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Abstract 

Background: Natural language processing (NLP) has a significant role in advancing healthcare and has been found 
to be key in extracting structured information from radiology reports. Understanding recent developments in NLP 
application to radiology is of significance but recent reviews on this are limited. This study systematically assesses and 
quantifies recent literature in NLP applied to radiology reports.

Methods: We conduct an automated literature search yielding 4836 results using automated filtering, metadata 
enriching steps and citation search combined with manual review. Our analysis is based on 21 variables including 
radiology characteristics, NLP methodology, performance, study, and clinical application characteristics.

Results: We present a comprehensive analysis of the 164 publications retrieved with publications in 2019 almost 
triple those in 2015. Each publication is categorised into one of 6 clinical application categories. Deep learning use 
increases in the period but conventional machine learning approaches are still prevalent. Deep learning remains 
challenged when data is scarce and there is little evidence of adoption into clinical practice. Despite 17% of studies 
reporting greater than 0.85 F1 scores, it is hard to comparatively evaluate these approaches given that most of them 
use different datasets. Only 14 studies made their data and 15 their code available with 10 externally validating results.

Conclusions: Automated understanding of clinical narratives of the radiology reports has the potential to enhance 
the healthcare process and we show that research in this field continues to grow. Reproducibility and explainability of 
models are important if the domain is to move applications into clinical use. More could be done to share code ena‑
bling validation of methods on different institutional data and to reduce heterogeneity in reporting of study proper‑
ties allowing inter‑study comparisons. Our results have significance for researchers in the field providing a systematic 
synthesis of existing work to build on, identify gaps, opportunities for collaboration and avoid duplication.
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Background
Medical imaging examinations interpreted by radiolo-
gists in the form of narrative reports are used to support 
and confirm diagnosis in clinical practice. Being able to 
accurately and quickly identify the information stored 
in radiologists’ narratives has the potential to reduce 

workloads, support clinicians in their decision processes, 
triage patients to get urgent care or identify patients for 
research purposes. However, whilst these reports are 
generally considered more restricted in vocabulary than 
other electronic health records (EHR), e.g. clinical notes, 
it is still difficult to access this efficiently at scale [1]. This 
is due to the unstructured nature of these reports and 
Natural Language Processing (NLP) is key to obtaining 
structured information from radiology reports [2].
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NLP applied to radiology reports is shown to be a 
growing field in earlier reviews [2, 3]. In recent years 
there has been an even more extensive growth in 
NLP research in general and in particular deep learn-
ing methods which is not seen in the earlier reviews. A 
more recent review of NLP applied to radiology-related 
research can be found but this focuses on one NLP tech-
nique only, deep learning models [4]. Our paper provides 
a more comprehensive review comparing and contrasting 
all NLP methodologies as they are applied to radiology.

It is of significance to understand and synthesise recent 
developments specific to NLP in the radiology research 
field as this will assist researchers to gain a broader 
understanding of the field, provide insight into methods 
and techniques supporting and promoting new develop-
ments in the field. Therefore, we carry out a systematic 
review of research output on NLP applications in radiol-
ogy from 2015 onward, thus, allowing for a more up to 
date analysis of the area. An additional listing of our syn-
thesis of publications detailing their clinical and technical 
categories  can be found in Additional file 1 and per pub-
lication properties can be found in Additional file 2. Also 
different to the existing work, we look at both the clinical 
application areas NLP is being applied in and consider 
the trends in NLP methods. We describe and discuss 
study properties, e.g. data size, performance, annotation 
details, quantifying these in relation to both the clini-
cal application areas and NLP methods. Having a more 
detailed understanding of these properties allows us to 
make recommendations for future NLP research applied 
to radiology datasets, supporting improvements and pro-
gress in this domain.

Related work
Amongst pre-existing reviews in this area, [2] was the 
first that was both specific to NLP on radiology reports 
and systematic in methodology. Their literature search 
identified 67 studies published in the period up to Octo-
ber 2014. They examined the NLP methods used, summa-
rised their performance and extracted the studies’ clinical 
applications, which they assigned to five broad catego-
ries delineating their purpose. Since Pons et  al.’s paper, 
several reviews have emerged with the broader remit of 
NLP applied to electronic health data, which includes 
radiology reports. [5] conducted a systematic review of 
NLP systems with a specific focus on coding free text into 
clinical terminologies and structured data capture. The 
systematic review by [6] specifically examined machine 
learning approaches to NLP (2015–2019) in more gen-
eral clinical text data, and a further methodical review 
was carried out by [7] to synthesise literature on deep 
learning in clinical NLP (up to April 2019) although the 
did not follow the PRISMA guideline completely. With 

radiology reports as their particular focus, [3] published, 
the same year as Pons et  al.’s review, an instructive nar-
rative review outlining the fundamentals of NLP tech-
niques applied in radiology. More recently, [4] published 
a systematic review focused on deep learning radiology-
related research. They identified 10 relevant papers in 
their search (up to September 2019) and examined their 
deep learning models, comparing these with traditional 
NLP models and also considered their clinical applica-
tions but did not employ a specific categorisation. We 
build on this corpus of related work, and most specifi-
cally Pons et al.’s work. In our initial synthesis of clinical 
applications we adopt their application categories and 
further expand upon these to reflect the nature of sub-
sequent literature captured in our work. Additionally, we 
quantify and compare properties of the studies reviewed 
and provide a series of recommendations for future NLP 
research applied to radiology datasets in order to pro-
mote improvements and progress in this domain.

Methods
Our methodology followed the Preferred Reporting Items 
for Systematic Reviews and Meta-Analysis (PRISMA) [8], 
and the protocol is registered on protocols.io.

Eligibility for literature inclusion and search strategy
We included studies using NLP on radiology reports of 
any imaging modality and anatomical region for NLP 
technical development, clinical support, or epidemiologi-
cal research. Exclusion criteria included: (1) language not 
English; (2) wrong publication type (e.g., case reports, 
reviews, conference abstracts, comments, patents, or 
editorials) (2) published before 2015; (3) uses radiology 
images only (no NLP); (4) not radiology reports; (5) no 
NLP results; (6) year out of range; (7) duplicate, already 
in the list of publications retrieved; (8) not available in 
full text.

We used Publish or Perish [9], a citation retrieval and 
analysis software program, to search Google Scholar. 
Google Scholar has a similar coverage to other databases 
[10] and is easier to integrate into search pipelines. We 
conducted an initial pilot search following the process 
described here, but the search terms were too specific 
and restricted the number of publications. For example, 
we experimented with using specific terms used within 
medical imaging such at CT, MRI. Thirty-seven papers 
were found during the pilot search but the same papers 
also appeared in our final search. We use the following 
search query restricted to research articles published in 
English between January 2015 and October 2019. (“radi-
ology” OR “radiologist”) AND (“natural language” OR 
“text mining” OR “information extraction” OR “docu-
ment classification” OR “word2vec”) NOT patent. We 
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automated the addition of publication metadata and 
applied filtering to remove irrelevant publications. These 
automated steps are described in Tables 1 and 2.

In addition to query search, another method to find 
papers is to conduct a citation search [15]. The citation 
search compiled a list of publications that cite the Pons 
et  al. review and the articles cited in the Pons’ review. 
To do this, we use a snowballing method [16] to follow 
the forward citation branch for each publication in this 
list, i.e. finding every article that cites the publications in 
our list. The branching factor here is large, so we filter at 
every stage and automatically add metadata. One hun-
dred and seventy-one papers were identified as part of 
the snowball citation search and of these 84 were in the 
final 164 papers.

Manual review of literature
Four reviewers (three NLP researchers [AG,DD and 
HD] and one epidemiologist [MTCP]) independently 
screened all titles and abstracts with the Rayyan online 
platform and discussed disagreements. Fleiss’ kappa [17] 
agreement between reviewers was 0.70, indicating sub-
stantial agreement [18]. After this screening process, 
each full-text article was reviewed by a team of eight (six 
NLP researchers and two epidemiologists) and double 
reviewed by a NLP researcher. We resolved any discrep-
ancies by discussion in regular meetings.

Data extraction for analysis
We extracted data on: primary clinical application and 
technical objective, data source(s), study period, radiol-
ogy report language, anatomical region, imaging modal-
ity, disease area, dataset size, annotated set size, training/
validation/test set size, external validation performed, 
domain expert used, number of annotators, inter-anno-
tator agreement, NLP technique(s) used, best-reported 
results (recall, precision and F1 score), availability of 
dataset, and availability of code.

Results
The literature search yielded  4836 possibly relevant pub-
lications from which our automated exclusion process 
removed 4,402, and during both our screening processes,  
270  were removed, leaving 164 publications. See Fig.  1 
for details of exclusions at each step.

General characteristics
2015 and 2016 saw similar numbers of publica-
tions retrieved (22 and 21 respectively) with the vol-
ume increasing almost three-fold in 2019 (55), noting 
2019 only covers 10 months (Fig.  2). Imaging modal-
ity (Table  3) varied considerably and 46 studies used 
reports from multiple modalities. Of studies focusing 
on a single modality, the most featured were CT scans 
(38) followed by MRI (16), X-Ray (8), Mammogram (5) 
and Ultrasound (4). Forty-seven studies did not speci-
fying scan modality. For the study samples (Table  4), 

Table 1 Metadata enriching steps undertaken for each publication

Metadata enriching steps

1. Match the paper with its DOI via the Crossref API [11]

2. If DOI matched, check Semantic Scholar for metadata/abstract [12]

3. If no DOI match and no abstract, search PubMed for abstract

4. Search arXiv [13] (for a pre‑print)

5. If no PDF link, search Unpaywall for available open access versions [14]

6. If PDF but no separate abstract via Semantics Scholar/PubMed, extract abstract from the PDF

Table 2 Automated filtering steps to remove irrelevant publications

Automated filtering steps

1. Document language is English

2. Word ’patent’ in title or URL

3. Year of publication out of range (<2015)

4. The words ’review’ or ’overview’ in the title, ’this review’ in the abstract

5. Image keywords in title or abstract with no NLP terminology in abstract

6. No radiology keywords in title or abstract

7. No NLP terminology in abstract
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33 papers specified that they used consecutive patient 
images, 38 used non-consecutive image sampling 
and 93 did not clearly specify their sampling strat-
egy. The anatomical regions for scans varied (Table  5) 
with mixed being the highest followed by Thorax and 
Head/neck. Disease categories are presented in Table 6 
with the largest disease category being Oncology. The 
majority of reports were in English (141) and a small 
number in other languages e.g., Chinese (5), Spanish 
(4), German (3) (Table 7). Additional file 2, CSV format, 

provides a breakdown of the information in Tables 3, 4, 
5, 6 and 7 per publication.

Clinical application categories
In synthesis of the literature each publication was classi-
fied by the primary clinical purpose. Pons’ work in 2016 
categorised publications into 5 broad categories: Diag-
nostic Surveillance, Cohort Building for Epidemiological 
Studies, Query-based Case Retrieval, Quality Assessment 
of Radiological Practice and Clinical Support Services. 

Fig. 1 PRISMA diagram for search publication retrieval
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We found some changes in this categorisation schema 
and our categorisation consisted of six categories: 
Diagnostic Surveillance, Disease information and clas-
sification, Quality Compliance, Cohort/Epidemiology, 
Language Discovery and Knowledge Structure, Technical 
NLP. The main difference is we found no evidence for a 
category of Clinical Support Services which described 
applications that had been integrated into the workflow 
to assist. Despite the increase in the number of publica-
tions, very few were in clinical use with more focus on 
the category of Disease Information and Classification. 
We describe each clinical application area in more detail 
below and where applicable how our categories dif-
fer from the earlier findings. A listing of all publications 

and their corresponding clinical application and techni-
cal category can be found in Additional file 1, MS Word 
format, and in Additional file  2 in CSV format. Table  8 
shows the clinical application category by the technical 
classification and Fig.  2 shows the breakdown of clini-
cal application category by publication year. There were 
more publications in 2019 compared with 2015 for all 
categories except Language Discovery & Knowledge 
Structure, which fell by ≈ 25% (Fig. 2).

