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Abstract—The Bempp boundary element library is a well known library for the simulation of a
range of electrostatic, acoustic and electromagnetic problems in homogeneous bounded and
unbounded domains. It originally started as a traditional C++ library with a Python interface.
Over the last two years we have completely redesigned Bempp as a native Python library, called
Bempp-cl, that provides computational backends for OpenCL (using PyOpenCL) and Numba. The
OpenCL backend implements kernels for GPUs and CPUs with SIMD optimization. In this paper,
we discuss the design of Bempp-cl, provide performance comparisons on different compute
devices, and discuss the advantages and disadvantages of OpenCL as compared to Numba.

Il THE BEMPP BOUNDARY ELEMENT LIBRARY
(originally named BEM++) started in 2011 as a
project to develop an open-source C++ library
for the fast solution of boundary integral equa-
tions. The original release came with a simple
Python wrapper to the C++ library [7]. Over time,
more and more functionality was moved into the
Python interface, while computationally intensive
routines and the main data structures remained in
C++. At the end of 2019, we completed the main
steps of a full rewrite of Bempp and released the
first version (0.1) of Bempp-cl. This was followed
later in 2020 by version 0.2, the first release
that we considered feature complete and mature
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for application use [1]. Since then we have used
Bempp-cl in a number of practical applications
and many of our users are migrating to it from the
old C++ based Bempp. In this article, we discuss
the motivation for the rewrite and restructure
of Bempp and the reasoning behind the design
choices we made when writing Bempp-cl.

The three language problem

The original BEM++ was troubled by what
is often called the two language problem. It is
common for programming language to be either
easy for humans to write (e.g., Python) or easy for
computers to run and achieve high performance
(e.g., C++). It is not common, however, for a
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language to do both of these. Due to this, it is
common in scientific computing libraries to write
a library in a fast low-level language such as C++,
while providing a user interface in a higher-level
language such as Python.

This was the model followed by BEM++, but
the problem would perhaps better be described as
a three language problem: as well as the Python
and C++ code contained in libraries like this, it is
common to also include a significant amount of
code in a third interfacing language. In the case
of BEM++, this third language was first Swig
and later Cython, an extension of Python with
C data types that can be compiled to include
functionality from C++ libraries.

Due to the three languages involved, making
changes to the library would often mean having to
duplicate changes in three places, with many class
structures duplicated in all three languages. This
made seemingly simple changes into onerous
tasks, and provided a barrier to new members of
the community looking to contribute to the open-
source project.

Delegating computations with PyOpenCL

Prompted by a desire to simplify the library
as well as to be able to run on a wide range
of CPU and GPU devices, we began a full re-
write in 2018, which led to Bempp-cl. The aims
of this rewrite were to support explicit single-
instruction-multiple-data (SIMD) optimization on
CPUs with various instruction lengths, be able to
offload computations to AMD, Intel, and Nvidia
GPUs, and to base the complete codebase on
Python. These aims naturally led to the choice of
building a Python library based around OpenCL
(using the PyOpenCL interface) and Numba.

In addition to the performance benefits, the
library redesign has greatly improved the is-
sues related to the three language problem. Both
OpenCL and Numba are used to compile func-
tions. Each function is provided all the data it
needs as inputs, so there is no need to duplicate
any class structure outside Python. The need for
a third interfacing language is removed, as the
interfacing to the OpenCL kernels is handled by
PyOpenCL.

Boundary element methods are particularly
suited to this library model, as the main perfor-
mance critical task is the computation of discrete

operators. Once fast kernels for this have been
implemented, the remaining functionality of the
library can be written entirely in Python without
any significant decrease in performance.

We begin this article by giving an overview
of the boundary element method, and looking
at how Bempp can be used to implement such
problems. Following this, we discuss the im-
plementation of boundary element kernels using
OpenCL in more detail, and provide a number
of performance benchmarks on different compute
devices, including CPUs and Nvidia GPUs. We
conclude with some thoughts on the advantages
and disadvantages of OpenCL and Numba.

BOUNDARY ELEMENT METHODS
WITH BEMPP

In this section, we provide a brief introduc-
tion to boundary element methods (BEM) and
describe the necessary steps for their numerical
discretization and solution.

