =⇒ {wa,u, σ2
a,u}

(d) determine optimal action a?u with a?u given by
a?u = arg maxa∈A{wT

a,ufXu + σ2
a,u}

(e) perform a?u =⇒ switch to DT subcodebook Ca?
u

(f) receive reward ru (from external environment)

(g) update πa?
u

u to πa?
u

u+1 according to (22)
(h) update memory: Da?

u
← Da?

u

⋃
{(Xu, a?u, ru)}

(i) if umodF = 0, update NN via back propagation
(j) let u← u+ 1

end

For clarity, the designed BWO algorithm is summarized
in Algorithm 1. For a given multi-resolution codebook C =
{C1, C2, · · · , CS}, we construct action space A = {1, · · · , S}.
Then, we initialize the priors of all actions and parameters
(i.e., weights and biases) of the underlying NN. The experience
memory of each action is emptied and the time-unit counter
is set to 1. The codebook used for DT is initialized with an
arbitrary subcodebook, e.g., C1. Next, we repeat the operations
from (a) to (j) in each time-unit. First, the context Xu is

constructed based on the information collected within time-
unit u. In step (b), with Xu available, the feature fXu is
extracted via forward propagation (FP) of the NN. In step
(c), parameters wa,u and σ2

a,u of each action a are obtained
by sampling the posterior πa

u. With the optimal action a?u
determined in step (d), we perform the action by switching
the DT (sub-)codebook to Ca?

u
in step (e). At the end of each

time-unit, reward ru is received in step (f). The posterior and
memory are updated in steps (g) and (h), respectively. In step
(i), since sufficient experiences have been accumulated, the
NN should be updated via back propagation (BP). At the end
of each time-unit, the counter is increased by 1.

Next, we consider issues related to algorithm implemen-
tation. The first one is storage resource requirement (i.e.,
to cache D). Since each sample in D takes a simple form
{(X, a, r)} (with X , a and r data of small size) and out-
dated samples can be safely removed from D (thanks to the
online implementation manner), very few storage resources
are required. Another one is computational issue, which is
mainly caused by NN operations, i.e., FP and BP. In general,
BP requires intensive computations, which, however, can be
accomplished in the phase of data transmission, and thus it
does not affect real-time implementation. The computational
complexity of FP can almost be negligible. The typical fully-
connected NN is taken as an example. With the assumption
that the NN consists of L+1 layers with the l-th layer having
nl neurons and the ReLU is chosen as the activation function,
the computational complexity is dominated by

∑L
l=1 nl−1nl

multiplication operations and
∑L

l=1 nl addition operations.
Therefore, compared to other algorithms, Algorithm 1 has an
appealing and competitive advantage on real-time implemen-
tation. In particular, it does not involve complex calculations
(e.g., matrix inversion) or time-consuming iterations.

Finally, we clarify how to coordinate or integrate the BT
and DT modules. The BT module provides beam direction
in each time-slot as accurate as possible, and the DT module
chooses a DT (sub-)codebook that can achieve the best EAR
performance in each time-unit. The DT codebook chosen by
the DT module is denoted by Ca = {f1, f2, · · · , fNa} of size
Na. The beam center angle of each beam fi ∈ Ca is denoted
by φi, which often corresponds to beam direction of highest
array gain. Let φ0 represent the beam direction found by the
BT module (or an arbitrary existing BT algorithm). Then, the
beam used for DT is given by

fi? ∈ Ca with i? = arg min
i∈[Na]

|φ0 − φi|. (24)

V. SIMULATION RESULTS

In this section, simulation results are provided to demon-
strate the performance of the proposed algorithms. The number
of antennas of ULA is N = 64. Without loss of generality,
a dyadic multi-resolution codebook is considered. As shown
in Fig. 7, the codebook C consists of 6 subcodebooks, i.e.,
C1, C2, · · · , C6, whose sizes are 2, 4, 8, 16, 32 and 64, respec-
tively. For convenience, each subcodebook Ci (i = 1, · · · , 6)
is abbreviated as SCBi. The beam width corresponding to
Ci is 21−i, i.e., the beam width decreases as i increases. In
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the following experiments, only SCB3 - SCB6 are utilized to
evaluate different algorithms. The reason is that the array gains
of the beams in SCB1 and SCB2 are too small to achieve a
good EAR performance. The metrics probability of successful
alignment (PSA) and EAR are adopted to evaluate different
algorithms. PSA is defined as the ratio between the number
of successful alignments and that of total alignments, which
can be estimated via Monte-Carlo simulations.

[-1,1]



SCB1

SCB2

SCB3

SCB4

Fig. 7. The structure of the dyadic hierarchical codebook.