Diagnostic surveillance
A large proportion of studies in this category focused 
on extracting disease information for patient or disease 
surveillance e.g. investigating tumour characteristics [19, 
20]; changes over time [21] and worsening/progression 
or improvement/response to treatment [22, 23]; identify-
ing correct anatomical labels [24]; organ measurements 
and temporality [25]. Studies also investigated pairing 
measurements between reports [26] and linking reports 

Table 3 Scan modality

Scan modality No. studies

Multiple modalities 46

MRI 16

CT 38

X‑Ray 8

Mammogram 5

Ultrasound 4

Not specified 47

Total 164

Table 4 Image sampling method

Sampling method No. studies

Consecutive images 33

Non‑consecutive images 38

Not specified 93

Total 164

Table 5 Anatomical region scanned

Anatomical region No. studies

Mixed 43

Thorax 32

Head/neck 25

Abdomen 15

Breast 15

Extremities 9

Spine 5

Other 1

Unspecified 19

Total 164

Table 6 Disease category

Disease category No. studies

Not specific disease related 40

Oncology 39

Various 20

Musculoskeletal 10

Cerebrovascular 13

Other 13

Respiratory 10

Trauma 7

Cardiovascular 6

Gastrointestinal 3

Hepatobiliary 2

Genitourinary 1

Total 164

Table 7 Radiology report language

Report language No. studies

English 141

Chinese 5

Spanish 4

German 3

Italian 2

French 2

Hebrew 1

Polish 1

Brazilian Portuguese 1

Unspecified 4

Total 164
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to monitoring changes through providing an integrated 
view of consecutive examinations [27]. Studies focused 
specifically on breast imaging findings investigating 
aspects, such as BI-RADS MRI descriptors (shape, size, 
margin) and final assessment categories (benign, malig-
nant etc.) e.g., [28–33]. Studies focused on tumour infor-
mation e.g., for liver [34] and hepatocellular carcinoma 
(HPC) [35, 36] and one study on extracting information 
relevant for structuring subdural haematoma characteris-
tics in reports [37].

Studies in this category also investigated inciden-
tal findings including on lung imaging [38–40], with 
[38] additionally extracting the nodule size; for trauma 
patients [41]; and looking for silent brain infarction and 
white matter disease [42]. Other studies focused on pri-
oritising/triaging reports, detecting follow-up recom-
mendations, and linking a follow-up exam to the initial 
recommendation report, or bio-surveillance of infectious 
conditions, such as invasive mould disease.

Disease information and classification
Disease Information and Classification publications 
use reports to identify information that may be aggre-
gated according to classification systems. These publica-
tions focused solely on classifying a disease occurrence 
or extracting information about a disease with no focus 

on the overall clinical application. This category was not 
found in Pons’ work. Methods considered a range of 
conditions including intracranial haemorrhage [43, 44], 
aneurysms [45], brain metastases [46], ischaemic stroke 
[47, 48], and several classified on types and severity of 
conditions e.g., [46, 49–52]. Studies focused on breast 
imaging considered aspects such as predicting lesion 
malignancy from BI-RADS descriptors [53], breast can-
cer subtypes [54], and extracting or inferring BI-RADS 
categories, such as [55, 56]. Two studies focused on 
abdominal images and hepatocellular carcinoma (HCC) 
staging and CLIP scoring. Chest imaging reports were 
used to detect pulmonary embolism e.g., [57–59], bac-
terial pneumonia [60], and Lungs-RADS categories [61]. 
Functional imaging was also included, such as echocardi-
ograms, extracting measurements to evaluate heart fail-
ure, including left ventricular ejection fractions (LVEF) 
[62]. Other studies investigated classification of fractures 
[63, 64] and abnormalities [65] and the prediction of ICD 
codes from imaging reports [66].

Language discovery and knowledge structure
Language Discovery and Knowledge Structure publica-
tions investigate the structure of language in reports and 
how this might be optimised to facilitate decision sup-
port and communication. Pons et  al. reported on appli-
cations of Query-based retrieval which has similarities 
to Language Discovery and Knowledge Structure but 
it is not the same. Their category contains studies that 
retrieve cases and conditions that are not predefined and 
in some instances could be used for research purposes or 
are motivated for educational purposes. Our category is 
broader and encompasses papers that investigated differ-
ent aspects of language including variability, complexity 
simplification and normalising to support extraction and 
classification tasks.

Studies focus on exploring lexicon coverage and meth-
ods to support language simplification for patients look-
ing at sources, such as the consumer health vocabulary 
[67] and the French lexical network (JDM) [68]. Other 

Table 8 Clinical application category by technical objective

Application category Information 
extraction

Report/sentence Lexicon/ ontology Clustering

(n = 73) Classification (n = 81) Discovery (n = 9) (n = 1)

Disease information & Classification 15 31 ‑ ‑

Diagnostic surveillance 28 17 ‑ ‑

Quality compliance 5 15 – –

Cohort‑Epid. 6 10 – –

Language discovery & knowledge 13 4 9 1

Technical NLP 6 4 – –

Fig. 2 Clinical application of publication by year
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works studied the variability and complexity of report 
language comparing free-text and structured reports 
and radiologists. Also investigated was how ontologies 
and lexicons could be combined with other NLP meth-
ods to represent knowledge that can support clinicians. 
This work included improving report reading efficiency 
[69]; finding similar reports [70]; normalising phrases to 
support classification and extraction tasks, such as entity 
recognition in Spanish reports [71]; imputing semantic 
classes for labelling [72], supporting search [73] or to dis-
cover semantic relations [74].

Quality and compliance
Quality and Compliance publications use reports to 
assess the quality and safety of practice and reports 
similar to Pons’ category. Works considered how patient 
indications for scans adhered to guidance e.g., [75–80] 
or protocol selection [81–85] or the impact of guideline 
changes on practice, such as [86]. Also investigated was 
diagnostic utilisation and yield, based on clinicians or on 
patients, which can be useful for hospital planning and 
for clinicians to study their work patterns e.g. [87]. Other 
studies in this category looked at specific aspects of qual-
ity, such as, classification for long bone fractures to sup-
port quality improvement in paediatric medicine [88], 
automatic identification of reports that have critical find-
ings for auditing purposes [89], deriving a query-based 
quality measure to compare structured and free-text 
report variability [90], and [91] who describe a method to 
fix errors in gender or laterality in a report.

Cohort and epidemiology
This category is similar to Pons’ earlier review but we 
treated the studies in this category differently attempt-
ing to differentiate which papers described methods 
for creating cohorts for research purposes, and those 
which also reported the outcomes of an epidemiological 
analysis. Ten studies use NLP to create specific cohorts 
for research purposes and six reported the performance 
of their tools. Out of these papers, the majority (n = 8) 
created cohorts for specific medical conditions includ-
ing fatty liver disease [92, 93] hepatocellular cancer [94], 
ureteric stones [95], vertebral fracture [96], traumatic 
brain injury [97, 98], and leptomeningeal disease second-
ary to metastatic breast cancer [99]. Five papers identi-
fied cohorts focused on particular radiology findings 
including ground glass opacities (GGO) [100], cerebral 
microbleeds (CMB) [101], pulmonary nodules [102, 103], 
changes in the spine correlated to back pain [1] and iden-
tifying radiological evidence of people having suffered a 
fall. One paper focused on identifying abnormalities of 
specific anatomical regions of the ear within an audiol-
ogy imaging database [104] and another paper aimed to 

create a cohort of people with any rare disease (within 
existing ontologies - Orphanet Rare Disease Ontology 
ORDO and Radiology Gamuts Ontology RGO). Lastly, 
one paper took a different approach of screening reports 
to create a cohort of people with contraindications for 
MRI, seeking to prevent iatrogenic events [105]. Amongst 
the epidemiology studies there were various analytical 
aims, but they primarily focused on estimating the preva-
lence or incidence of conditions or imaging findings and 
looking for associations of these conditions/findings with 
specific population demographics, associated factors or 
comorbidities. The focus of one study differed in that it 
applied NLP to healthcare evaluation, investigating the 
association of palliative care consultations and measures 
of high-quality end-of-life (EOL) care [99].

Technical NLP
This category is for publications that have a primary 
technical aim that is not focused on radiology report out-
come, e.g. detecting negation in reports, spelling correc-
tion [106], fact checking [107, 108] methods for sample 
selection, crowd source annotation [109]. This category 
did not occur in Pons’ earlier review.

NLP methods in use
NLP methods capture the different techniques an author 
applied broken down into rules, machine learning 
methods, deep learning, ontologies, lexicons and word 
embeddings. We discriminate machine learning from 
deep learning, using the former to represent traditional 
machine learning methods.

Over half of the studies only applied one type of NLP 
method and just over a quarter of the studies compared 
or combined methods in hybrid approaches. The remain-
ing studies either used a bespoke proprietary system 
or focus on building ontologies or similarity measures 
(Fig.  3). Rule-based method use remains almost con-
stant across the period, whereas use of machine learn-
ing decreases and deep learning methods rises, from five 
publications in 2017 to twenty-four publications in 2019 
(Fig. 4).

A variety of machine classifier algorithms were used, 
with SVM and Logistic Regression being the most com-
mon (Table  9). Recurrent Neural Networks (RNN) 
variants were the most common type of deep learning 
architectures. RNN methods were split between long 
short-term memory (LSTM) and bidirectional-LSTM 
(Bi-LSTM), bi-directional gated recurrent unit (Bi-GRU), 
and standard RNN approaches. Four of these studies 
additionally added a Conditional Random Field (CRF) 
for the final label generation step. Convolutional Neu-
ral Networks (CNN) were the second most common 
architecture explored. Eight studies additionally used an 



Page 8 of 18Casey et al. BMC Med Inform Decis Mak          (2021) 21:179 

attention mechanism as part of their deep learning archi-
tecture. Other neural approaches included feed-forward 
neural networks, fully connected neural networks and a 
proprietary neural system IBM Watson [82] and Snorkel 
[110]. Several studies proposed combined architectures, 
such as [31, 111].

NLP method features
Most rule-based and machine classifying approaches 
used features based on bag-of-words, part-of-speech, 
term frequency, and phrases with only two studies alter-
natively using word embeddings. Three studies use fea-
ture engineering with deep learning rather than word 
embeddings. Thirty-three studies use domain-knowledge 
to support building features for their methods, such as 
developing lexicons or selecting terms and phrases. Com-
parison of embedding methods is difficult as many stud-
ies did not describe their embedding method. Of those 
that did, Word2Vec [112] was the most popular (n = 19), 
followed by GLOVE embeddings [113] (n = 6), FastText 
[114] (n = 3), ELMo [115] (n = 1) and BERT [116] (n = 
1). Ontologies or lexicon look-ups are used in 100 stud-
ies; however, even though publications increase over the 
period in real terms, 20% fewer studies employ the use 
of ontologies or lexicons in 2019 compared to 2015. The 
most widely used resources were UMLS [117] (n = 15), 
Radlex [118] (n = 20), SNOMED-CT [119] (n = 14). 
Most studies used these as features for normalising words 
and phrases for classification, but this was mainly those 
using rule-based or machine learning classifiers with only 
six studies using ontologies as input to their deep learn-
ing architecture. Three of those investigated how existing 
ontologies can be combined with word embeddings to 
create domain-specific mappings, with authors pointing 
to this avoiding the need for large amounts of annotated 
data. Other approaches looked to extend existing medical 
resources using a frequent phrases approach, e.g. [120]. 
Works also used the derived concepts and relations visu-
alising these to support activities, such as report reading 
and report querying (e.g. [121, 122])

Annotation and inter‑annotator agreement
Eighty-nine studies used at least two annotators, 75 did 
not specify any annotation details, and only one study 
used a single annotator. Whilst 69 studies use a domain 
expert for annotation (a clinician or radiologist) only 
56 studies report the inter-annotator agreement. Some 
studies mention annotation but do not report on agree-
ment or annotators. Inter-annotator agreement values 
for Kappa range from 0.43 to perfect agreement at 1. 
Whilst most studies reported agreement by Cohen’s 
Kappa [123] some reported precision, and percent 
agreement. Studies reported annotation data sizes dif-
ferently, e.g., on the sentence or patient level. Stud-
ies also considered ground truth labels from coding 
schemes such as ICD or BI-RADS categories as anno-
tated data. Of studies which detailed human annotation 
at the radiology report level, only 45 specified inter-
annotator agreement and/or the number of annotators. 

Fig. 3 NLP method breakdown

Fig. 4 NLP method by year

Table 9 Breakdown of NLP method

ML (n = 74) No studies Deep learning (n = 36) No studies

SVM 34 RNN variants 14

Logistic regression 23 CNN 10

Random forest 18 Other 5

Naïve Bayes 17 Compare CNN, RNN 4

Maximum entropy 7 Combine CNN + RNN 3

Decision trees 4
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Annotated report numbers for these studies varies with 
15 papers having annotated less than 500, 12 having 
annotated between 500 and less than 1000, 15 between 
1000 and less than 3000, and 3 between 4000 and 8,288 
reports. Additional file 2 gives all annotation size infor-
mation on a per publication basis in CSV format.

Data sources and availability
Only 14 studies reported that their data is available, and 
15 studies reported that their code is available. Most 
studies sourced their data from medical institutions, a 
number of studies did not specify where their data was 
from, and some studies used publicly available datasets: 
MIMIC-III (n = 5), MIMIC-II (n = 1), MIMIC-CXR (n 
= 1); Radcore (n = 5) or STRIDE (n = 2). Four studies 
used combined electronic health records such as clini-
cal notes or pathology reports.