The most simple boundary integral equation
is of the form

/F o(x, y)é(y) ds, = f(x), xel. (1)

The function g(x,y) is a Green’s function, f is
a given right-hand side, and ¢ is an unknown
surface density over the boundary I" of a bounded
three dimensional domain ) C R3.

As a concrete example, we consider com-
puting the electrostatic capacity of an object €.
In this case, we solve the above equation with
fl®) = 1 and g(x,y) = 47(';71/'. Once ¢
has been found, the normalized capacity is then
obtained using ¢ = = [} ¢(x) ds,.

Many practical problems have a significantly
more complex structure and can involve block
systems of integral equations or even coupling
with finite element (FEM) codes. Nevertheless,
the fundamental structure of what Bempp-cl does
is well described using the above simple problem.

The first step is the discretization of the
surface I'. Surfaces are represented in Bempp-
cl as a triangulation into flat triangles (see Fig-
ure 1). The triangulation is internally represented
as an array of node coordinates and an associated
connectivity array of node indices that define
each triangle. In this step, topology data is also
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Figure 1. Discretization of a sphere into flat surface
triangles.

computed: in particular, for each triangle, we
compute the neighboring triangles and the type
of intersection (i.e. are they connected by an edge
or a vertex, see Figure 2).

Once a triangulation is given we need to
define the necessary data structures for the dis-
cretization. Bempp-cl uses a Galerkin discretiza-
tion: we introduce a set of basis functions ¢; to
¢n, and define the trial space as the span of these
functions. We then approximate the solution ¢ of
Equation (1) by ¢, = Zj.vzlqubj, where x is
a vector of coefficients. In the most simple case,
we can define the function ¢; to be equal to 1
on the triangle 7; and O everywhere else. Other
spaces are commonly defined to be piecewise
polynomials on each triangle.

To discretize Equation (1), we define a test
(or dual) space in terms of a basis 1, to ¥y.
The discrete representation of the above problem
then takes the form

Ax=Db

with
Ay = [ vt@) [ gla.)o;(w)ds, ds,
b; :/Fwi(a:)f(w)dsm.

In the case of piecewise constant trial and test
functions, the definition of A,;; simplifies to
Aij= [, [, 9(@ y)dsy ds,.

In Bempp-cl, an operator definition consists
of the type of the operator (e.g., Laplace single-
layer in the above example), the definition of
the trial and test spaces, and the definition of
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the range space. The range space is required
for operator products and not relevant for the
purpose of this paper. The function f is repre-
sented as a grid function object, which consists
of either the dual representation in the forms of
the integrals b; = [ 9;(x) f(x) ds, or directly
through its coefficients f; in the representation
f=30 fid

Once the grid, the spaces, and the operator(s)
are defined, the main computational step is per-
formed, namely the computation of the discrete
matrix entries A,;;. For pairs of triangles 7; and
7; that do not share a joint edge or vertex this
is done through a simple numerical quadrature
rule such as a symmetric Gauss rule for trian-
gles. In the case that two triangles share a joint
vertex/edge or the triangles 7; and 7; are identical
(see Figure 2), corresponding singular quadrature
rules are used that are based on singularity-
removing coordinate transformations [2].

The values b; of the right-hand side vector
b are similarly computed through a numerical
quadrature rule.

In the final step, Bempp-cl solves the under-
lying linear system of equations either through
a direct LU decomposition or through iterative
solvers. The solution can then be evaluated away
from the surface I' through domain potential
operators and exported in various formats for
visualization.

In summary, to solve a boundary integral
equation problem, the following steps are per-
formed by Bempp-cl:

1) Import of the surface description as trian-
gulation data.

2) Definition of function spaces and relevant
operators.

3) Discretization into a matrix problem Ax =
b.

4) Solution of the matrix problem by either a
direct or iterative solver.

5) Evaluation of domain potential operators
for visualization and post-processing.

All of these steps are accelerated through the
use of either Numba or OpenCL. In the following
section we provide a high-level overview of the
library and how these acceleration techniques are
deployed before we dive into the design of the
computational kernels.
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Figure 2. The four types of intersection of two triangles: the triangles can be (left to right) not neighbours,
neighbours adjacent via a vertex, neighbours adjacent via an edge, or the same triangle. In the first case,
standard quadrature is used. In the other three cases, singular quadrature rules must be used.