For all simulation experiments, the channel model in (1)
includes one LOS path and three NLOS paths. The AoDs of
the three NLOS paths are uniformly distributed in [0, 2π]. The
average power ratio between the LOS path gain gLOS and each
NLOS path gain gNLOS is 10dB. The path gain of each NLOS
path gNLOS is distributed as CN (0, σ2

NLOS), where σ2
NLOS is

calculated according to the path gain of the LOS path. To
accommodate practical complex environments, in particular,
sufficient randomness, GPs with the SM kernel can be used to
simulate the change of directions of (physical) channel paths.
The parameters {µq | q = 1, · · · , Q} in (7) characterize AoD
or AoA change of the LOS path. In this case, let Q = 1 and
denote µ1 as µ. More simply, the sine function with µ denoting
the frequency can also be used to simulate AoD/AoA change
of the LOS path. A larger value of µ implies that AoD or
AoA changes more rapidly. The fully-connected NN with 2
layers (and 16 and 8 neurons in the two layers) and the ReLU
activation function are considered in Algorithm 1. Extensive
simulation experiments show that Algorithm 1 also works well
for other network settings, e.g., the convolutional/recurrent
NN, the Sigmoid function, the number of layers 2 ∼ 6, and
the number of neurons per layer 8 ∼ 64.

First, we confirm the effectiveness and superiority of the
BT design philosophy, in particular, LPBC. In the following
results we compare our approach against the closest relevant
benchmarks. Specifically, the following methods are evaluated:
• EXH - exhaustive search based BT algorithm [5]. All

beams in the codebook are used to search the optimal
beam direction. Hence, the training overhead of EXH is
equal to the size of the codebook, which is the highest
among the four BT algorithms.

• HIE - conventional hierarchical search based BT algo-
rithm [7]. Low-resolution or wide beams are tried first,
and then high-resolution or narrow beams are employed.
The training overhead of HIE is fixed to 2 log |C| with
|C| denoting the size of the codebook.

• MAB - multi-armed bandit based BT algorithm [19].

Each beam in the codebook is regarded as an arm, and
a well-known upper confidence bound (UCB) algorithm
[28] is chosen to select arms.

• SBL - stochastic bandit learning based BT algorithm [34].
SBL is a standard BT algorithm designed based on LPBC.
To implement LPBC, the arms or actions are constructed
based on beam index difference technique [34]. SCB5
and SCB6 are considered only in the experiments.

Fig. 8 shows the PSA performance of different BT algorithms.
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Fig. 8. The PSA performance of different BT algorithms (with different
subcodebooks) - SNR = 5dB. For “SCBi-Cons” and “SCBi-Fade” (i = 5
or 6), the same subcodebook SCBi is chosen, while the distributions of the
LOS path gain gLOS are different. Specifically, “CONS” and “FADE” represent
|gLOS| = 1 and gLOS ∼ CN (m, 1) with |m| = 1, respectively.

It is seen from Fig. 8 that the SBL algorithm achieves a
better performance than the HIE algorithm and approaches that
of the EXH algorithm. Moreover, for the case of fading LOS
paths, i.e., gLOS ∼ CN (m, 1) with |m| = 1, the SBL algorithm
even performs better than the EXH algorithm. 5 Interestingly,
the SBL algorithm with SCB5 that combines LPBC with
simple beam search 6 also achieves a good performance - a
bit worse than SBL with SCB6 when µ is less than (about)
0.2 and better than it when µ becomes larger. The reason
for this is that for the same size of training beam subset, the
coverage of the subset chosen from SCB5 is larger than that
of the subset chosen from SCB6. In fact, SBL with SCB5
enjoys the advantages of low training overhead (due to LPBC)
and high array gain (due to narrow beams). Without special

5The reason for this is as follows. The set of beams used for training is
denoted by T ⊂ C. If beam fi ∈ T is chosen, the received signal yi ∈ C
is given by yi =

√
PhHfis + ni. Without loss of generality, let fi? be the

optimal beam. Note that the beam fi? can be identified if and only if

Yi? = |yi? |2 > Yi = |yi|, (∀ i 6= i?, i ∈ T ). (25)

Intuitively, if more variables {Yi} are involved in the comparison in (25)
(accordingly, more beams are used for training), the probability that the events
in (25) occur simultaneously becomes smaller. Because the beam training
subset used by the EXH algorithm is much smaller than that used by the
SBL algorithm. Therefore, the impact of noise on the SBL algorithm is much
smaller than that on the EXH algorithm. In the case of fading channel path
gain, |hHfi| may be very small and thus the impact of noise becomes more
salient. As a result, the SBL algorithm performs better than the EXH algorithm
in this case.