Reporting on total data size differed across studies 
with some not giving exact data sizes but percentages 
and others reporting numbers of sentences, reports, 
patients, or a mixture of these. Where an author was 
not clear on the type of data they were reporting on, 
or on the size, we marked this as unspecified. Thirteen 
studies did not report on total data size. Data size sum-
maries for those reporting at the radiology report level 
is n = 135 or 82.32% of the studies (Table 10). The big-
gest variation of data size by NLP Method is in studies 
that apply other methods or are rule-based. Machine 
learning also varies in size; however, the median value 
is lower compared to rule-based methods. The median 
value for deep learning is considerably higher at 5000 
reports compared to machine learning or those that 
compare or create hybrid methods. Of the studies 
reporting on radiology reports numbers, 39.3% used 
over 10,000 reports and this increases to over 48% 
using more than 5000 reports. However, a small num-
ber of studies, 14%, are using comparatively low num-
bers of radiology reports, less than 500 (Table 11).

NLP performance and evaluation measures
Performance metrics applied for evaluation of methods 
vary widely with authors using precision (positive pre-
dictive value (PPV)), recall (sensitivity), specificity, the 
area under the curve (AUC) or accuracy. We observed a 
wide variety in evaluation methodology employed con-
cerning test or validation datasets. Different approaches 
were taken in generating splits for testing and validation, 
including k-fold cross-validation. Table  12 gives a sum-
mary of the number of studies reporting about total data 
size and splits across train, validation, test, and annota-
tion. This table is for all data types, i.e., reports, sen-
tences, patients or mixed. Eighty-two studies reported on 
both training and test data splits, of which only 38 studies 
included a validation set. Only 10 studies validated their 
algorithm using an external dataset from another institu-
tion, another modality, or a different patient population. 
Additional file 2 gives all data size information on a per 
publication basis in CSV format. The most widely used 
metrics for reporting performance were precision (PPV) 
and recall (sensitivity) reported in 47% of studies. How-
ever, even though many studies compared methods and 
reported on the top-performing method, very few stud-
ies carried out significance testing on these comparisons. 
Issues of heterogeneity make it difficult and unrealistic to 

Table 10 NLP Method by data size properties, minimum data 
size, maximum data size and median value, studies reporting in 
numbers of radiology reports

NLP method Min size Max size Median

Compare methods 513 2,167,445 2,845

Hybrid methods 40 34,926 918

Deep learning (Only) 120 1,567,581 5000

Machine learning (Only) 101 2,977,739 2531

Rules (only) 31 10,000,000 8000

Other 25 12,377,743 10,000

Table 11 Grouped data size and number of studies in each 
group, only for studies reporting in numbers of radiology reports

Data size group No. studies (%)

<200 9 (6.7)

200 < 500 6 (4.4)

500 < 1000 18 (13.3)

1000 < 2000 17 (12.6)

2000 < 5000 17 (12.6)

5000 < 10,000 12 (8.9)

10,000+ 53 (39.3)

Unspecified 3 (2.2)

Table 12 Studies reporting on total data size used and 
details on training set size, validation set size, test set size and 
annotation set size

Dataset type No. of studies Comments

Total dataset size 151 5

Training set size 129

Validation set size 52 27 report size, 25 
report k‑fold cross 
validation

Test set size 81

Annotation set size 97
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compare performance between methods applied, hence, 
we use summary measures as a broad overview (Fig. 5). 
Performance reported varies, but both the mean and 
median values for the F1 score appear higher for meth-
ods using rule-based only or deep learning only methods. 
Whilst differences are less discernible between F1 scores 
for application areas, Diagnostic Surveillance looks on 
average lower than other categories.

Discussion and future directions
Our work shows there has been a considerable increase 
in the number of publications using NLP on radiol-
ogy reports over the recent time period. Compared to 
67 publications retrieved in the earlier review of [2], we 
retrieved 164 publications. In this section we discuss 
and offer some insight into the observations and trends 
of how NLP is being applied to radiology and make 
some recommendations that may benefit the field going 
forward.

Clinical applications and NLP methods in radiology
The clinical applications of the publications is similar to 
the earlier review of Pons et  al. but whilst we observe 
an increase in research output we also highlight that 
there appears to be even less focus on clinical applica-
tion compared to their review. Like many other fields 
applying NLP the use of deep learning has increased, 
with RNN architectures being the most popular. This 
is also observed in a review of NLP in clinical text [7]. 
However, although deep learning use increases, rules 

and traditional machine classifiers are still prevalent and 
often used as baselines to compare deep learning archi-
tectures against. One reason for traditional methods 
remaining popular is their interpretability compared to 
deep learning models. Understanding the features that 
drive a model prediction can support decision-making in 
the clinical domain but the complex layers of non-linear 
data transformations deep learning is composed of does 
not easily support transparency [124]. This may also help 
explain why in synthesis of the literature we observed less 
focus on discussing clinical application and more empha-
sis on disease classification or information task only. 
Advances in interpretability of deep learning models are 
critical to its adoption in clinical practice.

Other challenges exist for deep learning such as only 
having access to small or imbalanced datasets. Chen 
et al. [125] review deep learning methods within health-
care and point to these challenges resulting in poor per-
formance but that these same datasets can perform well 
with traditional machine learning methods. We found 
several studies highlight this and when data is scarce or 
datasets imbalanced, they introduced hybrid approaches 
of rules and deep learning to improve performance, par-
ticularly in the Diagnostic Surveillance category. Yang 
et  al. [126] observed rules performing better for some 
entity types, such as time and size, which are propor-
tionally lower than some of the other entities in their 
train and test sets; hence they combine a bidirectional-
LSTM and CRF with rules for entity recognition. Peng 
et al. [19] comment that combining rules and the neural 

Fig. 5 Application Category and NLP Method, Mean and Median Summaries. Mean value is indicated by a vertical bar, the box shows error bars 
and the asterisk is the median value
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architecture complement each other, with deep learn-
ing being more balanced between precision and recall, 
but the rule-based method having higher precision and 
lower recall. The authors reason that this provides better 
performance as rules can capture rare disease cases, par-
ticularly when multi-class labelling is needed, whilst deep 
learning architectures perform worse in instances with 
fewer data points.

In addition to its need for large-scale data, deep 
learning can be computationally costly. The use of pre-
trained models and embeddings may alleviate some of 
this burden. Pre-trained models often only require fine-
tuning, which can reduce computation cost. Language 
comprehension pre-learned from other tasks can then 
be inherited from the parent models, meaning fewer 
domain-specific labelled examples may be needed [127]. 
This use of pre-trained information also supports gener-
alisability, e.g., [58] show that their model trained on one 
dataset can generalise to other institutional datasets.

Embedding use has increased which is expected with 
the application of deep learning approaches but many 
rule-based and machine classifiers continue to use tra-
ditional count-based features, e.g., bag-of-words and 
n-grams. Recent evidence [128] suggests that the trend 
to continue to use feature engineering with traditional 
machine learning methods does produce better perfor-
mance in radiology reports than using domain-specific 
word embeddings.

Banerjee et al. [44] found that there was not much dif-
ference between a uni-gram approach and a Word2vec 
embedding, hypothesising this was due to their narrow 
domain, intracranial haemorrhage. However, the NLP 
research field has seen a move towards bi-directional 
encoder representations from transformers (BERT) 
based embedding models not reflected in our analysis, 
with only one study using BERT generated embeddings 
[46]. Embeddings from BERT are thought to be superior 
as they can deliver better contextual representations and 
result in improved task performance. Whilst more pub-
lications since our review period have used BERT based 
embeddings with radiology reports e.g. [127, 129] not all 
outperform traditional methods [130]. Recent evidence 
shows that embeddings generated by BERT fail to show a 
generalisable understanding of negation [131], an essen-
tial factor in interpreting radiology reports effectively. 
Specialised BERT models have been introduced such as 
ClinicalBERT [132] or BlueBERT [129]. BlueBERT has 
been shown to outperform ClinicalBERT when consider-
ing chest radiology [133] but more exploration of the per-
formance gains versus the benefits of generalisability are 
needed for radiology text.

All NLP models have in common that they need large 
amounts of labelled data for model training [134]. Several 

studies [135–137] explored combining word embeddings 
and ontologies to create domain-specific mappings, and 
they suggest this can avoid a need for large amounts of 
annotated data. Additionally, [135, 136] highlight that 
such combinations could boost coverage and perfor-
mance compared to more conventional techniques for 
concept normalisation.

The number of publications using medical lexical 
knowledge resources is still relatively low, even though 
a recent trend in the general NLP field is to enhance 
deep learning with external knowledge [138]. This was 
also observed by [7], where only 18% of the deep learn-
ing studies in their review utilised knowledge resources. 
Although pre-training supports learning previously 
known facts it could introduce unwanted bias, hindering 
performance. The inclusion of domain expertise through 
resources such as medical lexical knowledge may help 
reduce this unwanted bias [7]. Exploration of how this 
domain expertise can be incorporated with deep learning 
architectures in future could improve the performance 
when having access to less labelled data.

Task knowledge
Knowledge about the disease area of interest and how 
aspects of this disease are linguistically expressed is 
useful and could promote better performing solutions. 
Whilst [139] find high variability between radiologists, 
with metric values (e.g. number of syntactic, clinical 
terms based on ontology mapping) being significantly 
greater on free-text than structured reports, [140] who 
look specifically at anatomical areas find less evidence for 
variability. Zech et al. [141] suggest that the highly spe-
cialised nature of each imaging modality creates different 
sub-languages and the ability to discover these labels (i.e. 
disease mentions) reflects the consistency with which 
labels are referred to. For example, edema is referred to 
very consistently whereas other labels are not, such as 
infarction/ischaemic. Understanding the language and 
the context of entity mentions could help promote novel 
ideas on how to solve problems more effectively. For 
example, [35] discuss how the accuracy of predicting 
malignancy is affected by cues being outside their win-
dow of consideration and [142] observe problems of co-
reference resolution within a report due to long-range 
dependencies. Both these studies use traditional NLP 
approaches, but we observed novel neural architectures 
being proposed to improve performance in similar tasks 
specifically capturing long-range context and depend-
ency learning, e.g., [31, 111]. This understanding requires 
close cooperation of healthcare professionals and data 
scientists, which is different to some other fields where 
more disconnection is present [125].
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Study heterogeneity, a need for reporting standards
Most studies reviewed could be described as a proof-of-
concept and not trialled in a clinical setting. Pons et al. 
[2] hypothesised that a lack of clinical application may 
stem from uncertainty around minimal performance 
requirements hampering implementations, evidence-
based practice requiring justification and transparency 
of decisions, and the inability to be able to compare to 
human performance as the human agreement is often 
an unknown. These hypotheses are still valid, and we 
see little evidence that these problems are solved.

Human annotation is generally considered the gold 
standard at measuring human performance, and whilst 
many studies reported that they used annotated data, 
overall, reporting was inconsistent. Steps were under-
taken to measure inter-annotator agreement (IAA), 
but in many studies, this was not directly comparable 
to the evaluation undertaken of the NLP methods. The 
size of the data being used to draw experimental con-
clusions from is important and accurate reporting of 
these measures is essential to ensure reproducibility 
and comparison in further studies. Reporting on the 
training, test and validation splits was varied with some 
studies not giving details and not using held-out valida-
tion sets.

Most studies use retrospective data from single institu-
tions but this can lead to a model over-fitting and, thus, 
not generalising well when applied in a new setting. 
Overcoming the problem of data availability is challeng-
ing due to privacy and ethics concerns, but essential to 
ensure that performance of models can be investigated 
across institutions, modalities, and methods. Availability 
of data would allow for agreed benchmarks to be devel-
oped within the field that algorithm improvements can 
be measured upon. External validation of applied meth-
ods was extremely low, although, this is likely due to the 
availability of external datasets. Making code available 
would enable researchers to report how external systems 
perform on their data. However, only 15 studies reported 
that their code is available. To be able to compare systems 
there is a need for common datasets to be available to 
benchmark and compare systems against.

Whilst reported figures in precision and recall gen-
erally look high more evidence is needed for accurate 
comparison to human performance. A wide variety of 
performance measures were used, with some studies only 
reporting one measure, e.g., accuracy or F1 scores, with 
these likely representing the best performance obtained. 
Individual studies are often not directly comparable for 
such measures, but none-the-less clarity and consistency 
in reporting is desirable. Many studies making model 
comparisons did not carry out any significance testing for 
these comparisons.