Grid Space Operator

GridFunction
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Figure 3. The layout of Bempp-cl with its computa-
tional backends.

A HIGH-LEVEL OVERVIEW OF
BEMPP-CL

The main user-visible component of Bempp-
cl is the module , which defines
all user interface functions and other high-level
routines. In particular, it contains the defini-
tions of the main object types: Grid, Space,
GridFunction, and Operator. The compu-
tational backend routines are contained in the
module . Currently, we support
Numba and OpenCL backends. An overview of
this structure is provided in Figure 3.

The main computational cost involved in solv-
ing a problem using boundary element methods is
due to discretising the boundary integral operator
on the left-hand side of Equation (1) to obtain the
matrix A: using dense methods, discretising an
operator has quadratic complexity in terms of the
number of surface triangles. For larger problems,
this cost can be reduced through approximation
techniques, such as hierarchical (H-) matrices or
fast multipole methods (FMM) with log-linear or
even linear complexity. The price of the improved
complexity is significantly more involved data
structures and additional approximation errors.
Bempp-cl provides interfaces to ExaFMM [8] for

large problems. Here, we focus on dense discreti-
sation that is natively implemented in Bempp-
cl and is suitable for medium sized problems
up to a few ten thousand elements, depending
on available memory. Great care needs to be
taken to ensure that the quadratic complexity
operator assembly routines perform as efficiently
as possible.

Once a user has defined an operator using
Bempp-cl, the discretization can be computed by
calling the weak_form method. Upon calling
this method, a regular integrator will be used
to assemble all the interactions between non-
adjacent elements, and a singular integrator will
be used to compute the interactions between
adjacent triangles (if the trial and test spaces are
defined on different grids, this second integrator is
not needed). Depending on the user’s preferences,
these integrators will internally use computational
routines defined using either Numba or OpenCL.

For OpenCL assembly, the code checks ad-
ditional parameters, such as the default vector
length for SIMD operators (e.g., 4 for double
precision and 8 for single precision in Intel AVX,
or 1 if a GPU is used), and whether the discretiza-
tion should proceed in single or double precision.
The OpenCL kernel is then compiled for the
underlying compute device using PyOpenCL and
executed. If the computational backend is Numba,
the call is forwarded to the corresponding Numba
discretization routines and executed.

For simple piecewise constant function spaces
or other spaces, where the support of each basis
function is localized to a single triangle, only one
call to the computational routines is necessary.
If the support of basis functions is larger than a
single triangle, different threads may need to sum
into the same global degree of freedom.
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Outside the operator discretization, Numba is
used in the following contexts:

e Computing the grid topology: this involves
iterating through the grid to compute the neigh-
bour relationships between triangles.

e Definition of local-to-global maps for function
spaces: again, this requires traversal through
the grid and assigning relationships between
global and local indices.

e Grid functions: a right-hand side function f
can be defined as a Python callable. This is
just-in-time compiled via Numba and then the
product with the corresponding basis functions
is integrated in each triangle via numerical
quadrature, again via Numba accelerated rou-
tines.

e Computing sparse matrix entries, such as for
mass matrices that are required to translate be-
tween representations of grid functions through
basis coefficients or projections, or when we
want to evaluate operator products.

As the cost of each of these processes is in
general much smaller than the cost of opera-
tor discretization, these can be performed using
Numba without any need to consider the use of
OpenCL for potential further speed up.

ASSEMBLING BOUNDARY
INTEGRAL OPERATORS WITH
OPENCL

In this section, we discuss in more detail
the assembly of boundary integral operators with
OpenCL and how we integrated this into our
Python workflow. We start with a brief introduc-
tion to OpenCL and then dive into how we use
OpenCL as part of Bempp-cl.

What is OpenCL?

