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Abstract

A significant challenge for recommender systems (RSs), and in fact for AI sys-

tems in general, is the systematic definition of explanations for outputs in such

a way that both the explanations and the systems themselves are able to adapt

to their human users’ needs. In this paper we propose an RS hosting a vast

repertoire of explanations, which are customisable to users in their content and

format, and thus able to adapt to users’ explanatory requirements, while being

reasonably effective (proven empirically). Our RS is built on a graphical chas-

sis, allowing the extraction of argumentation scaffolding, from which diverse

and varied argumentative explanations for recommendations can be obtained.

These recommendations are interactive because they can be questioned by users

and they support adaptive feedback mechanisms designed to allow the RS to

self-improve (proven theoretically). Finally, we undertake user studies in which

we vary the characteristics of the argumentative explanations, showing users’

general preferences for more information, but also that their tastes are diverse,

thus highlighting the need for our adaptable RS.
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1. Introduction

Recommender systems (RSs) [55] aim to help users discover items that may

be of interest, most often by ranking or predicting ratings for them [2]. The

most widely used types of methods for RSs are ‘collaborative filtering’ (con-

sidering similarities between users or items to determine recommendations for5

users), ‘content-based filtering’ (operating on information about items, e.g. their

features) and those which are ‘knowledge-based’ (using constraints obtained as

user requirements), while ‘hybrid’ methods use a combination thereof. These

methods are able to navigate vast datasets in a way which would never be pos-

sible for human users alone, so long as we are happy to entrust them with the10

task of item recommendation. However, these systems suffer from scalability,

data sparsity, ‘cold start’ problems and, most importantly in the context of this

paper, a lack of explanations for their recommendations. The latter is an issue

because if the reasons behind recommendations are not explained to users then

they may be unable to provide effective feedback to the RS to help it adapt to15

the users’ preferences, which in turn may cause users’ unwillingness to follow the

recommendations in the future. Indeed, transparency of RSs has been shown to

be strongly linked to user satisfaction [33]. The lack of transparency has been

exacerbated in the recent past by a trend towards ever more complex models in

RSs [27], with explanatory aspects of systems being somewhat neglected. This20

problem is not specific to RSs alone, and is shared with AI in general [57].

There has of late been a drive towards explainability in AI from academia,

industry and government1. Notwithstanding these efforts, empowering explain-

ability is no simple task. One first issue is the trade-off between accuracy and

1E.g. see, respectively, the recent survey [35], IBM’s AI Explainability 360 launched

in August 2019, and the European Commission’s Ethics Guidelines for Trustworthy

AI (8 April 2019), available at https://ec.europa.eu/digital-single-market/en/news/

ethics-guidelines-trustworthy-ai.
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explainability [29], and some, e.g. Balog et al. [8], have posited that it is worth25

sacrificing the former (somewhat) in place of the latter. Another issue is the

fact that there is no general solution for what makes a good explanation, with

considerations including, but not limited to, the information it should include

and how it is delivered to users (see [62] for a taxonomy). Indeed, different

users may require and benefit from different forms of explanations, and thus30

explanations need to be adaptable to the human users to which they are di-

rected [69, 49]. A further issue is whether explanations can empower users to

interact with the system, in particular to provide feedback on outputs by the

system. The social sciences clearly indicate that explanation is a social process

for humans [49] and human explanations for recommendations are still seen to35

be of better quality than machine-generated explanations and therefore inspire

more trust in the users, though making the generated explanations richer may

alleviate some of this deficiency [44]. Also, recent work in RSs advocates the

capability of integrating feedback as crucial for user trust [8]. We aim to ad-

dress some of these concerns here, by defining an adaptable, hybrid RS which is40

equipped with explanations that are: faithful to the method for calculating rec-

ommendations, customisable to diverse explanatory requirements and amenable

to elicit feedback from humans within interactions aimed at gaining users’ trust

and improving the RS, while being reasonably effective.

In this paper we give a hybrid Aspect-Item RS (overviewed in Figure 1),45

named this way because it relies upon an underpinning graphical chassis linking

items and their aspects (or properties/features). This chassis houses the infor-

mation for recommendations and is the basis for the argumentative scaffolding

from which argumentative explanations (of various kinds and formats) are auto-

matically generated to support interactive recommendations for users, including50

the opportunity for giving feedback on recommended items and their aspects.

The recommendations result from a hybrid method for calculating predicted

ratings from ratings given by the user and by similar users. The argumentative

scaffolding amounts to tripolar argumentation frameworks (TFs), in the spirit

of argumentation in AI (see [6, 10] for recent overviews), but extending classical55
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Figure 1: Overview of our hybrid RS.

abstract [30] and bipolar [20] argumentation frameworks by including a ‘neu-

tralising’ relation (labelled 0) in addition to the standard ‘attack’ (labelled -)

and ‘support’ (labelled +) relations. These relations are extracted so that they

meet logical requirements based on how predicted ratings for items and aspects

affect one another. This synchronisation between the RS and its explanations is60

a crucial advantage of our approach, since users can trust that the explanations

describe how recommendations were generated. Argumentative explanations

include, amongst others, conversational and visual explanations. These expla-

nations form the basis for interactions with users to explain recommendations

and receive feedback that can be accommodated into the RS to improve its be-65

haviour. Thus, not only are our explanations varied and diverse, but they also

account (in a limited sense) for adaptable recommendations over time.

Concretely, we map the graphical chassis underpinning our RS onto user-

tailored TFs determined by predicted ratings for the user, giving a dialectical
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interpretation of the factors influencing a recommendation, and taking advan-70

tage of argumentation’s natural amenability for representing human-like rea-

soning. To extract the TFs, we understand the predicted ratings computed by

our RS as a gradual semantics for the TF, exhibiting a desirable property of

weak monotonicity, which can thus be seen as the driving force behind the ex-

traction of the TF, in the spirit of Baroni et al. [11], but for a novel form of75

argumentation framework and for a novel property; these choices of framework

and property lead to an argumentative scaffolding faithful to the underlying RS.

We illustrate how the user-tailored TFs can then be used to generate a range of

explanations for recommendations by our RS, varying in their characteristics.

We show by means of illustrations that these explanations can be constructed80

to elicit feedback in user interactions, leading to positive and intuitive effects

on the quality of future recommendations, building on the effectiveness of the

recommendations prior to interactions; we assess effectiveness empirically, on a

number of publicly available datasets, in comparison with various baseline algo-

rithms. Finally, we provide user evaluations of various forms of explanation from85

our RS, and show that users’ preferred characteristics in an explanation vary,

justifying the flexibility and customisability naturally afforded by our method.

Our contributions can be summarised as follows:

• We define a novel, hybrid RS which utilises argumentation technology to

provide customisable explanations of recommendations while being rea-90

sonably effective in making recommendations, in comparison with pub-

licly available RSs lacking explanatory capabilities; argumentation plays

a crucial role in our RS, in that argumentation frameworks (in the form

of TFs) provide a faithful counterpart of the RS (in the spirit of what

is advocated by Ignatiev [40]) from which relevant information can be95

harboured to systematically obtain explanations in a wide range of styles.