Progressing NLP in radiology
The value of NLP applied to radiology is clear in that 
it can support areas such as clinicians in their decision 
making and reducing workload, add value in terms of 
automated coding of data, finding missed diagnosis for 
triage or monitoring quality. However, in recent years 
labelling disease phenotypes or extracting disease infor-
mation in reports has been a focus rather than real-world 
clinical application of NLP within radiology. We believe 
this is mainly due to the difficulties in accessing data for 
research purposes. More support is needed to bring cli-
nicians and NLP experts together to promote innovative 
thinking about how such work can benefit and be trialled 
in the clinical environment. The challenges in doing so 
are significant because of the need to work within safe 
environments to protect patient privacy. In terms of NLP 
methods, we observe that the general trends of NLP are 
applied within this research area, but we would empha-
sise as NLP moves more to deep learning it is particularly 
important in healthcare to think about how these meth-
ods can satisfy explainability. Explainability in artificial 
intelligence and NLP has become a hot topic in general 
but it is now also being addressed in the healthcare sector 
[143, 144]. Methodology used is also impacted by data 
availability with uncommon diseases often being hard to 
predict with deep learning as data is scarce. If the practi-
cal and methodological challenges on data access, privacy 
and less data demanding approaches can be met there 
is much potential to increase the value of NLP within 
radiology. The sharing of tools, practice, and expertise 
could also ease the real-world application of NLP within 
radiology.

To help move the field forward, enable more inter-study 
comparisons, and increase study reproducibility we make 
the following recommendations for research studies: 

1 Clarity in reporting study properties is required: 
(a) Data characteristics including size and the type 
of dataset should be detailed, e.g., the number of 
reports, sentences, patients, and if patients how many 
reports per patient. The training, test and validation 
data split should be evident, as should the source of 
the data. (b) Annotation characteristics including the 
methodology to develop the annotation should be 
reported, e.g., annotation set size, annotator details, 
how many, expertise. (c) Performance metrics should 
include a range of metrics: precision, recall, F1, accu-
racy and not just one overall value.

2 Significance testing should be carried out when a 
comparison between methods is made.

3 Data and code availability are encouraged. While 
making data available will often be challenging due 
to privacy concerns, researchers should make code 
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available to enable inter-study comparisons and 
external validation of methods.

4 Common datasets should be used to benchmark and 
compare systems.

Limitations of study
Publication search is subject to bias in search methods 
and it is likely that our search strategy did inevitably miss 
some publications. Whilst trying to be precise and objec-
tive during our review process some of the data collected 
and categorising publications into categories was diffi-
cult to agree on and was subjective. For example, many 
of the publications could have belonged to more than 
one category. One of the reasons for this was how diverse 
in structure the content was which was in some ways 
reflected by the different domains papers were published 
in. It is also possible that certain keywords were missed in 
recording data elements due to the reviewers own biases 
and research experience.

Conclusions
This paper presents an systematic review of publica-
tions using NLP on radiology reports during the period 
2015 to October 2019. We show there has been substan-
tial growth in the field particularly in researchers using 
deep learning methods. Whilst deep learning use has 
increased, as seen in NLP research in general, it faces 
challenges of lower performance when data is scarce or 
when labelled data is unavailable, and is not widely used 
in clinical practice perhaps due to the difficulties in inter-
pretability of such models. Traditional machine learning 
and rule-based methods are, therefore, still widely in use. 
Exploration of domain expertise such as medial lexical 
knowledge must be explored further to enhance perfor-
mance when data is scarce. The clinical domain faces 
challenges due to privacy and ethics in sharing data but 
overcoming this would enable development of bench-
marks to measure algorithm performance and test model 
robustness across institutions. Common agreed data-
sets to compare performance of tools against would help 
support the community in inter-study comparisons and 
validation of systems. The work we present here has the 
potential to inform researchers about applications of NLP 
to radiology and to lead to more reliable and responsible 
research in the domain.

Abbreviations
NLP: natural language processing; e.g.: example; ICD: international classifica‑
tion of diseases; BI‑RADS: Breast Imaging‑Reporting and Data System; IAA: 
inter‑annotator agreement; No.: number; UMLS: unified medical language 
system; ELMo: embeddings from Language Models; BERT: bidirectional 

encoder representations  from transformers; SVM: support vector machine; 
CNN: convolutional neural network; LSTM: long short‑term memory; Bi‑LSTM: 
bi‑directional long short‑term memory; RU: bi‑directional gated recurrent unit; 
CRF: conditional random field; GLOVE: Global Vectors for Word Representation.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12911‑ 021‑ 01533‑7.

Additional file 1. Publication list with application and technical 
categories.

Additional file 2. Individual properties for every publication.

Acknowledgements
Not applicable.

Authors’ contributions
B.A., W.W. and H.W. conceptualised this study. D.D. carried out the search 
including automated filtering and designing meta‑enriching steps. BA, AG, 
CG and RT advised on the automatic data collection method devised by 
DD. M.T.C.P, A.G., H.D. and D.D carried out the first stage review and A.C., E.D., 
V.S‑P, M.T.C.P, A.G., H.D., B.A. and D.D. carried out the second‑stage review. A.C. 
synthesised the data and wrote the main manuscript with contributions from 
all authors. All authors read and approved the final manuscript.

Funding
This research was supported by the Alan Turing Institute, MRC, HDR‑UK and 
the Chief Scientist Office. B.A.,A.C,D.D.,A.G. and C.G. have been supported by 
the Alan Turing Institute via Turing Fellowships (B.A,C.G.) and Turing project 
funding (ESPRC Grant EP/N510129/1). A.G. was also funded by a MRC Mental 
Health Data Pathfinder Award (MRC‑MCPC17209). H.W. is MRC/Rutherford 
Fellow HRD UK (MR/S004149/1). H.D. is supported by HDR UK National 
Phemomics Resource Project. V.S‑P. is supported by the HDR UK National Text 
Analytics Implementation Project. W.W. is supported by a Scottish Senior Clini‑
cal Fellowship (CAF/17/01).

Availability of data and materials
All data generated or analysed during this study are included in this published 
article [and its supplementary information files].

Declarations

Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Literatures, Languages and Cultures (LLC), University of Edin‑
burgh, Edinburgh, Scotland. 2 Centre for Clinical Brain Sciences, University 
of Edinburgh, Edinburgh, Scotland. 3 Centre for Medical Informatics, Usher 
Institute of Population Health Sciences and Informatics, University of Edin‑
burgh, Edinburgh, Scotland. 4 Health Data Research UK, London, UK. 5 Institute 
for Language, Cognition and Computation, School of informatics, University 
of Edinburgh, Edinburgh, Scotland. 6 Nuffield Department of Population 
Health, University of Oxford, Oxford, UK. 7 Institute of Health Informatics, Uni‑
versity College London, London, UK. 8 Edinburgh Futures Institute, University 
of Edinburgh, Edinburgh, Scotland. 

Received: 9 February 2021   Accepted: 17 May 2021

https://doi.org/10.1186/s12911-021-01533-7
https://doi.org/10.1186/s12911-021-01533-7


Page 14 of 18Casey et al. BMC Med Inform Decis Mak          (2021) 21:179 

References
 1. Bates J, Fodeh SJ, Brandt CA, Womack JA. Classification of radiol‑

ogy reports for falls in an HIV study cohort. J Am Med Inform Assoc. 
2016;23(e1):113–7. https:// doi. org/ 10. 1093/ jamia/ ocv155.

 2. Pons E, Braun LMM, Hunink MGM, Kors JA. Natural language process‑
ing in radiology: a systematic review. Radiology. 2016;279(2):329–43. 
https:// doi. org/ 10. 1148/ radiol. 16142 770.

 3. Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK, Rybicki FJ, 
Mitsouras D. Natural language processing technologies in radiology 
research and clinical applications. RadioGraphics. 2016;36(1):176–91. 
https:// doi. org/ 10. 1148/ rg. 20161 50080.

 4. Sorin V, Barash Y, Konen E, Klang E. Deep learning for natural language 
processing in radiology‑fundamentals and a systematic review. J Am 
Coll Radiol. 2020;17(5):639–48. https:// doi. org/ 10. 1016/j. jacr. 2019. 12. 
026.

 5. Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF, Forshee R, 
Walderhaug M, Botsis T. Natural language processing systems for cap‑
turing and standardizing unstructured clinical information: a systematic 
review. J Biomed Inform. 2017;73:14–29. https:// doi. org/ 10. 1016/j. jbi. 
2017. 07. 012.

 6. Spasic I, Nenadic G. Clinical text data in machine learning: systematic 
review. JMIR Med Inform. 2020;8(3):17984. https:// doi. org/ 10. 2196/ 
17984.

 7. Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, Soni S, Wang Q, Wei Q, Xiang Y, 
Zhao B, Xu H. Deep learning in clinical natural language processing: a 
methodical review. J Am Med Inform Assoc. 2020;27(3):457–70. https:// 
doi. org/ 10. 1093/ jamia/ ocz200.

 8. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, 
Shekelle P, Stewart LA. Preferred reporting items for systematic review 
and meta‑analysis protocols (PRISMA‑P) 2015 statement. Syst Rev. 
2015;4(1):1. https:// doi. org/ 10. 1186/ 2046‑ 4053‑4‑1.

 9. Harzing AW. Publish or Perish (2007). Available from https:// harzi ng. 
com/ resou rces/ publi sh‑ or‑ perish. Accessed 1 Nov 2019.

 10. Gehanno J‑F, Rollin L, Darmoni S. Is the coverage of google scholar 
enough to be used alone for systematic reviews. BMC Med Inform 
Decis Mak. 2013;13:7. https:// doi. org/ 10. 1186/ 1472‑ 6947‑ 13‑7.

 11. Wilkinson LJ, REST API. Publication title: crossref type: website. https:// 
www. cross ref. org/ educa tion/ retri eve‑ metad ata/ rest‑ api/. Accessed 26 
Jan 2020.

 12. For AI AI. Semantic scholar |AI‑powered research tool. https:// api. seman 
ticsc holar. org/. Accessed 26 Jan 2021.

 13. University C. arXiv. org e‑Print archive. https:// arxiv. org/. Accessed 26 Jan 
2021.

 14. Bearden E, LibGuides: unpaywall: home. https:// libra ry. lasal le. edu/c. 
php?g= 98260 4&p= 71054 36. Accessed 26 Jan 2021.

 15. Briscoe S, Bethel A, Rogers M. Conduct and reporting of citation search‑
ing in Cochrane systematic reviews: a cross‑sectional study. Res Synth 
Methods. 2020;11(2):169–80. https:// doi. org/ 10. 1002/ jrsm. 1355.

 16. Wohlin C, Guidelines for snowballing in systematic literature studies 
and a replication in software engineering. In: Proceedings of the 18th 
international conference on evaluation and assessment in software 
engineering. EASE ’14. Association for Computing Machinery, New York, 
NY, USA (2014). https:// doi. org/ 10. 1145/ 26012 48. 26012 68. event‑place: 
London, England, UK. https:// doi. org/ 10. 1145/ 26012 48. 26012 68.

 17. Fleiss JL. Measuring nominal scale agreement among many raters. 
Psychol Bull. 1971;76(5):378–82. https:// doi. org/ 10. 1037/ h0031 619.

 18. Landis JR, Koch GG. The measurement of observer agreement for cat‑
egorical data. Biometrics. 1977;33(1):159–74. https:// doi. org/ 10. 2307/ 
25293 10.

 19. Peng Y, Yan K, Sandfort V, Summers R.M, Lu Z. A self‑attention based 
deep learning method for lesion attribute detection from CT reports. 
In: 2019 IEEE international conference on healthcare informatics (ICHI), 
pp. 1–5. IEEE Computer Society, Xi’an, China (2019). https:// doi. org/ 10. 
1109/ ICHI. 2019. 89046 68.

 20. Bozkurt S, Alkim E, Banerjee I, Rubin DL. Automated detection of meas‑
urements and their descriptors in radiology reports using a hybrid nat‑
ural language processing algorithm. J Digit Imaging. 2019;32(4):544–53. 
https:// doi. org/ 10. 1007/ s10278‑ 019‑ 00237‑9.

 21. Hassanpour S, Bay G, Langlotz CP. Characterization of change and 
significance for clinical findings in radiology reports through natural 

language processing. J Digit Imaging. 2017;30(3):314–22. https:// doi. 
org/ 10. 1007/ s10278‑ 016‑ 9931‑8.

 22. Kehl KL, Elmarakeby H, Nishino M, Van Allen EM, Lepisto EM, Hassett MJ, 
Johnson BE, Schrag D. Assessment of deep natural language process‑
ing in ascertaining oncologic outcomes from radiology reports. JAMA 
Oncol. 2019;5(10):1421–9. https:// doi. org/ 10. 1001/ jamao ncol. 2019. 
1800.

 23. Chen P‑H, Zafar H, Galperin‑Aizenberg M, Cook T. Integrating natural 
language processing and machine learning algorithms to cat‑
egorize oncologic response in radiology reports. J Digit Imaging. 
2018;31(2):178–84. https:// doi. org/ 10. 1007/ s10278‑ 017‑ 0027‑x.