OpenCL [5] is a heterogeneous compute stan-
dard for CPUs, GPUs, FPGAs, and other types
of devices that provide conformant drivers. At its
core, OpenCL executes compute kernels that can
be written in OpenCL C, which is based on C99,
or (more recently) in C++, with some restrictions
on the allowed operations. The current version of
OpenCL is 3.0, though the most widely imple-
mented standard is OpenCL 1.2, which Bempp-cl
uses.
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OpenCL splits computational tasks into work-
items, each of which represents a single execution
of a compute kernel. Work-items are grouped
together into work-groups, which share local
memory. Barrier synchronization is only allowed
within a work-group. All work-items are uniquely
indexed by a one, two, or three dimensional index
space, called NDRange. Kernels are launched
onto a compute device (e.g., a CPU or GPU)
from a host device. OpenCL allows kernels to be
loaded as strings and compiled on-the-fly for a
given device, making it well suited for launching
from high-productivity languages.

To launch an OpenCL kernel the user must
provide relevant data as buffers, which are trans-
ferred from the host to the corresponding compute
device. A kernel string can then be loaded and
just-in-time compiled for the device. The kernel
is then run, and the results can be copied back to
the host.

OpenCL has very good support for vectorized
operations: it provides vector data types and de-
fines a number of standard operations for these
vector types. For example, the type double4
will allow four double values to be held in a
SIMD register. This makes it easy to explicitly
target modern SIMD execution in a portable way
while avoiding difficult compiler intrinsics and
keeping kernel code readable.

Python has excellent OpenCL support through
the PyOpenCL library by Andreas Kloeckner [3].
PyOpenCL automates much of the initialization
of the OpenCL environment and makes it easy to
create buffers and launch OpenCL kernels from
Python.

OpenCL Assembly in Bempp-cl

Bempp-cl has OpenCL kernels for all its
boundary operators. All operators have the same
interface and are launched in the same way. In the
first step, the relevant data will need to be copied
to the compute device. This data consists of:

e Test and trial indices denoting the triangles
over which to be integrated.

e Signs of the normal directions for the spaces.

e Test and trial grids as flat floating point arrays,
defining each triangle through nine floating
point numbers, specifying the (x,y, z) coordi-
nates of each of the three nodes of a triangle.
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"bempp_base_types.h"
"bempp_helpers.h"
"bempp_spaces.h"
"kernels.h"

__kernel void kernel_ function (

__global uintx testIndices, __global uintx trialIndices,
__global intx testNormalSigns, _ global intx trialNormalSigns,

__global * testGrid, __global

* trialGrid,

__global uintx testConnectivity, _ global uintx trialConnectivity,
__global uint* testLocal2Global, _ _global uintx triallLocal2Global,

* quadWeights,

__global * testLocalMultipliers,
__global * triallocalMultipliers,
__constant * quadPoints, __ constant
__global * globalResult,

__global * kernel_parameters,

int nTest, int nTrial,
{
/x o/

}

char gridsAreDisjoint)

Figure 4. Definition of the OpenCL compute kernel for scalar integral equations.

e Test and trial connectivity, which are lists
of node indices that define the corresponding
triangles of the test and trial grid.

e Test and trial mappings of local triangle de-
grees of freedom to global degrees of freedom.

e Test and trial basis function multipliers for
each triangle, which are triangle dependent
prefactors needed for certain function spaces
(e.g., in electromagnetics).

e Quadrature points and quadrature weights.

e A buffer that contains the global assembled
matrix.

e Additional kernel parameters, such as the
wavenumber for Helmholtz problems.

e The number of test and trial degrees of free-
dom.

e A single byte that is set to one if the test and
trial grids are disjoint.

An example kernel definition is shown in Fig-
ure 4. Before the kernel can be launched, it needs
to be configured and just-in-time compiled. Ker-
nel configuration happens through C-style prepro-
cessor definitions that are passed through the just-
in-time compiler. These include the names of the
test and trial space, the name of the function that
evaluates the Green’s function, whether we are
using single or double precision types, and (for
SIMD enhanced kernels) the vector length of the
SIMD types. For example, in Figure 4 all floating
point types have the name . This is

substituted with either £loat or double during
just-in-time compilation.

Each work-item computes (using numerical
quadrature) all interactions of basis functions on
the trial element with basis functions on the
test element. Before summing the result into
the global result buffer, the kernel checks via
the connectivity information if the test and trial
triangles are adjacent or identical (see Figure 2).
To do this, it simply checks if at at least one of
the node indices of the test triangle is equal to one
of the node indices of the trial triangle. If this is
true and the grids are not disjoint, the result of the
kernel is discarded and not summed back into the
global result buffer: for these triangles, separate
singular quadrature rules need to be used. The
effect is that a few work-items do work that is
discarded. However, in a grid with NV elements,
the number of triangle pairs requiring a singular
quadrature rule is O(NV), while the total number
of triangle interactions is N?. Hence, only a tiny
fraction of work-items are discarded.

