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Abstract. This paper explores the relationship between unsupervised machine 

learning models, and the mental models of those who develop or use them. In 

particular, we consider unsupervised models, as well as the 'organisational co-

learning process' that creates them, as learning affordances. The co-learning 

process involves inputs originating both from the human participants’ shared 

semantics, as well as from the data. By combining these, the process as well as 

the resulting computational models afford a newly shaped mental model, which 

is potentially more resistant to the biases of human mental models. We 

illustrate this organisational co-learning process with a case study involving 

unsupervised modelling via commonly used methods such as dimension 

reduction and clustering. Our case study describes how a trading and 

training company engaged in the co-learning process, and how its mental models 

of trading behavior were shaped (and afforded) by the resulting unsupervised 

machine learning model.  The paper argues that this kind of co-learning process 

can play a significant role in human learning, by shaping and safeguarding 

participants’ mental models, precisely because the models are unsupervised, and 

thus potentially lead to learning from unexpected or inexplicit patterns. 

Keywords: Learners’ mental models, unsupervised machine learning, co-

learning process. 

1 Introduction 

It is well established in the learning literature that presenting learners with a simplified 

model of whatever is to be understood is a helpful step in learning [1].  One example 

of these simplified models is the use of “notional machines” in teaching about 

programs, computers and programming [2].  The programming teacher offers analogies 

such as “a variable is like a box” or possibly draws a simplified diagram of how a loop 

in a program works.  Of course, learners’ consequent mental models will not normally 

exactly match the simplified model that was presented, but they are normally influenced 

by it, and such simplified models also help towards a better understanding of the more 

complex truth from which the simplified model has been derived.  The use of simplified 

models can assist organisations as well as individuals in learning new material, as well 
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as about themselves.  In the case of managers engaging in self-understanding of their 

organisation [3], machine learning (ML) techniques applied to organisational data can 

act as a mirror back to them and thus to the organisation [4].  In this respect, 

unsupervised learning methods play a particular role as they are more likely to reveal 

factors that the managers were not explicitly aware of. This paper extends on a 

preliminary work [5], and its main contribution is not in the modelling itself, but rather 

in the theoretical postulation that ML models, generated by unsupervised methods, can 

be used as learning affordances to support the development of the mental models of the 

managers in an organisation. For clarity in what follows, we are not concerned here 

with how the managers’ changed mental models diffused through the organisation, but 

with the fact that something changed in the mental models of those managers.  

 

The ZISHI/OSTC company trades in “futures”1 and is a training company largely 

for university graduates, who join the company to learn the art of trading. The senior 

training managers who were leading this work in ZISHI, and were also interviewed in 

this study, are interchangeably referred to throughout this paper as either managers, 

trainers or experts. In order for them to support their learners (during and after two 

months of formal training), and to design mentoring/training tools for them, they 

needed first to understand what did trading actually look like in their own context, after 

years of nurturing tacit mental models. The trainers certainly had a strong sense that 

different traders traded in different ways and had developed a partial typology of 

trading behaviors: for example, some traders preferred to work in volatile markets, 

others in more stable markets.  Based on this implicit mental model, trainers might 

suggest different markets to individual traders based on this preference. However, the 

typology had not been reified within the company and had remained largely tacit. 

In an attempt to define ‘learning’, [6] (adapted from [7]) states that learning is “a 

process that leads to change, which occurs as a result of experience and increases the 

potential for improved performance and future learning” (p.3). Therefore, in order to 

help the company better understand its traders’ behavior and maintain a culture of 

learning and change [8], we used unsupervised ML methods to arrive at four 

multidimensional profiles of trading behavior. In parallel, we asked the company to 

generate its own, till then largely tacit [9], trading behavior profiles into written 

descriptions.  We were then able to compare these data-driven profiles with the 

company’s self-generated profiling.  After comparison and validation, the data-driven 

profiles (being validated as a refinement of the original mental profiling model) were 

used as the basis of a predictive decision support tools for hiring and mentoring, both 

tools are out of the scope of this paper.  

We term the process of crafting the four behavioral profiles using ML methods a 

‘co-learning process’, since this is a process combined of human ‘supervision’ in some 

of its stages, where the experts’ semantics guides the analysis, and is unsupervised in 

other stages, where the modeling is being guided purely by the data patterns. In that 

sense, it embodies some of the notions of connectivism [10] or extended minds [11], 

where learning is not considered as residing within a single learner, but rather stems 

 
1 Futures are derivative financial contracts that obligate the parties to transact an asset 

at a predetermined future date and price. 
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from the continuous interactions between learners, their organisation, and artefacts such 

as data. 

This paper is organised into five sections.  The next section focuses on the distinction 

between unsupervised ML models and mental models.  Section 3 describes the ways in 

which unsupervised ML methods were used as potential learning affordances.  Section 

4 compares the resulting ML model with the company’s original mental model. Section 

5 concludes and summarises our findings. 

2 Unsupervised ML models and mental models 

Raw data are not independent, contextless, self-sufficient repositories of meaning [12]. 

Contextualised modeling of data, using statistical methods and, particularly, ML, 

creates possibilities for assigning existing semantics to the models, as well as for 

creating new semantics, which in turn, can be used as “learning affordances”. The 

concept of affordance describes the complementary relationship between an 

environment and what it offers or provides to the actors within it [13]. The process of 

data modeling, which we refer to here as a “learning affordance”, can start from a phase 

of feature engineering, in which the existing semantics can be attached to the raw data 

to shape it in a contextualised way.  Later the process can generate (or rather bring to 

the surface) new hidden or implicit meanings, using methods such as unsupervised ML. 

In the unsupervised learning phase, hidden statistical relationships, or other statistical 

constructs (such as distributions) will emerge, to be interpreted via the stakeholders’ 

original mental models (which are based on expectations, projections, cognitive biases, 

and emotions), as well as generating new inferences and new assumptions. This can be 

an iterative process, in which the unsupervised model will be reviewed, new hypotheses 

raised, and the model tweaked and refined to serve an augmented purpose. Its purpose, 

as we will suggest in this paper, can be to support individual or organisational learning, 

by externalising and simplifying existing mental models of the world they are learning 

about. 

This paper argues that the model generated by unsupervised methods provides a 

learning affordance, not just because it simplifies, corrects and highlights different 

aspects of an existing mental model, but also because it can enable the creation of a 

new semantics and a new language to revise that mental model. The ML model is 

generated by a process, which by itself can be considered as a learning affordance in 

the sense that it offers a useful dialogical entity between knowledge existing in human 

minds, and the patterns arising from the data, and by means of that – might cancel out 

mutual biases, and open new opportunities for learning. 

In many senses, supervised ML and reinforcement algorithms inherently include in 

them the aspiration to mimic some specific human behavior and to optimise on the basis 

of human observations.  Unsupervised learning, on the other hand, can reveal factors 

and behaviors that human guidance might have been preventing us from seeing. In an 

analogy to human learning, a child might learn purely from observing (even if the scene 

is to some extent orchestrated by an adult human), and not always by following an adult 

deliberately pointing out (i.e., supervising), rewarding or punishing (i.e., reinforcing) 

to guide her. Unsupervised ML algorithms, such as clustering, dimension reduction or 

association techniques, are designed without a top-down supervision component, and 
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in many respects, the only human intervention will be expressed prior to the algorithm 

itself, in the form of feature engineering. Thus, unsupervised algorithms are more about 

identification than recognition, are freer to observe the data, and are freer to learn [14]. 

For an example about the usage of unsupervised learning to learn and reveal see [15]. 

2.1 Mental models 

In order for us humans to make best use of the redundant sensory observations that we 

collect to build up our own mental models [16], our cognitive systems must make those 

models accessible to our future everyday perception. Mental models are perceived as 

internal representations of the environment that provide a conceptual framework for 

describing, explaining, and predicting future system states. These models should be 

“simple” (the parsimony principle for mental models, for example [17]), so that we will 

be able to use them to efficiently and quickly detect any new associations involved in 

learning. The mainstream cognitive psychology literature stresses that our brain is 

doing a profoundly difficult job in doing so [16]. It should deduce probabilistic links 

about our world and detect suspicious outliers, all by accessing and linking prior 

knowledge structures and schemas [18].  In this paper, we present a case study through 

which the process of creating the unsupervised ML models, as well as the models 

themselves are used to form, externalise and then articulate knowledge and, via that, 

making the learning more effective [19,20].  