• We showcase various forms of explanations that can be drawn from the

underpinning argumentative scaffolding (i.e. from the TFs), emphasis-

ing how their content, format and feedback mechanisms can be varied to

5



satisfy variations in user preferences.100

• We conduct user studies on take-up of some of these forms of explanation,

showing that users prefer more information in explanations but also that

their preferences on explanatory format are diverse.

• We provide a novel perspective on the use of argumentation in AI: whereas

conventionally semantics for argumentation frameworks and properties105

thereof are chosen post-hoc, in order to analyse the frameworks and the

conclusions drawn from them, we start with the choice of semantics (the

RS’s predicted ratings) and use properties as a driving force for obtaining

argumentation frameworks suitable as a basis for explanations.

The paper is organised as follows. In Section 2 we provide background on110

(explainable) RSs, argumentation as understood in AI, as well as existing work

on using argumentation to provide explanations for RSs. In Section 3 we de-

fine the graphical chassis on which our RS is based and provide our method

for calculating predicted ratings therein, along with some theoretical analysis of

the predicted ratings’ behaviour. In Section 4 we assess the RS’s effectiveness115

empirically (in comparison with a number of baselines), in a popular domain

for RSs (movie recommendations), with various datasets: the Netflix challenge

dataset2 as reported in [54], the MovieLens Development dataset and the Movie-

Lens 100K benchmark dataset [36]. In Section 5, we map instances of the RS

(and thus the recommendations thereof) onto user-tailored TFs, and show the-120

oretically that they make sense from an argumentation viewpoint, represent the

predicted ratings faithfully and indicate intuitive changes that can be made to

the RS via interactions with users. Thus, this section provides solid theoretical

underpinnings for our explanations, and the basis for their high customisability.

In Section 6 we then provide illustrations of the varying characteristics of ex-125

planations which may be delivered to users, including the feedback mechanisms

with which they may interact, before, in Section 7, providing some experiments

2https://www.netflixprize.com/
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on the preferences of users with regards to some of these explanatory character-

istics. In Section 8 we conclude, in particular pointing to future work.

This paper builds upon and extends [54] and [53] as follows. Sections 2130

and 3 extend the same sections in [54]: we have added discussions, proofs and

examples throughout. In particular, in Section 3 we have added a theoretical

analysis of the RS with Propositions 1 and 2. Section 4 is mostly new and

includes empirical analysis of the RS’s performance with three datasets. Section

5 significantly extends the same section in [54] with further theoretical analysis of135

the TFs’ properties: Definition 8, Propositions 3, 4 and 5, and the corresponding

discussions are all new. Section 6 is completely new. Finally, Section 7 is mostly

new, with the second user study adapted from [53].

2. Background

2.1. Recommender Systems140

Common methods used for making recommendations in RSs are ‘latent fac-

tor models’ and ‘neighbourhood models’ between items or users. Latent factor

models, based on matrix factorization, describe the items as vectors of factors

inferred from data. Neighbourhood models have been used to support various

collaborative filtering algorithms for RSs. These models include non-negative145

matrix factorization models [47], Singular Value Decomposition [16, 71], Slope

One techniques [45], and Co-clustering, a simultaneous clustering of users and

items [34]. In addition, collaborative filtering and content-based filtering can

be combined to give hybrid models [18, 19]. The Netflix Prize competition3

has shown that matrix factorization models are superior to nearest-neighbour150

models, such as KNN [4], as many of the best performing algorithms in the com-

petition were based on matrix factorization [42, 68]. Whilst these models are

scalable and effective, they are not easily explainable, as the way they represent

factors makes them non-interpretable. These issues are shared with many of

3https://www.netflixprize.com/
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the recent advances in deep learning methods for RSs, e.g. [73, 37, 82]. These155

methods, while performing well with regards to effectiveness, rely on neural

networks and so cannot easily provide explanations as to how recommendations

are generated, particularly to lay-users (though some efforts towards providing

explanations have been made, e.g. using attention mechanisms [59]). We share

the views of Rudin [57], namely: if interpretable models perform acceptably in160

a task, the additional explainability that they possess may prove to be a worth-

while advantage over black-box methods. We will compare the performance of

our RS with some of these existing techniques.

The trend towards explainability in RSs was ahead of that in general AI

methods, possibly hastened by RSs’ end-user-facing nature. A thorough review165

of explainable RSs was undertaken by Zhang & Chen [78], in which the au-

thors assess explanations’ types, i.e. how the explanation is displayed to the

user, as well as considering how to evaluate explanations and also their applica-

tions. These concerns are a particular focus of this paper, since we introduce a

method (based on argumentation) for generating explanations of various types170

(which we understand as resulting from combinations of different content and

format), satisfying various evaluation measures within the application of movie

recommendation. The possible explanations for a particular RS strongly de-

pend on the method for calculating recommendations, particularly as regards

explanatory content. For example, content-based RSs are naturally amenable175

to explanations of a similar nature, e.g. as in [1], and similarly for collabora-

tive filtering RSs, e.g. as in [70]. This is not the case for the format of the

explanation, however, as RSs in the same category may adopt wildly different

formats. Moreover, explanations in the same format may result from very differ-

ent methods. For example, textual explanations may be produced via templates180

utilising underlying features, e.g. as in [80] (as we also do later in the paper),

or via neural methods operating on reviews, e.g. as in [25].

Some explainable RSs, e.g. that of Xian et al. [76], deploy knowledge graphs

in a form of scaffolding similar to that which we propose, however there is no

argumentative reasoning underpinning the predicted ratings for the items. The185
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RS of Wang et al. [74] also uses a collaborative knowledge graph (i.e. with

information from other users) with attention mechanisms to calculate the rec-

ommendations, also allowing explanations to be generated using a subgraph of

the knowledge graph. A key difference between these RSs and our approach

is that from their explanations it is difficult to say exactly how recommenda-190

tions were made, while our explanations are transparently extracted from the

RS. A graphical, method-agnostic method for explaining RSs linguistically is

given by Musto et al. [50], which uses a similar framework to ours but with

the rationale for recommendations generated independently from the algorithm

making the recommendations. Our explanations, meanwhile, adhere fully with195

the predicted rating calculations and are thus faithful to the underlying RS.

Some of the most popular types of explanation (often equipped with feed-

back mechanisms) are conversational, perhaps driven by the popularity of AI

assistants such as Apple’s Siri. The theoretical framework for conversational

search and recommendation of Radlinski & Craswell [52] considers the types200

of interaction between the user and the system, providing application contexts

for each. Vote Goat [28] converses with users to provide recommendations via

a speech-based natural language interface using Dialogflow. The System Ask,

User Respond system [79] provides conversational recommendations using a

multi-memory attention network, giving results once the system has a high con-205

fidence in the item. The RS of Sun & Zhang [63] uses a belief tracker to keep

track of states with LSTM (Long Short-Term Memory) networks before rein-

forcement learning is used to determine whether to ask for facet value pairs or

to give recommendations. The conversational RS of Sepliarskaia et al. [60] uses

a static preference questionnaire to avoid cold start problems and to elicit user210

preferences (cold start is a problem that arises in RSs when sufficient information

about users or items is lacking). A similar method [23] achieves a 25% increase

in accuracy using only two questions in the restaurant recommendation context.

