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The global impacts of biodiversity loss and climate change are interlinked but the feedbacks 

between them are rarely assessed. Areas with greater tree diversity tend to be more productive, 

providing a greater carbon sink, and biodiversity loss could reduce these natural C sinks. Here, 

we quantify how tree and shrub species richness could affect biomass production at biome, 

national and regional scales. We find that greenhouse gas mitigation could help maintain tree 

diversity and thereby avoid a 9-39% reduction in terrestrial primary productivity across differ 

biomes, which cold otherwise occur over the next 50 years. Countries that will incur the greatest 

economic damages from climate change stand to benefit the most from conservation of tree 

diversity and primary productivity, which contributes to climate change mitigation. Our results 

emphasize an opportunity for a triple win for climate, biodiversity and society, and highlight 

how these co-benefits must be focused by reforestation programs. 

 

Climate change and biodiversity loss are two major environmental challenges in this era of global 

change1. Although the tight linkages between them have been recognized2,3, the vast majority of 

attention has been paid to one unidirectional relationship—climate change as a cause and biodiversity 

loss as a consequence. Climate change is projected to become an increasingly important driver of 

biodiversity loss4,5 and its interaction with other major drivers such as land-use change will indirectly 

accelerate its impacts on biodiversity6 further. For example, in terrestrial systems, the majority of 

species ranges are predicted to shrink dramatically, even for a rise in global temperature below 2°C4,7. 

Besides, some land-based measures of climate change mitigation have detrimental side-effects on 

ecosystems4,8, because of substantial land conversions such as large-scale bioenergy crop production 

and afforestation with monocultures9. There is now recognition of the need for nature-based solutions, 

which involve working with nature to address societal challenges such as climate change10-13. Better 

management and restoration of natural ecosystems, such as forests, coastal lands, and peatlands, could 

produce multiple benefits to society including the conservation of biodiversity and sequestration of 

carbon2,3,10-15. In response, the United Nations (UN) has declared the present decade (2021-2030) as 

the Decade on Ecosystem Restoration (www.decadeonrestoration.org) to ensure ecosystem services 

are sustained, such as the removal of carbon from the atmosphere. However, natural climate solutions 

are currently missing biodiversity as part of the equation: that is, although biodiversity is often seen 

as a target for conservation, it is not yet widely appreciated as a powerful contributor to climate 

stabilization11,13,16. 

Forest productivity is often higher in species-rich forests, consequently absorbing more 

carbon than species-poor forests such as tree monocultures17-19. Moreover, communities with more 

species are better able to sustain their productivity in the face of global environmental change, 

indicating a synergistic interaction between biodiversity and climate change16. Thus, conserving 

biodiversity, and particularly the diversity of tree species may have a previously unquantified 

contribution to global climate change mitigation13. Biodiversity loss is increasingly recognized as a 
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driver that can amplify climate risks and the associated economic risks20. However, it is still 

challenging to quantitatively incorporate the effects of diversity change on carbon storage—which 

often arise from local-scale species interactions21—into global-scale models22,23 that assess how land-

use changes and vegetation dynamics will drive future climate change24. Here, we assess how 

biodiversity effects on climate change—the ecological and marginal economic benefits of having 

more species in an ecosystem—might accumulate at larger scales relevant to policy8,25. 

We assess how efforts to mitigate climate change can reduce climate impacts on the diversity 

of woody plant species (hereafter, tree diversity) which, in turn, can safeguard the ability of forests to 

store carbon (Fig. 1). To assess this potential at the global scale, we quantified future shifts in species 

richness at the local scale (i.e., 30 arcseconds, the total number of grids ~ 115 million; Fig. 2) by 

combining multiple methods of ecological modelling (See Methods for the details). We combined 

these local-scale estimates of species richness changes with local-scale estimates of proportional 

changes in primary productivity in response to richness changes17—a parameter estimated within 

forests, which reflects the strength of local tree diversity effects on productivity after accounting for 

climate and soil covariates. Then, by further multiplying these estimates by net primary productivity 

(NPP; Pg C year-1) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) 

imagery26, we quantified how proportional changes in local species richness could affect changes in 

biomass production (i.e., tree diversity-dependent productivity) at the local scale. Finally, we 

aggregated these changes in local productivity to produce large-scale estimates of changes in 

productivity (due to changes in tree diversity resulting from climate change) at biome, national, and 

regional scales (Figs. 3-5). Note that, among many primary producer species, we especially focused 

on tree and shrub species (hereafter jointly referred to as trees) in different biomes. As some of them 

are present also in non-forested biomes, our global analyses extend to woody species in all terrestrial 

biomes (all 14 biomes defined by the World Wildlife Fund: www.worldwildlife.org/biomes). At a 

regional scale, we focused on the subregion categories of the Intergovernmental Science-Policy 

Platform on Biodiversity and Ecosystem Services (IPBES: ipbes.net/regional-assessments)7.  

Our analyses used five shared socioeconomic pathways (SSPs) reflecting different plausible 

projections of land-use change27. The underlying allocation scheme, based on an integrated 

assessment model, implements climate change mitigation in the form of a globally uniform carbon 

tax on greenhouse gas emissions from the agriculture, land-use, and energy sectors27. Using a scenario 

matrix architecture, we compared two future scenarios: high-emission baseline versus mitigation 

scenario28. The mitigation scenario assumes levels of greenhouse gas emissions will stabilize the 

global mean temperature rise relative to preindustrial times to less than 2 °C by the end of the 21st 

century. The baseline scenario assumes a continued increase in greenhouse gas emissions, and thus 

also the global mean surface temperature continues to rise. We relied on three General Circulation 

Models (GCMs) to consider two different representative concentration pathways (RCPs) in each of 

the five SSPs27. Thus, we considered a wide range of future land allocation and climate conditions28. 
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We quantified how efforts to mitigate climate change could alleviate species loss (ΔSR) and thereby 

avoid biodiversity-dependent productivity loss (ΔP) at the local-scale as log ratios, with zero 

corresponding to the true absence of the effect (see Methods for the details).  

We found that, in many biomes, climate change mitigation could substantially reduce the 

global loss of tree diversity that would otherwise be expected to result from an unabated continuation 

of climate change (Fig. 2). This, in turn, is expected to reduce the loss of productivity that would 

otherwise be expected to result from biodiversity loss (Fig. 3). Climate change mitigation is estimated 

to curtail productivity losses by approximately 9-39% compared to the baseline scenario of unabated 

warming (Fig. 3). The alleviated loss of tree diversity and the resultant conservation of biodiversity-

dependent productivity are especially substantial in colder and drier biomes compared to warmer and 

wetter biomes, likely because species in these biomes are often close to the edge of their climatic 

niche29. Losing one species may have a disproportionate impact in ecosystems where only a limited 

number of species are filling niche space and functional redundancy is thus low. Among these biomes, 

particularly colder areas are expected to gain species in a warmer future, due to the poleward 

migration of species. However, the poor dispersal ability of trees (coupled with the pace of climate 

change and land-use change) generally makes it difficult for species to track their environmental 

optimum under anthropogenic warming28,30. Further, warming could alter the strength of the 

diversity-productivity relationship, though this has not yet been well-studied in forests. A possibility 

is that, if conditions become less limiting due to climatic warming, the productivity of individual trees 

might increase, potentially offsetting the negative impacts of species decline on primary productivity. 

Due to these and other possibilities, responses of tree diversity and the associated productivity in a 

changing climate can vary by region31. Variable responses among biomes are also seen for the 

absolute impacts of losing diversity in different biomes of the world. While the per-area loss of 

biodiversity-dependent productivity tended to be small in warmer biomes such as tropical and 

subtropical forests, their gross contribution to global productivity loss was considerable due to their 

high absolute productivity and the extent of these biomes (Fig. 4). The analysis conducted at the 

IPBES subregional scale also illustrates the spatially heterogeneous effectiveness of climate change 

mitigation efforts in safeguarding forest productivity (Fig. 5). This heterogeneity in the responses 

among regions is partly due to variation in the extent to which biodiversity is conserved when climate 

change is mitigated (Fig. 2; Extended Data Figs. 1-3). Furthermore, substantial land-use changes may 

be required for stringent mitigation efforts, especially under the scenarios of high demand for 

bioenergy consumption32, which could have detrimental effects on biodiversity in some regions4,28. 

Overall, although the estimations were variable among GCMs and SSPs (Extended Data Figs. 1-7), 

tree diversity in most biomes and subregions would benefit from additional efforts to reduce 

greenhouse gas emissions. Overall, climate change mitigation efforts conserve the diversity of woody 

plant species and primary productivity, which contributes to carbon storage in terrestrial ecosystems. 

To gain further insights at the national level, the scale at which many policy decisions are 
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made, we aggregated the regional heterogeneity into country-level estimates and considered how tree 

diversity effects on productivity at the country-level relate to the economic value of avoiding carbon 

emissions. Here, we obtained the absolute country-wide estimate of reductions in productivity loss 

due to climate mitigation efforts. We compared these estimates with the country-level social cost of 

carbon (CSCC; US$ tCO2
-1), which is the marginal damage expected to occur in a particular country 

as a consequence of additional CO2 emissions produced anywhere in the world33. We found that 

countries with a high country-level social cost of carbon, which have the greatest incentive to mitigate 

climate change to avoid its economic damages, also tend to be the countries where climate change 

mitigation could greatly help maintain primary productivity by safeguarding tree diversity, regardless 

of model and scenario (Fig. 6a; Extended Data Fig. 8). Thus, countries with both large CSCC and 

productivity conservation potential, which especially include but are not limited to those with a large 

land area (Fig. 6b-c; Extended Data Fig. 9), have a great incentive to focus their efforts on stabilizing 

climate by safeguarding tree diversity as a potent nature-based climate solution10, in addition to 

reducing the emissions from industry and the energy sector34. For instance, the US and China—the 

two biggest emitters of carbon—are estimated to experience some of the biggest economic damages 

due to anthropogenic global warming33, indicating a great responsibility and opportunity to mitigate 

emissions by maintaining tree diversity. Brazil has the largest potential to benefit in multiple ways 

from climate mitigation efforts (outliers in Fig. 6a; also see Extended Data Fig. 9). In contrast, Canada 

and Russia are expected to experience only small economic damages or may even benefit from 

climatic warming33. Nonetheless, as the largest forested countries in the world, their contributions are 

a vital part in considering biodiversity-dependent productivity as a nature-based solution, particularly 

since they also have experienced the largest loss of tree cover in recent years35. Moreover, India and 

Indonesia—which bear some of the greatest social costs of carbon pollution even though they are not 

among the top emitters of carbon33—have pledged to restore large areas of natural forests14. Such 

efforts offer opportunities for the international community to internalize the global climate externality 

and help achieve global pathways to stabilize climate while also conserving biodiversity. Although 

restoring natural forests and their biodiversity will not fully compensate for greenhouse gas emissions, 

this strategy could be developed to form clear national and international targets13. 