An organisation is typically a complex entity with many communicative channels 

connecting between the learning processes of its individuals and its whole culture 

[21].  A ML model, whether developed through supervised or unsupervised methods, 

will always be a simplification from a particular point of view on this complexity.  This 

simplification and loss of detail is also a strength that enables new insights; and even 

more so when the “point of view” on the complexity is less determined by prior 

expectations, such as occurs with unsupervised methods.  

The word ‘model’ is used in this paper to refer to different concepts interchangeably 

(sometimes deliberately). A ‘mental model’ is “produced through cognition by 

individuals to create a representation or structure of a phenomenon or solution to a 

problem” [23,16]. ‘To model’ is a verb describing the process that individuals 

undertake when they create, or retrieve existing mental models in order to solve 

problems [23]. A ‘computational model’ in this paper refers to unsupervised ML 

models, and the ‘co-learning’ process refers to a collaborative and connectivist process 

of developing the computational model.  

Mental models help us explain and predict how learners interact with the world, and 

how they explain, understand, solve anticipated events, and communicate (see Figure 

1 below from [23]). While mental models are internal structures [16], they can be 

exteriorised [24] when triggered by interaction with a domain system [25] such as 

robotics [23]. Our suggestion here is that unsupervised computational models can also 

offer an externalisation trigger. This allows for an observable effect of the initial 

internalisation of a mental model by the learners. By that, it can serve as a learning 

affordance, and the learning outcome can be observed through a change in learners’ 

language (for example by used concepts), and their ability to explain, predict and 

diagnose, as emphasised in [23] ‘transitory mental model’ (see the Figure 1 below), and 

as we will show in the results section. 
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Fig. 1. Mental model mode: diagram of functionality [23] 

One of the atomic units of mental models are concepts, along with their role in language 

and communication [17]. Effective learning is strongly associated with developing a 

clear definition of concepts, including the meaningful relations between them [26]. 

Human reasoning and decision making are further based on this initial storage of 

concepts, which is one kind of mental representation. In an effective process of 

learning, the mental model will be stored [27] in the long-term memory of an individual, 

serving later as a schema [28], or a script [29]. Once the model has been created, it 

exists independently of its sources [30].  Visualisations, images and text can serve as 

mental affordances [31] or as we term them – learning affordances – by assisting with 

the functionality of short-term memory [32], reducing cognitive load, and therefore 

assisting learning.   Our proposition is that unsupervised ML models can do that too, 

for example, by simplifying and reducing the number of the used dimensions. 

One characteristic of mental models is that they are not immutable entities that 

remain invariant across (or even within) students [23]. Since they are subjective, they 

can lead to misconceptions [33,34].  They are channeled and processed through human 

long-term memory, which is essentially faulty, and thus they are not immune to biases 

and changes over time. Computational models, on the other hand, are more robust in 

that sense, as they are anchored on observed evidence and are externalised by statistical 

statements. In their work defining ‘mental affordances’, [31] specifies the three criteria 

for ‘something’ to be a mental affordance: (1) mental affordances are opportunities for 

mental action; (2) mental affordances are perceptible; and (3) the perception of a mental 

affordance involves the potentiation of the mental action that is afforded [31]. We raise 

the suggestion that unsupervised ML models can serve as a special kind of a mental 

affordance: a learning affordance. In Section 3 below we show how an unsupervised 

computational model serves as an opportunity for learning, how it is perceptible and 

that its perception involves the potentiation of learning. 

2.2 Some criticisms of ML 

Criticisms are continually raised about the role of ML in the context of its focus on 

prediction rather than explanation [35]. Many have argued that the use of ML in the 

learning sciences often lacks a theoretical basis [36, 37] and that it is often undertaken 

with “one eye closed to the peculiarities of the data” [38]. The latter is specifically 

challenging in the learning sciences domain, as many central constructs (such as 
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‘learning’ and ‘collaboration’) are often ambiguous in their operationalisation, which 

makes it a hard pre-requisite for supervised ML algorithm to work effectively. Many 

scholars have strongly argued that modeling should start with certain educational goals 

in mind (e.g., student learning outcomes), that are measurable [39, 40]. Here we show 

how the unsupervised approach help learning in a more open-ended manner by helping 

a learning organisation to make tacit into explicit and to adjust their long-held beliefs. 

3 The co-learning process: Learning about trading behavior 

The next subsections list the stages in which the unsupervised model was produced 

within our case study. This is essentially a very typical data mining process, but it 

illustrates the various ways in which the organisational co-learning process serves as a 

learning affordance. In particular, how it opens opportunities for mental action in a 

tangible way [31].  In being a ‘co-learning’ process, where the company’s expert 

trainers were engaged as designing partners and experts of their domain, each phase 

afforded them a different interaction with the data, and subsequently - learning 

opportunities, as described below. Figure 2 below summarises the main stages, 

showing where human semantics (of the experts) is playing an active role, when it is 

being guided by the data, and how new semantics is produced at the end of the 

pipeline.  This dialogical interchange confronts the two (potentially differently biased) 

sources of knowledge, and by that potentially minimise the risks of a biased decision 

making (which by itself affords a new learning opportunity). Nevertheless, other 

mechanisms (out of the scope of this paper) such as ethical auditing, should also take 

place to minimise this risk further. 

During the first phases, inputs such as experience and data guide the process, while 

the last two phases are unsupervised. The result is a parsimonious model, which affords 

new learning opportunities, that would potentially shape the mental model of the 

organisation (i.e., act as a learning affordance).  

 

 

Fig. 2. A typical data mining process, resulting in an unsupervised model. The Blue rectangles 

represent the phases of the computing process. The light blue rectangles are semantic inputs going 

into the process. The Orange rectangles are outputs that go back to the organisation and 

potentially act as learning affordances. 

Knowledge elicitation. During the knowledge elicitation phase, we triangulated 

evidence from the behavioral finance literature (to use empirical evidence about 

potential indicators for successful trading behaviors) with the domain experts’ tacit 
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semantics.  This has ‘supervised’ our feature engineering and resulted in the domain 

experts’ externalisation of their existing mental model of the traders types (see Table 2 

below). 

Data integration. The complexity, inconsistencies and time associated with problem 

solving typically grow with the number of modalities or sources of information that 

need to be considered [41].  The resulting  integrated data, while revealing an integrated 

semantics,  is certainly one way in which computational models can be used as an 

affordance. In our case study, we used data from several data sources, such as 

clickstream from a trading software, various market characteristics, and internal reports 

for 2017-2018. As technically challenging and subject to the subjectivity of data 

sources the data integration phase is, its serendipitous nature opens new opportunities 

for learning.   

Feature engineering. A typical feature engineering process is yet another opportunity 

for the human semantics to inflict itself and ‘supervise’ the modeling, while still 

allowing the set of statistical relationships to orchestrate a model without obvious 

human interference. At the end of this phase, we were left with a list of 35 features of 

traders’ behavior.  Some features were as simple as the number of specific types of 

action that a trader makes in a typical month, such as the number of amendments and 

cancellations of orders. Other features were more ‘engineered’, such as the proportion 

of their trading in larger markets, and the proportion of the market they covered. 

Dimension reduction. The parsimonious representation of a mental model makes it 

more accessible to short term memory retrieval, while also making it more vulnerable 

to flawed heuristics [17]. Dimension reduction is one way in which unsupervised ML 

offers some economy, and therefore removes some of the cognitive load related to high-

dimensioned models. From the computational side as well, the ‘curse of high 

dimensionality’ is a term used to describe the challenges introduced by the presence of 

a vast number of variables, resulting in a performance degradation [42]. In our case 

study, we used principal component analysis (PCA) on our 35 behavioral features and 

480 traders’ data, after log-transforming the variables to make the distributions near-

normal, and making sure that none of the variables were highly correlated with others. 

The PCA resulted in four main factors accounting for 83.37% of the total variance, 

which were then reviewed with the domain experts. The strongest factor was shown to 

cover elements of how active the trader is (quantifying the number of actions they 

initiated), the second was related to trading style (specifically, whether traders show the 

tendency to focus narrowly on a small number of markets, or whether they tend to 

widen their focus to cover a large number of markets, with less focus on each).  The 

third factor covered the types of products they were typically traded (in terms of a 

product’s properties such as liquidity and volatility), and the fourth factor was focused 

on the overall volume of their trading. As will be shown in section 4, the introduction 

of these four dimensions into the organisational culture offered parsimony and a higher 

level of abstraction in the evolved mental model of trading behavior. 