6Note that the beam width of SCB5 is larger than that of SCB6, to achieve
the same accuracy of beam alignment, a simple beam search is required.
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treatments (e.g., the beam index difference technique [34]),
MAB mainly applies to slow-varying channel environments.
This is the reason why SBL performs better than MAB. All
the observations demonstrate the effectiveness and superiority
of the BT design philosophy.

Next, we demonstrate the average EAR performance under
different simulation settings. The BT module is implemented
via the SBL algorithm that provides the optimal beam direc-
tion, and the DT module is implemented via Algorithm 1 that
optimizes the beam width. Fig. 9 shows the EAR performance
with 4 subcodebooks, i.e., SCB3, SCB4, SCB5 and SCB6. It
is observed that as the environment changes faster and faster
and thus the impact of the BD effect becomes more serious,
the EAR performances achieved with different subcodebooks
decrease accordingly. However, the EAR performance of BWO
is larger than that of any fixed subcodebook. Moreover, the
performance gap between them becomes larger and larger, as
the environment changes faster and faster. These observations
indicate that the designed BWO algorithm can effectively
mitigate the BD effect and guarantee a good EAR performance
in the dynamic channel environment.
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Fig. 9. The average EAR performance vs the rate of change of the
environment with different subcodebooks (or equivalently, beam widths) -
|gLOS| = 1.

Interestingly, it can be observed that when the environment
changes relatively slow (e.g., when µ < 0.1 for the setting of
5dB), the EAR performance achieved with SCB6 is the highest
among the 4 subcodebooks. The reason for this is that in this
case the BD effect is not significant, and meanwhile the array
gains of SCB6 are the highest due to the most narrow beam
width. As the BD effect becomes more and more significant,
the EAR performance achieved with SCB6 deteriorates and
becomes worse than that with SCB5, which shows that narrow
beams are vulnerable to the BD effect. It can also be observed
that the EAR performance achieved with SCB3 is the worst
in the two SNR settings. The reason for this is that although
wide beams are robust to the BD effect, their array gains are
relatively low, which, in turn, reduces the EAR performance.
In contrast, our algorithm can achieve a good balance between
achieving high array gains and mitigating the BD effect, and
sense and adapt the changing environment in real-time.

The EAR performance vs SNR is shown in Fig. 10. One
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Fig. 10. The average EAR performance vs SNR (with different subcode-
books) - |gLOS| = 1.

can observe that as the SNR increases, the EAR performance
achieved with different subcodebooks also increases. However,
for the two environment settings (i.e., µ = 0.05 and µ = 0.20),
the EAR performance achieved with BWO is much better than
that with any fixed subcodebook. The reason for this is that
the designed BWO algorithm can sense the rate of change of
the environment and adjust the beam width in real-time, which
achieves a good tradeoff between obtaining high array gains
and mitigating the BD effect. One can also observe that for a
fast changing environment, a subcodebook of narrow beams
(e.g., SCB6) is more preferable in the low SNR region, while
a subcodebook of wide beams achieves a better performance
in the high SNR region. The reason for this is that in the low
SNR region, a high array gain plays a more important role in
improving the performance in terms of achievable rate.
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Fig. 11. The average EAR performance vs SNR (with and without beam
width optimization) - |gLOS| = 1.

An important advantage of the proposed BWO algorithm is
that it can be flexibly embedded into a variety of the existing
DT algorithms (i.e., without changing the architecture or com-
munication protocol of the existing wireless communication
systems) and helps to improve their EAR performance. The
HIE and EXH algorithms are taken as two examples. Note that
once the optimal beam (direction) is found by the HIE or EXH
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algorithm, it can also be used to transmit data, i.e., the HIE
or EXH algorithm can also be regarded as a DT algorithm.
Specifically, for the HIE algoirthm, the codebook SCB6 is
used for both BT and DT (i.e., multi-resolution beams for BT
and narrow beams for DT), while for the EXH algorithm, BT
and DT share the same codebook. The EAR performance of
the two algorithms with and without BWO is shown in Fig. 11.
It can be observed that the BWO algorithm can improve the
EAR performance of the two algorithms, and the improvement
is more significant if the environment changes faster.
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Fig. 12. The average EAR performance of different algorithms with various
types of beams for BT and DT.