Meanwhile, Balog et al. [8] render recommendations scrutable with rule-based,

pairwise explanations where users are allowed to correct each individual clause215

in an explanation. Finally, Aliannejadi et al. [3] combine templates and neural
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methods: questions are generated offline with users in a Human Intelligence

Task before a neural model is used to select between them in conversational

interactions, finding that an increase in user interaction improves recommenda-

tions. Our RS admits conversational explanations as a special type, drawn, like220

other types of explanations, automatically from the same underpinning argu-

mentation scaffolding.

Evaluation of (explanations in) RSs is overviewed by Tintarev & Masthoff

[65], which also identifies desirable features of RSs (see also [66]), including:

effectiveness, e.g. increasing the systems’ accuracy with regards to users’ pref-225

erences; transparency, i.e. explaining how systems work and showing how they

predict ratings; scrutability, i.e. allowing feedback based on these explanations;

and trust, i.e. correcting the systems based on user feedback. None of the sys-

tems surveyed in [65] fulfilled all four of these aims. Of those which aimed to

improve scrutability, the systems in [16, 26] both use template-based responses230

based on factors affecting the recommendation. A study on the relationships

between such desirable features is undertaken by Balog & Radlinski [7], high-

lighting strong dependencies amongst them. Meanwhile, investigations have

been performed [38, 33] into how users respond to different types of explanation

for recommendations. The considered explanations therein are wide ranging:235

Herlocker et al. [38] found that visual explanations depicting histograms of the

number of neighbours with negative, neutral and positive ratings performed

best, while tag-based explanations, i.e. those which highlight aspects of recom-

mended items, performed poorly. In the same work, a tabular method giving

statistics on ratings of items performed well while simple statistical explanations240

such as an overall average rating (from all users) did not. Gedikli et al. [33] as-

sess explanation types with respect to the desirable features of RSs of Tintarev

& Masthoff [66], showing that different explanation types have different effects

on users. For example, their statistical explanation of the overall number of

positive ratings was the most efficient (users rated the explanation quickly) but245

it performed poorly with regards to effectiveness (specifically regarding the er-

ror in a user’s rating given after the explanation). Indeed, McInerney et al.
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[48] utilise bandits to determine which explanations users are most receptive to.

Our aim in this paper is not to determine which explanations perform best but

to show that argumentative scaffolding supports numerous explanation types.250

Meanwhile, Kulesza et al. [43] assess the importance of the soundness and com-

pleteness of explanations, showing that users value both. The importance of

soundness motivates our work, since our explanations are faithful to the RS

without approximations, while that of completeness (or, at least, the amount

of information included in an explanation) will be examined once more in our255

user study.

With respect to analysis of the feedback capability of RSs, a comparison of

the different types of implicit feedback (e.g. skipping a song) is given by Schn-

abel et al. [58], showing how the feedback quality can effect results. Zhao et al.

[81] compare implicit and explicit (e.g. correcting predicted ratings) feedback260

for 6 different types of RS, showing that implicit feedback engages users more

but the effect is mixed as it induces both positive and negative engagements,

and that incorporating both implicit and explicit feedback is often optimal. In

this paper we only consider explicit feedback. We leave as future work the ques-

tion as to whether our RS could be made to infer implicit feedback from user265

actions.

2.2. Argumentation and its Use in Recommender Systems

Abstract argumentation frameworks (AFs) [30] are pairs consisting of a set

of arguments X and a binary relation between arguments L−, representing at-

tacks. Formally, an AF is any ⟨X ,L−⟩ where L− ⊆ X × X . Bipolar argumen-270

tation frameworks (BFs) [20] extend AFs by considering two separate binary

relations between arguments: attack L− and support L+. Formally, a BF is

any ⟨X ,L−,L+⟩ where ⟨X ,L−⟩ is an AF and L+ ⊆ X × X . Various other types

of argumentation frameworks have been proposed in the literature, including

tripolar frameworks, as in [31], and generalised argumentation frameworks, as in275

[9], both allowing for additional dialectical relations (in addition to attack and

support). The argumentation frameworks we use in the paper for explanation
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can be seen as a special instance of these latter types of frameworks.

Argumentation frameworks are assigned semantics, which may be given in

terms of so-called extensions (as in [30]) or in terms of a gradual strength func-280

tion (as overviewed by Baroni et al. [12]). In this paper, we will treat predicted

ratings by our RS as a form of the latter type of semantics. Given an argumen-

tation framework with arguments X , for any x ∈ X , the strength (or gradual

evaluation) of x is σ(x), where σ ∶ X → I is a strength function and I is set

equipped with a preorder ≤ [12]. In this paper, we will use I = [−1,1].285

The requisite behaviour of a suitable strength semantics for a given appli-

cation may be characterised by properties, e.g. strict monotonicity [12], which

states that an argument’s strength depends monotonically on its base score

and on the strengths of its attackers and supporters. We will mention other

properties studied in the literature later in Section 5.290

Several argumentation-based RSs have been proposed in the literature. For

example, some [22, 17, 64] use defeasible logic programming (DeLP) [32] to en-

hance recommendation technologies with argument-based analysis. DeLP sup-

ports defeasible reasoning dialectically, can handle incomplete and contradictory

information, and uses a comparison criterion to solve conflicting situations be-295

tween arguments. Chesñevar et al. [22] model user preferences as facts, strict

rules and defeasible rules. Along with background information, user preferences

can be used in a DeLP program to make recommendations which are mod-

elled as arguments in favour of or against a particular decision. Teze et al.

[64] enhance the argument-based RS of Chesñevar et al. [22] to allow for an300

argument comparison criterion on users’ preferences to be encoded by means

of conditional expressions, thus enabling the argument preference criterion to

be selected rather than being treated as a fixed component. The movie RS of

Briguez et al. [17] relies on a set of predefined postulates describing the con-

ditions under which a movie should be recommended to a given user; these305

conditions can be translated into DeLP rules. Examples of postulates are a

user may like a movie if the actor of the movie is one of the user’s favourites or

a user may like a movie if the movie is liked by a group of similar users. Expla-
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nations are extracted from the dialectical tree supporting a recommendation.

Our argumentation-based explanations, meanwhile, are generated automatically310

from data without any need for knowledge to be manually incorporated. Bedi

& Vashisth [14] define a hybrid RS in which argumentation is used to repair

recommendations by correcting rule-based arguments, e.g. “the actor is popu-

lar”, in user interactions; this RS can thus be deemed to be adaptive to users’

preferences. Note that in our RS arguments are based on whether a user likes,315

or is predicted to like, items or aspects, rather than rules. Argumentation can

also be used to differentiate between techniques in the hybridisation process

when making recommendations, as shown by Rodŕıguez et al. [56], where rec-

ommendations from rule-based RSs are combined using argumentation. Finally,

Toulmin’s model of argumentation [67] is used by Naveed et al. [51] in developing320

a formalisation for explanations for recommendations, demonstrating mockup

explanations without explicitly defining an RS. User studies are then performed

showing that different levels of argumentation-based explanation are preferred

by different users, providing evidence for the need for argumentative scaffolding

supporting customisable explanations in our proposed RS. However, the argu-325

ment structure in [51] is limited to a chain of evidential reasoning based on the

support relation, rather than “debates” built from three dialectical relations (in

TFs) as we do.

3. Predicted Ratings in the Aspect-Item Recommender System

We define an RS where items (e.g. movies) are associated with aspects4
330

(e.g. comedy), which in turn have types (e.g. genre), and users may have

provided ratings on some of the items and/or aspects. The associations form

an underlying graphical chassis within the aspect-item framework underpinning

the RS:

Definition 1. An Aspect-Item framework (A-I in short) is a tuple ⟨I,A,T,L,U ,R⟩335

4Note that we refer to properties/features as aspects in line with the terminology in [54].
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such that:

• I is a finite, non-empty set of items;

• A is a finite, non-empty set of aspects and T is a finite, non-empty set of

types such that for each aspect a ∈ A there is a (unique) type t ∈ T with t

the type of a; for any t ∈ T , we use At to denote {a ∈ A∣ the type of a is t};340

• the sets I and A are disjoint; we use X to denote I ∪A, and refer to it as

the set of item-aspects;

• L ⊆ (I ×A) ∪ (A × I) is a symmetric binary relation;

• U is a finite, non-empty set of users;

• R ∶ U × X → [−1,1] is a partial function of ratings.345

Note that each aspect has a unique type, but of course different aspects may

have the same type. Thus, T implicitly partitions A, by grouping together all

aspects with the same type. Note also that we replicate identical aspects for

different types, e.g. we consider Quentin Tarantino the director to be a separate

aspect to Quentin Tarantino the actor (justified by the fact that they will likely350

be rated differently). Finally, we assume that ratings, when defined, are real

numbers in the [-1,1] interval. Other types of ratings can be translated into

this format, for example a rating x∈{1,2,3,4,5} can be translated into a rating

y ∈[−1,1] using y = ((x − 1)/2) − 1.5

The I, A, T and L components of an A-I may be visualised as a graph (thus355

the term ‘graphical chassis’ for an A-I), as illustrated in Figure 2 for the movie

domain (we ignore for now the labels of the nodes in the graph, but note that

we assume a mapping from elements of X and nodes).

5Note that very few ratings (if any) may be specified by R at the start (giving rise to the

cold start problem we mentioned earlier in Section 2). The cold start is a commonly occurring

problem in the RS literature. This could be addressed, for instance, by recommending the

most popular movies with respect to (highest) ratings.
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Figure 2: Example components of an A-I visualised as a graph, with items given by red stars

and types: genres (whose aspects are blue squares), actors (whose aspects are purple circles)

and directors (whose aspects are green diamonds). Each node’s label is of the form (Name

- x, R(u,x), R(v, x), Pu
X (x)), with U = {u, v}, standing for ‘undefined’ and assuming a

mapping from each node to its item-aspect.

In the remainder of the paper (unless otherwise specified) we assume as given

an arbitrary A-I F = ⟨I,A,T ,L,U ,R⟩.360

Definition 2. The set of linked item-aspects of x ∈ X is L(x) = {y ∈ X ∣(y, x) ∈
L}. We also use Lt(i), for i ∈ I, to denote {a ∈ L(i)∣a ∈ At}.

For the example shown in Figure 2, the set Lactor(Catch Me If You Can)
comprises Leonardo DiCaprio and Tom Hanks.

The primary goals of RSs [2], formulated for A-Is, are: (i) Prediction -365

for a user u ∈ U , ∀i ∈ I such that R(u, i) is undefined, compute a predicted

rating Pu
I (i); and (ii) Ranking - for a user u ∈ U , compute a ranking on

{i ∈ I∣R(u, i) is undefined}. In this paper, we focus on prediction, given that

rankings or top-N recommendations can be derived from predictions. Before

giving our method for predicting ratings, we define users’ profiles.370

Definition 3. The profile πu of user u ∈ U consists of:
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● a ‘collaborative filtering’ constant φu ∈ [0,1];
● ∀t ∈ T a ‘type importance’ constant µu

t ∈ ]0,1];
● ∀v ∈ U such that u≠v, a ‘similarity’ constant ωu,v ∈[0,1].

Intuitively, φu defines how much u wishes collaborative filtering to be taken375

into account, and a larger φu will give other users’ ratings more prevalence in

the calculations of predicted ratings and, conversely, a smaller φu will give the

content-based components more prevalence. Thus, φu allows users to control

the hybrid nature of our RS. Also, µu
t defines how important type t is to u

and how much u wants aspects of type t to be taken into account, and larger380

values of µu
t will give these aspects, and the user’s own ratings on items which

are linked to them, a higher impact. We assume that µu
t > 0 for any t ∈ T and

u ∈ U , i.e. that all aspects are taken into account at some degree for all users.6

Finally, ωu,v defines how similar u and v are, and how much v′s ratings should

impact the calculations. Note that all other users’ ratings can considered, by385

ensuring that all the similarities are greater than zero, or only the k nearest (by

similarity) neighbours, by setting the similarities to all other users (aside from

the k nearest) to zero. In Section 4, we have set the number of similar users

to 20, as this worked reasonably well in the empirical analysis; however other

values could be used and we leave finding the optimal value to future work.390

Our method for calculating predicted ratings of items, based on users’ pro-

files, makes use of the following notion of weighted average rating :

Definition 4. For any u∈U and any i∈I, let Υu(i)={v ∈U/{u}∣R(v, i) is defined}
be the set of users other than u who have rated item i. Then, the weighted av-

erage rating ρu ∶ I → [−1,1] is obtained as follows, for u ∈ U and i ∈ I:395

if Υu(i) ≠ ∅ and ∑v∈Υu(i) ωu,v > 0

then ρu(i) = ∑v∈Υu(i) ωu,vR(v,i)
∣Υu(i)∣

6This is a departure from [54], where µut ∈ [0,1]. Note that, although we restrict µut to

be non-zero, it can be infinitesimally small. Note also that although these constants can-

not be negative, negative influences between item-aspects, as indicated in the argumentative

scaffolding as described in Section 5, may still arise.
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else ρu(i) is undefined.

Thus, the weighted average rating of an item for a user is undefined when

no other user or no other similar users have given any ratings for the item. As400

mentioned earlier, the choice of which users may be deemed similar is made by

an appropriate choice of the constants ωu,v.

The predicted rating for an item is given in terms of the predicted rating for

aspects, defined as follows.

Definition 5. For any user u ∈ U and aspect a ∈ A, let Λu(a) = {i ∈ L(a)∣R(u, i)
is defined} be the set of linked items with ratings from u and let Λ−u(a) = {i ∈
L(a)∣ρu(i) is defined}/Λu(a) be the set of linked items with defined weighted

average ratings but without ratings from u. Then, the predicted aspect rating

Pu
A ∶ A → [−1,1] for a is obtained as follows, for u ∈ U and a ∈ A:

if R(u, a) is defined then Pu
A(a) = R(u, a); else

if Λu(a) = Λ−u(a) = ∅ then Pu
A(a) = 0; else

if Λu(a) = ∅ then Pu
A(a)=φu

∑i∈Λ−u(a) ρ
u(i)

∣Λ−u(a)∣ /[1+φu]; else

if Λ−u(a) = ∅ then Pu
A(a) =

∑i∈Λu(a)R(u, i)
∣Λu(a)∣ ; else

Pu
A(a)=[

∑i∈Λu(a)R(u, i)
∣Λu(a)∣ +φu

∑i∈Λ−u(a)ρ
u(i)

∣Λ−u(a)∣ ]/[1+φu].

Intuitively, the predicted aspect rating weights the average ratings on linked405

items from the user and from similar users based on φu, but is overridden by

a rating on the aspect itself from the user. Aspects without ratings (from the

user or similar users) have the neutral predicted aspect rating of zero.

We finally use the predicted aspect ratings to calculate the predicted item

ratings, as follows.410

Definition 6. For any u ∈ U , the predicted item rating Pu
I ∶ I → [−1,1] is
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obtained as follows, for any i ∈ I:

if R(u, i) is defined then Pu
I (i) = R(u, i); else

if ρu(i) is undefined then Pu
I (i) =

∑t∈T µ
u
t [∑a∈Lt(i)Pu

A(a)]/∣Lt(i)∣
∑t∈T µ

u
t

; else

Pu
I (i)=

φuρu(i)+∑t∈T µ
u
t [∑a∈Lt(i)Pu

A(a)]/∣Lt(i)∣
φu +∑t∈T µ

u
t

.

The predicted item rating is again overridden by a rating from the user. This

calculation weights the average ratings on the item from similar users with φu

against the predicted aspects ratings from each of the linked aspects using their

corresponding µu
t . Thus, aspects with a positive, negative or neutral predicted

ratings have positive, negative or neutralising, respectively, effects on items to415

which they are linked. Note that our method can be seen as a form of hybrid

RS as it combines collaborative filtering with content-based factors.

In the remainder of the paper, for simplicity we use Pu
X (x) to refer to Pu

I (x)
or Pu

A(x) depending on whether x ∈ I or x ∈ A, respectively. We also refer to

Pu
X as the predicted rating of an item-aspect.420

As an illustration, consider the A-I with I, A, T and L as in Figure 2,

U = {u, v} andR such that: R(u, a3) = 1, R(u, d1) = 0, R(u, f2) = −1, R(u, g2) =
−0.5 and R(v, f1) = 0.5. Assume that φu = µu

actors = µu
genres = µu

directors = 1 and

ωu,v = 0.5. Then, by Definitions 5 and 6, the predicted rating for the item-

aspects that u has rated is equal to these ratings, e.g. Pu
A(u, a3) = R(u, a3) = 1

(similarly for d1, f2 and g2). For a1, Λu(a1) = ∅ and Λ−u(a1) = {f1} thus

Pu
A(a1) = φu × ωu,v × R(v, f1)[1 + φu] = 1 × 0.5 × 0.5/[1 + 1] = 0.125. For x any

of a2, d2 and g1, Pu
A(u,x) = R(u, f2) = −1 since Λu(x) = {f2} and Λ−u(x) = ∅.

For g3, Λu(g3) ≠ ∅, Λ−u(g3) ≠ ∅ and Pu
A(g3) = [−1

1
+ 1 0.5∗0.5

1
]/[1 + 1] = −0.375.
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Finally, for f1:

φuρu(f1) = φu × ωu,v ×R(v, f1) = 1 × 0.5 × 0.5 = 0.25;

µu
actors[ ∑

a∈Lactors(f1)
Pu
A(a)]/∣Lactors(f1)∣ = 1 × [0.125 + 1]/2 = 0.563;

µu
genres[ ∑

a∈Lgenres(f1)
Pu
A(a)]/∣Lgenres(f1)∣ = 1 × [−0.5 − 0.375]/2 = −0.438;

µu
directors[ ∑

a∈Ldirectors(f1)
Pu
A(a)]/∣Ldirectors(f1)∣ = 1 × [0]/1 = 0;

Pu
I (f1) =

0.25 + 0.563 − 0.438 + 0

4
= 0.09.

These predicted ratings, alongside the given ratings, are visualised in Figure 2.

We now prove theoretically that the predicted ratings satisfy properties

which render the RS’s behaviour suitable for making recommendations and, as

we will show later, capable of supporting explanatory feedback processes. These425

properties are implicitly formulated for two A-Is: the first, F = ⟨I,A,T ,L,U ,R⟩,
is the starting point; the second, F ′ = ⟨I ′,A′,T ′,L′,U ′,R′⟩, is the result of some

modification to the components of F . These modifications may take different

forms, e.g. new ratings for item-aspects or additional item-aspects and links.

No matter what the modifications are, they are of interest because they lead to430

modified predicted ratings (as indicated in the propositions below).

Our first proposition shows that increasing an aspect’s predicted rating can

only have a positive effect on the predicted ratings of the items to which it is

linked. We posit that this is intuitive; for example, if we do not know if a user

likes a movie but we receive information that they like one of its actors, we435

would expect our prediction of the user’s rating on the movie to increase.

Proposition 1. Let u ∈ U ∩U ′, i ∈ I∩I ′ be such that R(u, i) is not defined, and

a ∈ L(i) ∩ L′(i). Further, let Pu
A(a) and Pu

A
′(a) be, resp., the predicted aspect

ratings of a for u in F and F ′ and Pu
I (i) and Pu

I
′(i) be, resp., the predicted

item ratings for u of i in F and F ′. Then,440

• if Pu
A
′(a) > Pu

A(a) then Pu
I
′(i) > Pu

I (i);

19



• if Pu
A
′(a) < Pu

A(a) then Pu
I
′(i) < Pu

I (i).

Proof. By inspection of the two latter cases of Definition 6, as only Pu
A(a) has

changed.

Our second proposition concerns the effect of changing the user’s or similar445

users’ ratings on a movie on the predicted ratings of the aspects it holds: in-

creasing the former can only have a positive effect on the latter. We believe that

this is also intuitive behaviour; for example, if we do not know if a user likes

an aspect representing a genre but we receive information that they or similar

users like a movie of that genre, we would expect that our prediction of the450

user’s rating on the aspect representing the genre to increase.

Proposition 2. Let u ∈ U ∩ U ′, a ∈ A ∩A′ be such that R(u, a) is not defined,

and i ∈ L(a)∩L′(a). Further, let ρu(i) and ρu′(i) be, resp., the weighted average

rating of i for u in F and F ′, and Pu
A(a) and Pu

A
′(a) be, resp., the predicted

aspect ratings of a for u in F and F ′. Then,455

• if R′(u, i) > R(u, i) or ρu′(i) > ρu(i) then Pu
A
′(a) > Pu

A(a);

• if R′(u, i) < R(u, i) or ρu′(i) < ρu(i) then Pu
A
′(a) < Pu

A(a).

Proof. We focus here on the first bullet (the second can be argued similarly).

Since R(u, a) is not defined, the first case of Definition 5 does not apply. The

same is true of the second case as either R(u, i) or ρu(i) is defined, and thus460

Λu(a) ≠ ∅ or Λ−u(a) ≠ ∅, resp. If R(u, i) is defined then the fourth or the fifth

case applies, in which case we can see that R′(u, i) > R(u, i) gives Pu
A
′(a) >

Pu
A(a). Likewise, if ρu(i) is defined then the third or the fourth case applies, in

which case we can see that ρu′(i) > ρu(i) gives Pu
A
′(a) > Pu

A(a).

4. Empirical Evaluation465

We evaluate the A-I RS empirically on three datasets: a subset of the Net-

flix challenge dataset7 as reported in [54], the MovieLens Development (Dev.)

7https://www.netflixprize.com/
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dataset and the MovieLens 100K benchmark dataset [36]. For all datasets, to

obtain the aspects associated with T = {genre, actor, director}, we use The

Movie Database (TMDb) API8. Like others, e.g. [8, 41, 77, 72], we focus on470

the movie domain as a popular, exemplary domain for RSs, but choose three

different datasets for variety in the evaluation.

The datasets contain ratings on a five star scale from 1 to 5, with both

integral (Netflix, MovieLens 100K) and half-star increments (MovieLens Dev.).

The users in the MovieLens datasets have rated at least 20 movies9 whereas475

the users in the Netflix dataset have rated at least 10 movies [54]. In our

experiments, we keep only those actors and directors that have appeared in at

least two movies. If, after this filtering, there exist movies with only actors and

directors that have been discarded, then these movies are also discarded from

the datasets. Statistics of the resulting datasets are shown in Table 1.480

We calculate the users’ ratings for each aspect of each type, namely genre,

actor, and director. For example, to obtain a user’s rating for each aspect of

type genre, we multiply the ratings’ matrix of the user with the movie genre

matrix. Similarly, we calculate the users’ ratings for each actor and for each

director as found in our database. To determine the similarity between any485

two (different) users, we use the cosine distance between the users’ ratings for

all aspects of type genre. Formally, ωu,v = uuu⋅vvv
∣∣uuu∣∣⋅∣∣vvv∣∣ where uuu and vvv are vectors

representing user u’s and user v’s ratings, respectively, for each aspect a. In the

experiments, for each user u, we use u’s 20 most similar users, leaving studies

investigating the variation of the similarity constant (ω) to future work. For490

all datasets, we use the following constants for the profiles of all users: φ=0.7,

µactor =0.1, µdirector =0.1, µgenre=0.1. We consider these constants to represent

the default configuration, giving more weight to similar users to allow for a fair

comparison with the algorithms we use as baselines. We leave the optimisation

of these constants (e.g. per user) to future work.495

8http://www.themoviedb.org
9https://grouplens.org/datasets/movielens/
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Netflix MovieLens Dev. MovieLens 100k

∣I∣ 240 7225 670

∣U ∣ 4113 610 943

∣A∣ 538 7881 1267

∣directors∣ 101 1795 275

∣actors∣ 419 6066 974

∣genres∣ 18 20 18

avg ∣A∣ 7.85 7.43 6.62

avg ∣actors∣ 4.23 4.03 3.67

avg ∣genres∣ 2.60 2.34 1.92

max ∣A∣ 14 18 10

max ∣actors∣ 11 5 5

max ∣genres∣ 3 10 5

Table 1: Datasets statistics: number of items (∣I∣), users (∣U∣), aspects (∣A∣), and of individual

aspects (∣directors∣, ∣actors∣ and ∣genres∣), as well as maximum (max) and average (avg) number

of aspects/actors/genres per film.
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The experimental setting is defined as follows. We perform five fold cross-

validation using, in turn, 80% of each user’s ratings as training data and the

remaining ratings as test data. This is in line with most related works, us-

ing a large majority of ratings as training and 20-25% of the ratings as testing

[8, 41, 77]. Furthermore, we run additional experiments to test the robustness500

of our method when dealing with limited training data. This is in line with

what happens in reality, where new users may not have rated many items and

thus there may not be many ratings available to the RS when making recom-

mendations. To evaluate the performance of our method with limited training

data, we also partition the datasets into five parts and conduct five experiments505

but by using, in turn, only 20% of each user’s ratings as training data (while the

remaining 80% of the ratings constitute the test data). We compare against the

following recommendation algorithms as implemented in the Surprise library

[39]:

● KNN: K Nearest Neighbours, a classical collaborative filtering algorithm;510

● KNNZ: KNN with the z-score normalization of each user;

● SVD: Singular Value Decomposition, an algorithm that led to the best results

in the Netflix challenge;

● NMF: Non-negative Matrix Factorization, a collaborative filtering algorithm

[47];515

● Slope1: Slope One [45], based on ‘popularity differential’ between items for

users by finding the average rating differential;

● CoClust: Co-clustering [34], an algorithm built on simultaneous clustering

of users and items.

For all methods we use the default configuration settings. We report standard520

RS performance measures [61]: Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE). Given that ratings are highly subjective, users who

might like the same movie could give different ratings, e.g. in the case of two

users who both liked a movie, one could give 5 stars (again, on a scale of 1-5

stars) to a movie whereas the other could give 4 or 4.5 stars. To accommodate525

variations in subjective ratings, we also convert the ratings to a binary scale
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such that a rating greater or equal to 3 is considered to be positive, whereas a

rating less than 3 is considered to be negative. We report global Precision (as

well as Recall and F1) with respect to the binary scale. The results are shown

in Table 2.530

When using five fold-cross validation (top of Table 2), our RS is competitive

with the baselines. There is no clear winning algorithm on the Netflix dataset

while for the MovieLens datasets, SVD performs best. In the experiments with

limited training data (i.e. 20% of each user’s ratings as training and remaining

80% as test data, see bottom part of Table 2), in terms of MAE and RMSE,535

SVD performs best throughout. Our RS achieves the highest precision when

considering the binary scale. We are interested in obtaining high precision rather

than recall as we want to make sure the predictions we make are correct; i.e. we

are interested in the fraction of relevant items retrieved out of all items retrieved

rather than in the fraction of relevant items retrieved out of all relevant items.540

Although our method obtains higher precision compared to the baselines, it does

not outperform all baselines on all metrics used. Whilst obtaining the minimum

MAE/RMSE is not the main focus of this paper, it is nonetheless encouraging

to see that our method does not sacrifice effectiveness significantly. We will

now show that, in addition to being reasonably effective in comparison with545

the other methods considered, our method is explainable, and a whole range

of explanation types for its recommendations can be automatically generated

from an argumentation scaffolding underpinning our A-I. Since our focus is on

explainability, we leave the optimisation of (the parameters in) our RS and a

comparison with other RSs (see Section 2) as future work.550

5. Argumentative Scaffolding

In abstract [30] and bipolar [20] argumentation, any information which may

be in dialectical relationships of disagreement (attack) or, in the bipolar case,

agreement (support) with other information may be considered to be an ar-

gument, and arguments (according to this loose interpretation of the term)555
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KNN KNNZ SVD NMF Slope1 CoClust A-I
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MAE 0.77 0.73 0.71 0.76 0.74 0.75 0.90

RMSE 1.05 1.02 0.99 1.05 1.02 1.04 1.19

Precision 0.82 0.84 0.83 0.85 0.84 0.85 0.84

Recall 0.99 0.96 0.98 0.93 0.95 0.94 0.87

F1 0.90 0.90 0.90 0.89 0.90 0.89 0.85
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MAE 0.74 0.69 0.68 0.73 0.71 0.74 0.90

RMSE 0.98 0.93 0.91 0.96 0.94 0.98 1.19

Precision 0.84 0.86 0.86 0.86 0.87 0.87 0.84

Recall 0.94 0.92 0.94 0.90 0.90 0.87 0.85

F1 0.89 0.89 0.90 0.88 0.88 0.87 0.85

M
o
v
ie

L
en

s
1
0
0
K

1
3
0
0
1

p
a
ir

s

MAE 0.81 0.76 0.74 0.80 0.79 0.80 0.85

RMSE 1.12 1.06 1.02 1.11 1.09 1.10 1.13

Precision 0.85 0.86 0.85 0.86 0.86 0.86 0.86

Recall 0.97 0.97 0.99 0.95 0.96 0.95 0.93

F1 0.91 0.91 0.92 0.90 0.91 0.90 0.89
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MAE 0.87 0.85 0.77 0.89 0.87 0.88 1.00

RMSE 1.15 1.14 1.05 1.18 1.17 1.18 1.31

Precision 0.82 0.83 0.82 0.84 0.83 0.84 0.84

Recall 0.98 0.94 0.99 0.89 0.93 0.92 0.80

F1 0.89 0.88 0.90 0.86 0.88 0.88 0.82
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7
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MAE 0.82 0.79 0.74 0.82 0.81 0.82 0.93

RMSE 1.05 1.02 0.97 1.06 1.04 1.07 1.20

Precision 0.82 0.84 0.84 0.84 0.84 0.84 0.86

Recall 0.96 0.94 0.96 0.90 0.93 0.91 0.77

F1 0.89 0.89 0.90 0.87 0.88 0.87 0.81

M
o
v
ie

L
en

s
1
0
0
K

5
1
6
3
7

p
a
ir

s

MAE 0.91 0.88 0.81 0.93 0.90 0.91 0.93

RMSE 1.22 1.18 1.08 1.24 1.21 1.23 1.21

Precision 0.84 0.85 0.85 0.85 0.85 0.85 0.86

Recall 0.98 0.98 1.00 0.94 0.97 0.96 0.91

F1 0.90 0.91 0.91 0.89 0.90 0.90 0.88

Table 2: Evaluation results averaged over five runs with different percentages of data used for

training and testing (80% and 20%, resp., in the top part, and 20% and 80%, resp., in the

bottom part). We indicate best performances in bold.

typically have a negative or positive impact on the (gradual) acceptability of

arguments they attack or support, respectively. In this spirit, item-aspects in
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A-Is may be seen as arguments: if a user (or another similar user) rates an

item highly/lowly then this item can be seen as an argument for/against, re-

spectively, the aspects connected with the item and, similarly, if a user rates an560

aspect highly/lowly then this aspect can be seen as an argument for/against,

respectively, the items connected with the aspect. Moreover, if an A-I is viewed

from an argumentative perspective, a user’s (or similar users’) opinion (rating)

on an aspect/item may impact the estimation of the user’s opinion (rating) of

items/aspects connected with that aspect/item in the absence of actual rat-565

ings. This dialectical reading of A-Is provides the argumentative scaffolding

from which the explanations for recommendations that are delivered to users

may be extracted to facilitate fruitful interactions between the user and the RS,

e.g. via conversational explanations as in [24], leveraging on argumentation’s

dialectical nature.570

In order to fully capture the behaviour of A-Is as argumentation frameworks,

a novel dialectical neutralising relationship is needed, in addition to the standard

relationships of attack and support in bipolar argumentation frameworks, to

represent item-aspects which have neither a positive nor a negative effect on

other arguments but rather neutralise them, by moving their strength towards575

the neutral mid-point. For example, let us consider the case of a user liking an

actor a who is in two movies, but as the sole actor in one and as one of ten in

the other. Suppose that the A-I predicts a neutral (0) rating for all actors in the

second movie other than a. These nine actors dilute (neutralise) the positive

effect of a, impacting in turn the system’s prediction on whether the user likes580

the aspects of type actor in general. Without a neutralising dialectical relation,

some influences from the item-aspects on their predicted ratings would not be

represented in the argumentative scaffolding. We therefore define the following

argumentation frameworks.

Definition 7. A Tripolar Argumentation Framework (TF) is a tuple ⟨X,L−,L+,L0⟩585

where X is a set of arguments, and L−, L+, L0 are binary relations over X . For

x, y ∈ X , we say that x attacks y if (x, y) ∈ L−, x supports y if (x, y) ∈ L+, and x
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neutralises y if (x, y) ∈ L0. With × as any of −, + or 0, for any x ∈ X , we will use

L×(x) to denote {y ∈ X ∣(y, x) ∈ L×} the attackers, supporters or neutralisers,

resp., of x.590

Note that our TFs may be seen as instances of ‘tripolar frameworks’ as

defined in [31] and of ‘generalised argumentation frameworks’ as defined in [9].

Whereas these works envisage the use of relations other than attack and support,

we commit (in our concrete instance) to the additional relation ‘neutralise’.

Straightforwardly, any TF ⟨X ,L−,L+,L0⟩ with L0 = ∅ is a bipolar argumen-595

tation framework and if L+ = L0 = ∅ then the TF is an abstract argumentation

framework. As in the case of abstract and bipolar argumentation frameworks,

a TF may also be equipped with some gradual strength function σ which calcu-

lates the strength of any argument over a given interval based on the strength

of the arguments in dialectical relationships with the argument, as in [31]. As600

in the case of abstract and bipolar argumentation frameworks, this strength

function may be defined so as to satisfy desirable properties [11], including the

following simple but intuitive property, which is a generalisation to the setting

of TFs of one of the implications of strict monotonicity in [12]:

605

Definition 8. Let ⟨X ,L−,L+,L0⟩ and ⟨X ′,L−′,L+′,L0′⟩ be TFs, and let (x, y) ∈
(L− ∪ L+ ∪ L0) ∩ (L−′ ∪ L+′ ∪ L0′). A strength function σ satisfies the property

of weak monotonicity at (x, y) if, whenever σ(x) = 0 in ⟨X ′,L−′,L+′,L0′⟩ and,

∀z ∈ [(L−(y) ∪ L+(y) ∪ L0(y)) ∩ (L−′(y) ∪ L+′(y) ∪ L0′(y))]/{x}, if σ(z) = s
in ⟨X ,L−,L+,L0⟩ and σ(z) = s′ in ⟨X ′,L−′,L+′,L0′⟩, then s = s′, then the610

following is guaranteed to hold, for σ(y) = v in ⟨X ,L−,L+,L0⟩ and σ(y) = v′ in

⟨X ′,L−′,L+′,L0′⟩:
● if x ∈ L−(y) ∩ L−′(y), then v′ > v;

● if x ∈ L+(y) ∩ L+′(y) then v′ < v;

● if x ∈ L0(y) ∩ L0′(y) then v′ = v.615

Weak monotonicity characterises attacks/supports/neutralisers as links be-

tween arguments such that if we mute the affecting argument’s strength, its
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affected argument’s strength increases/reduces/does not change, resp., high-

lighting the negative/positive/neutral, resp., effect between the two.

We will use the interval [-1,1] as the co-domain of σ, matching the interval620

used for ratings, and map A-Is onto TFs so that predicted ratings of item-

aspects amount to the strength of arguments. In doing so, we use TFs as the

argumentative scaffolding for explanations in our RS.

Specifically, to obtain a TF from a given A-I, first we direct the A-I’s links

in L, based on the existence of the user’s and other (similar) users’ ratings for625

item-aspects, showing which item-aspects have effects on the predicted ratings

of others. These directed relations represent the direction of the inferences made

in the RS, e.g. if an item-aspect has a given rating from the user, no inferences

were made on its predicted rating and it thus has no inward relations. However,

if the item-aspect has no rating from the user, the calculation of its predicted630

rating uses information from its linked item-aspects and the item-aspect may

therefore have inward relations. This first step results in directed A-Is, defined

formally as follows:10

Definition 9. The directed A-I for u ∈ U is Fu = ⟨I,A,T ,Lu,U ,R⟩, where Lu =
{(i, a) ∈ L∣R(u, a) is undefined and ∃v ∈ U such that R(v, i) is defined and if v ≠635

u then ωu,v ≠ 0} ∪ {(a, i) ∈ L∣R(u, i) is undefined}. For x ∈ X , we refer to

Lu(x) = {y ∈ X ∣(y, x) ∈ Lu} as the set of item-aspects affecting x. Also, for i ∈ I
we use Lu

t (i) to denote the set {a ∈ Lu(i)∣a ∈ At}.

For the remainder of the paper we will assume as given an arbitrary directed

A-I Fu = ⟨I,A,T ,Lu,U ,R⟩ for u ∈ U , unless otherwise specified. A TF can640

then be obtained from Fu by determining the polarity of pairs in Lu, as follows:

Definition 10. For any i ∈ I, let ru(i) beR(u, i) if defined, else ρu(i) if defined,

and otherwise be undefined.11 The TF corresponding to Fu is ⟨X ,L−,L+,L0⟩

10This definition differs slightly from that in [54] as we neglect here inward relations for

rated aspects, since their linked items do not have an effect on the aspects’ predicted rating

calculations.
11It is easy to see, by definition of Lu, that if ∃(i, a) ∈ Lu, then ru(i) is defined.
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such that:

L− = {(i, a) ∈ Lu∣ru(i) < 0} ∪ {(a, i) ∈ Lu∣Pu
A(a) < 0};

L+ = {(i, a) ∈ Lu∣ru(i) > 0} ∪ {(a, i) ∈ Lu∣Pu
A(a) > 0};

L0 = {(i, a) ∈ Lu∣ru(i) = 0} ∪ {(a, i) ∈ Lu∣Pu
A(a) = 0}.

We define ru here to represent the effect which linked items have on an as-

pect’s predicted rating, in line with Definition 5. Then, ru and Pu
A are used

to determine the polarity of an affecting argument’s effects on affected argu-

ments: if they are negative/positive/zero, we categorise the directed link as645

attack/support/neutraliser, resp., in the TF. It is this direct mapping from

predicted ratings to the TF which ensures the fidelity of the argumentative ex-

planations to the RS, differently from other methods, such as the graph-based

approach of [50], where explanations are generated independently from the rec-

ommendations.650

For illustration, the TF corresponding to the directed A-I Fu for user u

obtained from the A-I shown in Figure 2 is visualised in Figure 3. Here, there

are no arguments affecting f2 since it is rated by u. Given that this rating is

negative and all aspects linked to f2 are not rated by u, f2 attacks all such

aspects. Conversely, f1 is not rated by u but has a positive rating from v and655

thus f1 supports all (linked) aspects without a rating, i.e. a1 and g3. The fact

that f1 is not rated by u means that all aspects linked to f1 affect it.

Note that since an argument with zero strength (e.g. d1 in Figure 3) has a di-

luting effect on arguments it affects, we require the neutralising relation in order

to ensure fidelity, to fully represent how the predicted ratings are calculated,660

as we briefly discussed earlier. For example, consider a movie f1 with n > 1

linked aspects L(f1) = {a1, . . . , an} such that Pu
A(a1) = 1 and ∀i > 1 Pu

A(ai) = 0,

and movies f2, f3 with L(f2) = {a1}, L(f3) = {a2, . . . , an}. The impact of the

aspects on Pu
I (f2) should be greater than that on Pu

I (f1) (given that all of

f2’s linked aspects have maximum predicted rating) - thus we need dialectical665

relations from a2, . . . , an which reduce the strength of f1. Moreover, the impact

of the aspects on Pu
I (f3) should be null (given that all of f3’s aspects have
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Figure 3: A graphical representation of the TF corresponding to the directed A-I Fu for user

u from A-I in Figure 2. Here, ‘+’ indicates ‘support’ (L+ in Fu), ‘-’ indicates ‘attack’ (L− in

F
u) and ‘0’ indicates ‘neutraliser’ (L0 in Fu).

neutral predicted rating) - thus the dialectical relations from a2, . . . , an cannot

be attacks. We use a neutralising relation that only dilutes the positive effect

of a1 so that the estimation of whether our user (dis)likes a2, . . . , an does not670

decrease or increase our estimation of whether the user (dis)likes f3 nor does it

necessarily decrease our estimation of whether the user (dis)likes f1.

We now show theoretically that the behaviour of the argumentative scaf-

folding in relation to the predicted ratings of item-aspects is intuitive from

an argumentation viewpoint (while remaining faithful to the RS). To do this,675

similarly to Section 3, we consider two A-Is (Fu = ⟨I,A,T ,Lu,U ,R⟩ and

Fu′ = ⟨I ′,A′,T ′,Lu′,U ′,R′⟩, for u ∈ U ∩ U ′), with the former the starting point

and the latter a modification of the former, and analyse the properties of their

two corresponding TFs (⟨X ,L−,L+,L0⟩ and ⟨X ′,L−′,L+′,L0′⟩, resp., assuming

X ′ = X ), taking Pu
X to be a strength function σ ∶ X ↦ [−1,1]. We first prove that680

this σ is guaranteed to satisfy weak monotonicity, defined earlier, in a special

case for the modification of ratings:

Proposition 3. σ = Pu
X satisfies the property of weak monotonicity at any

(x, y) such that R′(u,x) = 0.
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Proof. Here, for brevity, we refer to any quantity in the modified A-I Fu′ with685

a prime ′. Consider the case where x ∈ L−(y)/x ∈ L+(y)/x ∈ L0(y). If x ∈ I and

y ∈ A then by Definition 10 we know that ru(x) < 0/ru(x) > 0/ru(x) = 0, resp.

so setting R′(u,x) = 0 gives ru′(x) > ru(x)/ru′(x) < ru(x)/ru′(x) = ru(x), resp.

and thus, by the fourth or fifth case of Definition 5, Pu
A
′(y) > Pu

A(y)/Pu
A
′(y) <

Pu
A(y)/Pu

A
′(y) = Pu

A(y), resp. If x ∈ A and y ∈ I then by Definition 10 we690

know that Pu
A(x) < 0/Pu

A(x) > 0/Pu
A(x) = 0, resp., so setting R′(u,x) = 0

gives Pu
A
′(x) > