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A B S T R A C T   

In this paper, we propose a continuous-time stochastic intensity model, namely, two-phase dynamic contagion 
process (2P-DCP), for modelling the epidemic contagion of COVID-19 and investigating the lockdown effect based 
on the dynamic contagion model introduced by Dassios and Zhao [24]. It allows randomness to the infectivity of 
individuals rather than a constant reproduction number as assumed by standard models. Key epidemiological 
quantities, such as the distribution of final epidemic size and expected epidemic duration, are derived and 
estimated based on real data for various regions and countries. The associated time lag of the effect of inter
vention in each country or region is estimated. Our results are consistent with the incubation time of COVID-19 
found by recent medical study. We demonstrate that our model could potentially be a valuable tool in the 
modeling of COVID-19. More importantly, the proposed model of 2P-DCP could also be used as an important tool 
in epidemiological modelling as this type of contagion models with very simple structures is adequate to describe 
the evolution of regional epidemic and worldwide pandemic.   

1. Introduction 

In the early stages of epidemic modelling, the spread of diseases was 
formulated as a deterministic process. The classical deterministic model 
of susceptible-infectious-recovered (SIR) was introduced in the seminal 
paper of Kermack and McKendrick [35]. It models the spread and ulti
mate containment of an infection in a setting where those who recover 
are immune to the disease and thus the susceptible population declines 
over time. Many epidemic models are variations of the SIR model, see 
Brauer et al. [21], Keeling and Rohani [34], Diekmann et al. [27] and 
Martcheva [40]. For example, during the outbreak of COVID-19 since 
December 2019, a commonly adopted approach for predicting the 
number of infections is the susceptible-exposed-infectious-recovered (SEIR) 
model, which adds an exposed period to the SIR model for accounting 
the reported incubation period of COVID-19 during which individuals 
are not yet infectious, e.g. Berger et al. [19], Liu et al. [39] and Tian et al. 
[48]. More recently, Acemoglu et al. [1] develop a multi-risk SIR model, 
which takes into account that different subpopulations have different 

risks and is applied to analysing optimal lockdown. 
However, there are several limitations to use deterministic epidemic 

models to describe the transmission dynamics of the COVID-19 
pandemic. First, the SIR and SEIR models require the assumptions of 
the incubation period, the duration of infection, the initial reproduction 
number, the number of isolated cases once identified, the subclinical 
infection percentage, etc, which are mostly unclear at the early stage of 
the pandemic. Second, for most countries and regions around the world, 
the existing COVID-19 recovery and mortality data are generally 
underreported, which would lead to underestimations of key epidemi
ological quantities such as reproduction number. In addition, the 
random nature of the epidemics spread in our real world suggests that a 
stochastic model is needed. A continuous-time stochastic counterpart of 
SIR model was first proposed by McKendrick [41], and then a variety of 
stochastic models were studied in the literature, e.g. Bartlett [17,18] and 
Bailey [11–13]. For more recent developments on stochastic epidemic 
models in general, see Daley and Gani [23], Andersson and Britton [5], 
Allen [3] and Fuchs [30]. In particular, many researchers adopted 
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branching processes. Ball [14] used the birth-and-death process for 
constructing a sequence of general stochastic epidemics, and Ball and 
Donnelly [16] used branching processes to approximate the early stages 
of epidemic dynamics, see also Britton [22] and Ball et al. [15]. 

In this paper, we propose a continuous-time stochastic epidemic 
model, namely, the two-phase dynamic contagion process (2P-DCP), for 
modelling the epidemic contagion. It is a branching process, and can be 
considered as a generalisation of dynamic contagion process [24] by 
introducing an extra phase involving self contagion only, which is an 
extension of the classical Hawkes process [32,33]. In fact, Hawkes 
process and its various generalisations were originally used for model
ling earthquakes in seismology, and recently become extremely popular 
for modelling financial contagion in economics, see Bowsher [20], Large 
[37], Embrechts et al. [29], Bacry et al. [9,10], Aït-Sahalia et al. [2], 
Dassios and Zhao [25,26] and Qu et al. (2019) [45]. Analogously, we 
advocate that they are also applicable to epidemiology. As not all in
dividuals are equally infectious in reality, the main advantage of this 
Hawkes-based approach is that, it allows randomness to the infectivity 
of individuals, rather than a constant reproduction number (the average 
number of subsequent infections of an infected individual) in standard 
models. It is very simplistic to assume constant reproduction number as 
standard epidemic models do. However, we often observe large varia
tions in the estimated reproduction rates within countries as well as over 
short periods of time. The Hawkes-based model, on the other hand, 
accommodates such variations as well as the occurrence of super
spreaders of the virus caused by event attending, social gathering, etc. In 

this paper, we adopt the 2P-DCP as a more realistic and parsimonious 
example of Hawkes-based models for modelling the current progression 
of COVID-19 and investigating the government intervention effect, 
under the assumption that each different governmental intervention 
measure imposed on a local region or country was considered as a whole 
package for each population we analysed. Individual policies such as 
school closures, physical distancing, shielding of older individuals, and 
isolation were not considered separately. Key epidemiological quanti
ties, such as the distribution of final epidemic size and expected 
epidemic duration, have been derived and estimated based on real data. 
Pandemics have largely shaped the history of human being as described 
in the popular book by McNeill [42], and have made huge impacts to our 
society and economy. However, mathematical models developed in 
epidemiology and economics don’t talk to each other much until the 
current outbreak of COVID-19, which needs urgent calls (e.g. from The 
Royal Society) for researchers across disciplines to work together and 
jointly support the scientific modelling for epidemics, see recent inten
sive interplays between the two fields, e.g. Acemoglu et al. [1], Alvarez 
et al. [4], Atangana and Atangana [7], Atangana [6], Atkeson [8], 
Eichenbaum et al. [28], Guerrieri et al. [31], Khan et al. [36], Memon 
et al. [43], Naik et al. [44], Sene [46,47]. Our paper also responds to the 
calls by introducing the Hawkes-based approach as a potentially very 
valuable tool for epidemic modelling. 

This paper is organised as follows: Section 2 offers the preliminaries 
including an introduction and formal mathematical definitions for our 
stochastic epidemic model, a two-phase dynamic contagion process. Key 

Fig. 1. Two-phase dynamic contagion process.  
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distributional properties, such as the distribution of final epidemic size 
and expected epidemic duration, are provided in Section 3. In Section 4, 
our model is implemented based on real data, and the associated time 
lag of the effect of intervention in each country or region is estimated. 
Finally, Section 5 draws a conclusion for this paper, and proposes some 
issues for possible further extensions and future research. 

2. Two-phase dynamic contagion process 

In this section, we introduce a two-phase dynamic contagion process 
(2P-DCP) for modelling the dynamics of COVID-19 contagion. The un
observable effective time that aggregated government interventions (e.g. 
lockdown of a city or country) came into effect is denoted by ℓ > 0, 
which divides the COVID-19 epidemic dynamics into two phases. Note 
that, the time point ℓ is different from the exact timing of intervention 
that can be observed. The cumulated number of infected individuals is 
described by a counting process Nt with N0 = 0, and it is modelled by a 
two-phase dynamic contagion process defined as below via Dassios and 
Zhao [24]. 

Definition 1. (Two-Phase Dynamic Contagion Process (2P-DCP)) A 
two-phase dynamic contagion process (2P-DCP) is a point process Nt 
with two phases: 

Phase 1 (Full Contagion): For the first phase period t ∈ [0,ℓ),Nt 
follows a dynamic contagion process with stochastic intensity 

λt = λ0e− δt +
∑N

*
t

k=1
Zke− δ(t− T*

k) +
∑Nt

i=1
Yie− δ(t− Ti), t ∈

[

0,ℓ
]

, (1)  

where  

• λ0 > 0 is the initial intensity at time t = 0;  
• δ > 0 is the constant rate of exponential decay;  

• N*
t ≡ {T*

k}k=1,… is a Poisson process of constant rate ϱ > 0 arriving in 
time t⩽ℓ;  

• {Zk}k=1,…,N*
ℓ 

are independent and identically distributed. externally- 

exciting jump sizes, realised at times {T*
k}k=1,…,N*

ℓ
, with distribution 

H(y);  
• {Yi}i=1,…,Nℓ 

are independent and identically distributed. self-exciting 
jump sizes of the first phase, realised at times {Ti}i=1,…,Nℓ 

, with 
distribution G1(y). 

Phase 2 (Self Contagion): For the second phase period t ∈ (ℓ,∞),Nt is 
a pure self-exciting Hawkes process with stochastic intensity 

λt = λℓe− δ(t− ℓ) +
∑Nt

i=Nℓ+1
Yie− δ(t− Ti), t ∈

(

ℓ,∞

)

, (2)  

where  

• λℓ is the initial intensity of the second phase starting at the cutoff 
time point ℓ, which is the terminal intensity of the first phase;  

• {Yi}i=Nℓ+1,… are independent and identically distributed. self-exciting 
jump sizes of the second phase, realised at times {Ti}i=Nℓ+1,…, with 
distribution G2(y). Note that compared with the average mean of the 
self-exciting jump size for Phase 1, the mean of self-exciting jump in 
Phase 2 is smaller, which demonstrates that the COVID-19 becomes 
less contagious on average after time point ℓ. The point process Nt 
and its intensity process λt are illustrated in Fig. 1. Overall, we can 
more compactly define our new pandemic model, a two-phase dy
namic contagion process, as a counting process Nt ≡ {Ti}i=1,… with 
N0 = 0 and stochastic intensity 

λt = λ0e− δt +
∑N

*
t

k=1
Zk1{t⩽ℓ}e− δ(t− T*

k) +
∑Nt

i=1
Yie− δ(t− Ti), t⩾0, (3)  

where  

• {Yi}i=1,…Nt 
are independent and identically distributed. self-exciting 

jump sizes with a two-phase distribution G(y; t), i.e., 

G(y; t) = G1(y)1{t⩽ℓ} +G2(y)1{t>ℓ}, (4)  

where smaller jumps represent usual community infection and large 
jumps can be caused by superspreaders of the virus and other 
exceptional circumstances.  

• {Zk}k=1,…N*
t 

are independent and identically distributed. externally- 
exciting jump sizes with distribution H(y). 

This equivalent definition as a dynamic contagion process has an 
advantage: it can be viewed as a branching process and has a more 
intuitive interpretation with regard to a pandemic. The cluster-process 

Table 1 
Calibration parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) for total confirmed COVID-19 cases from 2020-01-19 to 2020-03-31 for various regions in China.   

Parameters  

Regions α̂  β̂  δ̂  ϱ̂  ℓ̂  
MSE(α̂, β̂, δ̂,

ϱ̂, ℓ̂)
N  

Heilongjiang 2.431123 8.036146 0.252324 0.934574 16 0.036414 
Sichuan 5.509284 7.402851 0.21608 3.913496 11 0.023037 

Shandong 5.303477 7.868065 0.340273 5.296465 19 0.033823 
Jiangxi 2.936512 7.903677 0.285922 3.782104 15 0.070023 
Anhui 3.644156 7.773938 0.339183 7.161244 18 0.037944 
Hunan 4.467952 7.660323 0.293860 8.351008 15 0.053281 

Zhejiang 1.398741 8.065125 0.260449 1.627822 09 0.144322 
Henan 3.370932 7.867786 0.286357 6.669105 15 0.042004 

Guangdong 2.316879 7.987904 0.256143 2.360507 12 0.073389 
Hubei 4.468435 28.46780 0.173874 58.24001 16 0.654813  

Table 2 
The estimated branching ratio (BR) before and after the government in
terventions came into effect, namely Rb,Ra respectively, for regions in China.   

BR 

Regions Rb  Ra  

Heilongjiang 1.630176 0.493166 
Sichuan 0.840021 0.625153 

Shandong 0.554130 0.373512 
Jiangxi 1.191025 0.442510 
Anhui 0.809039 0.379250 
Hunan 0.761641 0.444234 

Zhejiang 2.744989 0.476066 
Henan 1.035957 0.443853 

Guangdong 1.685052 0.488747 
Hubei 1.287094 0.202028  
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presentation is provided as follows. 

• The cumulated number of infected cases, Nt , is a cluster point pro
cess, which consists of two types of points: outside-imported cases and 
inside-infected cases.  

• The arrivals of outside-imported cases follows a Cox process with shot- 
noise intensity 

λ0e− δt +
∑N

*
t

k=1
Zke− δ(t− T*

k),

where externally-exciting jumps arrive as a Poisson process N*
t at 

time points {T*
k}k=1,… with sizes (marks) {Zk}k=1,…, and they disap

pear after time point ℓ when the interventions took effect, and there 
will be no any increase of imported cases in a long run. The expo
nential decay assumption reflects that fact that carriers of the virus 
will eventually recover.  

• Each imported case may infect other individuals inside and thereby 
causes new cases, and each of these new cases would further infect 
others inside, and so on. The infection of any new cases caused by the 
previous infected cases follows a Cox process with exponentially 
decaying intensity Y⋅e− δ(t− T⋅), where Y⋅ follows a two-phase distri
bution G(y; t) and T⋅ is the infection time of the previous infected case. 
After the interventions took effect, the COVID-19 becomes less easy 
to spread on average. This is captured by our assumption of two- 
phase distribution (4) for Y⋅ here.  

• Overall, the superposition of all these infected cases form a point 
process Nt , a two-phase dynamic contagion process with stochastic 
intensity (3). 

3. Distributional properties 

In this section, we outline key distributional properties for the two- 
phase dynamic contagion process. We derived the conditional joint 
Laplace transform of λt and probability generating function of Nt , which 
are the key results to further derive the elimination probability of the 
epidemic and the distribution of the final epidemic size. 

3.1. Joint distribution of (λt ,Nt)

Let {F t}t⩾0 be the natural filtration of the point process Nt, i.e. F t =

σ(Ns, s⩽t) and assume that the intensity process {λt}t⩾0 being 
F t-adapted. The joint Laplace transform and probability generating 
function for (λt ,Nt) is provided in Theorem 1 as below with the proof 
being outlined in Appendix A. 

Theorem 1. For time s⩽t, the conditional joint Laplace transform and 
probability generating function for λt and the point process Nt is of the form 

E
[
θNt e− vλt

⃒
⃒F s

]
=

{
θNs ec(s)e− A(s)λs , 0⩽s⩽t⩽ℓ,
θNs e− A(s)λs , ℓ < s⩽t,

(5)  

where A(s) is determined by the nonlinear ordinary differential equation 
(ODE) 

A′(s) − δA(s)+ 1 − θĝ(A(s); s) = 0, (6)  

where the boundary condition is A(t) = v with 

ĝ
(

u; t
)

=

∫ ∞

0
e− uydG

(

y; t
)

,

and c(t) is determined by 

c
(

t
)

= ϱ1{t⩽ℓ}

∫ t

0

[
1 − ĥ

(
A
(

u
))]

du, (7)  

with 

ĥ
(

u
)

=

∫ ∞

0
e− uydH

(

y
)

.

The moments of λt and Nt can be obtained by differentiating the joint 
Laplace transform and probability generating function of λt and Nt. 
Based on Theorem 3.6, Lemma 3.1, Lemma 3.2 and Theorem 3.9 in 
Dassios and Zhao [24], we obtain the following results for the moments 
of λt and Nt in Proposition 1 and 2. 

Proposition 1. The conditional expectation of the process λt given F s for 
s⩽t is given by 

E[λt|F s] =

⎧
⎪⎨

⎪⎩

ϱμH1{t⩽ℓ}

κ
+

(

λs −
ϱμH1{t⩽ℓ}

κ

)

e− κ(t− s), κ ∕= 0,

λs + ϱμH1{t⩽ℓ}(t − s), κ = 0,
(8)  

and the conditional expectation of the point process Ntgiven F s is of the form 

E[Nt|F s]=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ns+
ϱμH1{t⩽ℓ}(t− s)

κ
+

(

λs−
ϱμH1{t⩽ℓ}

κ

)
1− e− κ(t− s)

κ
,κ∕=0,

Ns+λs

(

t− s
)

+
1
2

ϱμH1{t⩽ℓ}(t− s)2
, κ=0,

(9)  

where 

μH =

∫ ∞

0
ydH

(

y
)

, μG =

∫ ∞

0
ydG1

(

y
)

1{t⩽ℓ} +

∫ ∞

0
ydG2

(

y
)

1{t>ℓ},

and κ = δ − μG. 

Proposition 2. The conditional second moment of the process λt given F s 
for s⩽t is given by 

E
[
λ2

t

⃒
⃒F s

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2
s e− 2κt+

2ϱμH1{t⩽ℓ}+μ2G

κ

(
λs−

ϱμH

κ

)(
e− κ(t− s)− e− 2κ(t− s))

+

(
(2ϱμH+μ2G

)ϱμH1{t⩽ℓ}

2κ2 +
ϱμ2H

1{t⩽ℓ}

2κ

)

(1− e− κ(t− s)), κ∕=0,

λ2
s+λsμ2G

t+(2λ0μH+μ2H
)ϱ1{t⩽ℓ}

(
t− s
)

+

(

ϱ2μ2
H+

1
2

ϱμHμ2G

)

1{t⩽ℓ}(t− s)2
, κ=0,

(10)  

and the conditional joint expectation of the process λt and the point process Nt 
given F s for s > ℓ is of the form 

E[λtNt|F s] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λsNse− κ(t− s) +
(

λsμG +
λsμ2G

κ

)(
t − s

)
e− κ(t− s)

+

(
λ2

s

κ
−

λsμ2G

κ

)(

e− κ(t− s) − e− 2κ(t− s)
)

, κ ∕= 0,

λsNs +
(
λ2

s + λsμG
)
(

t − s
)

+
1
2
λsμ2G

(t − s)2
, κ = 0

(11)  

and the second moment of point process Nt given F s for s > ℓ is of the form 

E
[
N2

t

⃒
⃒F s

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λsμ2G

κ3 −
λ2

s

κ2

)(

1− e− 2κ(t− s)
)

−

(
2λsμG

κ
+

2λsμG2

κ2

)(

t− s
)

e− κ(t− s)

+

(
λs+2λsNs

κ
+

2λ2
s+2λsμ2G

κ2

)(

1− e− κ(t− s)
)

, κ∕=0,

λs

(

μG+2Ns

)(

t− s
)

+
(
λ2

s+λsμG
)
(t− s)2

+
1
3
λsμ2G

(t− s)3
, κ=0,

(12)  

where 
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μ2H
=

∫ ∞

0
y2dH

(

y
)

, μ2G
=

∫ ∞

0
y2dG1

(

y
)

1{t⩽ℓ} +

∫ ∞

0
y2dG2

(

y
)

1{t>ℓ},

and κ = δ − μG. 