TABLE I
ALGORITHMS AND TYPES OF BEAMS FOR BT AND DT

Algorithm Type of Beam for BT Type of Beam for DT
HIE Multi-Resolution Beams Narrow Beams

HIE+BWO Multi-Resolution Beams Multi-Resolution Beams
SBL Narrow Beams + LPBC Narrow Beams

SBL+BWO Narrow Beams + LPBC Multi-Resolution Beams

Finally, to further verify the effectiveness and superiority of
the proposed design philosophy, EAR performance of different
algorithms with various types of beams for BT and DT is
shown in Fig. 12. The details of these algorithms are provided
in Table I, where “SBL” (with or without BWO) indicates that
the algorithms use narrow beams for BT along with LPBC. It
is seen that an algorithm using multi-resolution beams for DT
and narrow beams (along with LPBC) for BT achieves the
best performance, which demonstrates the effectiveness and
superiority of the design philosophy. The reason for this is that
narrow beams which have large array gains help to improve BT
efficiency, and meanwhile multi-resolution beams guarantee a
large EAR performance by alleviating the BD effect.

VI. CONCLUSION

In this paper, we revealed and studied the BD phenomenon
caused by non-ideal features inherent in practical beams and
rapidly changing environments, which has a negative impact
on system performance. To mitigate the BD effect, we first
theoretically analyzed the OP and EAR performance, which
took practical factors (e.g., beam width, transmit power and

the rate of change of environments) into consideration. Then,
we proposed a novel DT and BT design philosophy, where a
multi-resolution codebook is employed for DT while narrow
beams are suggested for BT. Finally, to mitigate the BD effect,
we proposed a learning based BWO algorithm. Comprehensive
simulation results were provided to demonstrate the effective-
ness and superiority of the designed algorithms.

APPENDIX A
PROOF OF THEOREM 1

Since the considered GP is stationary, it is sufficient to focus
on the typical interval [0, I] via translation, where I = TS −
TB is the time of effective data transmission. To proceed, we
introduce the concept of level crossing. The motivation for this
is that the main-lobe of a beam is often an interval and the
occurence of outage is closely related to crossing endpoints
of the interval. For a sample function {x(t)} of a continuous
process {X(t), t ∈ R}, x(t) has an up-crossing of level u at
t0 if, for some ε > 0, x(t) ≤ u for all t ∈ (t0 − ε, t0] and
x(t) ≥ u for all t ∈ [t0, t0 + ε). For an interval I, N+

u (I)
represents the number of up-crossings by x(t) in I. Similarly,
Nu(I) represents the number of crossings, i.e., the number of
t ∈ I such that x(t) = u.

The intensity of the up-crossings is a non-negative function
µ+
u (t) such that∫

t∈I′
µ+
u (t)dt = E

(
N+

u (I ′)
)
, for every interval I ′.

The famous Rice’s formula characterizes the intensity of up-
crossings [35]. The Rice formula of a GP version is provided
in the following lemma.

Lemma 1. Let Nu be the number of up-crossings of the level u
by a zero-mean, stationary, almost surely continuous Gaussian
process on [0, 1], then

E(Nu) =
λ

1/2
2

2πσ
exp

(
− u2

2σ2

)
, (26)

where σ2 = E(|X(t)|2) = k(0) and λ2 = −k′′(0).

Before proceeding to the formal proof of Theorem 1, we
shall first explain k(0) and k′′(0) of X(t). In fact, k(0)
characterizes the variance of X(t) at an arbitrary time. Next,
we explain k′′(0) from the perspectives of both time-domain
and frequency-domain. The Bochner’s theorem (Theorem 3.3
in [26]) asserts that a stationary stochastic process is associated
with a spectral distribution function, denoted by F (ω), such
that the spectral distribution function and the correlation
function compose a Fourier transform pair.

Time-domain Interpretation: Let X ′(t) be the derivative
process of X(t). Theorem 2.2 in [26] shows −k′′(0) =
E[X ′(t)X ′(t)], i.e., −k′′(0) is the variance of the derivative
process X ′(t).

Frequency-domain Interpretation: Theorem 2.2 in [26] also
shows −k′′(0) =

∫∞
−∞ ω2dF (ω), i.e., −k′′(0) is equal to the

second-order spectral moment. If −k′′(0) is large, more high-
frequency components are involved, i.e., the corresponding GP
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changes rapidly. 7

Now, we proceed to prove Theorem 1. Based on Lemma 1,
we can bound Pout(T ) = P(SNR < T ). In practice, it may
be challenging to directly calculate a desired probability or
expectation. A useful trick is to take condition (i.e., to first
“condition” on some appropriate random variable or element).
Specifically, let p0(x) represent the probability density of f0 =
f(0), i.e.,

p0(x) =
1√

2πk(0)
exp

(
− x2

2k(0)

)
.

Then, Pout(T ) can be rewritten as

Pout(T ) =

∫
R
p0(x)P(SNR < T | f0 = x)dx. (27)

Note that if PN |g|2β−1GM < T , P(SNR < T | f0 = x) = 1,
and thus Pout(T ) = 1. Hence, it is sufficient to consider the
case PN |g|2β−1GM ≥ T .

Let I = [0, I) for simplicity. The conditional probability
P(SNR < T | f0 = x) can be calculated as

P(SNR < T | f0 = x)

=P(f(t) ≥ f0 + b ∪ f(t) ≤ f0 − b | f0 = x, t ∈ I)

=P(f(t) ≥ f0 + b | f0 = x, t ∈ I)+

P(f(t) ≤ f0 − b | f0 = x, t ∈ I).

P(f(t) ≥ f0 + b | f0 = x, t ∈ I) can be calculated as

P(f(t) ≥ f0 + b | f0 = x, t ∈ I)

=P(Nf0+b(I) ≥ 1)
(1)

≤ E(Nf0+b(I))
(2)
= IE(Nf0+b)

(3)
=

I

2π

√
−k′′(0)

k(0)
exp

(
− (f0 + b)2

2k(0)

)
,

where (1) is due to the Markov’s inequality, (2) is due
to the stationary property of the GP, and (3) is obtained
by using the Rice’s formula in Lemma 1. The use of the
Markov’s inequality is important, since, as a bridge, it links the
probability and expectation and, more importantly, facilitates
the use of Lemma 1. Note that if TS is not large, (1) is, in
fact, an equality. In fact, in this case the number of possible
up-crossings is almost always at most 1.

P(f(t) ≤ f0−b | f0 = x, t ∈ I) can be calculated similarly,
which is given by

P(f(t) ≤ f0 − b | f0 = x, t ∈ I)

≤ I

2π

√
−k′′(0)

k(0)
exp

(
− (f0 − b)2

2k(0)

)
.

Then, P(SNR < T | f0 = x, t ∈ I) can be rewritten as

P(SNR < T | f0 = x, t ∈ I)

≤ I

2π

√
−k′′(0)

k(0)
exp

(
−b

2 + f2
0

2k(0)

)
·(

exp
(
− bf0/k(0)

)
+ exp

(
bf0/k(0)

))
. (28)

7An example is shown in Fig. 3, where the kernel is the SE kernel
kSE(t, t′) = σ2

f exp
(
− 1

2l2
|t− t′|2

)
with−k′′(0) = σ2

f l
−2. A small value

of parameter l implies that the GP changes rapidly, as shown in Fig. 3.

By plugging (28) into (27) and via some algebraic operations,
we can complete the proof of this theorem. The subsequent
derivation is straightforward, which is omitted.

APPENDIX B
PROOF OF THEOREM 2

Note that for a non-negative continuous random variable X ,
its mathematical expectation can be calculated as

E(X) =

∫ ∞
0

P(X ≥ t)dt. (29)

Let (Ω,F ,P) be the underlying probability space. Then, the
expectation of X can be calculated as

E(X) =

∫
Ω

X(ω)dP(ω) =

∫
Ω

∫ ∞
0

IX(ω)≥tdP(ω)dt

(∗)
=

∫ ∞
0

dt

∫
Ω

IX(ω)≥tdP(ω) =

∫ ∞
0

P(X ≥ t)dt,

where (∗) is due to the Fubini-Tonelli theorem.
Under the assumption that the overhead of beam training

within each time-slot is fixed, according to (29), the expected
EAR performance can be calculated as

E(RE) =T−1
S E

(∫ TS

TB

log
(
1 + SNR(t)

)
dt

)
=T−1

S

∫ TS

TB

E
(

log
(
1 + SNR(t)

))
dt

=T−1
S

∫ ∞
0

dx

∫ TS

TB

P
(
SNR(t) ≥ ex − 1

)
dt (30)

Note that P(SNR(t) ≥ ex − 1) = 0 if x > log(1 +
PN |g|2 · β−1GM), and otherwise, P(SNR(t) ≥ ex − 1) =
1−P(SNR(t) < ex−1) with P(SNR(t) < ex−1) calculated
in (12). Let x0 = log(1 + PN |g|2β−1GM). Then, E(RE) can
be further calculated as

E(RE) =T−1
S

∫ x0

0

dx

∫ TS

TB

(
1− P

(
SNR(t) < ex − 1

))
dt

=

(
1− TB

TS

)(
1− 1

2π

√
−2k′′(0)

k(0)
exp

(
− b2

4k(0)

))
·

log
(

1 + PN |g|2β−1GM

)
, (31)

which completes the proof.
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