We estimate that the possible conservation of biodiversity-dependent annual productivity by 

means of climate change mitigation corresponds to approximately 4.9-6.7% of the present total NPP 

in the terrestrial areas analysed (Fig. 6d). This substantial contribution emphasizes that biodiversity 

conservation is not only a target in and of itself but can also be a significant part of the solution to the 

ongoing climate crisis. Our results indicate that ambitious efforts to mitigate climate change—at both 

the national and global levels—have a significant potential to help societies reduce the externalized 

cost of carbon. Although decarbonizing the economy and relying on nature for carbon storage are 

both seen as important but parallel options34, our results quantitatively show that they are tightly 

connected. Still, many reforestation programs and policies focus on monocultures11,14, which misses 
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the potential contribution of tree diversity to carbon sequestration we highlight here. We stress the 

value of restoring and conserving diverse natural forests, which harbour great plant, animal, and 

microbial biodiversity, provide a variety of ecosystem services36, and contribute to climate 

stabilization11,14. Carbon-based forest management has been suggested as a way forward37, but an 

estimated 45% of national-level commitments to restore forests propose monocultures of trees 

profitable for businesses14. Planting vast expanses of monocultures will preclude the opportunity for 

a triple win for nature, climate, and society that can arise by fostering tree biodiversity (Fig. 1). 

Sustainable forest management has been emphasized in many policy contexts38, including 

UN frameworks39-41 and can provide a natural climate solution pathway10. While sustainable forest 

management emphasizes the importance of biodiversity conservation as an objective3,36, climate 

policy has, to date, largely ignored the dependence of primary productivity on biodiversity and the 

contribution of tree diversity to carbon storage16,19,31. Despite this gap, reports produced by the UN 

Convention on Biological Diversity have repeatedly supported the use of biodiversity and ecosystem 

services as part of an overall strategy to help mitigate climate change and the associated risks to 

society41,42. Since 2009, this UN framework has mentioned the potential of increasing biodiversity in 

forests, emphasizing the positive effects on ecosystem productivity and carbon storage41. Yet most 

strategies to date have focused on avoiding further land conversion and expanding forested areas14. 

In addition to considering the spatial extent of forests, the status and quality of forests— e.g., in an 

extreme comparison, whether they are mono-species plantation or species-diverse old-growth 

stands—deserves further consideration11,13,14,16. A dual focus on both the quantity (area) and the 

quality (biodiversity) of forest ecosystems could help support climate stabilization. We therefore 

emphasize the great value of biologically diverse forests16,17,19,36, both planted and restored.  

The projections we make contain several sources of uncertainty, which future research could 

help resolve. For example, we focus on a limited subset of woody species to represent the tree 

diversity in the forests around the globe (Extended Data Fig. 10). Most species on Earth are still 

poorly described, which makes estimating their present and future ranges challenging5. Our estimates 

are thus likely conservative because they are based on well-documented species, whereas poorly 

described species, which often have narrow geographical ranges and small population sizes, are more 

prone to climate-driven extinction43. Given the disproportionately large contributions by some rare 

species to ecosystem functioning44, our approximation of biodiversity-dependent productivity could 

be seen as a lower bound estimate. While modelling the spatial distributions of rare species, which 

generally have a limited number of occurrence data, is challenging, analytical approaches are 

developing rapidly to foster the conservation of poorly described species45. These emerging methods 

will help to improve future estimates of biodiversity change and its consequences for the supply of 

ecosystem services. 

Another source of uncertainty is that new combinations of species are likely to emerge under 

a changing climate3, which may alter interactions between species29 and likely influence the 
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magnitude of diversity-productivity relationships31. Although the dispersal ability of each tree species 

is explicitly considered in our analysis, it is highly likely that novel combinations of species will 

emerge in the future, resulting from idiosyncratic events (e.g., exceptional long-distance dispersal46) 

and human influences (e.g., climate-suitable planting and assisted migration12,31). Furthermore, our 

results should be interpreted with care because responses at the biome level were not necessarily 

consistent across socioeconomic pathways (Fig. 3). This was especially true when summarized at 

large scales such as at the level of IPBES7 subregions (Fig. 5): Large variability was especially 

identified in Western/Central Asian and West African subregions, where the outcomes of climate 

change mitigation policy ranged from negative to positive. In this study, we did not separate the 

individual influences of different climate mitigation practices (e.g., reforestation, bioenergy 

production, and low-carbon energy use) on biodiversity and primary productivity, but doing so could 

help identify drivers underlying such inconsistent responses in the future. For example, if mitigation 

goals were achieved by afforestation in formerly non-forested lands such as peatlands and grasslands, 

then this could have unintended negative impacts on biodiversity and the productivity of these 

ecosystems47. Another consideration is that the ability of forests to increase the uptake of carbon in 

the short-term (e.g., over the next decade) cannot be linearly translated into the ability of forests to 

halt climate warming over a 50-100 year time horizon. This is because complex biogeochemical and 

biophysical processes—for instance, surface exchange of energy and water vapor and sensible heat 

flux, resulting from compositional and structural changes in forests—might not directly parallel the 

effects of carbon uptake rates on climate48,49. Carbon storage in deadwood and soil—significant 

drivers of terrestrial carbon dynamics19,50—was also not considered in this study. Finally, in our 

estimates of the change in social cost from conserving species and productivity (Fig. 6), we did not 

fully account for management and opportunity costs. Nonetheless, our estimates provide a first global 

assessment of the contribution of biodiversity in forests to climate change mitigation on which future 

refinements can build upon. 

We advocate for the protection and restoration of biologically diverse forests, because they 

can make a substantial contribution to climate change mitigation16,19, helping to avoid irreversible 

change to the Earth system1. Nature-based solutions are among the fastest2 and most cost-effective 

policy options10,11. As such, there is an enthusiasms for relying on trees and forests to recapture 

carbon37. Now, it is urgently necessary to accurately assess this potential to guide the ongoing efforts 

such as the Intergovernmental Panel on Climate Change51. Here we identify an important backbone 

for these considerations—tree diversity—as an missing piece of the nature-based climate solution 

puzzle. By buying time4, climate mitigation efforts are essential to help both people and biodiversity 

adapt to climate change12. Our emphasis on biodiversity-dependent climate change mitigation is thus 

also important for ecosystem-based adaptation3. However, a nature-based approach is only one 

option15,52 along with others that are necessary, including substantial reductions in energy emissions 

and the transition to renewable sources of energy34. Although challenging, reducing the adverse 
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impacts of climate change on species in ecosystems is important (Fig. 2) as they serve as a massive 

sink and storehouse of carbon (Figs. 3-5), thereby contributing to climate stabilization (the desirable 

pathway to stabilizing feedback between climate change mitigation and biodiversity conservation in 

Fig. 1). Solving one environmental problem may help address the other, whereas failing to address 

either problem may lead to the further deterioration of both biodiversity and climate crises. Here we 

show an opportunity to create a triple win for climate, nature, and society by simultaneously 

protecting and leveraging the ecosystem benefits contributed by the biodiversity of the world’s forests. 
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Figure 1. Schematic diagram of a possible pathway to biodiversity-based climate solutions. 

There is much emphasis on the undesirable feedbacks where climate change drives biodiversity loss 

(magenta arrows feedback). Here, we highlight the contribution of an underutilized positive feedback 

in which biodiversity-dependent productivity could contribute to climate change mitigation (blueish 

green arrows feedback). The conservation and restoration of tree diversity could enhance this 

feedback and promote the desirable pathway whereby forest biodiversity contributes to climate 

change mitigation. 
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Figure 2. Biome-level projections in alleviating the loss of tree diversity from 2005 to 2070s. a) 

Map of biomes where trees are present, and the distribution of the coarse grids (at the spatial scale of 

the 30 arcminutes) within each biome along temperature and precipitation gradients (annual means 

for the period 1970-2000). Colours of the points of each biome correspond to those shown in the 

panel (b). b) Ridge density plots showing the effect sizes of an effective climate change mitigation 

policy on species loss (ΔSR), calculated as mean α-diversity change within each of the coarse grids 

between 2005 and 2070s (n = 32,670 grids). Results are shown for the five SSPs. Ensembled results 

across the three GCMs are shown; the points and horizontal bars indicate means and their 95% 

confidence intervals, respectively. When the effect sizes in each biome were converted into 

percentage changes, the consequences of mitigation efforts corresponded to approximately 3.0-61.3% 

reductions in local tree species loss compared to the respective baseline scenario. Outliers are not 

shown for density plots. Results for each GCM are shown in Extended Data Figure 3. Numbers after 

biome names are consistently used in Figure 3, 4, Extended Data Figure 3, 4 and 6.  
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Figure 3. Biome-level projections in the effect of a climate change mitigation to alleviate the loss 

of tree diversity-dependent productivity (ΔP) from 2005 to 2070s. The effect sizes of ΔP were 

calculated at the local scale (at the spatial scale of the 30 arcseconds) in 14 biomes that include trees 

(n = ~115 million grids). Results are shown for the five SSPs. Ensembled results for the effect size 

across the three GCMs are shown; the points and vertical bars indicate means and their 95% 

confidence intervals, respectively. Colours of the points and numbers of each biome correspond to 

those shown in Fig. 2. When the effect sizes in each biome were converted into percentage changes, 

the consequences of mitigation efforts corresponded to approximately 8.8-38.9% reductions in 

productivity loss compared to baseline scenario. Results for each GCM are shown in Extended Data 

Figure 4. Small inset figures are the relations of the effect sizes with climate [annual mean temperature 

(ºC) and precipitation (mm)]; all significant at p < 0.001. Small maps are to visualize the effect sizes 

of each biome. Maps of the effect sizes at the coarse grid scale are shown in Extended Data Figure 5. 
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Figure 4. Biome-level sums in the effect of a climate change mitigation to alleviate the loss of 

tree diversity-dependent productivity (ΔP) from 2005 to 2070s. Radar charts showing the 

proportional contribution of productivity loss resulting from species loss in each biome to global 

productivity loss under the mitigation (top) and baseline (bottom) scenarios (%). Colours and numbers 

(shown in Italic) of each biome correspond to those shown in Fig. 2. The orders of biome in each 

radar chart are based on the per-area productivity loss of each biome (clockwise; from small to large 

loss), which are indicated with black dotted arrows. Mean values across the three GCMs are shown 

for the five SSPs. Results for each GCM are shown in Extended Data Figure 6.
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Figure 5. Subregion-level projections in the effect of a climate change mitigation to alleviate the 

loss of tree diversity-dependent productivity (ΔP) from 2005 to 2070s. The effect sizes of ΔP were 

calculated at the local scale (at the spatial scale of the 30 arcseconds cells; n = ~115 million grids) for 

17 subregions (based on the Intergovernmental Science-Policy Platform on Biodiversity and 

Ecosystem Services; IPBES7). Results are shown for the five SSPs. Ensembled results across the three 

GCMs are shown; the points and horizonal bars indicate means and their 95% confidence intervals, 

respectively. Vertical black bars indicate zero values of the effect size in each subregion (see the scale 

at the bottom left). Results for each GCM are shown in Extended Data Figure 7.
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Figure 6. Country-level outcomes of a climate change mitigation to conserve tree diverstiy-

dependent productivity. a) The relationships between the country-level social cost of carbon 

[CSCC33], which is the marginal damages expected to occur in a particular country as a consequence 

of additional CO2 emissions, and the country-level conservation of tree diversity-dependent 

productivity [CCBP; the differences in local productivity changes, ΔP, between the two scenarios 

aggregated for each country]. The largest values (outliers) of CCBP are Brazil for all SSPs. Results 

for each GCM are shown in Extended Data Figure 8. b) and c) The relationships of the terrestrial area 

analysed for each country with the CCBP and the CSCC. The lines and shaded areas are the estimates 

based on a generalized additive mixed model and their 95% confidence intervals, respectively. Results 

are shown for the five SSPs. d) The sum of productivity conservation across countries for the five 

SSPs (mean ± standard error across three GCMs). These estimates corresponded to 4.9-6.7% of total 

net primary productivity in the terestrial areas analysed. 
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METHODS 

 

Our workflow of how to estimate proportional changes in species richness and forest productivity as 

well as absolute changes in net primary productivity at the local scale is visualized in Figures S1 and 

S2. We refer to the Supplementary Information for a full description of the methods, and only provide 

a succinct summary of our approach here. 

 

Species distribution modelling 

Spatially-explicit observations of tree and shrub species (hereafter, referred to as trees) were 

available from a previous study28. Also see Supplementary Table 1 for the protocol of our species 

distribution modelling, which relied on climate and land-use variables. Note that the modelling 

was previously conducted at a spatial resolution of 30 arcminutes (hereafter, coarse grids). 

Here we extended the modelling to a resolution of 30 arcseconds (hereafter, fine grids) to 

improve our approximation of biodiversity-dependent productivity (see below). However, the 

modelling for species distributions at the fine scale was only possible for the present 

period, because future land-use variables were only available at the scale of coarse grids. We 

sampled one occurrence record per grid for all species at both spatial resolutions. To avoid the 

effect of model inaccuracy from small sample size, we limited our analysis to species that had 

occurrence records of 30 and more53. These resulted in 1,755 and 934 target tree species at a spatial 

resolution of fine and coarse grids, respectively. See Supplementary Data 1 for the list of these 

target species. 

For the present period, we obtained a dataset of 19 bioclimatic variables, calculated from monthly 

minimum temperature, maximum temperature, and precipitation at the resolution of fine grids downloaded 

from the WorldClim 1.4 (www.worldclim.org)54. Then, we obtained land-use variables at a resolution 

of fine grids from the MODIS (Moderate resolution Imaging Spectroradiometer) Land Cover Type for 

the year 2005 (glcf.umd.edu/data/lc). We used land cover classes of the global vegetation classification 

scheme of the International Geosphere-Biosphere Programme (www.igbp.net) as a categorical variable in 

our models of species distribution. One of the five land-use types (cropland, pasture, forest, other 

natural lands, and settled land) was assigned to each of the fine grids. For future scenarios, we 

focused on a mitigation scenario and a high-emission baseline scenario based on the Representative 

Concentration Pathways (RCPs): the mitigation scenario aimed to stabilize climate change by the 

end of the 21st century, whereas the baseline scenario assumed increasing greenhouse gas (GHG) 

emissions and thus climate change over time28. We set the target period for analyses as the 2070s. 

We used future climatic variables based on three General Circulation Models (GCMs) included in the 

Fifth Coupled Model Inter-Comparison Project experiment: MIROC-ESM-CHEM55, HadGEM2-ES56,57, 

and GFDL-CM358, downloaded from the WorldClim 1.4 (www.worldclim.org)54. All 19 bioclimatic 

variables for the future were calculated using the same method as for the current climate. We 
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estimated changes in future land-use under the mitigation and baseline scenarios27 with 

AIM/CGE59, a computable general equilibrium model representing the entire global economy. 

AIM/CGE implements climate change mitigation in the form of a global uniform carbon tax on GHG 

emissions from the agriculture, land-use, and energy sectors. The allocation of land by sector for 17 

regions is formulated as a multinomial logit function to reflect differences in substitutability across 

land rent, and regional land-use is further downscaled to the scale of coarse grids based on spatially 

explicit attainable yields60. In this study, we relied on the Shared Socioeconomic Pathways (SSPs) 

framework61. The SSPs are based on five narratives describing how socioeconomic factors may 

change over the next century, considering changes in population, GDP, energy, emissions, and 

land-use: challenges to adaptation and mitigation are both low (SSP1: sustainability) or both high 

(SSP3: regional rivalry); low challenges to mitigation are combined with high challenges to 

adaptation (SSP4: inequality); high challenges to mitigation are combined with low challenges to 

adaptation (SSP5: fossil-fuelled development); intermediate challenges exist for both adaptation and 

mitigation (SSP2: middle-of-the-road). Also, refer to Supplementary Table 2 for these narratives. The SSPs 

employ a concept called scenario matrix architecture, which has a two-dimensional space 

comprising combinations of socioeconomic patterns, represented by the SSPs, and climate change 

mitigation levels, represented by RCPs. For our mitigation scenarios, we used each SSP, combined 

with the RCP with the lowest radiative forcing level. SSPs 1, 2, 4, and 5 were combined with RCP 2.6. 

SSP3 was combined with RCP3.4 because the SSP3-RCP2.6 combination was found to be 

incompatible61. We used the high-emission baseline condition in each SSP for the baseline scenario, 

assuming the absence of additional climate policy and efforts. Given that land-use scenarios 

explicitly incorporated areas for bioenergy crops and afforestation for GHG mitigation activity, 

which did not exist in land-use data in the current condition, bioenergy crops and afforestation 

were merged into cropland and forests, respectively.  

 Using these variables, we employed MaxEnt v3.362 for predicting the current and future 

probability of occurrence of target species. First, by using the five land-use and 19 bioclimatic 

variables, we generated all possible combinations of these explanatory variables. We then excluded 

explanatory variables showing collinearity. We selected the most parsimonious combination of 

explanatory variables based on corrected Akaike information criterion63. Among the final models 

developed for all species, we discarded those with poor performance for subsequent analyses based 

on 10-fold cross validation, as follows. We used models with Boyce index64 > 0 based on the 95 % 

confidence interval for the subsequent analyses. To obtain a map of suitable habitat for each 

species under the current conditions, the average value of the relative probability of occurrence 

calculated by the 10-fold cross-validation was converted into a binary map. We applied the 

average of the 90 % sensitivity threshold to minimize the false-negative fractions and to avoid 

underestimating the suitable habitat area65. For future scenarios, we explicitly included a species’ 

ability to disperse and track the shifting climate28 by considering dispersal traits66. Here dispersal 
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distance per generation was estimated from the formula based on earlier work66. Based on this approach, 

we obtained habitat maps for individual species. The possible changes in areas hospitable to species under 

different future scenarios were described earlier28: briefly, the losses of suitable habitats due to the combined 

effects of climate and land-use were estimated to be smaller in the mitigation scenario than in the baseline 

scenario (e.g., approximately 17-28% and 22-36% for the mitigation and baseline scenario, respectively, 

across a wide range of organism groups).   

 

Species richness and productivity estimation 

We projected spatial distributions of individual species for the year 2005 and the 2070s at a spatial 

resolution of 30 arcminutes (coarse grids; n = 32,670). For both estimates, we obtained the total 

number of species present in each coarse grid (hereafter, γ-diversity). For the former year, we also 

projected spatial distributions of individual species at the spatial resolution of 30 arcseconds (fine 

grids; n = 115,426,714). Based on these projections, we calculated changes in species richness at the 

scale of fine grids (hereafter, α-diversity) from 2005 to 2070s for different scenarios of climate and 

land-use changes. We first obtained species-area and endemics-area relationships (SARs and EARs, 

respectively) for the year 2005 that were unique to each of the coarse grids. If all fine grids were 

forested, a coarse grid had 3,600 fine grids. These relationships were used to estimate α-diversity in 

the year 2005 (n = 32,670 grids; each coarse grid had a unique mean value of α-diversity). Note that 

it was infeasible to directly estimate the temporal changes in γ-diversity because future spatial 

distributions were estimated only for a subset of species present in the 2005 data (i.e., widespread 

common species). Instead, we used the number of these common species that went extinct from or 

immigrated into a given coarse grid by the 2070s for estimating the number of other subordinate 

species (that were excluded in the MaxEnt analysis for the period of 2070s because of limited 

occurrence at the scale of 30 arcminutes) that went co-extinct or co-immigrated.  

To implement this, we first ran two spatially explicit simulations for species co-extinction 

and co-immigration. In an artificial landscape with 3,600 homogeneous grids, we randomly drew 

between 5 and 80 species with total occurrence between 500 and 180,000 individuals, based on a 

lognormal species abundance distribution (SAD) with randomly assigned parameters μ and σ of 

SADs reported in different biomes67-69. To consider many possibilities of spatial patterns of tree 

individuals in different biomes, we randomly assigned individuals of each species to each of the 3,600 

grids. For each of these artificial meta-communities, we calculated mean α-diversity (number of 

species per grid), γ-diversity (number of species per landscape), Whittaker’s multiplicative β-diversity, 

and Shannon’s evenness (across the grids)69. We also constructed SARs for estimating species 

richness at the smallest spatial scale. Here we defined common species as abundant species that had 

an abundance rank of 25 % or below. For co-extinction simulation, we randomly made some of (up 

to half of) these common species extinct from a meta-community. Other rare species that were present 

in the same grid with these extinct common species were also forced to extinction, assuming that 
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these grids became no longer habitable for any species. For co-immigration simulations, we assumed 

that an artificial meta-community resulted from additional immigration of both common and rare 

species. We again randomly assigned some of (up to half) the species as common and removed them 

from the meta-community to construct a pre-immigration meta-community. We also removed 

individuals of other species that were present in the same grid with these common species, assuming 

that these grids became newly hospitable in a post-immigration meta-community. We repeated the 

above co-extinction and co-immigration simulations 25,000 times, respectively. Based on the results 

from these artificial landscapes, we used extreme gradient boosting (XGBoost)70 to obtain machine 

learning regressions for predicting the number of species co-extinct and co-immigrated based on other 

information described above. 

We applied these regressions to the results of species distribution modelling (also see Fig. 

S2 for a schematic diagram). By comparing the number of widespread common species in each coarse 

grid between the year of 2005 and 2070s, we obtained the number of common species extinct or 

immigrated. This information was combined with our XGBoost regressions to obtain the potential 

number of subordinate species co-extinct and co-immigrated in each coarse grid. When we observed 

extinctions of some species for the 2070s in a given coarse grid, we converted this total number of 

species lost into a proportion of habitats that was required for losing these species based on the unique 

EAR71. When we observed immigration by some species for the 2070s in a coarse grid, then we 

converted this total number of species gained into a proportion of habitat that was required to gain 

these species based on the unique SAR71. By multiplying these proportional changes in the habitable 

area for the period of 2070s with species richness values at the scale of fine grids, which were derived 

from the unique SARs in the year 2005, we obtained the values of α-diversity in the 2070s. In some 

coarse grids, it was not possible to obtain unique SARs or EARs for reasons such as low γ-diversity. 

In such a case, we assumed that proportional changes in the habitable areas between the two periods 

were estimated by relying on an empirical SAR with the slope value of 0.3 in log-log space72,73. Based 

on the changes in γ-diversity, we estimated the values of α-diversity in the 2070s. Note that, likewise 

the year 2005, each of the coarse grids in the period of 2070s also had a single unique value of α-

diversity (n = 32,670). 

We calculated proportional changes in α-diversity from the year 2005 to the period of 2070s 

(%) and converted them into proportional changes in forest productivity (%) based on parameters of 

the elasticity of substitution (θ), which we estimated for forest biomes worldwide17. The elasticity of 

substitution can be used to estimate forest productivity based on proportional changes in tree species 

richness (i.e., α-diversity). The values of the elasticity of substitution were originally estimated based 

on forest inventory datasets collected at the local spatial scale17. For avoiding a potential mismatch 

due to scaling issues23,74, we estimated the changes in productivity at the scale of fine grids. We used 

a net primary productivity (NPP) dataset estimated using the MODIS imagery26 for the year 2005 

(note, in the terrestrial biomes analysed here, total NPP was approximately 43.78 Pg C yr-1). We 
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obtained NPP values at the scale of fine grids. Here we assumed that all fine grids in a given coarse 

grid showed the equivalent changes in productivity in a proportional scale, reflecting the mean change 

in α-diversity expected to occur in that coarse grid. Based on these estimations, we have obtained 

absolute changes in forest productivity (kg C m-2 yr-1) for different scenarios of climate/land-use 

changes at the scale of fine grids. Note that our analyses for tree diversity and productivity changes 

were conducted for the grids where tree species were observed in the present period and θ values were 

available (resulting in the analysis of ~115 million fine grids); thus, the results are also shown for 

non-forested biomes.  

 

Data analyses 

We summarized our results at different spatial scales from local to global. Here, the fine grids are 

defined as the local scale. We also focused on the scales of countries and biomes. Terrestrial biome 

categories are based on the 14 terrestrial ecoregions used by the World Wildlife Fund 

(www.worldwildlife.org). We have obtained information for areas and names of individual countries 

from Natural Earth (www.naturalearthdata.com). To be relevant for global policy, we have 

summarized results also at the scale of the subregion used in the Intergovernmental Science-Policy 

Platform on Biodiversity and Ecosystem Services (IPBES; www.ipbes.net/deliverables/2b-regional-

assessments). For some territories and nations that are not explicitly classified into regional categories, 

we assigned their subregions based on their geographical locations. 

 To quantify the effect sizes of mitigation efforts on conservation of species and productivity, 

we calculated the reductions in local-scale loss of species (ΔSR) and productivity (ΔP) as a log ratio 

scale, which assumes that zero corresponds to no difference between the two scenarios. Estimates 

based on the baseline and mitigation scenarios were used for the denominator (control; ΔSRbaseline and 

ΔPbaseline) and numerator (treatment; ΔSRmitigation and ΔPmitigation), respectively. To facilitate 

interpretation, we multiplied -1 with the effect sizes and thereby positive and negative values, 

respectively, indicate a more and less effective climate change mitigation policy in reducing species 

loss and the associated productivity loss (also see a schematic diagram in Fig. S3). To ensemble results 

across the three GCMs, we obtained global means and the associated 95% confidence intervals for 

each SSP scenario. We repeated the above calculations at the biome-, IPBES subregion-, and country-

scale. For biome-level analyses, we used a mixed-effects meta-regression with the effect size as a 

response variable, the GCMs as a random effect, and climate conditions (mean annual temperature or 

precipitation of biomes) as a moderator.  

Then, we focused on the relationship between the country-level social cost of carbon [CSCC 

(US$ tCO2
-1)33, estimated for each of SSPs] and the country-level reduction in forest productivity loss 

under a given SSP. Here we were interested in the country-level loss of productivity (absolute changes 

within each country), instead of the productivity loss per area that can give the average estimates of 

local productivity changes within a focal area (e.g., proportional changes within each country). We 
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thus summed up the differences between the ΔPbaseline and ΔPmitigation within each country and 

multiplied these values by the area of each country (Pg C yr-1). For each of the individual 

combinations of SSPs and GCMs, we relied on a generalized additive model (GAM) with the CSCC 

as an explanatory variable. To ensemble results across the GCMs, we used a generalized additive 

mixed model (GAMM) with the GCMs as a random effect and the CSCC as an explanatory variable. 

We additionally checked if the results were affected by land area, using the GAMMs. Lastly, we 

summed up the reduction in productivity loss across all countries, under each of SSPs and GCMs. 

This gave us the estimate of global productivity conservation, corresponding to the value, global ∑ 

(ΔPbaseline –ΔPmitigation). 
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Extended Data Figure 1. Maps showing the projected changes in tree diversity under the 

mitigation scenarios from 2005 to 2070s. The proportional changes (%) in mean α-diversity 

(remaining species richness estimated at the fine grid-scale) are shown within each of the coarse grids 

(n = 32,670 grids). Results are shown for the five Shared Socioeconomic Pathways (SSPs) and the 

three General Circulation Models (GCMs). 
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Extended Data Figure 2. Maps showing the projected changes in tree diversity under the 

baseline scenarios from 2005 to 2070s. The proportional changes (%) in mean α-diversity 

(remaining species richness estimated at the fine grid-scale) are shown within each of the coarse grids 

(n = 32,670 grids). Results are shown for the five Shared Socioeconomic Pathways (SSPs) and the 

three General Circulation Models (GCMs). 
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Extended Data Figure 3. Biome-level projections in the effects of a climate change mitigation to 

alleviate the loss of tree diversity (ΔSR) from 2005 to 2070s. The effect sizes [inverse of 

log(mitigation/baseline)] of ΔSR were estimated based on mean α-diversity values within each of the 

coarse grids (the total number of the coarse grids = 32,670). The effect size is shown as a log ratio 

scale; zero corresponds to the true absence of the outcome. Positive and negative values of effect size 

indicate more and less effectiveness of mitigation policy, respectively (green and red arrow, 

respectively). The points and horizontal bars indicate means and their 95% confidence intervals, 

respectively. Results are shown for the five Shared Socioeconomic Pathways (SSPs: SSP1, 

sustainability; SSP2, middle-of-the-road; SSP3, regional rivalry; SSP4, inequality; SSP5, fossil-

fuelled development) and the three General Circulation Models (GCMs). Results are also provided 

as Supplementary Data 2. 
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Extended Data Figure 4. Biome-level projections in the effects of a climate change mitigation to 

alleviate the loss of tree diversity-dependent productivity (ΔP) from 2005 to 2070s. The effect 

sizes [inverse of log(mitigation/baseline)] of ΔP were estimated at the local scale (at the 30 

arcseconds; the total number of grids = ~ 115 million for each scenario). The effect size is shown as 

a log ratio scale; zero corresponds to the true absence of the outcome. Positive and negative values of 

effect size indicate more and less effectiveness of mitigation policy, respectively (green and red 

arrows, respectively). All points indicate mean effect size. Results are shown for the five Shared 

Socioeconomic Pathways (SSPs) and the three General Circulation Models (GCMs). See 

Supplementary Data 3 for the values of means and the associated 95% confidence intervals of the 

effect sizes. 
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Extended Data Figure 5. Maps showing the effects of a climate change mitigation to alleviate 

the loss of tree diversity-dependent productivity (ΔP) from 2005 to 2070s. The effect sizes 

[inverse of log(mitigation/baseline)] of ΔP were estimated at the local scale (at the 30 arcseconds; the 

total number of fine grids ~ 115 million for each scenario). Positive and negative values of effect size 

indicate more and less effectiveness of mitigation policy, respectively. In these maps, means of the 

effect sizes within each of the coarse grids (n = 32,670 coarse grids) are shown. Results are shown 

for the five Shared Socioeconomic Pathways (SSPs) and the three General Circulation Models 

(GCMs). Files to produce these maps are provided as Supplementary Data 4. 
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Extended Data Figure 6. Biome-level sums in alleviating the loss of tree diversity-dependent 

productivity (ΔP) from 2005 to 2070s. Proportional reductions (%) in ΔP are summarised for each 

of 14 different biomes. Negative values indicate the relative magnitude of reduction in productivity 

loss by the implementation of additional climate mitigation policy compared to the estimates based 

on business-as-usual scenario. Results are shown for the five Shared Socioeconomic Pathways (SSPs) 

and the three General Circulation Models (GCMs). 



8 
 

 

Extended Data Figure 7. Subregion-level projections in the effects of a climate change 

mitigation to alleviate the loss of tree diversity-dependent productivity (ΔP) from 2005 to 2070s. 

The effect sizes [inverse of log(mitigation/baseline)] of ΔP were estimated at the local scale (at the 

30 arcseconds; the total number of grids = ~ 115 million for each scenario). The effect size is shown 

as a log ratio scale; zero corresponds to the true absence of the outcome. Positive and negative values 

of effect size indicate more and less effectiveness of mitigation policy, respectively (green and red 

arrows, respectively). The points indicate means. Subregions are based on the Intergovernmental 

Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES1). Results are shown for the 

five Shared Socioeconomic Pathways (SSPs) and the three General Circulation Models (GCMs). See 

Supplementary Data 5 for the values of means and the associated 95% confidence intervals of the 

effect sizes.
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Extended Data Figure 8. The relationships between the country-level social cost of carbon 

(CSCC2) and the country-level conservation of tree diversity-dependent productivity (ΔP). The 

lines and shaded areas are the estimates based on a generalized additive mixed model and their 95% 

confidence intervals, respectively. Results are shown for the five Shared Socioeconomic Pathways 

(SSPs) and the three General Circulation Models (GCMs). See Supplementary Data 6 for the values 

of means and the associated 95% confidence intervals of the effect sizes [inverse of 

log(mitigation/baseline)] of climate change mitigation policy to alleviate the loss of tree diversity-

dependent productivity for each country. 
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Extended Data Figure 9. The relationships between the country-level social cost of carbon 

(CSCC2) and the country-level per-area conservation of tree diversity-dependent productivity 

(ΔP). The size of circles is proportional to the forested area of each country. The colors of circles 

correspond to the country-level sum of productivity conservation shown in Extended Data Figure 8 

(see the color scale at the bottom right). Results are shown for the five Shared Socioeconomic 

Pathways (SSPs) and the three General Circulation Models (GCMs). Names of major and outlier 

countries are shown beside the symbols; ISO 3166-1 alpha-3 code is used to indicate countries.  
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Extended Data Figure 10. Tree species analysed. The maps showing the total number of tree species 

reported in each country3, and the number of the target species (those analysed in the present study) 

and the proportion (%) of these target species within the total number of species reported in each 

country3.  
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METHODS 

 

Supplementary Figure 1 and 2 are the schematic diagrams for workflow how we estimated 

proportional changes in species richness and forest productivity and absolute changes in net primary 

productivity at the local scale. 

 

Species distribution modelling 

Spatially-explicit observations of tree species were from the previous study1. We provide a 

protocol for our species distribution model [Overview, Data, Model, Assessment and Prediction 

(ODMAP) protocol2; Supplementary Table 1]. Briefly, we obtained all records of trees and shrubs 

(hereafter, referred to as trees) from the Global Biodiversity Information Facility 

(doi.org/10.15468/dl.8u65om; as of July 22nd 2015), and then filtered out records with geographic 

location by referring to the database of Global Administrative Areas (www.gadm.org; as of August 

3rd 2015)3. To discard locations where species have been introduced, we excluded records from 

outside of their native ranges by referring to the Red List of Threatened Species 

(www.iucnredlist.org). Native ranges were determined by presence/absence in 12 land 

regions: North America, Mesoamerica, Caribbean Islands, South America, Europe, North 

Africa, Sub-Saharan, North Asia, West and Central Asia, East Asia, South and Southeast 

Asia, and Oceania. The Antarctic was excluded from the analysis. Note that, in the 

previous study1, species distribution modelling was conducted at a spatial resolution of 30 

arcminutes (hereafter, coarse grids). Here we extended the modelling to a resolution of 30 

arcseconds (hereafter, fine grids) to improve our approximation of biodiversity-dependent 

productivity (see the section, Species richness and productivity estimation). However, the 

modelling for species distributions at the fine-scale was only possible for the present 

period, because our models relied on land-use and climatic variables and future land-use variables 

were only available at the scale of coarse grids. We sampled one occurrence record per grid for 

all species at both spatial resolutions. To avoid the effect of model inaccuracy from a small sample 

size, we limited our analysis to species that had 30 and more refined occurrence records4. These 

resulted in 1,755 and 934 target tree species at a spatial resolution of fine and coarse grids, 

respectively. Note that we coped with uncertainties due to the difference in the number of target 

species between the two periods by combining spatially explicit simulations and machine 

learning regressions (described later). 

 For the present period, we obtained a dataset of 19 bioclimatic variables, calculated from the 

monthly minimum temperature, maximum temperature, and precipitation at a resolution of fine grids 

downloaded from the WorldClim 1.4 (www.worldclim.org)5. Then, we obtained land-use variables at 

a resolution of fine grids from the MODIS (Moderate resolution Imaging Spectroradiometer) Land 

Cover Type for the year 2005 (glcf.umd.edu/data/lc). We used land cover classes of the global vegetation 
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classification scheme of the International Geosphere-Biosphere Programme (www.igbp.net) as a categorical 

variable in our models of species distribution. One of the five land-use types (cropland, pasture, forest, 

other natural lands, and settled land) was assigned to each of the fine grids. If several pixels with 

different land cover types were included in a fine grid, one with the largest area was assigned as the 

representative land cover type.  

For future scenarios, we focused on mitigation and high-emission baseline scenario based on 

representative concentration pathways (RCPs): the mitigation scenario aimed to stabilize climate 

change at the end of the 21st century, whereas the baseline scenario assumed increasing greenhouse 

gas (GHG) emissions and thus climate change over time1. We set the target years as the 2070s, the 

latest period in the Worldclim 1.4 projections. We used future climatic variables based on the General 

Circulation Models (GCMs) included in the Fifth Coupled Model Inter-Comparison Project (CMIP5) 

experiment: MIROC-ESM-CHEM6, HadGEM2-ES7,8, and GFDL-CM39, downloaded from 

WorldClim5. All 19 bioclimatic variables for the future were calculated by using the same method 

as for the current climate. We aggregated the climatic variables to obtain mean values at the coarse 

resolution. Future land-use changes under the mitigation and baseline scenarios10 were based on the 

AIM/CGE11, a computable general equilibrium model representing the entire global economy. The 

AIM/CGE implements climate change mitigation in the form of a global uniform carbon tax on GHG 

emissions from the agriculture, land-use, and energy sectors. In the model, supply, demand, 

investment, and trade are described by individual behavioural functions that respond to changes 

in the prices of production factors and commodities, as well as changes in technology and 

preference parameters on the basis of assumed population, gross domestic production, and 

consumer preferences. The allocation of land by sector for 17 regions is formulated as a 

multinomial logit function to reflect differences in substitutability across land rent, and regional 

land use is further downscaled to high spatial resolution with the AIM/PLUM downscaling model12 

based on spatially explicit attainable yields. In this study, we used future land-use variables10, which 

were based on the Shared Socioeconomic Pathways (SSPs) framework13. The SSPs are based on five 

narratives describing how socioeconomic factors may change over the next century, considering 

changes in population, GDP, energy, emissions, and land use. We relied on the five SSPs: 

challenges to adaptation and mitigation are both low (SSP1: sustainability) or both high (SSP3: 

regional rivalry); low challenges to mitigation are combined with high challenges to adaptation 

(SSP4: inequality); high challenges to mitigation are combined with low challenges to adaptation 

(SSP5: fossil-fuelled development); intermediate challenges exist for both adaptation and mitigation 

(SSP2: middle-of-the-road). For instance, the SSP1 and SSP4 assume low fossil fuel dependence 

and increased deployment of non-fossil energy sources, leading to lower greenhouse gas 

emissions. Energy demand is the lowest in the SSP1 scenario peaking around the middle of the 

21st century and declining thereafter due to energy efficiency measures and behavioral changes13. 

See Supplementary Table 2 for further details. The SSPs employ a concept called scenario matrix 
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architecture, which has a two-dimensional space comprising socioeconomic patterns and climate 

mitigation levels defined by radiative concentration pathways (RCP). For our mitigation scenarios, 

we used each SSP, combined with the RCP with the lowest radiative forcing level. SSPs 1, 2, 4, and 5 

were combined with RCP 2.6. SSP3 was combined with RCP3.4 because the SSP3-RCP2.6 combination 

was found to be incompatible due to high levels of energy intensity13,14. We used the high-emission 

baseline condition in each SSP for the baseline scenario, assuming the absence of additional climate 

policy and efforts. For instance, baseline scenarios of the SSP3 and SSP5 have a heavy reliance on 

fossil fuels with an increasing contribution of coal to the energy mix; the challenges for mitigation 

are thus high13. Given that land-use scenarios explicitly incorporated areas for bioenergy crops 

and afforestation for GHG mitigation activity, which did not exist in land-use data in the current 

condition, bioenergy crops and afforestation were merged into cropland and forests, respectively.  

 As described in the previous work1. we employed MaxEnt v3.315, a modelling approach 

that works well for cases in which only presence data are available and absence data are difficult 

to collect16, for predicting the current and future probability of occurrence of target species. To 

incorporate sampling bias into MaxEnt, we took the bias background approach, which uses the prior information 

on the spatial distribution of survey effort to preselect background locations before running MaxEnt. In this 

approach, the effect of sampling bias cancels out because it is common to both occurrence and background. To 

do this, we combined all occurrence records in the final dataset for target taxonomic groups (including species 

with < 30 records) and generated a set of background data, weighted by the sampling density of occurrence 

records. The number of background data was determined as 20% of grids that contained occurrence records of 

the target taxonomic group. In the model development procedure, the background data were extracted within 

the native range for each species. We identified a species-specific set of explanatory variables for each 

of the target species. First, by using the five land-use and 19 bioclimatic variables, we generated 

all possible combinations of these explanatory variables. We then excluded explanatory variables 

showing collinearity. We selected the most parsimonious combination of explanatory variables 

based on the corrected Akaike information criterion (AICc)17. MaxEnt is capable of building 

complex nonlinear functions of explanatory variables by combining simple mathematical 

transformations of explanatory variables, or so-called features18; it selects the features for each 

explanatory variable that contribute most to model fit using regularization. We tested 31 

regularization coefficients (from 0 to 15 at increments of 0.5) and chose the one for each species 

that maximized model fit under the given combination of explanatory variables selected, based on 

AICc19. Among the final models developed for all species, we discarded those with poor 

performance for subsequent analyses based on 10-fold cross validation, as follows. We assessed 

model performance using the continuous Boyce index (CBI), which is used to evaluate model 

quality for predictions based on presence-only data20. This index varies between –1 and 1; negative 

values indicate an incorrect model, values close to 0 mean a chance model, and positive values 

indicate a model whose predictions are consistent with the presence distribution in the test set. We 
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used models with CBI > 0 based on the 95 % confidence interval for the subsequent analyses. To 

obtain a map of suitable habitat for each species under the current conditions, the average value 

of the relative probability of occurrence calculated by the 10-fold cross-validation was converted 

into a binary map. We applied the average of the 90 % sensitivity threshold to minimize the false-

negative fractions and to avoid underestimating the suitable habitat area21. For the future scenarios, 

a species’ ability to disperse and track the shifting climate, a crucial determinant of future 

potential for range shifts22,23, was explicitly considered1. Because dispersal ability is strongly 

related to life-history traits23, we collected information on life-history traits for all target species 

and estimated dispersal distance for each species by the 2070s. Here dispersal distance per generation 

was estimated from the formula based on an earlier work23; we adopted ‘group 5’ formula in dispeRsal 

function, which requires species-specific data for dispersal syndrome and growth form. For dispersal 

syndrome, we compiled the database from various sources (details are found in the Source Data of the 

earlier study1). For growth form, we obtained the data from a database of The IUCN Red List of Threatened 

Species (www.iucnredlist.org). Generation length was estimated according to growth form24. Based on 

the above estimates, we obtained habitat maps for individual species. The possible changes in areas 

hospitable to species under different future scenarios are described in the earlier work1: briefly, the losses of 

suitable habitats due to the combined effects of climate and land-use were estimated to be smaller in the 

mitigation scenario than in the baseline scenario (e.g., approximately 17-28% and 22-36% for the 

mitigation and baseline scenario, respectively, across a wide range of organism groups).  

 

Species richness and productivity estimation 

For the calculations below, we have mainly relied on “vegan”25, “mobsim"26, and “xgboost”27 package 

of the R software28. We projected spatial distributions of individual species for the year 2005 and 

2070s at the spatial resolution of 30 arcminutes (coarse grids; n = 32,670). For both periods, we 

obtained the total number of species present in each coarse grid (hereafter, γ-diversity). For the former 

year, we also projected spatial distributions of individual species at the spatial resolution of 30 

arcseconds (fine grids; n = 115,426,714). Based on these projections, we calculated changes in species 

richness at the scale of fine grids (hereafter, α-diversity) from 2005 to 2070s for different scenarios 

of climate and land-use changes. The reason why we conducted this downscaling was that there could 

be a potential mismatch due to scaling issues29,30. That is, changes in γ-diversity are not universally 

proportional to those in α-diversity across different coarse grains. Furthermore, we relied on the 

values of the elasticity of substitution (θ) of a previous study31. Although assumed to be scale-

independent, these estimates were developed based on the forest inventory dataset collected at the 

local spatial scale. We thus aimed to estimate the changes in productivity at this fine-scale. Here, we 

first obtained species-area and endemics-area relationships (SARs and EARs, respectively) for the 

year 2005 that were unique to each of the coarse grids; 50 sub-grids were randomly chosen with 1 % 

intervals between the scales of the fine and coarse grid to construct the curves26. If all fine grids were 
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forested, a coarse grid had 3,600 fine grids. These relationships were used to estimate α-diversity in 

the year 2005. Note that it was infeasible to directly estimate the temporal changes in γ-diversity 

because future spatial distributions were estimated only for a subset of species present in the 2005 

data (i.e., widespread common species) as described earlier. Instead, we used the number of these 

common species that went extinct from or immigrated into a given coarse grid by the 2070s for 

estimating the number of other subordinate species (that were excluded in the MaxEnt analysis for 

the period of 2070s because of limited occurrence at the scale of 30 arcminutes; see the section for 

species distribution modelling) that went co-extinct or co-immigrated32,33.  

To realize this, we first implemented two spatially explicit simulations for species co-

extinction and co-immigration. In an artificial landscape with 3,600 homogeneous grids, we randomly 

draw between 5 and 80 species with total occurrence between 500 and 180,000 individuals, based on 

a lognormal species abundance distribution (SAD) with randomly assigned parameters μ and σ of 

SADs reported in different biomes34-36. We used large ranges of parameters (the number of species 

and individuals) because of many possibilities in different biomes from tropics to northern woodlands 

(e.g., 5 species as a minimum is to represent the size of species pool in hemiboreal, boreal, and taiga 

landscapes). To consider many possibilities of spatial patterns of tree individuals in different biomes, 

we randomly assigned individuals of each species to each of the 3,600 grids. For each of these 

artificial meta-communities, we calculated mean α-diversity (number of species per grid), γ-diversity 

(number of species per landscape), Whittaker’s multiplicative β-diversity, and Shannon’s 

evenness (across the grids)36,37. We also constructed SARs for estimating species richness at the 

smallest spatial scale. Here we defined common species as abundant species that had an abundance 

rank of 25 % or below; that is, in each simulation run, we randomly assigned species with the 

dominance rank between 1 and the upper quartile as common species. For co-extinction simulation, 

we randomly made some of (up to half of) these common species extinct from a meta-community. 

Other rare species that were present in the same grid with these extinct common species were also 

forced to extinction, assuming that these grids became no longer habitable for any species because of 

possible climate and land-use change. Note that, in reality, species extinction can occur spatially in a 

non-random fashion and the consequences for ecosystem functioning may differ between random and 

non-random loss of species38. However, because substantial uncertainty exists as to land use patterns 

in different regions39, we randomly made some species go extinct so as to cover many possible 

extinction scenarios; we emphasize that such random extinction was for species identity and not for 

locations (that is, not assuming random land clearing). That is, based on which species are lost, the 

locations of these species previously present are cleared. Furthermore, the choice of the extinction 

limit (up to half of the common species could be lost) was to have a conservative estimate. For co-

immigration simulation, we assumed that an artificial meta-community resulted from additional 

immigration of both common and rare species. We again randomly assigned some of (up to half) the 

species as common and removed them from the meta-community to construct a pre-immigration 
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meta-community. We also removed individuals of other species that were present in the same grid 

with these common species, assuming that these grids became newly hospitable in a post-immigration 

meta-community. We repeated the above co-extinction and co-immigration simulations 25,000 times, 

respectively. From that, we had an estimate of how many rare species could be co-extinct or co-

immigrated with common species in these simulated meta-communities. Then we used a method of 

extreme gradient boosting (XGBoost)27 to obtain machine learning regressions for predicting the 

number of species co-extinct and co-immigrated based on other information described above 

(different diversity metrics explained above, parameters of SAD, total frequency occurrence of 

existing species, and the number of common species extinct or immigrated). We assigned 5,000 and 

20,000 results of the simulation runs for evaluation and training, respectively. The best regressions 

were obtained using a 10-fold cross validation (tested with the root mean square error performance 

metric). Overall, the regressions for predicting the number of species co-extinct/co-immigrated 

showed reasonable goodness of fit (R2 = 0.802 and 0.593 for species co-extinction and co-

immigration, respectively).  

We applied these regressions to results of species distribution modelling (also see 

Supplementary Fig. 2 for a schematic diagram). By comparing the number of widespread common 

species in each coarse grid between the year of 2005 and 2070s, we obtained the number of common 

species extinct or immigrated. By combining this information with the same set of information 

required for our XGBoost regressions, all of which were obtained from the 2005 data for each of the 

32,677 coarse grids, we regressed the potential number of subordinate species co-extinct and co-

immigrated. These regressions allowed us to predict potential γ-diversity for the period of 2070s in 

each of the coarse grids. When we observed extinctions of some species for the 2070s in a given 

coarse grid, we converted this total number of species lost into a proportion of habitats that was 

required for losing these species based on the unique EAR40. When we observed immigration by some 

species for the 2070s in a coarse grid, then we converted this total number of species gained into a 

proportion of habitat that was required to gain these species based on the unique SAR40. By 

multiplying these proportional changes in the habitable areas for the period of 2070s with species 

richness values at the scale of fine grids, which were expected from the unique SARs in the year 2005, 

we obtained the values of α-diversity in the 2070s. In some coarse grids, it was not possible to obtain 

unique SARs or EARs for reasons such as low γ-diversity in northern biomes. In such a case, we 

assumed that proportional changes in the habitable areas between the two periods were estimated by 

relying on an empirical SAR with the slope value of 0.3 in log-log space41,42. Based on the changes 

in γ-diversity, we estimated the values of α-diversity in the 2070s. Note that, likewise the year of 2005, 

each of the coarse grids in the period of 2070s also had a single unique value of α-diversity (n = 

32,670). 

We calculated proportional changes in α-diversity from the year of 2005 to the period of 

2070s (%), and converted them into proportional changes in forest productivity (%) based on 
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parameters of the elasticity of substitution (θ), which were estimated for forest biomes worldwide 

with a spatial resolution of the coarse grids31; the elasticity of substitution can be used to estimate 

forest productivity based on proportional changes in species richness of tree species (i.e., α-diversity). 

More specifically, the θ values represent the marginal productivity—the change in productivity 

resulting from the one-unit decline of species richness after accounting for climatic and soil covariates. 

The θ values were estimated across the forested biomes worldwide31, ranging between 0.198 and 

0.299; a global mean was estimated as 0.26 with a standard deviation of 0.09. Note that 0 < θ < 1 

represents a positive and degressively increasing curve of richness-productivity relationships. The θ 

values were estimated based on tree volume productivity (m3 ha−1yr−1) in terms of periodic annual 

increment, calculated from the sum of individual tree stem volume (m3)31. The values of the elasticity 

of substitution were originally estimated based on the forest inventory dataset collected at the local 

spatial scale31. For avoiding a potential mismatch due to scaling issues29,30, we estimated the changes 

in productivity at the scale of fine grids. We used a net primary productivity (NPP) dataset estimated 

using the MODIS imagery43 for the year 2005. In the terrestrial biomes analysed here, the total NPP 

was approximately 43.78 Pg C yr-1. Note that, because tree productivity was originally estimated 

based on an increment in stem volume of individual trees, the estimated proportional changes in forest 

productivity cannot fully capture NPP of terrestrial vegetation; however, a substantial fraction of 

primary productivity in forested biomes is derived from tree growth. We obtained NPP values at the 

scale of fine grids. Here we assumed that all fine grids in a given coarse grid showed the equivalent 

changes in productivity in a proportional scale, reflecting the mean change in α-diversity expected to 

occur in that coarse grid. Based on these estimations, we have obtained absolute changes in forest 

productivity (kg C m-2 yr-1) for different scenarios of climate/land-use changes at the scale of fine 

grids. Our analyses for tree diversity and productivity changes were conducted for the grids, where 

tree species were observed and the θ values were available; thus, the results are also shown for non-

forested biomes. 

 

Data analyses 

We primarily relied on “maptools”44, sf”45, and “tidyverse”46 package of the R software28 for 

summarizing our estimates. Within the forested areas analysed in the previous study31, we 

summarized our results at different spatial scales from local to the globe. Here, the fine grids are 

defined as the local scale. We also focused on the scales of countries and biomes. Terrestrial biome 

categories are based on the 14 terrestrial ecoregions used in World Wildlife Fund 

(www.worldwildlife.org). We have obtained information for areas and names of individual countries 

from Natural Earth (www.naturalearthdata.com; as of August 1st, 2019), which primarily follows the 

setup of the United Nations Statistics Division (unstats.un.org; as of August 1st, 2019). To be relevant 

to the global policy, we have summarized results also at the scale of the subregion used in the 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES; 
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www.ipbes.net/deliverables/2b-regional-assessments). For some territories and nations that are not 

explicitly classified into regional categories, we assigned their subregions based on their geographical 

locations. 

 To quantify the effect sizes of mitigation efforts on conservation of species and productivity, 

we calculated the reductions in local-scale loss of species (ΔSR) and productivity (ΔP) as a log ratio 

scale, which assumes that zero corresponds to the true absence of the outcome (i.e., no difference 

between the two scenarios). Estimates based on the baseline and mitigation scenarios were used for 

the denominator (control; ΔSRbaseline and ΔPbaseline) and numerator (treatment; ΔSRmitigation and 

ΔPmitigation), respectively. We used “ARPobservation”47 package of the R software28 to obtain log-

response ratios and the associated 95% confidence intervals for each of the combinations of SSP 

scenarios and GCMs. To facilitate interpretation, we multiplied -1 with the effect sizes and thereby 

positive and negative values, respectively, indicate more and less effectiveness of climate mitigation 

policy in reducing species loss and the associated productivity loss (also see a schematic diagram in 

Supplementary Fig. 3). We confirmed that spatial patterns of the effect size of productivity responses 

were not driven by those of the θ values; R2 values of linear regressions ranged between 0.0005 and 

0.016 across all combinations of GCMs and SSPs. To ensemble results across the three GCMs, we 

adopted a meta-analytical approach; we used “metafor”48 package to obtain global means and the 

associated 95% confidence intervals for each SSP scenario. We repeated the above calculations at the 

biome- and IPBES subregion-, and country-scale. For biome-level analyses, we used the same 

package for a mixed-effects meta-regression with the effect size as a response variable, the GCMs as 

a random effect, and climate conditions (mean annual temperature or precipitation of biomes) as a 

moderator. We additionally provide maps showing the mean and variability among the GCMs in 

predicting tree diversity and associated productivity changes in Supplementary Figure 4-6. 

Then, we focused on the relationship between the country-level social cost of carbon [CSCC 

(US$ tCO2
-1); the Burke–Hsiang–Miguel damage function49, estimated for each of SSPs] and the 

country-level reduction in forest productivity loss under a given SSP. Here we were interested in the 

country-level loss of productivity (absolute changes within each country), instead of the productivity 

loss per area that can give the average estimates of local productivity changes within a focal area (e.g., 

proportional changes within each country). We thus summed up the differences between the ΔPbaseline 

and ΔPmitigation within each country and multiplied these values by the area of each country (Pg C yr-

1). The country areas were obtained by summing up areas of the fine grids analysed for the changes 

in biodiversity and productivity, by considering the changes in fine grid area (m2) along a latitudinal 

gradient. This gave us the sums of reduction in productivity loss at the country level, which was used 

as a response variable in our models. For each of the individual combinations of SSPs and GCMs, we 

relied on a generalized additive model (GAM) with the CSCC as an explanatory variable. To 

ensemble results across the GCMs, we used a generalized additive mixed model (GAMM) with the 

GCMs as a random effect and the CSCC as an explanatory variable. We additionally checked if the 
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results were affected by land area, using the GAMMs. 

 Lastly, we summed up the reduction in productivity loss across all countries, under each of 

SSPs and GCMs. This gave us the estimate of global productivity conservation, corresponding to the 

value, global ∑ (ΔPbaseline –ΔPmitigation) (Fig. 6d). Caution is necessary to interpret the results. For 

instance, although the values of global productivity conservation were similar between SSP1 and 

SSP3 (Fig. 6d), these SSPs are based on contrasting assumptions including those about deforestation 

and reforestation/afforestation10,13,14. While substantial reforestation is expected in the SSP1 

mitigation scenario, the expansion of bioenergy crops at the expense of forest area is assumed to occur 

in the SSP3 mitigation scenario. Also, little and large shrink of forest areas is expected for the SSP1 

and SSP3 baseline scenario, respectively. Likely reflecting these contrasts, global ΔPbaseline and 

ΔPmitigation were both relatively small (SSP1) and both relatively large (SSP3), resulting in similar 

values of productivity conservation. Likewise, our estimations were primarily based on a comparison 

between the baseline and mitigation scenarios. 

 

Data availability The source data underlying figures (Supplementary Data 1-6) are archived in the 

Dryad repository: https://doi.org/10.5061/dryad.vq83bk3s2. 

 

Code availability The code that support the findings of this study are available from the 

corresponding author upon reasonable request. 
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Supplementary Table 1. 

ODMAP element Contents 

Overview 

Model objective • Objective: Transfer/Forecast 

• Target outputs: Map of potential suitable habitat 

Taxon Woody vascular plant species 

Location Global 

Scale of analysis • Spatial extent (Lon/Lat): Longitude 180°W – 180°E, Latitude 60°S –84°N 

• Spatial resolution: 30 arcminutes (coarse-scale), 30 arcseconds (fine-scale) 

• Temporal extent/time period: Occurrence data extended to 2015. Climate 

data was based on the average of 1960-1990. Land use data was based on 

2005. 

• Type of extent boundary: Rectangular 

Biodiversity data overview • Observation type: Occurrence record from various sources including human 

observation, machine observation, and specimen collection records.  

• Response/Data type: Presence-only 

Type of predictors Climatic, land-use 

Conceptual model / 

Hypotheses 

Hypotheses: We used climate (annual trends, seasonality, and extreme or limiting 

factors) and land-use as important environmental predictor variables for tree and 

shrub species on the global scale.  

Assumptions Relevant ecological drivers (or proxies) of species distributions are included. 

Species are at equilibrium with their environment. 

SDM algorithms • Algorithms: We fitted MaxEnt15 to occurrence data. MaxEnt was chosen due 

to competitive performance on a small sample size and presence-only data 

• Model complexity: MaxEnt models were built with linear and quadratic 

features only, to reduce the risk of the model overfitting. 

• Model averaging: Model averaging of 10 replicates. 

Model workflow For each of the target species, we developed a MaxEnt model for predicting the 

distribution probability by iteratively using the prepared possible combinations of 

explanatory variables without multicollinearity issues (See Multicollinearity 

section for the details). To select the most parsimonious combination of 

explanatory variables, corrected Akaike information criterion (AICc) values were 

compared among the candidate models, and the model with the minimum value 

was selected 17. Then, we performed parameter tuning for the regularization 

parameter (beta) in MaxEnt models based on AICc. We tested ß values from 0 to 

15 (in increments of 0.5).  
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Software • Software: Analyses were conducted in R ver. 3.3.2 and R packages rgdal 

1.2–6, raster 2.5–8, rJava 0.9–8, dismo 1.1–4, and ENMeval 0.2.2, usdm 

1.1–15, and MaxEnt v3.3 (http://www. Cs.princeton.edu/schapire/maxent/). 

• Data availability: Available from the corresponding author upon reasonable 

request. 

Data 

Biodiversity data • Taxon names: 1,754 (fine-scale) and 934 (coarse-scale) tree and shrub 

species (Supplementary Data1) 

• Taxonomic reference system: not specified. 

• Data source: Occurrence records from the Global Biodiversity Information 

Facility (www.gbif; doi.org/10.15468/dl.8u65om, as of July 22nd 2015) 

• Sampling design: We sampled one occurrence record per grid: 30 

arcminutes for coarse-scale, and 30 arcseconds for fine-scale. 

• Sample size: Species that had 30 and more refined occurrence records. 

• Data cleaning/filtering: To discard locations where species have been 

introduced, we excluded records from outside of their native ranges by 

referring to the Red List of Threatened Species (www.iucnredlist.org). Native 

ranges were determined by presence/absence in 12 land regions: North 

America, Mesoamerica, Caribbean Islands, South America, Europe, North 

Africa, Sub-Saharan, North Asia, West and Central Asia, East Asia, South 

and Southeast Asia, and Oceania. The Antarctic was not contained in the 

extent of this study. 

• Background data: To incorporate sampling bias into MaxEnt, we took the 

bias background approach, which uses the prior information on the spatial 

distribution of survey effort to preselect background locations before running 

MaxEnt. In this approach, the effect of sampling bias cancels out because it is 

common to both occurrence and background. To do this, we combined all 

occurrence records in the final dataset for target taxonomic groups (including 

species with ≤ 30 records), and generated a set of background data, weighted 

by the sampling density of occurrence records. The number of background 

data was determined as 20% of the grids which contain the occurrence record 

of the target taxonomic group. In the model development procedure, the 

background data were extracted within the native range for each species. 

• Errors and biases: Occurrence records GBIF database are likely to be 

spatially biased towards more easily accessed or better surveyed areas, which 

are affected by various social constraints. Therefore, we took the bias 

background approach as described in the “Background data” section.  
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Data partitioning The model performance was assessed using 10-fold cross-validation. 

Predictor variables • Predictor variables: 

 Climate: We used 19 climatic variables from the WorldClim 1.4 

(http://worldclim.com/version1).  

BIO1 = Annual Mean Temperature 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3 = Isothermality (BIO2/BIO7) (*100) 

BIO4 = Temperature Seasonality (standard deviation *100) 

BIO5 = Max Temperature of Warmest Month 

BIO6 = Min Temperature of Coldest Month 

BIO7 = Temperature Annual Range (BIO5-BIO6) 

BIO8 = Mean Temperature of Wettest Quarter 

BIO9 = Mean Temperature of Driest Quarter 

BIO10 = Mean Temperature of Warmest Quarter 

BIO11 = Mean Temperature of Coldest Quarter 

BIO12 = Annual Precipitation 

BIO13 = Precipitation of Wettest Month 

BIO14 = Precipitation of Driest Month 

BIO15 = Precipitation Seasonality (Coefficient of Variation) 

BIO16 = Precipitation of Wettest Quarter 

BIO17 = Precipitation of Driest Quarter 

BIO18 = Precipitation of Warmest Quarter 

BIO19 = Precipitation of Coldest Quarter 

 Land-use:  

[Fine-scale]: MODIS Land Cover Type for the year of 2005 

(glcf.umd.edu/data/lc; as of February 19th, 2018) 

[Coarse-scale]: Proportion of each of the five land-use types (cropland, 

pasture, forest, other natural lands, and settled land) based on 

AIM/PLUM output for 200510. 

• Spatial resolution of raw data 

 Climate: For fine-scale, downloaded 30 arcsecond data was used 

directly. For coarse-scale, a dataset of monthly minimum temperature, 

maximum temperature, and precipitation was downloaded from the 

WorldClim. The dataset at a resolution of 30 arcseconds was averaged 

to values at a resolution of 30 arcminutes. Then, we calculated 19 

bioclimatic variables based on the three climatic variables, and these 

bioclimatic variables were used for the model construction. 
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 Land use:  Data was used at their original resolution. 

• Geographic projection: WGS 84, ESPG 4326 

• Temporal resolution and extent of raw data: Same as biodiversity data. 

• Data processing: Climatic data for coarse-scale were calculated by using the 

“aggregate” function [raster R package50] and “biovars” function [dismo R 

package51]. 

Transfer data for projection • Models and scenarios, and data sources:  

 Climate: We used climatic variables based on five of the General 

Circulation Models (GCMs) included in the Fifth Coupled Model 

Inter-Comparison Project (CMIP5) experiment: GFDL-CM39, 

HadGEM2-ES7, and MIROC-ESM-CHEM6, downloaded from the 

WorldClim.  

 Land-use: Changes in land use under the mitigation and baseline 

scenarios were estimated by the AIM/CGE, a computable general 

equilibrium model representing the entire global economy. we used 

future land-use variables generated by Fujimori, et al. 10, which were 

based on five alternative socioeconomic conditions in the Shared 

Socioeconomic Pathways (SSPs) framework. The SSPs are based on 

five narratives describing how socioeconomic factors may change over 

the next century, considering changes in population, GDP, energy, 

emissions, and land use. See Supplementary Table 2 for further details 

of the narratives. These narratives are designed to span a range of 

futures in terms of the degree of difficulty for mitigation and adaptation 

to climate change. Two of the SSPs describe futures in which challenges 

to adaptation and mitigation are both weak (SSP1: sustainability) or 

both strong (SSP3: regional rivalry). Two ‘asymmetric cases’ were 

designed, comprising a case in which strong challenges to mitigation 

are combined with weak challenges to adaptation (SSP5: fossil-

fuelled development), and a case in which the opposite is true (SSP4: 

inequality). Finally, a central case describes a world with intermediate 

challenges for both adaptation and mitigation (SSP2: middle-of-the-

road). The SSPs employ a concept called scenario matrix architecture, 

which has a two-dimensional space comprising socioeconomic 

patterns and climate mitigation levels defined by radiative forcing 

levels (Representative Concentration Pathways; RCP). In this study, 

we used a radiative forcing level of 2.6 W m−2 for the mitigation 

scenario under SSP1, 2, 4, and 5. We used a radiative forcing level of 
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3.4 W m−2 for the mitigation scenario under SSP3, because there was 

no solution for 2.6 W m−2 in SSP3. For the baseline scenario, we used 

the baseline condition in each SSP corresponding to a radiative 

forcing level of 8.5 W m−2, which represents the absence of additional 

climate policy.  

• Spatial extent and resolution: Same as the coarse-scale model. 

• Temporal extent/time period: 2050s and 2070s. For climatic data, we used 

the average of 2041-2060 for the 2050s and the average of 2061-2080 for 

2070s.   

Model 

Multicollinearity First, by using the five land-use and 19 bioclimatic variables, we generated all 

the possible combinations (224 = 16,777,216) of these variables. We then 

excluded explanatory variables showing collinearity: (1) we excluded the set of 

explanatory variables that include pairs of highly correlated variables (Pearson’s 

product moment correlation coefficient ≥ |0.70|), and (2) we excluded those 

explanatory variables for which the variance inflation factor value, which 

indicates the degree of collinearity between two or more predictor variables, 

was ≥ 5. 

Model settings • Model settings: We conducted parameter tuning for regularization 

parameters as we described in the “Model workflow” section. We restricted 

the features into two types (linear and quadratic) as described in the “SDM 

algorithms” section. We used default settings for other parameters in MaxEnt. 

• Model settings for extrapolation: Predictions bounded by clamping in 

MaxEnt. 

Model estimates • Uncertainty in model coefficients: Cross-validation was used to yield 

robust predictions. 

Model averaging/ 

Ensembles 

We calculated the mean probability of occurrence from 10 replicates. 

Non-independence 

correction/ analyses 

None 

Threshold selection We used an average of the 90 % sensitivity threshold to minimize the false-

negative fractions and to avoid underestimating the suitable habitat area. 

Assessment 

Performance statistics We used the continuous Boyce index (CBI)20 calculated on 10-fold cross-

validation, to evaluate model quality for predictions based on presence-only data. 

This index varies between –1 and 1; negative values indicate an incorrect model, 

values close to 0 mean a chance model, and positive values indicate a model 
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whose predictions are consistent with the presence distribution in the test set. We 

used models with CBI > 0 based on the 95 % confidence interval for the 

subsequent analyses. 

Plausibility check None 

Prediction 

Prediction output • Prediction unit: Predictions bounded by clamping in MaxEnt. 

The probability of occurrence was converted into the binary map by using 

the threshold (see section Threshold selection), then we calculated the area of 

potentially suitable habitat. 

• Post-processing:  

 Current: Predicted suitable habitats may appear beyond the species’ 

native ranges. For each species, we discarded projected suitable habitats 

if (1) they were beyond the current native regions recorded in the IUCN 

species database, or (2) if they are on a landmass that has not been 

connected to other landmasses with occurrence points since the last 

glacial maximum period. In this case, the threshold value for the paleo-

coastline was set to -130 m below the current coastline, estimated by 

using seafloor topography data (ETOPO1). Although a few exceptional 

species with high dispersal ability may have the potential to go beyond 

their native range, to evaluate suitable habitat, we made rather 

conservative assumptions to minimize commission errors (i.e., 

identification of suitable habitats in areas where a given species has 

never occurred owing to barriers or other biogeographic limitations). 

 Future: To identify potential future habitats constrained by dispersal 

distance, the estimated dispersal distance for each species was buffered. 

Dispersal distance per generation was estimated from the formula based 

on Tamme, et al. 23. We adopted the group 5 formula in the 

“dispeRsal()” function, which requires species-specific data for the 

dispersal syndrome and growth form. Generation length was estimated 

based on Marba, et al. 24, according to a growth form. 

Uncertainty quantification • Uncertainty in estimation of species-specific dispersal distance: 

Disequilibrium between climate change and species dispersal is often 

reported52; generally limited dispersal ability of trees as a sessile organism 

and habitat fragmentation make it difficult for species to track climate 

change. Also, events such as an exceptional long dispersal53 were not 

considered in this study. 

• Uncertainty in scenarios: We used the three GCMs for each of the two RCP 
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scenarios under each of the SSPs, all of which are based on many 

assumptions and thus susceptible to uncertainty. 
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Supplementary Table 2. Narratives of the Shared Socioeconomic Pathways (SSP). See Riahi, et al. 13 for further 

details. 

SSP1 Sustainability – Taking the Green Road (Low challenges to mitigation and adaptation): The world 

shifts gradually, but pervasively, toward a more sustainable path, emphasizing more inclusive development 

that respects perceived environmental boundaries. Management of the global commons slowly improves, 

educational and health investments accelerate the demographic transition, and the emphasis on economic 

growth shifts toward a broader emphasis on human well-being. Driven by an increasing commitment to 

achieving development goals, inequality is reduced both across and within countries. Consumption is oriented 

toward low material growth and lower resource and energy intensity. 

SSP2 Middle of the Road (Medium challenges to mitigation and adaptation): The world follows a path in 

which social, economic, and technological trends do not shift markedly from historical patterns. Development 

and income growth proceeds unevenly, with some countries making relatively good progress while others fall 

short of expectations. Global and national institutions work toward but make slow progress in achieving 

sustainable development goals. Environmental systems experience degradation, although there are some 

improvements and overall, the intensity of resource and energy use declines. Global population growth is 

moderate and levels off in the second half of the century. Income inequality persists or improves only slowly 

and challenges to reducing vulnerability to societal and environmental changes remain. 

SSP3 Regional Rivalry – A Rocky Road (High challenges to mitigation and adaptation): A resurgent 

nationalism, concerns about competitiveness and security, and regional conflicts push countries to 

increasingly focus on domestic or, at most, regional issues. Policies shift over time to become increasingly 

oriented toward national and regional security issues. Countries focus on achieving energy and food security 

goals within their own regions at the expense of broader-based development. Investments in education and 

technological development decline. Economic development is slow, consumption is material-intensive, and 

inequalities persist or worsen over time. Population growth is low in industrialized and high in developing 

countries. A low international priority for addressing environmental concerns leads to strong environmental 

degradation in some regions. 

SSP4 Inequality – A Road Divided (Low challenges to mitigation, high challenges to adaptation): Highly 

unequal investments in human capital, combined with increasing disparities in economic opportunity and 

political power, lead to increasing inequalities and stratification both across and within countries. Over time, 

a gap widens between an internationally connected society that contributes to knowledge- and capital-

intensive sectors of the global economy, and a fragmented collection of lower-income, poorly educated 

societies that work in a labor intensive, low-tech economy. Social cohesion degrades and conflict and unrest 

become increasingly common. Technology development is high in the high-tech economy and sectors. The 

globally connected energy sector diversifies, with investments in both carbon-intensive fuels like coal and 
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unconventional oil, but also low-carbon energy sources. Environmental policies focus on local issues around 

middle- and high-income areas. 

SSP5 Fossil-fueled Development – Taking the Highway (High challenges to mitigation, low challenges to 

adaptation): This world places increasing faith in competitive markets, innovation and participatory societies 

to produce rapid technological progress and development of human capital as the path to sustainable 

development. Global markets are increasingly integrated. There are also strong investments in health, 

education, and institutions to enhance human and social capital. At the same time, the push for economic and 

social development is coupled with the exploitation of abundant fossil fuel resources and the adoption of 

resource and energy intensive lifestyles around the world. All these factors lead to rapid growth of the global 

economy, while global population peaks and declines in the 21st century. Local environmental problems like 

air pollution are successfully managed. There is faith in the ability to effectively manage social and ecological 

systems, including by geo-engineering if necessary. 
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Supplementary Figure 1. Overall workflow to estimate changes in species richness and productivity 

by 2070s. 
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Supplementary Figure 2. Schematic diagram to downscale changes in species richness from γ-scale 

to α-scale. Note that this hypothetical landscape is only to visualize the calculation for the case of 

species co-extinction. In this hypothetical example, 60 % of habitats must be destroyed to remove 2 

species from the landscape (according to the endemic-area relationship; EAR). Thus, α-diversity in 

future was estimated as 1.8*(1-0.6) = 0.72. For species co-immigration (not visualized), the amount 

of habitat required to have additional species was estimated based on species-area relationship (SAR). 

For instance, suppose getting additional species, on average, required 5% of the above hypothetical 

landscape and future γ-diversity was estimated to increase from 5 to 6, α-diversity in future was 

calculated as 1.8*(1+0.05) = 1.89. 



23 
 

 

Supplementary Figure 3. Schematic explanation for the effectiveness of climate mitigation efforts 

to alleviate the impacts of climate change on tree species and the associated productivity in forested 

biomes. Results from mitigation scenario was compared with those based on baseline scenario, and 

the double-pointing black arrow is the effectiveness of mitigation efforts. In this example, the 

effectiveness is positive, which is shown as a positive effect size in Figs. 2, 3 and 5, and Extended 

Data Figs. 3, 4 and 7.  
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Supplementary Figure 4. Maps showing the projected changes in tree diversity under the 

mitigation scenarios from 2005 to 2070s. Results are based on means (left column) and standard 

errors (right column) of proportional changes (%) in α-diversity (remaining species richness estimated 

at the fine grid-scale) within each of the coarse grids, calculated across the three General Circulation 

Models (GCMs) (n = 32,670 grids). Results are shown for the five Shared Socioeconomic Pathways 

(SSPs). Results of individual GCMs are shown in Extended Data Figure 1. 
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Supplementary Figure 5. Maps showing the projected changes in tree diversity under the 

baseline scenarios from 2005 to 2070s. Results are based on means (left column) and standard errors 

(right column) of proportional changes (%) in α-diversity (remaining species richness estimated at 

the fine grid-scale) within each of the coarse grids from 2005 to 2070s, calculated across the three 

General Circulation Models (GCMs) (n = 32,670 grids). Results are shown for the five Shared 

Socioeconomic Pathways (SSPs). Results of individual GCMs are shown in Extended Data Figure 2. 
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Supplementary Figure 6. Maps showing the effects of a climate change mitigation to alleviate 

the loss of tree diversity-dependent productivity (ΔP) from 2005 to 2070s. The effect sizes 

[inverse of log(mitigation/baseline)] of ΔP are shown for each of the coarse grids, calculated across 

the three General Circulation Models (GCMs) (n = 32,670 grids). Results are shown for the five 

Shared Socioeconomic Pathways (SSPs). Results of individual GCMs are shown in Extended Data 

Figure 5. 
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