SIMD optimized kernels

When we are running on a CPU and want
to take advantage of available SIMD optimiza-
tions, we need to make a few modifications to
our approach. The corresponding kernel works
similarly to what is described above, but we
compute a batch of interactions between one
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test triangle and X trial triangles, where X is
either 4, 8, or 16 (depending on the number of
available SIMD lanes). This strategy allows us
to optimize almost all floating point operations
within a kernel run for SIMD operation. If the
number of trial elements is not divisible by 4,
8, or 16, then the few remaining trial elements
are assembled with the standard non-vectorized
kernel.

Each kernel definition is stored in two vari-
ants, one with the ending _novec.cl and an-
other one with the ending _vec.cl. The vec-
torized variant is configured via preprocessor di-
rectives for the desired number of vector lanes.
Having to develop two OpenCL kernel codes
for each operator creates a certain amount of
overhead, but once we have implemented the
non-vectorized version then, with the help of
preprocessor directives and a number of helper
functions that do the actual implementation of
operations depending on whether the kernel is
vectorized or not, it is usually only a matter of an
hour or two to convert the non-vectorized kernel
into a vectorized version.

Alternatively, some CPU OpenCL runtime en-
vironments can (optionally) try and auto-vectorize
kernels by batching together work-items on
SIMD lanes, similar to what we do manually. In
our experience, this works well for very simple
kernels but often fails for more complex OpenCL
kernels. This is why we decided to implement this
strategy manually.

A completely different SIMD strategy could
be taken by batching together quadrature evalua-
tions within a single test/trial pair. There are two
disadvantages to this approach: first, it only works
well if the number of quadrature points is a mul-
tiple of the available SIMD lanes. Second, other
operations such as the geometry calculations for
each element then cannot be SIMD optimized as
these are only performed once per test/trial pair.

Assembling the singular part of integral
operators

The assembly of the singular part of an inte-
gral operator works a bit differently. Remember
that the singular part consists of triangle parts
which are adjacent to each other or identical
(the three later cases in Figure 2): there are
O(N) such pairs. We are using fully numerical
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Figure 5. The triangles in this mesh have been
colored (using a greedy algorithm) so that no two
neighboring triangles are the same color. Sets of tri-
angles of the same color can therefore be processed
together as they are guaranteed to not be neighbors,
so do not share any degrees of freedom. [The dots on
each cell are included as a visual aid for anyone who
prints this article in black and white.]

quadrature rules for these integrals that are based
on subdividing the four-dimensional integration
domain and using transformation techniques to
remove the singularities. This gives highly ac-
curate evaluation of these integration pairs but
requires a large number (typically over 1000)
quadrature points per triangle pair.

For this assembly, we create one work-group
for each singular triangle pair. Inside this work-
group, we have a number of work-items that
evaluate the quadrature rules then sum up the
results. Depending on how two triangles are re-
lated to each other, different types of singular
quadrature rule are needed. We solve this by
pre-loading all possible quadrature rules onto the
device, and also store for each triangle pair an
index pointing to the required quadrature rule so
that the kernel function can select the correct
rule to evaluate. For the singular quadrature rules,
we did not implement separate SIMD optimized
kernels as the proposed implementation is already
highly efficient and requires only a fraction of
the computational time of the regular quadrature
rules described above. At the end, the singular
integral values are either summed into the overall
result matrix, or (if desired by the user) stored as
separate sparse matrix.



Department Head

Avoiding data races in the global assembly

Data races in global assembly routines are
a problem whenever different triangles need to
sum into the same global degree of freedom. To
solve this we use standard coloring techniques
to split up the computations into chunks that
access different data regions. To this end, we
define two triangles as neighbors if they share
at least one global degree of freedom. Based on
this relationship we run a simple greedy coloring
algorithm in the initialization phase of a function
space. An example coloring is shown in Figure 5.

The compute kernels can then be run color-by-
color. OpenCL parallelizes over test elements and
trial elements, and so we have to iterate over the
product space of possible colour combinations. In
Numba, we only parallelise over test elements so
it is sufficient to iterate over all possible colors
in the test space.

NUMBA ASSEMBLY OF INTEGRAL
OPERATORS

The main focus of Numba within Bempp-
cl is to provide accelerated implementations of
routines with linear complexity, such as grid
iterations, integration of functions over grids, or
assembly of certain sparse matrices. However, we
also provide a fall-back implementation of the
OpenCL dense operator assembly in Numba.

With Numba, we use loop parallelism: each
loop iteration is the assembly of one test trian-
gle with all trial triangles. We then parallelize
over the test triangles through a parallel for-loop.
Within each loop we try to optimize for auto-
vectorization by linearly passing through the data
in memory order for the individual operations.
However, a much smaller fraction of operations
is SIMD optimized due to the lack of targeted
SIMD constructs in Numba.

We stress that while Numba provides back-
ends not only for CPU, but also for ROCm and
CUDA, we currently only use the CPU compo-
nent of Numba.

PERFORMANCE BENCHMARKS

In this section, we provide a number of per-
formance benchmarks. The tests were all run on
a Dell Precision 7740 Workstation Laptop with
64 GB RAM. Its CPU is an Intel i9-9980HK
with a base clock of 2.4GHz and a burst clock of

5GHz. The CPU supports AVX, AVX2, and AVX-
512. As a GPU we use an Nvidia Quadro RTX
3000 GPU. All benchmark tests were performed
in Linux. For OpenCL on the GPU, we use the
Nvidia GPU drivers and as CPU runtime we
compare the open-source PoCL driver against
the Intel CPU OpenCL runtime environment. All
timing runs were repeated several times to make
sure that the overhead from running the OpenCL
and Numba just-in-time compilers did not skew
the results. Though hardly noticeable by users, for
smaller experiments the compilation phase typi-
cally takes longer than the actual computation.

Dense Operator assembly
We start by benchmarking the dense operator
assembly. We assemble the matrix A defined by

Aij:/F%(m) ®i(y)

r Az — y

with I" being the unit sphere. For the basis
functions ¢; and test functions v);, we compare
two cases: piecewise constant functions for both
(PO functions); and nodal, piecewise linear, and
globally continuous functions for both (P1 func-
tions). In the PO case, each triangle is associated
with just one piecewise constant function. In the
P1 case, each triangle is associated with 3 linear
basis functions, one for each node of the triangle.

We first compare the OpenCL CPU perfor-
mance for the Intel OpenCL runtime and the
PoCL OpenCL runtime driver. We run the tests in
single precision and double precision. The native
vector width for both drivers in single precision is
8, and in double precision is 4, corresponding to
AVX instructions. In Bempp-cl, this means that
we assemble in vectorized form one test triangle
with 8 trial triangles in single precision, and with
4 trial triangles in double precision. Within the
assembly, almost all floating point instructions
are manually vectorized to take advantage of this.
We should hence see up to a factor 2 speed-up
between single and double precision assembly.

The timings for a grid with 32,768 elements
are shown in Figure 6. We see the expected speed-
up between single precision and double precision
evaluation. It is interesting to note the differ-
ence between the Intel and the PoCL runtime
environment. For PO basis functions, the PoCL
driver (gray bar) significantly outperforms the

ds, ds,,
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Figure 6. Comparison of the performance of PoCL
and the Intel OpenCL runtime for the assembly of the
Laplace single-layer boundary operator on a grid with
32,768 elements.
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Figure 7. Comparison of the single-precision and
double-precision performance for various grid sizes
using PoCL and PO basis functions.

Intel driver (orange bar) in both single and double
precision. For P1 basis functions, however, the
Intel driver gives better performance.

In Figure 7, we compare specifically the per-
formance of single precision and double precision
evaluation for the PoCL driver for various grid
sizes in the case of a PO basis. We can see that
the speed-up for larger grid sizes is slightly more
than just a factor of two. The final data point in
this graph corresponds to the grid size used for
Figure 6.

In Bempp-cl, we can easily switch between
CPU Assembly, GPU Assembly, and Numba As-
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| single | double

PoCL 0.05s | 0.08s
Numba | 0.25s 0.25s
GPU 0.11s | 3.00s

Figure 8. Comparison of PoCL, Numba and GPU
assembly for a grid with 2048 elements.

sembly. Figure 8 shows a comparison between
these modes for a grid with 2048 elements. The
speed differences are striking. GPU assembly
in single precision is a factor of two slower
than CPU assembly, and much slower in double
precision due to the limited double precision
performance of our hardware, though we note that
this is not an issue for double precision optimised
data center accelerators. Numba is five times
slower for single precision and still around three
times slower for double precision than PoCL. The
GPU behaviour can be explained by data transfer:
while the GPU kernels themselves are extremely
fast, data transfer over the bus severely limits
performance. Even for medium sized problems,
we have to transfer the data back to the main
memory as GPU RAM is too limited to keep
dense matrices with tens of thousands of rows
and columns on the device.

An alternative method is to compute the
matrix-vector product (matvec) Ax on the device
without first computing the dense matrix A. This
can be done by recomputing all matrix elements
during each matvec calculation on-the-fly and not
storing them. We have done experiments with
this, and observed significant speed-ups compared
to CPU evaluation as we now only need to
transfer single vectors over the bus. For larger
problems, however, it is not competitive com-
pared to accelerated methods such as FMM, due
to the quadratic complexity of direct evaluation
of the matvec compared to linear complexity of
FMM. For smaller problems, it is still practically
better to just assemble the whole matrix and store
it, as then matvecs are much faster for an iterative
solver. Hence, we can conclude that there is only
limited practical relevance for on-the-fly GPU
evaluation of boundary integral operators. There
are, however, very significant practical advantages
of on-the-fly evaluation of domain potential oper-
ators for visualization and post-processing, as we
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will see in the next section.

The Numba performance difference seen in
Figure 8 is interesting. The main reason for this,
we believe, is significantly lower usage of AVX
vectorized instructions. We have taken care to
optimize the Green’s function evaluation for auto-
vectorized evaluation in Numba, but the loops
over integration points and other operations auto-
vectorize very badly when just looping over all
trial triangles for a single test triangle, as we
currently do. We could tune our code for better
auto-vectorization in Numba, but this would give
little benefit as we have highly optimized hand-
tuned OpenCL kernels already. We therefore rec-
ommend using Numba for operator assembly only
as a fallback if no OpenCL runtime is available
(this is less a judgement about Numba itself but
about the limited optimisations we have done for
Numba assembly routines).

Evaluating domain potentials for
post-processing of electromagnetic problems

Once an integral equation is solved, one is
usually interested in evaluating the solution not
only at the boundary but also at points away from
it. To do this, we evaluate the integral

f(z) = / o, y)o(y) ds,

for many points  away from the boundary I'. For
example, if we want to visualize a solution, we
take the points @ to be a regular grid of points.
Typically, we want to do only a small number
of potential evaluations at the end of a calculation.
Discretising this operation into a dense matrix and
then evaluating the dense matrix-vector product
is not practical for larger sizes. For very large
problems with hundreds of thousands of elements,
we use FMM or other accelerated approximate
methods. For moderately sized problems with a
few ten thousand elements up to around a hundred
thousand elements (depending on the problem at
hand), direct evaluation of this integral for every
point x is highly efficient. We won’t go into
the details of the corresponding OpenCL kernels
here, but we show some results that demonstrate
the relative performance on CPUs and GPUs.
For the dense assembly of boundary integral
operators, the performance was limited by the bus
transfer of the dense matrix. For the evaluation

Electric field domain potential

Nvidia (double)
Nvidia (single)
Pocl (single)-
0 10 20 30 40 50

Time [s]

Figure 9. Evaluation of an electric field potential
operator on CPU via PoCL vs Nvidia GPU

of domain potentials, however, we only need to
transfer to the device the vector of coefficients of
the basis functions for ¢, and then transfer back
to the host the values at the points @.

In this section, we consider the evaluation of
the electric potential operator, defined by

(€p) (x) = ik / p(y)g(x,y) ds,

1
_ly, / divp(y)g(z,y)ds,, @)
ik T

eiklz—yl|

where g(x,y) = §.—; is the Helmholtz
Green’s function, and k£ the wavenumber of the
problem. The function p : R® — R? is a vector-
valued function, leading to an overall vector so-
lution at each point x. The implementation of
electromagnetic problems in Bempp is covered in
detail in [6]. For these experiments, we again use
a grid with 32,768 triangles but this time RWG
(Rao—Wilton—Glisson) edge-based basis functions
are used. For the potential evaluation, we use
50,000 random evaluation points in the exterior of
the unit sphere, and as wavenumber use k£ = 1.0.

In Figure 9, we compare the performance
of GPU evaluation with that of the PoCL CPU
driver. In single-precision, the GPU significantly
outperforms the CPU; and even in double-
precision, the Nvidia Quadro RTX GPU is faster
than the 8-core CPU, even though its hardware is
not optimised for fast double precision operations.

IT Professional



SUMMARY

With Bempp-cl, we have created a Python
library that achieves high-performance through
use of modern just-in-time compilation technolo-
gies. Bempp-cl mixes Numba evaluation for less
compute intensive linear complexity loops and
sparse matrix generation with highly optimized
OpenCL kernels for computationally sensitive
dense matrix assembly routines. Basing develop-
ment on Python instead of classical C/C++ makes
it very easy to adapt the library and integrate
with other libraries with Python interfaces, such
as the recent work integrating Bempp-cl and the
ExaFMM library to build electrostatic virus-scale
simulations [8].

Strict separation of the computational backend
from the interface layer in the library also makes
it easy to integrate further backends, allowing us
to remain up to date with future compute models.
OpenCL itself has proved a valuable choice for
the purpose of this library, as it allows us to run
CPU and GPU optimized kernels with very little
code overhead, and allows the user to easily move
between CPU- and GPU-based compute devices
with a simple parameter change. In this article,
we demonstrate Nvidia benchmarks: the same
benchmarking code could be used to run on AMD
or Intel GPUs.

A disadvantage of our approach is that using
OpenCL kernels introduces a second language
(C99) to the library. Using Numba throughout
would give a much more native Python experi-
ence, but, while Numba is constantly improving,
it is currently difficult to achieve optimal per-
formance for complex operations. OpenCL really
shines here, as it makes explicit SIMD operations
very easy through dedicated constructs. Moreo-
ever, OpenCL kernels are completely stack/reg-
ister based functions, allowing much better com-
piler optimisations while Numba needs to create
every object dynamically, even for very small
arrays for objects such as coordinate vectors. We
need to stress that we have performed very few
optimisations specific to Numba, while significant
optimisation has gone into the OpenCL codes. It
is therefore well possible that the performance
gap between Numba and OpenCL can be sig-
nificantly reduced. But from other projects our
own anecdotal experience is that the more Numba
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is optimised, the less Pythonic and more C-like
Numba functions look. So while Numba is a
very powerful tool, it requires its own techniques
for optimisation, different from standard Python
code.

Another important consideration with respect
to Python and just-in-time acceleration is the
type of algorithms that benefit. For the dense
assembly of integral operators, we have very
simple data structures that can easily be passed
to compute kernels. More complex data structures
with larger mixture of data movement operations
and computations (e.g., tree-based algorithms),
are much harder to accelerate since the Python
layer imposes limits here on the performance.

Overall, with the model of mixed
Python/OpenCL/Numba development, we
have created a flexible and easy to extend
platform for integral equation computations. The
initial re-implementation efforts by abandoning
our old C++ code base are paying off, as they
allow us to develop new features in a far simpler
environment without sacrificing performance.
Strict separation of compute backends and higher
level routines makes it easy for us to integrate
other accelerator techniques in the future with
little code changes, and to react to new trends in
heterogeneous computing.

The current focus of further developments is
on letting Bempp-cl take advantage of cluster
computing by integrating the mpi4py MPI bind-
ings for Python. We have also made big steps
forward for large problems by creating a black-
box FMM interface that currently interfaces to
ExaFMM: this has allowed us to solve problems
with 10 million elements on a single worksta-
tion. We believe that Python-focused develop-
ment (with some native routines in lower-level
languages) is a scalable model and are aiming to
exploit this scalability further as we move from
single workstation computations to large cluster
problems.
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