 

Clustering. Cluster analysis is a technique used to identify naturally occurring groups 

in a dataset, here used to profile trading behavior.  In our case, the clustering was carried 
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out to challenge the existing profiling mental model of traders, that the company has 

been using in order to design a tailored training and mentoring programs. We 

deliberately did not add to the clustered features any feature having a direct relationship 

to performance measures (such as profit). The purpose was to make salient data patterns 

that were purely behavioral, to support formative feedback from mentors. The technical 

details of the carried K-means cluster analysis are detailed in the appendix. 

4 Results: mental models of trading behavior 

To validate our hypothesis that the unsupervised model had affected the mental model 

of the training managers in the organisation, we interviewed two of the most senior 

ones. The interview questions, as well as the themes we followed in the analysis were 

based on the ‘transitory mental model’ [23] dimensions, such as the models’ effects on 

language, prediction, diagnosis and supporting learners. Below are the main findings. 

In the interview the managers were asked to compare the mental model created within 

the company prior to our analysis, with the computational model created by that 

analysis (see Tables 2 and 3 respectively in the appendix).  

The main differences between the two models: The main difference noted was 

that the first model was “subjective”, in the sense that it had been derived from long 

experience of being traders and trainers, whereas the second model was “objective”, in 

the sense that it had emerged from the trading data.  A related difference was in the 

number of profiles.  The managers felt that they could have composed their mental 

model with more than the five profiles that they did, but chose not to so, as they had no 

easy way to determine what would be a sufficient set to cover the field.  By contrast, 

arriving at four profiles rather than some other number was driven by the usual needs 

for parsimony vs. coverage of the data in unsupervised ML. Another important 

difference was that the second model more clearly articulated “how engaged a trader 

is” compared to the first model as it brought to the fore issues around order activity and 

diversity.  This highlighted the fact that there were few tools available to managers to 

measure engagement with the data available to them. 

The main commonalities between the two models: One managers suggested that 

“both models very much focus on the markets [and] the types of markets, and the 

characteristics of the markets in terms of what the individuals seem to prefer and pay 

particular attention to volatility and product diversity”. An indirect issue is that neither 

model in itself indicates how best to train a particular type of trader, but the insight that 

training and mentoring could, in principle, be adapted in such a way indicated a shift in 

perception. 

The ML model’s effect on the managers’ views on trading and training: On the 

positive side, it was noted that the ML model was able to show up similarities and 

differences between mixes of trader behavior in the various company offices across the 

world.  It was also noted that the co-learning process had demonstrated the value of the 

company’s data. One manager noted the value of the ML model in supporting both 

recruitment and mentoring, in a way that was not really possible with the initial model. 

In terms of recruiting, the ML model opened up the possibility of consciously 

improving the diversity of trading styles within the company as part of its overall risk 

management strategy. On the negative side, “One disadvantage would be the potential 
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for assumptions and first impressions to be derived from cluster categorisation before 

a mentor has really . . . had a chance to work closely with and get to know a trader” 

and might also have a similar downside in recruitment. An interesting observation was 

made about the possibility that the ML profiles might become too rigid and 

constraining, and the need to update it when markets change.  

The ML model’s effect on the managers’s language: Several ideas emerged with 

regard to language and concepts.  From one manager, “the key thing for me . . . was 

about behaviors, and how traders’ behaviors [our emphasis] with the markets”.  This 

contrasts with the former focus on performance, typically profit and loss.  For the other 

manager, “the most obvious change is recognition that traders can be grouped by 

certain factors, other than their start date, and that they don’t have to be considered as 

individual entities at all time[s].”  This manager also pointed out the consequence of 

the objectivity of the data, “Due to the mentality of traders and analysts, and generally 

all departments within ZISHI/OSTC, I think there is a stronger propensity for people to 

acknowledge and factor in advice when it originates from a data led approach.”. The 

ML model has resulted in greater clarity, “Both models, but certainly the newer one, 

separate volume and position size as separate factors. I think evidencing this is 

important as a common incorrect assumption is that a bigger position equates to higher 

volume. This teamed with the concept of complexity really broadens the criteria on 

which a traders’ activity is ‘judged’.”  Note that the term “complexity” itself, which is 

now used routinely within the company, derived from the unsupervised modeling 

process. 

The ML model also helped to extend the manager’s thinking about the evolution of 

a trader’s behavior with experience, “The concept and likelihood of a trader gravitating 

from one cluster to another over time, which has been mentioned in the analysis, but 

perhaps not in the new model cluster descriptions is one aspect I think mentors and 

decision makers internally either need to accept as a possibility or on the other scale 

accept isn’t as straightforward as they assume.” 

The ML model’s effect on the managers’ ability to 'diagnose' or ‘predict’: One 

manager anticipated that, “having a data fed model gives a mentor more confidence to 

forward plan, anticipate and react quicker to the obstacles and barriers that each 

trader may face when progressing. It also adds greater weight to your case when 

presenting why you think a trader needs more time/resources to develop than a higher-

level decision-making body may invoke. It also has the ability to make communicating 

and justifying a mentor’s approach and ‘diagnosis’ to others easier. This could even 

be as simple as having the reassurance that the same language and concepts are being 

used.”  

Are there any other changes, not already noted, the managers have noticed in 

themselves and in their colleagues: One manager explained that, “This type of insight, 

. . . does open our eyes to who we have as a workforce and who traders are and how 

you can really look at performance.”  The other pointed out that: “there is a growing 

recognition that pairing the right mentor and mentee could be an important part of 

getting it right – although still somewhat in its infancy. From my own perspective I’m 

certainly more conscious of the fact that certain characteristics, or even whole clusters, 

that are considered to result in less profitable performance within ZISHI/OSTC might 

actually suit alternative trading environments which work under different parameters. 

. . . I certainly think it’s made me consider if dependent on cluster characteristics, and 
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very much linked to this is product mix, if risk parameters need to be adapted for the 

different clusters, even at a very junior stage of a career.” 

 

In summary, the main affordance for the training managers and trainees is that the 

profiles derived by unsupervised ML created a handy, bias-fencing shorthand to 

encapsulate a large number of low-level behavioral variables. These behavioral 

variables are usually not directly observable by the managers themselves before the 

modelling, and developing a mental model would typically take significant cognitive 

effort and time. In addition, the fact that those models were unsupervised has afforded 

the trainers a sense of validation, as well as of standardisation across the company’s 

different international locations. The unsupervised model and the concepts arising from 

the modeling changed the language within the company. New concepts such as 

“complexity”, “cluster”, and “trading style” were introduced and diffused across the 

company. Lastly, the new model opened up new dialogues about the shift of focus from 

performance onto behavior, about helping traders mobilise between profiles as part of 

their progress.  It also opened up the possibility for more targeted recruitment and 

mentoring, as well as for potentially better matching traders to types of markets or 

mentors.  The managers also identified a potential risk of trainers using the clusters as 

too simplified or rigid, and mentioned the need for awareness, and re-modeling.  

5 Conclusions 

The main rationale for using unsupervised ML models is that they can expose 

unexpected patterns, and therefore adds data-driven semantics to the existing semantics 

of human experts.  Of course, that does not come without challenges and dangers. In 

this paper, we have used a case study of a trading and training company managers which 

reflected on the comparison between their own mental model, and a computational 

model produced by a co-learning process. We suggest that  unsupervised models can 

be referred to as learning affordances, as they have the potential of reducing the 

complexity of a highly-dimensional behavior, floating inexplicit or unexpected 

patterns, introducing new concepts to the company’s language and generally affecting 

its learning. For example, the company’s training managers were now able to discuss 

how traders can be encouraged to move between different clusters of behavior and how 

their behavior might relate to performance. The model was an outcome of a 

collaborative modeling process, which suggests that it was itself a learning affordance. 

In our case it has enabled a space and time for a continuous interaction between the 

experts’ tacit knowledge, their own various mental models and data modeling. The 

method used in this case study should be generalisable to other unsupervised methods 

and to organisations that have accumulated a large amount of untapped behavioral data. 

 

Appendix A: Technical details of the cluster analysis 

Can be found at Technical details. 

https://drive.google.com/file/d/1g1pwb4RqIaaRb37t8KNjckI9IfA-XVR1/view?usp=sharing
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