 24. Cotik V, Rodríguez H, Vivaldi J. Spanish named entity recognition in the 
biomedical domain. In: Lossio‑Ventura JA, Muñante D, Alatrista‑Salas 
H, editors. Information management and big data. Communications 
in computer and information science, vol. 898. Lima: Springer; 2018. p. 
233–48. https:// doi. org/ 10. 1007/ 978‑3‑ 030‑ 11680‑4‑ 23.

 25. Sevenster M, Buurman J, Liu P, Peters JF, Chang PJ. Natural language 
processing techniques for extracting and categorizing finding 
measurements in narrative radiology reports. Appl Clin Inform. 
2015;06(3):600–10. https:// doi. org/ 10. 4338/ ACI‑ 2014‑ 11‑ RA‑ 0110.

 26. Sevenster M, Bozeman J, Cowhy A, Trost W. A natural language process‑
ing pipeline for pairing measurements uniquely across free‑text CT 
reports. J Biomed Inform. 2015;53:36–48. https:// doi. org/ 10. 1016/j. jbi. 
2014. 08. 015.

 27. Oberkampf H, Zillner S, Overton JA, Bauer B, Cavallaro A, Uder M, 
Hammon M. Semantic representation of reported measurements in 
radiology. BMC Med Inform Decis Mak. 2016;16(1):5. https:// doi. org/ 10. 
1186/ s12911‑ 016‑ 0248‑9.

 28. Liu Y, Zhu L‑N, Liu Q, Han C, Zhang X‑D, Wang X‑Y. Automatic extrac‑
tion of imaging observation and assessment categories from breast 
magnetic resonance imaging reports with natural language processing. 
Chin Med J. 2019;132(14):1673–80. https:// doi. org/ 10. 1097/ CM9. 00000 
00000 000301.

 29. Gupta A, Banerjee I, Rubin DL. Automatic information extraction from 
unstructured mammography reports using distributed semantics. J 
Biomed Inform. 2018;78:78–86. https:// doi. org/ 10. 1016/j. jbi. 2017. 12. 
016.

 30. Castro SM, Tseytlin E, Medvedeva O, Mitchell K, Visweswaran S, Bekhuis 
T, Jacobson RS. Automated annotation and classification of BI‑RADS 
assessment from radiology reports. J Biomed Inform. 2017;69:177–87. 
https:// doi. org/ 10. 1016/j. jbi. 2017. 04. 011.

 31. Short RG, Bralich J, Bogaty D, Befera NT. Comprehensive word‑level 
classification of screening mammography reports using a neural net‑
work sequence labeling approach. J Digit Imaging. 2019;32(5):685–92. 
https:// doi. org/ 10. 1007/ s10278‑ 018‑ 0141‑4.

 32. Lacson R, Goodrich ME, Harris K, Brawarsky P, Haas JS. Assessing 
inaccuracies in automated information extraction of breast imaging 
findings. J Digit Imaging. 2017;30(2):228–33. https:// doi. org/ 10. 1007/ 
s10278‑ 016‑ 9927‑4.

 33. Lacson R, Harris K, Brawarsky P, Tosteson TD, Onega T, Tosteson ANA, 
Kaye A, Gonzalez I, Birdwell R, Haas JS. Evaluation of an automated 
information extraction tool for imaging data elements to populate a 
breast cancer screening registry. J Digit Imaging. 2015;28(5):567–75. 
https:// doi. org/ 10. 1007/ s10278‑ 014‑ 9762‑4.

 34. Yim W‑W, Kwan SW, Yetisgen M. Tumor reference resolution and charac‑
teristic extraction in radiology reports for liver cancer stage prediction. 
J Biomed Inform. 2016;64:179–91. https:// doi. org/ 10. 1016/j. jbi. 2016. 10. 
005.

 35. Yim W‑W, Kwan SW, Yetisgen M. Classifying tumor event attributes in 
radiology reports. J Assoc Inform Sci Technol. 2017;68(11):2662–74. 
https:// doi. org/ 10. 1002/ asi. 23937.

 36. Yim W, Denman T, Kwan SW, Yetisgen M. Tumor information extraction 
in radiology reports for hepatocellular carcinoma patients. AMIA Sum‑
mits Transl Sci Proc. 2016;2016:455–64.

 37. Pruitt P, Naidech A, Van Ornam J, Borczuk P, Thompson W. A natural 
language processing algorithm to extract characteristics of subdural 
hematoma from head CT reports. Emerg Radiol. 2019;26(3):301–6. 
https:// doi. org/ 10. 1007/ s10140‑ 019‑ 01673‑4.

 38. Farjah F, Halgrim S, Buist DSM, Gould MK, Zeliadt SB, Loggers ET, Carrell 
DS. An automated method for identifying individuals with a lung 

https://doi.org/10.1093/jamia/ocv155
https://doi.org/10.1148/radiol.16142770
https://doi.org/10.1148/rg.2016150080
https://doi.org/10.1016/j.jacr.2019.12.026
https://doi.org/10.1016/j.jacr.2019.12.026
https://doi.org/10.1016/j.jbi.2017.07.012
https://doi.org/10.1016/j.jbi.2017.07.012
https://doi.org/10.2196/17984
https://doi.org/10.2196/17984
https://doi.org/10.1093/jamia/ocz200
https://doi.org/10.1093/jamia/ocz200
https://doi.org/10.1186/2046-4053-4-1
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://doi.org/10.1186/1472-6947-13-7
https://www.crossref.org/education/retrieve-metadata/rest-api/
https://www.crossref.org/education/retrieve-metadata/rest-api/
https://api.semanticscholar.org/
https://api.semanticscholar.org/
http://arxiv.org/abs/org
https://arxiv.org/
https://library.lasalle.edu/c.php?g=982604&p=7105436
https://library.lasalle.edu/c.php?g=982604&p=7105436
https://doi.org/10.1002/jrsm.1355
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1037/h0031619
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1109/ICHI.2019.8904668
https://doi.org/10.1109/ICHI.2019.8904668
https://doi.org/10.1007/s10278-019-00237-9
https://doi.org/10.1007/s10278-016-9931-8
https://doi.org/10.1007/s10278-016-9931-8
https://doi.org/10.1001/jamaoncol.2019.1800
https://doi.org/10.1001/jamaoncol.2019.1800
https://doi.org/10.1007/s10278-017-0027-x
https://doi.org/10.1007/978-3-030-11680-4-23
https://doi.org/10.4338/ACI-2014-11-RA-0110
https://doi.org/10.1016/j.jbi.2014.08.015
https://doi.org/10.1016/j.jbi.2014.08.015
https://doi.org/10.1186/s12911-016-0248-9
https://doi.org/10.1186/s12911-016-0248-9
https://doi.org/10.1097/CM9.0000000000000301
https://doi.org/10.1097/CM9.0000000000000301
https://doi.org/10.1016/j.jbi.2017.12.016
https://doi.org/10.1016/j.jbi.2017.12.016
https://doi.org/10.1016/j.jbi.2017.04.011
https://doi.org/10.1007/s10278-018-0141-4
https://doi.org/10.1007/s10278-016-9927-4
https://doi.org/10.1007/s10278-016-9927-4
https://doi.org/10.1007/s10278-014-9762-4
https://doi.org/10.1016/j.jbi.2016.10.005
https://doi.org/10.1016/j.jbi.2016.10.005
https://doi.org/10.1002/asi.23937
https://doi.org/10.1007/s10140-019-01673-4


Page 15 of 18Casey et al. BMC Med Inform Decis Mak          (2021) 21:179  

nodule can be feasibly implemented across health systems. eGEMs. 
2016;4(1):1254. https:// doi. org/ 10. 13063/ 2327‑ 9214. 1254.

 39. Karunakaran B, Misra D, Marshall K, Mathrawala D, Kethireddy S. Closing 
the loop‑finding lung cancer patients using NLP. In: 2017 IEEE interna‑
tional conference on big data (big data), pp. 2452–61. IEEE, Boston, MA 
(2017). https:// doi. org/ 10. 1109/ BigDa ta. 2017. 82582 03.

 40. Tan WK, Hassanpour S, Heagerty PJ, Rundell SD, Suri P, Huhdanpaa 
HT, James K, Carrell DS, Langlotz CP, Organ NL, Meier EN, Sherman KJ, 
Kallmes DF, Luetmer PH, Griffith B, Nerenz DR, Jarvik JG. Comparison 
of natural language processing rules‑based and machine‑learning 
systems to identify lumbar spine imaging findings related to low back 
pain. Acad Radiol. 2018;25(11):1422–32. https:// doi. org/ 10. 1016/j. acra. 
2018. 03. 008.

 41. Trivedi G, Hong C, Dadashzadeh ER, Handzel RM, Hochheiser H, 
Visweswaran S. Identifying incidental findings from radiology reports 
of trauma patients: an evaluation of automated feature representation 
methods. Int J Med Inform. 2019;129:81–7. https:// doi. org/ 10. 1016/j. 
ijmed inf. 2019. 05. 021.

 42. Fu S, Leung LY, Wang Y, Raulli A‑O, Kallmes DF, Kinsman KA, Nelson KB, 
Clark MS, Luetmer PH, Kingsbury PR, Kent DM, Liu H. Natural language 
processing for the identification of silent brain infarcts from neuroimag‑
ing reports. JMIR Med Inform. 2019;7(2):12109. https:// doi. org/ 10. 2196/ 
12109.

 43. Jnawali K, Arbabshirani MR, Ulloa AE, Rao N, Patel AA. Automatic clas‑
sification of radiological report for intracranial hemorrhage. In: 2019 
IEEE 13th international conference on semantic computing (ICSC), pp. 
187–90. IEEE, Newport Beach, CA, USA (2019). https:// doi. org/ 10. 1109/ 
ICOSC. 2019. 86655 78.

 44. Banerjee I, Madhavan S, Goldman RE, Rubin DL. Intelligent Word 
embeddings of free‑text radiology reports. In: AMIA annual symposium 
proceedings, pp. 411–20 (2017). Accessed 30 Oct 2020.

 45. Kłos M, Żyłkowski J, Spinczyk D, Automatic classification of text docu‑
ments presenting radiology examinations. In: Pietka E, Badura P, Kawa J, 
Wieclawek W, editors. Proceedings 6th international conference infor‑
mation technology in biomedicine (ITIB’2018). Advances in intelligent 
systems and computing, pp. 495–505. Springer (2018). https:// doi. org/ 
10. 1007/ 978‑3‑ 319‑ 91211‑0‑ 43.

 46. Deshmukh N, Gumustop S, Gauriau R, Buch V, Wright B, Bridge C, Naidu 
R, Andriole K, Bizzo B. Semi‑supervised natural language approach for 
fine‑grained classification of medical reports. arXiv: 1910. 13573 [cs.LG] 
(2019). Accessed 30 Oct 2020.

 47. Kim C, Zhu V, Obeid J, Lenert L. Natural language processing and 
machine learning algorithm to identify brain MRI reports with acute 
ischemic stroke. PLoS ONE. 2019;14(2):0212778. https:// doi. org/ 10. 
1371/ journ al. pone. 02127 78.

 48. Garg R, Oh E, Naidech A, Kording K, Prabhakaran S. Automating 
ischemic stroke subtype classification using machine learning and nat‑
ural language processing. J Stroke Cerebrovasc Dis. 2019;28(7):2045–51. 
https:// doi. org/ 10. 1016/j. jstro kecer ebrov asdis. 2019. 02. 004.

 49. Shin B, Chokshi FH, Lee T, Choi JD. Classification of radiology reports 
using neural attention models. In: 2017 international joint conference 
on neural networks (IJCNN), pp. 4363–70. IEEE, Anchorage, AK (2017). 
https:// doi. org/ 10. 1109/ IJCNN. 2017. 79664 08.

 50. Wheater E, Mair G, Sudlow C, Alex B, Grover C, Whiteley W. A validated 
natural language processing algorithm for brain imaging pheno‑
types from radiology reports in UK electronic health records. BMC 
Med Inform Decis Mak. 2019;19(1):184. https:// doi. org/ 10. 1186/ 
s12911‑ 019‑ 0908‑7.

 51. Gorinski P.J, Wu H, Grover C, Tobin R, Talbot C, Whalley H, Sudlow C, 
Whiteley W, Alex B. Named entity recognition for electronic health 
records: a comparison of rule‑based and machine learning approaches. 
arXiv: 1903. 03985 [cs.CL] (2019). Accessed 30 Oct 2020.

 52. Alex B, Grover C, Tobin R, Sudlow C, Mair G, Whiteley W. Text mining 
brain imaging reports. J Biomed Semant. 2019;10(1):23. https:// doi. org/ 
10. 1186/ s13326‑ 019‑ 0211‑7.

 53. Bozkurt S, Gimenez F, Burnside ES, Gulkesen KH, Rubin DL. Using 
automatically extracted information from mammography reports for 
decision‑support. J Biomed Inform. 2016;62:224–31. https:// doi. org/ 10. 
1016/j. jbi. 2016. 07. 001.

 54. Patel TA, Puppala M, Ogunti RO, Ensor JE, He T, Shewale JB, Ankerst 
DP, Kaklamani VG, Rodriguez AA, Wong STC, Chang JC. Correlating 

mammographic and pathologic findings in clinical decision support 
using natural language processing and data mining methods. Cancer. 
2017;123(1):114–21. https:// doi. org/ 10. 1002/ cncr. 30245.

 55. Banerjee I, Bozkurt S, Alkim E, Sagreiya H, Kurian AW, Rubin DL. Auto‑
matic inference of BI‑RADS final assessment categories from narrative 
mammography report findings. J Biomed Inform. 2019. https:// doi. org/ 
10. 1016/j. jbi. 2019. 103137.

 56. Miao S, Xu T, Wu Y, Xie H, Wang J, Jing S, Zhang Y, Zhang X, Yang Y, 
Zhang X, Shan T, Wang L, Xu H, Wang S, Liu Y. Extraction of BI‑RADS 
findings from breast ultrasound reports in Chinese using deep learn‑
ing approaches. Int J Med Inform. 2018;119:17–21. https:// doi. org/ 10. 
1016/j. ijmed inf. 2018. 08. 009.

 57. Dunne RM, Ip IK, Abbett S, Gershanik EF, Raja AS, Hunsaker A, Khorasani 
R. Effect of evidence‑based clinical decision support on the use and 
yield of CT pulmonary angiographic imaging in hospitalized patients. 
Radiology. 2015;276(1):167–74. https:// doi. org/ 10. 1148/ radiol. 15141 
208.

 58. Banerjee I, Ling Y, Chen MC, Hasan SA, Langlotz CP, Moradzadeh 
N, Chapman B, Amrhein T, Mong D, Rubin DL, Farri O, Lungren MP. 
Comparative effectiveness of convolutional neural network (CNN) and 
recurrent neural network (RNN) architectures for radiology text report 
classification. Artif Intell Med. 2019;97:79–88. https:// doi. org/ 10. 1016/j. 
artmed. 2018. 11. 004.

 59. Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman BE, Larson DB, 
Langlotz CP, Amrhein TJ, Lungren MP. Deep learning to classify radiol‑
ogy free‑text reports. Radiology. 2017;286(3):845–52. https:// doi. org/ 10. 
1148/ radiol. 20171 71115.

 60. Meystre S, Gouripeddi R, Tieder J, Simmons J, Srivastava R, Shah S. 
Enhancing comparative effectiveness research with automated pedi‑
atric pneumonia detection in a multi‑institutional clinical repository: a 
PHIS+ pilot study. J Med Internet Res. 2017;19(5):162. https:// doi. org/ 
10. 2196/ jmir. 6887.

 61. Beyer SE, McKee BJ, Regis SM, McKee AB, Flacke S, El Saadawi G, Wald C. 
Automatic lung‑RADSTM classification with a natural language process‑
ing system. J Thorac Dis. 2017;9(9):3114–22. https:// doi. org/ 10. 21037/ 
jtd. 2017. 08. 13.

 62. Patterson OV, Freiberg MS, Skanderson M, Fodeh SJ, Brandt CA, DuVall 
SL. Unlocking echocardiogram measurements for heart disease 
research through natural language processing. BMC Cardiovasc Disord. 
2017;17(1):151. https:// doi. org/ 10. 1186/ s12872‑ 017‑ 0580‑8.

 63. Lee C, Kim Y, Kim YS, Jang J. Automatic disease annotation from radiol‑
ogy reports using artificial intelligence implemented by a recurrent 
neural network. Am J Roentgenol. 2019;212(4):734–40. https:// doi. org/ 
10. 2214/ AJR. 18. 19869.

 64. Fiebeck J, Laser H, Winther HB, Gerbel S. Leaving no stone unturned: 
using machine learning based approaches for information extrac‑
tion from full texts of a research data warehouse. In: Auer S, Vidal 
M‑E, editors. 13th international conference data integration in the 
life sciences (DILS 2018). Lecture Notes in Computer Science, pp. 
50–8. Springer, Hannover, Germany (2018). https:// doi. org/ 10. 1007/ 
978‑3‑ 030‑ 06016‑9_5.

 65. Hassanzadeh H, Kholghi M, Nguyen A, Chu K. Clinical document clas‑
sification using labeled and unlabeled data across hospitals. In: AMIA 
annual symposium proceedings 2018, pp. 545–54 (2018). Accessed 30 
Oct 2020.

 66. Krishnan GS, Kamath SS. Ontology‑driven text feature modeling for 
disease prediction using unstructured radiological notes. Comput Sist. 
2019. https:// doi. org/ 10. 13053/ cys‑ 23‑3‑ 3238.

 67. Qenam B, Kim TY, Carroll MJ, Hogarth M. Text simplification using 
consumer health vocabulary to generate patient‑centered radiol‑
ogy reporting: translation and evaluation. J Med Internet Res. 
2017;19(12):417. https:// doi. org/ 10. 2196/ jmir. 8536.

 68. Lafourcade M, Ramadier L. Radiological text simplification using a gen‑
eral knowledge base. In: 18th international conference on computa‑
tional linguistics and intelligent text processing (CICLing 2017). CICLing 
2017. Budapest, Hungary (2017). https:// doi. org/ 10. 1007/ 978‑3‑ 319‑ 
77116‑8_ 46.

 69. Hong Y, Zhang J. Investigation of terminology coverage in radiology 
reporting templates and free‑text reports. Int J Knowl Content Dev 
Technol. 2015;5:5–14. https:// doi. org/ 10. 5865/ IJKCT. 2015.5. 1. 005.

https://doi.org/10.13063/2327-9214.1254
https://doi.org/10.1109/BigData.2017.8258203
https://doi.org/10.1016/j.acra.2018.03.008
https://doi.org/10.1016/j.acra.2018.03.008
https://doi.org/10.1016/j.ijmedinf.2019.05.021
https://doi.org/10.1016/j.ijmedinf.2019.05.021
https://doi.org/10.2196/12109
https://doi.org/10.2196/12109
https://doi.org/10.1109/ICOSC.2019.8665578
https://doi.org/10.1109/ICOSC.2019.8665578
https://doi.org/10.1007/978-3-319-91211-0-43
https://doi.org/10.1007/978-3-319-91211-0-43
http://arxiv.org/abs/1910.13573
https://doi.org/10.1371/journal.pone.0212778
https://doi.org/10.1371/journal.pone.0212778
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.02.004
https://doi.org/10.1109/IJCNN.2017.7966408
https://doi.org/10.1186/s12911-019-0908-7
https://doi.org/10.1186/s12911-019-0908-7
http://arxiv.org/abs/1903.03985
https://doi.org/10.1186/s13326-019-0211-7
https://doi.org/10.1186/s13326-019-0211-7
https://doi.org/10.1016/j.jbi.2016.07.001
https://doi.org/10.1016/j.jbi.2016.07.001
https://doi.org/10.1002/cncr.30245
https://doi.org/10.1016/j.jbi.2019.103137
https://doi.org/10.1016/j.jbi.2019.103137
https://doi.org/10.1016/j.ijmedinf.2018.08.009
https://doi.org/10.1016/j.ijmedinf.2018.08.009
https://doi.org/10.1148/radiol.15141208
https://doi.org/10.1148/radiol.15141208
https://doi.org/10.1016/j.artmed.2018.11.004
https://doi.org/10.1016/j.artmed.2018.11.004
https://doi.org/10.1148/radiol.2017171115
https://doi.org/10.1148/radiol.2017171115
https://doi.org/10.2196/jmir.6887
https://doi.org/10.2196/jmir.6887
https://doi.org/10.21037/jtd.2017.08.13
https://doi.org/10.21037/jtd.2017.08.13
https://doi.org/10.1186/s12872-017-0580-8
https://doi.org/10.2214/AJR.18.19869
https://doi.org/10.2214/AJR.18.19869
https://doi.org/10.1007/978-3-030-06016-9_5
https://doi.org/10.1007/978-3-030-06016-9_5
https://doi.org/10.13053/cys-23-3-3238
https://doi.org/10.2196/jmir.8536
https://doi.org/10.1007/978-3-319-77116-8_46
https://doi.org/10.1007/978-3-319-77116-8_46
https://doi.org/10.5865/IJKCT.2015.5.1.005


Page 16 of 18Casey et al. BMC Med Inform Decis Mak          (2021) 21:179 

 70. Comelli A, Agnello L, Vitabile S. An ontology‑based retrieval system for 
mammographic reports. In: 2015 IEEE symposium on computers and 
communication (ISCC), pp. 1001–6. IEEE, Larnaca (2015). https:// doi. 
org/ 10. 1109/ ISCC. 2015. 74056 44

 71. Cotik V, Filippo D, Castano J. An approach for automatic classifica‑
tion of radiology reports in Spanish. Stud Health Technol Inform. 
2015;216:634–8.

 72. Johnson E, Baughman WC, Ozsoyoglu G. A method for imputation of 
semantic class in diagnostic radiology text. In: 2015 IEEE international 
conference on bioinformatics and biomedicine (BIBM), pp. 750–5. IEEE, 
Washington, DC (2015). https:// doi. org/ 10. 1109/ BIBM. 2015. 73597 80.

 73. Mujjiga S, Krishna V, Chakravarthi KJV. Identifying semantics in clinical 
reports using neural machine translation. In: Proceedings of the AAAI 
conference on artificial intelligence, vol. 33(01), pp. 9552–7 (2019). 
https:// doi. org/ 10. 1609/ aaai. v33i01. 33019 552. Accessed 30 Oct 2020.

 74. Lafourcade M, Ramadier L. Semantic relation extraction with semantic 
patterns: experiment on radiology report. In: Proceedings of the tenth 
international conference on language resources and evaluation (LREC 
2016). LREC 2016 proceedings. european language resources associa‑
tion (ELRA), Portorož, Slovenia (2016). https:// hal. archi ves‑ ouver tes. fr/ 
hal‑ 01382 320.

 75. Shelmerdine SC, Singh M, Norman W, Jones R, Sebire NJ, Arthurs OJ. 
Automated data extraction and report analysis in computer‑aided 
radiology audit: practice implications from post‑mortem paediatric 
imaging. Clin Radiol. 2019;74(9):733–1173318. https:// doi. org/ 10. 1016/j. 
crad. 2019. 04. 021.

 76. Mabotuwana T, Hombal V, Dalal S, Hall CS, Gunn M. Determining 
adherence to follow‑up imaging recommendations. J Am Coll Radiol. 
2018;15(3, Part A):422–8. https:// doi. org/ 10. 1016/j. jacr. 2017. 11. 022.

 77. Dalal S, Hombal V, Weng W‑H, Mankovich G, Mabotuwana T, Hall CS, 
Fuller J, Lehnert BE, Gunn ML. Determining follow‑up imaging study 
using radiology reports. J Digit Imaging. 2020;33(1):121–30. https:// doi. 
org/ 10. 1007/ s10278‑ 019‑ 00260‑w.

 78. Bobbin MD, Ip IK, Sahni VA, Shinagare AB, Khorasani R. Focal cystic 
pancreatic lesion follow‑up recommendations after publication of 
ACR white paper on managing incidental findings. J Am Coll Radiol. 
2017;14(6):757–64. https:// doi. org/ 10. 1016/j. jacr. 2017. 01. 044.

 79. Kwan JL, Yermak D, Markell L, Paul NS, Shojania KJ, Cram P. Follow up of 
incidental high‑risk pulmonary nodules on computed tomography pul‑
monary angiography at care transitions. J Hosp Med. 2019;14(6):349–52. 
https:// doi. org/ 10. 12788/ jhm. 3128.

 80. Mabotuwana T, Hall CS, Tieder J, Gunn ML. Improving quality of 
follow‑up imaging recommendations in radiology. In: AMIA annual 
symposium proceedings, vol. 2017, pp. 1196–204 (2018). Accessed 30 
Oct 2020.

 81. Brown AD, Marotta TR. A natural language processing‑based model to 
automate MRI brain protocol selection and prioritization. Acad Radiol. 
2017;24(2):160–6. https:// doi. org/ 10. 1016/j. acra. 2016. 09. 013.

 82. Trivedi H, Mesterhazy J, Laguna B, Vu T, Sohn JH. Automatic deter‑
mination of the need for intravenous contrast in musculoskeletal 
MRI examinations using IBM Watson’s natural language processing 
algorithm. J Digit Imaging. 2018;31(2):245–51. https:// doi. org/ 10. 1007/ 
s10278‑ 017‑ 0021‑3.

 83. Zhang AY, Lam SSW, Liu N, Pang Y, Chan LL, Tang PH. Development of 
a radiology decision support system for the classification of MRI brain 
scans. In: 2018 IEEE/ACM 5th international conference on big data 
computing applications and technologies (BDCAT), pp. 107–15 (2018). 
https:// doi. org/ 10. 1109/ BDCAT. 2018. 00021.

 84. Brown AD, Marotta TR. Using machine learning for sequence‑level 
automated MRI protocol selection in neuroradiology. J Am Med Inform 
Assoc. 2018;25(5):568–71. https:// doi. org/ 10. 1093/ jamia/ ocx125.

 85. Yan Z, Ip IK, Raja AS, Gupta A, Kosowsky JM, Khorasani R. Yield of CT 
pulmonary angiography in the emergency department when provid‑
ers override evidence‑based clinical decision support. Radiology. 
2016;282(3):717–25. https:// doi. org/ 10. 1148/ radiol. 20161 51985.

 86. Kang SK, Garry K, Chung R, Moore WH, Iturrate E, Swartz JL, Kim DC, 
Horwitz LI, Blecker S. Natural language processing for identification of 
incidental pulmonary nodules in radiology reports. J Am Coll Radiol. 
2019;16(11):1587–94. https:// doi. org/ 10. 1016/j. jacr. 2019. 04. 026.

 87. Brown AD, Kachura JR. Natural language processing of radiology 
reports in patients with hepatocellular carcinoma to predict radiology 

resource utilization. J Am Coll Radiol. 2019;16(6):840–4. https:// doi. org/ 
10. 1016/j. jacr. 2018. 12. 004.

 88. Grundmeier RW, Masino AJ, Casper TC, Dean JM, Bell J, Enriquez R, 
Deakyne S, Chamberlain JM, Alpern ER. Identification of long bone frac‑
tures in radiology reports using natural language processing to support 
healthcare quality improvement. Appl Clin Inform. 2016;7(4):1051–68. 
https:// doi. org/ 10. 4338/ ACI‑ 2016‑ 08‑ RA‑ 0129.

 89. Heilbrun ME, Chapman BE, Narasimhan E, Patel N, Mowery D. Feasibility 
of natural language processing‑assisted auditing of critical findings in 
chest radiology. J Am Coll Radiol. 2019;16(9, Part B):1299–304. https:// 
doi. org/ 10. 1016/j. jacr. 2019. 05. 038.

 90. Maros ME, Wenz R, Förster A, Froelich MF, Groden C, Sommer WH, 
Schönberg SO, Henzler T, Wenz H. Objective comparison using 
guideline‑based query of conventional radiological reports and struc‑
tured reports. In Vivo. 2018;32(4):843–9. https:// doi. org/ 10. 21873/ invivo. 
11318.

 91. Minn MJ, Zandieh AR, Filice RW. Improving radiology report qual‑
ity by rapidly notifying radiologist of report errors. J Digit Imaging. 
2015;28(4):492–8. https:// doi. org/ 10. 1007/ s10278‑ 015‑ 9781‑9.

 92. Goldshtein I, Chodick G, Kochba I, Gal N, Webb M, Shibolet O. Identifica‑
tion and characterization of nonalcoholic fatty liver disease. Clin Gastro‑
enterol Hepatol. 2020;18(8):1887–9. https:// doi. org/ 10. 1016/j. cgh. 2019. 
08. 007.

 93. Redman JS, Natarajan Y, Hou JK, Wang J, Hanif M, Feng H, Kramer 
JR, Desiderio R, Xu H, El‑Serag HB, Kanwal F. Accurate identification 
of fatty liver disease in data warehouse utilizing natural language 
processing. Dig Dis Sci. 2017;62(10):2713–8. https:// doi. org/ 10. 1007/ 
s10620‑ 017‑ 4721‑9.

 94. Sada Y, Hou J, Richardson P, El‑Serag H, Davila J. Validation of case find‑
ing algorithms for hepatocellular cancer from administrative data and 
electronic health records using natural language processing. Med Care. 
2016;54(2):9–14. https:// doi. org/ 10. 1097/ MLR. 0b013 e3182 a30373.

 95. Li AY, Elliot N. Natural language processing to identify ureteric stones 
in radiology reports. J Med Imaging Radiat Oncol. 2019;63(3):307–10. 
https:// doi. org/ 10. 1111/ 1754‑ 9485. 12861.

 96. Tan WK, Heagerty PJ. Surrogate‑guided sampling designs for classifica‑
tion of rare outcomes from electronic medical records data. arXiv: 1904. 
00412 [stat.ME] (2019). Accessed 30 Oct 2020.

 97. Yadav K, Sarioglu E, Choi H‑A, Cartwright WB, Hinds PS, Chamberlain 
JM. Automated outcome classification of computed tomography 
imaging reports for pediatric traumatic brain injury. Acad Emerg Med. 
2016;23(2):171–8. https:// doi. org/ 10. 1111/ acem. 12859.

 98. Mahan M, Rafter D, Casey H, Engelking M, Abdallah T, Truwit C, Oswood 
M, Samadani U. tbiExtractor: a framework for extracting traumatic brain 
injury common data elements from radiology reports. bioRxiv 585331 
(2019). https:// doi. org/ 10. 1101/ 585331. Accessed 05 Dec 2020.

 99. Brizzi K, Zupanc SN, Udelsman BV, Tulsky JA, Wright AA, Poort H, Lindvall 
C. Natural language processing to assess palliative care and end‑of‑life 
process measures in patients with breast cancer with leptomeningeal 
disease. Am J Hosp Palliat Med. 2019;37(5):371–6. https:// doi. org/ 10. 
1177/ 10499 09119 885585.

 100. Van Haren RM, Correa AM, Sepesi B, Rice DC, Hofstetter WL, Mehran RJ, 
Vaporciyan AA, Walsh GL, Roth JA, Swisher SG, Antonoff MB. Ground 
glass lesions on chest imaging: evaluation of reported incidence in 
cancer patients using natural language processing. Ann Thorac Surg. 
2019;107(3):936–40. https:// doi. org/ 10. 1016/j. athor acsur. 2018. 09. 016.

 101. Noorbakhsh‑Sabet N, Tsivgoulis G, Shahjouei S, Hu Y, Goyal N, Alex‑
androv AV, Zand R. Racial difference in cerebral microbleed burden 
among a patient population in the mid‑south United States. J Stroke 
Cerebrovasc Dis. 2018;27(10):2657–61. https:// doi. org/ 10. 1016/j. jstro 
kecer ebrov asdis. 2018. 05. 031.

 102. Gould MK, Tang T, Liu I‑LA, Lee J, Zheng C, Danforth KN, Kosco AE, Di 
Fiore JL, Suh DE. Recent trends in the identification of incidental pulmo‑
nary nodules. Am J Respir Crit Care Med. 2015;192(10):1208–14. https:// 
doi. org/ 10. 1164/ rccm. 201505‑ 0990OC.

 103. Huhdanpaa HT, Tan WK, Rundell SD, Suri P, Chokshi FH, Comstock BA, 
Heagerty PJ, James KT, Avins AL, Nedeljkovic SS, Nerenz DR, Kallmes 
DF, Luetmer PH, Sherman KJ, Organ NL, Griffith B, Langlotz CP, Carrell D, 
Hassanpour S, Jarvik JG. Using natural language processing of free‑text 
radiology reports to identify type 1 modic endplate changes. J Digit 
Imaging. 2018;31(1):84–90. https:// doi. org/ 10. 1007/ s10278‑ 017‑ 0013‑3.

https://doi.org/10.1109/ISCC.2015.7405644
https://doi.org/10.1109/ISCC.2015.7405644
https://doi.org/10.1109/BIBM.2015.7359780
https://doi.org/10.1609/aaai.v33i01.33019552
https://hal.archives-ouvertes.fr/hal-01382320
https://hal.archives-ouvertes.fr/hal-01382320
https://doi.org/10.1016/j.crad.2019.04.021
https://doi.org/10.1016/j.crad.2019.04.021
https://doi.org/10.1016/j.jacr.2017.11.022
https://doi.org/10.1007/s10278-019-00260-w
https://doi.org/10.1007/s10278-019-00260-w
https://doi.org/10.1016/j.jacr.2017.01.044
https://doi.org/10.12788/jhm.3128
https://doi.org/10.1016/j.acra.2016.09.013
https://doi.org/10.1007/s10278-017-0021-3
https://doi.org/10.1007/s10278-017-0021-3
https://doi.org/10.1109/BDCAT.2018.00021
https://doi.org/10.1093/jamia/ocx125
https://doi.org/10.1148/radiol.2016151985
https://doi.org/10.1016/j.jacr.2019.04.026
https://doi.org/10.1016/j.jacr.2018.12.004
https://doi.org/10.1016/j.jacr.2018.12.004
https://doi.org/10.4338/ACI-2016-08-RA-0129
https://doi.org/10.1016/j.jacr.2019.05.038
https://doi.org/10.1016/j.jacr.2019.05.038
https://doi.org/10.21873/invivo.11318
https://doi.org/10.21873/invivo.11318
https://doi.org/10.1007/s10278-015-9781-9
https://doi.org/10.1016/j.cgh.2019.08.007
https://doi.org/10.1016/j.cgh.2019.08.007
https://doi.org/10.1007/s10620-017-4721-9
https://doi.org/10.1007/s10620-017-4721-9
https://doi.org/10.1097/MLR.0b013e3182a30373
https://doi.org/10.1111/1754-9485.12861
http://arxiv.org/abs/1904.00412
http://arxiv.org/abs/1904.00412
https://doi.org/10.1111/acem.12859
https://doi.org/10.1101/585331
https://doi.org/10.1177/1049909119885585
https://doi.org/10.1177/1049909119885585
https://doi.org/10.1016/j.athoracsur.2018.09.016
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.05.031
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.05.031
https://doi.org/10.1164/rccm.201505-0990OC
https://doi.org/10.1164/rccm.201505-0990OC
https://doi.org/10.1007/s10278-017-0013-3


Page 17 of 18Casey et al. BMC Med Inform Decis Mak          (2021) 21:179  

 104. Masino AJ, Grundmeier RW, Pennington JW, Germiller JA, Cren‑
shaw EB. Temporal bone radiology report classification using open 
source machine learning and natural langue processing libraries. 
BMC Med Inform Decis Mak. 2016;16(1):65. https:// doi. org/ 10. 1186/ 
s12911‑ 016‑ 0306‑3.

 105. Valtchinov VI, Lacson R, Wang A, Khorasani R. Comparing artificial intelli‑
gence approaches to retrieve clinical reports documenting implantable 
devices posing MRI safety risks. J Am Coll Radiol. 2020;17(2):272–9. 
https:// doi. org/ 10. 1016/j. jacr. 2019. 07. 018.

 106. Zech J, Forde J, Titano JJ, Kaji D, Costa A, Oermann EK. Detecting inser‑
tion, substitution, and deletion errors in radiology reports using neural 
sequence‑to‑sequence models. Ann Transl Med. 2019. https:// doi. org/ 
10. 21037/ atm. 2018. 08. 11.

 107. Zhang Y, Merck D, Tsai EB, Manning CD, Langlotz CP. Optimizing the 
factual correctness of a summary: a study of summarizing radiology 
reports. arXiv: 1911. 02541 [cs.CL] (2019). Accessed 30 Oct 2020.

 108. Steinkamp JM, Chambers C, Lalevic D, Zafar HM, Cook TS. Toward com‑
plete structured information extraction from radiology reports using 
machine learning. J Digit Imaging. 2019;32(4):554–64. https:// doi. org/ 
10. 1007/ s10278‑ 019‑ 00234‑y.

 109. Cocos A, Qian T, Callison‑Burch C, Masino AJ. Crowd control: effectively 
utilizing unscreened crowd workers for biomedical data annotation. 
J Biomed Inform. 2017;69:86–92. https:// doi. org/ 10. 1016/j. jbi. 2017. 04. 
003.

 110. Ratner A, Hancock B, Dunnmon J, Goldman R, Ré C. Snorkel MeTaL: 
weak supervision for multi‑task learning. In: Proceedings of the second 
workshop on data management for end‑to‑end machine learning. 
DEEM’18, vol. 3, pp. 1–4. ACM, Houston, TX, USA (2018). https:// doi. org/ 
10. 1145/ 32098 89. 32098 98. https:// doi. org/ 10. 1145/ 32098 89. 32098 98. 
Accessed 30 Oct 2020.

 111. Zhu H, Paschalidis IC, Hall C, Tahmasebi A. Context‑driven concept 
annotation in radiology reports: anatomical phrase labeling. In: AMIA 
summits on translational science proceedings, vol. 2019, pp. 232–41 
(2019). Accessed 30 Oct 2020.

 112. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word 
representations in vector space (2013). http:// arxiv. org/ abs/ 1301. 3781. 
Accessed 7 Feb 2021.

 113. Pennington J, Socher R, Manning CD. Glove: global vectors for word 
representation. In: Proceedings of the 2014 conference on empirical 
methods in natural language processing (EMNLP), pp. 1532–43 (2014).

 114. Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A. Advances in 
pre‑training distributed word representations. In: Proceedings of the 
international conference on language resources and evaluation (LREC 
2018) (2018).

 115. Peters M.E, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer 
L. Deep contextualized word representations. CoRR abs/1802.05365 
(2018). \_eprint: 1802.05365.

 116. Devlin J, Chang M‑W, Lee K, Toutanova K. Bert: pre‑training of deep 
bidirectional transformers for language understanding. arXiv preprint 
arXiv: 1810. 04805 (2018).

 117. National Library of Medicine: Unified medical language system (2021). 
https:// www. nlm. nih. gov/ resea rch/ umls/ index. html. Accessed 7 Feb 
2021.

 118. RSNA: RadLex (2021). http:// radlex. org/. Accessed 7 Feb 2021.
 119. National Library of Medicine: SNOMED CT, (2021). https:// www. nlm. nih. 

gov/ healt hit/ snome dct/ index. html. Accessed 07 Feb 2021.
 120. Bulu H, Sippo DA, Lee JM, Burnside ES, Rubin DL. Proposing new RadLex 

terms by analyzing free‑text mammography reports. J Digit Imaging. 
2018;31(5):596–603. https:// doi. org/ 10. 1007/ s10278‑ 018‑ 0064‑0.

 121. Hassanpour S, Langlotz CP. Unsupervised topic modeling in a large 
free text radiology report repository. J Digit Imaging. 2016;29(1):59–62. 
https:// doi. org/ 10. 1007/ s10278‑ 015‑ 9823‑3.

 122. Zhao Y, Fesharaki NJ, Liu H, Luo J. Using data‑driven sublanguage 
pattern mining to induce knowledge models: application in medical 
image reports knowledge representation. BMC Med Inform Decis Mak. 
2018;18(1):61. https:// doi. org/ 10. 1186/ s12911‑ 018‑ 0645‑3.

 123. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol 
Meas. 1960;20(1):37–46. https:// doi. org/ 10. 1177/ 00131 64460 02000 104.

 124. Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent 
advances in deep learning techniques for electronic health record 

(EHR) analysis. IEEE J Biomed Health Inform. 2018;22(5):1589–604. 
https:// doi. org/ 10. 1109/ JBHI. 2017. 27670 63.

 125. Chen D, Liu S, Kingsbury P, Sohn S, Storlie CB, Habermann EB, Naessens 
JM, Larson DW, Liu H. Deep learning and alternative learning strategies 
for retrospective real‑world clinical data. npj Digit Med. 2019;2(1):1–5. 
https:// doi. org/ 10. 1038/ s41746‑ 019‑ 0122‑0.

 126. Yang H, Li L, Yang R, Zhou Y. Towards automated knowledge discovery 
of hepatocellular carcinoma: extract patient information from Chinese 
clinical reports. In: Proceedings of the 2nd international conference on 
medical and health informatics. ICMHI ’18, pp. 111–6. ACM, New York, 
NY, USA (2018). https:// doi. org/ 10. 1145/ 32394 38. 32394 45. Accessed 30 
Oct 2020.

 127. Wood D.A, Lynch J, Kafiabadi S, Guilhem E, Busaidi A.A, Montvila A, 
Varsavsky T, Siddiqui J, Gadapa N, Townend M, Kiik M, Patel K, Barker G, 
Ourselin S, Cole JH, Booth TC. Automated labelling using an attention 
model for radiology reports of MRI scans (ALARM). arXiv: 2002. 06588 [cs.
CV] (2020). Accessed 03 Dec 2020.

 128. Ong CJ, Orfanoudaki A, Zhang R, Caprasse FPM, Hutch M, Ma L, Fard D, 
Balogun O, Miller MI, Minnig M, Saglam H, Prescott B, Greer DM, Smirna‑
kis S, Bertsimas D. Machine learning and natural language processing 
methods to identify ischemic stroke, acuity and location from radiology 
reports. PLoS ONE. 2020;15(6):0234908. https:// doi. org/ 10. 1371/ journ al. 
pone. 02349 08.

 129. Smit A, Jain S, Rajpurkar P, Pareek A, Ng A, Lungren M. Combining auto‑
matic labelers and expert annotations for accurate radiology report 
labeling using BERT. In: Proceedings of the 2020 conference on empiri‑
cal methods in natural language processing (EMNLP), pp. 1500–19. 
Association for Computational Linguistics, Online (2020). https:// doi. 
org/ 10. 18653/ v1/ 2020. emnlp‑ main. 117. https:// www. aclweb. org/ antho 
logy/ 2020. emnlp‑ main. 117. Accessed 03 Dec 2020.

 130. Grivas A, Alex B, Grover C, Tobin R, Whiteley W. Not a cute stroke: analy‑
sis of rule‑ and neural network‑based information extraction systems 
for brain radiology reports. In: Proceedings of the 11th international 
workshop on health text mining and information analysis (2020).

 131. Ettinger A. What BERT is not: lessons from a new suite of psycholin‑
guistic diagnostics for language models. Trans Assoc Comput Linguist. 
2020;8:34–48. https:// doi. org/ 10. 1162/ tacl_a_ 00298.

 132. Alsentzer E, Murphy J, Boag W, Weng W‑H, Jindi D, Naumann T, McDer‑
mott M. Publicly available clinical BERT embeddings. In: Proceedings 
of the 2nd clinical natural language processing workshop, pp. 72–8. 
Association for Computational Linguistics, Minneapolis, Minnesota, USA 
(2019). https:// doi. org/ 10. 18653/ v1/ W19‑ 1909. https:// www. aclweb. 
org/ antho logy/ W19‑ 1909.

 133. Smit A, Jain S, Rajpurkar P, Pareek A, Ng AY, Lungren MP. CheXbert: 
combining automatic labelers and expert annotations for accurate 
radiology report labeling using BERT. CoRR abs/2004.09167 (2020). 
\_eprint: 2004.09167.

 134. Yasaka K, Abe O. Deep learning and artificial intelligence in radi‑
ology: current applications and future directions. PLOS Med. 
2018;15(11):1002707. https:// doi. org/ 10. 1371/ journ al. pmed. 10027 07.

 135. Percha B, Zhang Y, Bozkurt S, Rubin D, Altman RB, Langlotz CP. Expand‑
ing a radiology lexicon using contextual patterns in radiology reports. 
J Am Med Inform Assoc. 2018;25(6):679–85. https:// doi. org/ 10. 1093/ 
jamia/ ocx152.

 136. Tahmasebi AM, Zhu H, Mankovich G, Prinsen P, Klassen P, Pilato S, 
van Ommering R, Patel P, Gunn ML, Chang P. Automatic normaliza‑
tion of anatomical phrases in radiology reports using unsupervised 
learning. J Digit Imaging. 2019;32(1):6–18. https:// doi. org/ 10. 1007/ 
s10278‑ 018‑ 0116‑5.

 137. Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology report annota‑
tion using intelligent word embeddings: applied to multi‑institutional 
chest CT cohort. J Biomed Inform. 2018;77:11–20. https:// doi. org/ 10. 
1016/j. jbi. 2017. 11. 012.

 138. Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning 
based natural language processing [review article]. IEEE Comput Intell 
Mag. 2018;13(3):55–75. https:// doi. org/ 10. 1109/ MCI. 2018. 28407 38.

 139. Donnelly LF, Grzeszczuk R, Guimaraes CV, Zhang W, Bisset GS III. Using a 
natural language processing and machine learning algorithm program 
to analyze inter‑radiologist report style variation and compare variation 
between radiologists when using highly structured versus more free 

https://doi.org/10.1186/s12911-016-0306-3
https://doi.org/10.1186/s12911-016-0306-3
https://doi.org/10.1016/j.jacr.2019.07.018
https://doi.org/10.21037/atm.2018.08.11
https://doi.org/10.21037/atm.2018.08.11
http://arxiv.org/abs/1911.02541
https://doi.org/10.1007/s10278-019-00234-y
https://doi.org/10.1007/s10278-019-00234-y
https://doi.org/10.1016/j.jbi.2017.04.003
https://doi.org/10.1016/j.jbi.2017.04.003
https://doi.org/10.1145/3209889.3209898
https://doi.org/10.1145/3209889.3209898
https://doi.org/10.1145/3209889.3209898
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1810.04805
https://www.nlm.nih.gov/research/umls/index.html
http://radlex.org/
https://www.nlm.nih.gov/healthit/snomedct/index.html
https://www.nlm.nih.gov/healthit/snomedct/index.html
https://doi.org/10.1007/s10278-018-0064-0
https://doi.org/10.1007/s10278-015-9823-3
https://doi.org/10.1186/s12911-018-0645-3
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1109/JBHI.2017.2767063
https://doi.org/10.1038/s41746-019-0122-0
https://doi.org/10.1145/3239438.3239445
http://arxiv.org/abs/2002.06588
https://doi.org/10.1371/journal.pone.0234908
https://doi.org/10.1371/journal.pone.0234908
https://doi.org/10.18653/v1/2020.emnlp-main.117
https://doi.org/10.18653/v1/2020.emnlp-main.117
https://www.aclweb.org/anthology/2020.emnlp-main.117
https://www.aclweb.org/anthology/2020.emnlp-main.117
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.18653/v1/W19-1909
https://www.aclweb.org/anthology/W19-1909
https://www.aclweb.org/anthology/W19-1909
https://doi.org/10.1371/journal.pmed.1002707
https://doi.org/10.1093/jamia/ocx152
https://doi.org/10.1093/jamia/ocx152
https://doi.org/10.1007/s10278-018-0116-5
https://doi.org/10.1007/s10278-018-0116-5
https://doi.org/10.1016/j.jbi.2017.11.012
https://doi.org/10.1016/j.jbi.2017.11.012
https://doi.org/10.1109/MCI.2018.2840738


Page 18 of 18Casey et al. BMC Med Inform Decis Mak          (2021) 21:179 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

text reporting. Curr Probl Diagn Radiol. 2019;48(6):524–30. https:// doi. 
org/ 10. 1067/j. cprad iol. 2018. 09. 005.

 140. Xie Z, Yang Y, Wang M, Li M, Huang H, Zheng D, Shu R, Ling T. Introduc‑
ing information extraction to radiology information systems to improve 
the efficiency on reading reports. Methods Inf Med. 2019;58(2–03):94–
106. https:// doi. org/ 10. 1055/s‑ 0039‑ 16949 92.

 141. Zech J, Pain M, Titano J, Badgeley M, Schefflein J, Su A, Costa A, Beder‑
son J, Lehar J, Oermann EK. Natural language‑based machine learning 
models for the annotation of clinical radiology reports. Radiology. 
2018;287(2):570–80. https:// doi. org/ 10. 1148/ radiol. 20181 71093.

 142. Yim W, Kwan SW, Johnson G, Yetisgen M. Classification of hepatocel‑
lular carcinoma stages from free‑text clinical and radiology reports. In: 
AMIA annual symposium proceedings, vol. 2017, pp. 1858–67 (2018). 
Accessed 30 Oct 2020.

 143. Payrovnaziri SN, Chen Z, Rengifo‑Moreno P, Miller T, Bian J, Chen JH, 
Liu X, He Z. Explainable artificial intelligence models using real‑world 
electronic health record data: a systematic scoping review. J Am Med 
Inform Assoc. 2020;27(7):1173–85. https:// doi. org/ 10. 1093/ jamia/ ocaa0 
53.

 144. Dong H, Suárez‑Paniagua V, Whiteley W, Wu H. Explainable automated 
coding of clinical notes using hierarchical label‑wise attention networks 
and label embedding initialisation. J Biomed Inform. 2021. https:// doi. 
org/ 10. 1016/j. jbi. 2021. 103728.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1067/j.cpradiol.2018.09.005
https://doi.org/10.1067/j.cpradiol.2018.09.005
https://doi.org/10.1055/s-0039-1694992
https://doi.org/10.1148/radiol.2018171093
https://doi.org/10.1093/jamia/ocaa053
https://doi.org/10.1093/jamia/ocaa053
https://doi.org/10.1016/j.jbi.2021.103728
https://doi.org/10.1016/j.jbi.2021.103728

	A systematic review of natural language processing applied to radiology reports
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Related work
	Methods
	Eligibility for literature inclusion and search strategy
	Manual review of literature
	Data extraction for analysis

	Results
	General characteristics
	Clinical application categories
	Diagnostic surveillance
	Disease information and classification
	Language discovery and knowledge structure
	Quality and compliance
	Cohort and epidemiology
	Technical NLP

	NLP methods in use
	NLP method features
	Annotation and inter-annotator agreement
	Data sources and availability
	NLP performance and evaluation measures

	Discussion and future directions
	Clinical applications and NLP methods in radiology
	Task knowledge
	Study heterogeneity, a need for reporting standards
	Progressing NLP in radiology
	Limitations of study

	Conclusions
	Acknowledgements
	References