3.2. Probability of elimination time T̃ 

After the government interventions come into effect, the contagion 
rate will dramatically decline and new cases will drop abruptly almost to 
nothing in the near future. It is therefore of great interests to calculate 
the probability of elimination time, i.e. the time that the last ever case 
arrives, after government interventions come into effect. Let T̃ to be 
elimination time such that 

T̃ := inf{t > ℓ : ∀s⩾t, Ns − Nt = 0}. (13) 

The condition probability of the elimination time is provided in 
Proposition 3 with the proof being presented in Appendix B. 

Proposition 3. For ℓ⩽s⩽t, the elimination probability is given by 

P
(

T̃⩽t
⃒
⃒
⃒F s

)
= e− A(s)λs , (14)  

where A(s) is determined by the ODE in (6) with boundary condition A
(

t) =

1
δ. 

3.3. Joint expectation of epidemic size Nt and elimination time T̃ 

Given the last ever event {T̃ < t}, based on Theorem 1 and Propo
sition 3, one could obtain the expected size of the epidemic at time t. The 
relevant details are presented in Corollary 1. 

Corollary 1. For ℓ⩽s⩽T̃⩽t, the conditional joint expectation of Nt and 
1
{̃T⩽t}

is of the following form 

E
[
Nt1

{T̃⩽t}

⃒
⃒F s

]
=

d
dθ
{

θNs e− A(s)λs
}
|θ=1− , (15)  

where A(s) satisfies the ODE in (6) with boundary condition A
(

t) = 1
δ. 

3.4. Distribution of final epidemic size N∞ 

The final epidemic size is one of the most important epidemiological 
quantities to study. In fact, under the two-phase dynamic contagion 
model, the final epidemic size is the value of the point process Nt when 
time goes to infinity. Conditional on s > ℓ, since there are no externally- 
exciting jumps in the intensity, the distribution of N∞ can be charac
terised by Proposition 4 as below [24] [Theorem 3.5]. 

Proposition 4. For ℓ < s, the probability generating function of N∞ con
ditional on F s is given as 

E
[
θN∞
⃒
⃒F s

]
= e− v*λs , (16)  

where 

v* =
1
δ

(

1 − θ
∫ ∞

0
e− v*ydG2

(

y
))

.

While the government interventions come into effect, if we assume 
independent and identically distributed. self-exciting jump sizes Yi ∼

Exp(β) for i = Nℓ + 1,…., then, we have an explicit expression for the 
probability generating function of N∞ as 

E

[

θN∞ |F s

]

= exp

(

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(δβ − 1)2
+ 4δβ

(
1 − θ

)√

−
(

δβ − 1
)

2δ
λs

)

, s > ℓ.

This implies that, the final epidemic size N∞ conditional on F ℓ 

follows a mixed-Poisson distribution with the probability mass function 

P(N∞ = k|F s) =

∫ ∞

0

vke− v

k!
m
(

v
)

dv, k = 0, 1,…., (17)  

where m(v) is the density function of the mixing distribution, 

m

⎛

⎜
⎜
⎝v

⎞

⎟
⎟
⎠ := exp

⎛

⎝δβ − 1
2δ

λs −

(
δβ − 1

2δ

)2δ
β

v −
β
2δλ

2
s

2v

⎞

⎠

̅̅̅̅
β
2δ

√

λs
̅̅̅̅̅
2π

√
v3

2
,

which is an inverse Gaussian distribution with parameters β
δβ− 1λs and 

β
2δλ

2
s . 

Fig. 2. Comparison of the branching ratios before and after the government interventions came into effect for regions in China. The horizontal axis represents the 
branching ratio before the government interventions came into effect, namely Rb and the vertical axis represents the branching ratio after the government in
terventions came into effect, i.e. Ra. 
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4. Empirical study 

Without loss of generality, for simplicity, we assume Zk = 1 for any k,
Yi ∼ Exp(α) for i = 1,…,Nℓ and Yi ∼ Exp(β) for i = Nℓ + 1,…, and λ0 =

0 in (3) for model calibration. Other assumptions for Zk,

{Yi}i=1,…Nℓ ,Nℓ+1,…, λ0 can also be used if necessary. We provide a cali
bration scheme to estimate (α, β, δ, ϱ,ℓ) based on the daily increments of 
the two-phase dynamic contagion process Nt . Let us first denote the 
observations of the daily confirmed COVID-19 cases as {Ct}t=0,1,2,…,T . 
The mean square error (MSE) between the expected daily increments of 
Nt and the actual reported daily confirmed COVID-19 cases is given as 

MSE

(

α, β, δ, ϱ,ℓ
)

=
1
T

∑T− 1

t=0
(E[Nt+1 − Nt] − Ct+1 )

2
. (18) 

We consider the calibration based on minimising the MSE (18), i.e., 
we choose parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) such that 

MSE

(

α̂, β̂, δ̂, ϱ̂, ℓ̂
)

:= min
(α,β,δ,ϱ,ℓ)

MSE

(

α, β, δ, ϱ,ℓ
)

,

with α, β, δ, ϱ⩾0 and ℓ ∈ N+. 
We provide two empirical examples that are performed in R.4.0.3. 

Fig. 3. Model calibration comparisons between the expected daily confirmed cases under the calibrated parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) in Table 1 and actual daily 
confirmed COVID-19 cases from 2020-01-19 to 2020-03-31 for Guangdong, Henan, Hunan, Anhui, Jiangxi, and Hubei of China. 
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The first one concentrates on the COVID-19 pandemic in mainland 
China during the period from early January to late March 2020. The 
second one focuses on the worldwide COVID-19 pandemic during the 
period from mid February to early May 2020. The data we used are 
publicly available. Datasets are mostly cited from the associated official 
government health department websites for non-European countries 
and from the European Centre of Disease Control (ECDC) for European 
countries. 

4.1. COVID-19 pandemic in mainland china 

The daily confirmed COVID-19 cases for regions in China can be 
obtained from daily reports of the National Health Commission of the 
PRC. We use the reported daily confirmed cases for several regions in 
China from 2020-01-19 to 2020-03-31 as examples for model calibra
tion. The corresponding estimation results are illustrated in Table 1. We 
can see that the estimator ϱ̂ are quite different from each other. In 
particular, these regions that are close to Hubei, namely Henan, Hunan, 
Anhui, have relatively larger intensities for externally-exciting jumps, 
which means that these regions experienced more external shocks from 
Wuhan and these external shocks can be originally infected individuals 
from Wuhan. Naturally, without taking into account Wuhan, the rest of 
Hubei has the largest intensity ϱ̂ for externally-exciting jumps. The main 
government intervention established by the Chinese authority is the 
announcement of the completely lockdown of Wuhan and later the 
whole Hubei Province on 23 January 2020. One or two days later, all 

other regions enforced the quarantine and raised the alert of public 
health emergency. Setting the date 2020-01-19 as the initial time t = 0, 
then the government intervention took place when t = 4 and came into 
effect when t = ℓ̂. Since the delay period of the government in
terventions is the difference of the date when the government in
terventions came into effect and the date when the government 
introduced the restriction measures, we can therefore observe from 
Table 1 that the estimated delays of the government interventions for 
different regions therefore are between 5 and 15 days, which are 
consistent to the incubation time of COVID-19 for most people, e.g. as 
found in a highly cited medical study of Lauer et al. [38]. 

The branching ratio (BR), which demonstrates the average infection 
rate, is determined by E[Yi]/δ. In Table 2, we compare the estimated 
branching ratios before and after the government interventions came 
into effect, namely Rb and Ra, respectively. It is clear that the branching 
ratio for every region decreases significantly when the state changed, i.e. 
government interventions came into effect. One can also access the ef
ficiency for when regions implemented the restriction packages intro
duced by the central government by comparing the corresponding 
branching ratios Rb and Ra. The comparison of Rb and Ra for regions in 
China are presented in Fig. 2. We can see that the government restriction 
packages had been well-implemented for all regions in China. In 
particular, Hubei, where the strictest measure, i.e. the completely 
lockdown of Wuhan and Hubei, had been introduced, shows a dramatic 
drop of contagion rate after the interventions came into effect. 

Figs. 3 and 4 demonstrate comparisons between the expected daily/ 

Fig. 4. Comparisons between total confirmed COVID-19 cases and total estimated cases under the calibrated parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) in Table 1 from 2020-01-19 to 
2020-03-31 for Guangdong and Hubei, China. 

Table 3 
Calibration parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) for total confirmed COVID-19 cases from mid-February, 2020 to early May, 2020.  

Regions Date0  DateG  α̂  β̂  δ̂  ϱ̂  ℓ̂  
MSE(α̂, β̂, δ̂,

ϱ̂, ℓ̂)
N  

Australia 2020-02-27 2020-03-15 1.703807 3.316083 0.401550 0.489762 28 0.124391 
Austria 2020-03-01 2020-03-10 2.860291 7.781922 0.222730 5.788434 24 0.326694 

China(Mainland) 2020-01-19 2020-01-23 2.846236 6.534269 0.242773 83.160865 17 1.003152 
Czech 2020-03-04 2020-03-10 3.464654 7.842862 0.174990 2.247588 25 0.359398 
France 2020-02-25 2020-03-13 3.453459 6.912410 0.191890 15.492535 36 5.410160 

Germany 2020-02-24 2020-03-12 3.246798 6.402097 0.201327 22.863727 32 3.464682 
Greece 2020-02-26 2020-03-10 4.181831 7.778144 0.200886 1.337306 35 0.172176 

Hong Kong 2020-03-01 2020-03-23 2.782369 8.054402 0.287048 0.512120 31 0.041714 
Iceland 2020-02-28 2020-03-13 3.405901 7.908691 0.275378 1.892734 33 0.163572 

Italy 2020-02-21 2020-03-05 3.068103 5.445646 0.211048 23.830431 30 0.911767 
Latvia 2020-03-07 2020-03-13 4.227388 7.819275 0.208209 1.145524 22 0.099024 

New York 2020-02-29 2020-03-12 2.449906 3.203563 0.356592 70.937604 33 2.926862 
New Zealand 2020-03-12 2020-03-16 2.122999 8.438649 0.204667 0.551023 14 0.064829 

Norway 2020-02-21 2020-03-12 4.496501 7.519573 0.195859 6.553447 29 0.303364 
South Korea 2020-02-16 2020-02-20 1.309507 8.771968 0.244316 5.641225 13 0.418018 
Switzerland 2020-02-25 2020-03-13 3.195829 7.046864 0.202615 14.083749 28 1.571950  

Z. Chen et al.                                                                                                                                                                                                                                    



Results in Physics 26 (2021) 104264

8

total confirmed cases for the two-phase dynamic contagion model under 
the calibrated parameter (α̂, β̂, δ̂, ϱ̂, ℓ̂) in Table 1 and the actual daily/ 
total confirmed COVID-19 cases for the period 2020-01-19 to 2020-03- 
31. We observe that the model allows different shapes of trend before 
the interventions came into effect. All these regions indicate relatively 
smooth exponential decay of daily new cases after the peak. In addition, 
the estimated cumulative confirmed cases are very close to the actual 
total confirmed COVID-19 cases, which further confirms that our new 
model is a good candidate for describing the propagation process. 

4.2. COVID-19 pandemic for the world 

From mid-February 2020, the COVID-19 started to spread in other 
countries around the world. At beginning, only a small number of initial 
cases were reported for some countries in Europe, South/East Asia and 
North American. However, lately, several large outbreaks were reported 
in South Korea, Italy, Iran, Spain, Japan and the total number of cases 
outside China quickly passed the China’s. The WHO then recognized the 
spread of COVID-19 as pandemic on 2020-03-11. We could use this as a 
second example to confirm our observations from the last exercise. The 
calibration settings were the same as the previous one. We use the re
ported daily confirm cases for different regions and countries around 
world from mid-February to early May 2020. Note that, due to the fact 
that the pandemic reached each country or territory at different time 
and the corresponding government interventions also imposed and came 
into effect at different times, there is no sense to calibrate the model 
using the data within the same truncated time series. Table 3 presents 
the estimation results (α̂, β̂, δ̂, ϱ̂, ℓ̂) of (α, β, δ, ϱ,ℓ) for various countries 
and territories. We notice that regions and countries like Italy, China, 
New York have much larger ϱ compared with other areas. This phe
nomena is reasonable as these areas have specific outbreak area which 
created external shocks to other part of the regions and countries and 
hence the number of confirmed cases increased more rapidly than other 
regions and countries. 

In Table 3, we also presents the date of day 0, i.e. Date0, and the date 
of government interventions imposed, i.e. DateG. The delay period of 
government interventions came into effect therefore can be obtained 
given the estimated ℓ̂, with Date0 and DateG. The details for the delay 
periods of regions and countries are illustrated in Fig. 5. We can see that 
the delay of the interventions for different regions and countries is 
around 8 ∼ 21 days. In fact, the delay period can be considered as a 
criteria for evaluating the effectiveness of restrictions imposed by the 
authorities to prevent further spread of COVID-19. In general, most re
gions and countries with short delay periods normally took tougher 

Fig. 5. Comparison of the delay period for different regions and countries around the world. The horizontal axis represents the abbreviation of regions and countries 
listed in Table 4 and the vertical axis represents the number of days for the government interventions came into effect after the government announcement the 
relevant measures. 

Table 4 
The estimated branching ratio (BR) before and after the government in
terventions came into effect, namely Rb,Ra respectively, for regions and coun
tries around the would.   

BR 

Regions Rb  Ra  

Australia 1.461638 0.750991 
Austria 1.569681 0.576945 

China(Mainland) 1.447200 0.630380 
Czechia 1.649399 0.728637 
France 1.509016 0.753908 

Germany 1.529826 0.775845 
Greece 1.190377 0.639993 

Hong Kong 1.252077 0.432526 
Iceland 1.066200 0.459162 

Italy 1.544364 0.870102 
Latvia 1.136798 0.614084 

New York 1.144667 0.875377 
New Zealand 2.301455 0.579001 

Norway 1.135488 0.678991 
South Korea 3.125643 0.466606 
Switzerland 1.544349 0.700379  
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restrictions or more effective measures to stop the spread of virus. New 
Zealand and South Korea are two typical examples. The authority of 
New Zealand introduced a nationwide lockdown by closing all borders 
and entry ports to all nonresidents. On the contrary, the South Korea 
authority introduced one of the largest and best-organised epidemic 
control programs to screen the mass population for the virus with 
isolation, tracing, quarantine took place simultaneously without further 
lockdown. Therefore, the estimated delay periods for these two coun
tries are only 9 days for New Zealand and 8 days for South Korea, which 
are much shorter than the average incubation time of COVID-19. For 
most European countries, due to the containment restriction measures 
such as quarantines and curfews were not strictly put into effect, the 
associated delay periods are relatively longer than the incubation time 
of COVID-19. 

The estimated branching ratios before and after the government in
terventions came into effect for different countries and territories are 
reported in Table 4. And Fig. 6 demonstrates a comparison between the 
BRs before the government interventions took effect and the BRs after 
the interventions worked, with a blue dash line that represents Rb = Ra. 
We can immediately see that for most regions and countries, the BR 
dropped dramatically after government interventions came into effect, 
which suggests that the restriction measures imposed by the authority 
indeed reduce the contagion/infection rate significantly. 

A comparison between the expected daily confirmed cases for the 
two-phase dynamic contagion model under the calibrated parameters 
(α̂, β̂, δ̂, ϱ̂, ℓ̂) is reported in Table 3, and the actual daily confirmed 
COVID-19 cases for different regions and countries over the period of 
mid-February to early May are presented in Fig. 7. In general, we can see 
that the model can precisely catch the trend of infection, this further 
confirms that the two-phase dynamic contagion model is effective. Note 
that, we have smoothed the biggest jump of daily confirmed cases in 
China for better illustration and fitting purpose. This is due to a change 

in the confirmation standard established by the Chinese authority on 
2020-02-12. 

In Fig. 8, we compare the estimated daily increment with the actual 
confirmed COVID-19 cases for France, Germany, Switzerland, and New 
York. The daily records of confirmed cases for these areas were not as 
smooth as those countries illustrated in Fig. 7. The spikes within the 
graphs could be caused by many reasons such as the delay of reports, 
testing capacity, hospital capacity, diagnostic methods and etc. For 
instance, the daily confirmed cases for France, Germany, Switzerland 
and New York suddenly declined on a regular basis, which mostly 
happened during the weekends. Even so, we can see the model can still 
capture the trend of infectious evolution. In Fig. 9, we also compare the 
actual total confirmed COVID-19 cases against the cumulative estimated 
cases with a confidence interval within two standard deviations1 for 
some typical countries and territories. The black dash line in each graph 
of Fig. 9 represents the end of data collection period for calibration. The 
red curve on the left of the black dash line shows the historical data used 
for calibration and the blue curve is the corresponding estimated result. 
The red and blue curves on the right of the black dash line demonstrate a 
comparison between the predicted and actual confirmed COVID-19 
cases for countries and regions from the end of their data collection 
period to the end of May, 2020. We can see that the estimated curves of 
the number of confirmed infections under the two-phase dynamic 
contagion model well fitted the actual propagation process of the 
COVID-19. In addition, the forecasted infection cases in the coming 
weeks after the end of data collection period also well suited the up to 
date actual total confirmed COVID-19 cases. 

4.3. Elimination probability and final epidemic size 

According to Proposition 3, one could obtain the elimination prob
ability of the epidemic by numerically solving the ODE (6). Based on the 

Fig. 6. Comparison of the branching ratios before and after the government interventions came into effect for different regions and countries around the world. The 
horizontal axis represents the branching ratio before the government interventions came into effect, Rb, and the vertical axis represents the branching ratio after the 
government interventions came into effect, Ra. 

1 The standard deviations can be derived based on results in Proposition 1 
and 2. 
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calibration parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) provided in Table 3 for regions and 
countries, we could obtain the associated elimination probabilities. 

Fig. 10 illustrates how P
(

T̃⩽t
⃒
⃒
⃒F

ℓ̂

)
varies for different countries and 

territories. We can see that for regions and countries with effective re
striction measures, the probability for a shorter period to observe the last 
ever event arrives after government interventions come into effect will 
be much higher. On contrary, for some regions and countries, longer 
periods are needed for elimination probabilities to be closed to 1. For 
instance, we can see that there is still a long way to go to end the COVID- 
19 pandemic for Italy. 

The elimination time of the pandemic depends on many decisive 
factors, such as the initial intensity of the externally-exciting jumps, the 
time needed for the government interventions to come into effect, the 
size of the branching ratio after the government interventions came into 
effect, etc. Fig. 11–13 illustrate comparisons between the estimated 

ℓ̂, ϱ̂,Ra against E[T̃
⃒
⃒
⃒F

ℓ̂
], respectively. From Fig. 11, we can see that for 

most countries and territories, the quicker the government interventions 
come into effect, the faster the pandemic will end. However, some places 
like Hong Kong and Iceland still have relatively fast elimination time 
even though it takes longer for the government interventions to come 
into effect. This is probably because the restriction measures for these 
places were imposed so early that reporting procedures were not prop
erly in place yet. Fig. 12, and 13 clearly demonstrate that the externally- 
exciting jump intensity ϱ and the branching ratio after the government 
came into effect Ra are important factors that determine the extinction 
time of the pandemic. In general, to reduce the extinction time of the 
pandemic, the first priority for the authorities should be introducing 
restriction measures such as national/subnational lockdown to reduce 
the intensity of the external imported cases, and while the external 
imported cases are controlled and thereafter negligible, the govern
ments should simultaneously introduce enforced restrictions to prevent 
further transmission. If the government intervention strategies were 
effectively implemented without a lack of civic spirit, the infection rate 

Fig. 7. Model calibration comparisons between the expected daily confirmed cases under the calibrated parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) in Table 3 and actual daily 
confirmed COVID-19 cases for Australia, Austria, China(Mainland), Italy, New Zealand, and South Korea. 
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of the virus after the these intervention measures come into place will be 
reduced significantly, and therefore lead to a quicker elimination of the 
COVID-19 pandemic. Note that the prediction for expected elimination 
time for regions and countries is based on the assumption that the 
government intervention measures are still taking into place in some 
form and propagation of the disease continues as in Phase 2. Relaxation 
of the government intervention measures will inevitably delay the dis
ease elimination for most regions and countries. 

Beside the conditional probability for the elimination time T̃, the 
epidemic size Nt given {T̃⩽t} can also be predicted according to the join 
expectation of Nt and {T̃⩽t} derived in Corollary 1. In Table 5, we report 
the 95% confidence interval for elimination time T̃ the condition 

expectation of the elimination time ̃T,E[T̃
⃒
⃒
⃒F

ℓ̂
], the expected elimination 

date DateE, and the conditional expectation of the epidemic size Nt ,

E[Nt

⃒
⃒
⃒F

ℓ̂
∩ {T̃⩽t}] with t = E[T̃

⃒
⃒
⃒F

ℓ̂
], for regions and countries with 

calibration parameters in Table 3. Note that, the regions and countries 
with more confirmed COVID-19 cases before government interventions 

came into effect will experience longer time to reach elimination state, 
like France, Germany, Italy, and New York. And the corresponding ex
pected epidemic size for these areas are also much larger. Note that since 
we have smoothed the biggest jump of daily confirmed cases, adding up 
with the cases which have been smoothed, the actual conditional 
expectation of the epidemic size is about 83113, which is very close to 
the current total confirmed cases 82,993 on 2020-05-27. In general, not 
only the expected epidemic size is very close to the actual total 
confirmed cases for the listed regions and countries, but also the esti
mated elimination date is very close to the actual eradicate date. New 
Zealand is one typical example that can be used to demonstrate the 
effectiveness of our model in predicting the key epidemiological quan
tities. New Zealand authority has officially declared that the country has 
completely eradicated COVID-19 for now with total of 1154 confirmed 
COVID-19 cases on 2020-06-08. This elimination date and the final 
epidemic size are very close to what we predicted for New Zealand under 
the two-phase dynamic contagion model, the predicted elimination date 
is around 2020-06-04 and the predicted epidemic size is about 1250. 
More remarkably, the historical data we used for model calibration for 
New Zealand is from 2020-03-12 to 2020-04-13. This clearly shows that 

Fig. 8. Model calibration comparisons between the expected daily confirmed cases under the calibrated parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) in Table 3 and actual daily 
confirmed COVID-19 cases for France, Germany, Switzerland, New York. 
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the two-phase dynamic contagion model is powerful in forecasting cu
mulative confirmed COVID-19 cases, predicting possible elimination 
duration for the pandemic, and evaluating effectiveness of relevant 
government intervention measures. 

The conditional distribution of the final epidemic size N∞ can be 
obtained by numerically inverse the probability generating function 
provided in Proposition 4. Since we assume the self-exciting jumps 

follows an exponential distribution after government interventions 
came into effect, the final epidemic size N∞ conditional on F ℓ follows a 
mixed-Poisson distribution with probability mass function specified in 
(17). Fig. 14 demonstrates the conditional probability mass function of 
the difference between the finial epidemic size N∞ and the total number 
of confirm cases Nℓ when government interventions came into effect, i. 
e., P(N∞ − Nℓ = k|F ℓ), for some regions and countries under the 

Fig. 9. Comparisons between total confirmed COVID-19 cases and total estimated cases under the calibrated parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) in Table 3 from mid-February 
onward for New Zealand, Austria, Germany, France, Italy, and New York. The red curve represents total confirmed COVID-19 cases. The blue curve represents the 
total estimated cases and the left zone of the black dash line illustrates historical data used for calibration, and the right zone demonstrates the predicted estimated 
cases. The shadowed region plots the values within two standard deviations. 

Z. Chen et al.                                                                                                                                                                                                                                    



Results in Physics 26 (2021) 104264

13

calibrated parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) for these regions and countries 
suggested in Table 3. 

For the current situation around the world, most countries have 
already relaxed some of the intervention measures, which will inevi
tably lead to further transmissions of the virus and cause a second wave 
of the COVID-19 pandemic in the near future. Therefore analysing the 

key epidemiology quantities for the first wave of the COVID-19 
pandemic under the current government intervention measures will 
also provide further guidance for authorities and public health to 
response for the second wave of the COVID-19 pandemic. 

Fig. 10. Conditional elimination probability P(T̃⩽t
⃒
⃒
⃒F

ℓ̂
) for China (Mainland), New Zealand, South Korea, Germany, Italy, New York, Iceland and Hong Kong under 

the associated calibration parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) for these regions and countries suggested in Table 3. 

Fig. 11. Comparison of the conditional expectation of the elimination time T̃ and the estimated government interventions came into effect time for different regions 

and countries around the world. The horizontal axis represents ℓ̂, and the vertical axis represents E[T̃
⃒
⃒
⃒F

ℓ̂
] . 
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Fig. 12. Comparison of the conditional expectation of the elimination time T̃ and the estimated intensity for externally-exciting jumps for different regions and 
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Fig. 13. Comparison of the conditional expectation of the elimination time T̃ and the branching ratio after the government interventions came into effect for different 

regions and countries around the world. The horizontal axis represents Ra, and the vertical axis represents E[T̃
⃒
⃒
⃒F

ℓ̂
]. 

Z. Chen et al.                                                                                                                                                                                                                                    



Results in Physics 26 (2021) 104264

15

5. Concluding remarks 

In this paper, we have introduced a two-phase dynamic contagion 
process for modelling the current spread of COVID-19. This model al
lows randomness to the infectivity of individuals rather than a constant 
reproduction number as commonly assumed by standard models. Key 
epidemiological quantities, such as the distribution of final epidemic 
size and expected epidemic duration, are derived and estimated based 
on real data for various regions and countries. In addition, the associated 
time lag of the effect of intervention in each country or region has been 
estimated, and our empirical results are consistent to the incubation 
time of COVID-19 for most people found by existing medical study such 
as Lauer et al. [38]. The aim of this paper is to demonstrate that our 
model, as a representative of Hawkes-based processes, could be a 
valuable tool for epidemic modelling. In fact, the vast literature of 
Hawkes-based processes would also be relevant and potentially be 
applicable. For example, multivariate extensions of Hawkes-based pro
cesses, such as Embrechts et al. [29] for analysing financial high- 
frequency data, could be adopted for modelling the cross-region 
epidemic contagion. Lévy-driven extensions, such as Qu et al. [45] for 
portfolio credit risk, may perform better in capturing the heavy tail 
property of epidemic distribution. In addition, easing of the government 
interventions will lead to change of parameters and delay extinction 
times. The model can be adjusted by introducing an additional phase 
with change of parameters. When countries cycle between periods of 
restrictions and relaxations to manage COVID-19, we can adjust the two- 
phase dynamic contagion model by replacing the constant parameters to 
piecewise time dependent parameters. These are all proposed as future 
research. 
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Table 5 
The 95% confidence interval for elimination time T̃, the conditional expectation 
of the elimination time T̃, the expected elimination date and the conditional 

expectation of the epidemic size Nt given T̃⩽t with t = E[T̃
⃒
⃒
⃒F

ℓ̂
] under the 

calibrated parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) for these regions and countries suggested in 
Table 3.  

Regions P(T̃ ∈ (t1, t2)
⃒
⃒
⃒F

ℓ̂
) = 95%  

E[T̃
⃒
⃒
⃒F

ℓ̂
] DateE  E[Nt

⃒
⃒
⃒F

ℓ̂
∩ {T̃⩽t}]

Australia (47,97) 66 2020- 
05-30 

7059.46 

Austria (69,122) 89 2020- 
06-21 

15610.22 

China 
(Mainland) 

(87,142) 108 2020- 
05-22 

69675.10 

Czechia (111,216) 150 2020- 
08-25 

8932.448 

France (166,272) 206 2020- 
10-23 

154112.00 

Germany (175,285) 216 2020- 
10-28 

189116.50 

Greece (59,127) 85 2020- 
06-24 

2650.07 

Hong Kong (23,54) 35 2020- 
05-05 

945.81 

Iceland (28,61) 41 2020- 
05-11 

1787.79 

Italy (264,445) 329 2021- 
02-13 

276480.1 

Latvia (40,102) 64 2020- 
05-31 

764.80 

New York (149,261) 192 2020- 
10-10 

209311.80 

New Zealand (49,107) 71 2020- 
06-04 

1249.77 

Norway (83,162) 113 2020- 
07-15 

8024.73 

Switzerland (121,203) 152 2020- 
08-22 

33414.19  
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Fig. 14. Probability mass function P(N∞ − N
ℓ̂
= k|F

ℓ̂
) for Latvia, New Zealand, Hong Kong and Iceland under the calibrated parameters (α̂, β̂, δ̂, ϱ̂, ℓ̂) for these 

regions suggested in Table 3. 
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Appendix A. Proof of Theorem 1 

Proof. For 0⩽s⩽t⩽ℓ, λt is the intensity process of the dynamic contagion process introduced in Dassios and Zhao [24]. The corresponding conditional 
joint Laplace transform, probability generating function for the process λt and the point process Nt is provided in Theorem 3.1 of Dassios and Zhao 
[24]. For ℓ < s⩽t, given F s, the infinitesimal generator of the dynamic contagion process (λs,Ns, s) acting on a function f(λ, n, s) within its domain 
Ω(A ) is given by 

A f
(

λ, n, s
)

=
∂f
∂s

− δλ
∂f
∂λ

+ λ
(∫ ∞

0
f
(

λ + y, n + 1, s
)

dG
(

y; s
)

− f
(

λ, n, s
))

. (A.1) 

Consider a function f(λ, n, s) of form 

f
(
λ, n, s

)
= θne− A(s)λ,

and substitute this into A f = 0, we then have the ODE 

A′(s) = δA(s) − 1+ θĝ(A(s), s),

adding the boundary condition A(t) = v, gives the ODE in (6). 

Appendix B. Proof of Proposition 3 

Proof. Given T̃ being the timing of the last ever event, the event {T̃⩽t} implies that Nu = Nt for any u⩾t, which also lead to 

λu = e− δ(u− t)λt.

Hence, we have 

P
(

T̃⩽t
⃒
⃒
⃒F s

)
= E

[
1
{T̃⩽t}

⃒
⃒F s

]

= E
[
exp
(
−

∫ ∞

t
λte− δ(u− t)du

)⃒
⃒
⃒
⃒F s

]

= E
[
exp
(
−

λt

δ

)⃒
⃒
⃒F s

]

(B.1) 

And according to Theorem 1, by setting θ = 1 in (5), the result follows immediately. 
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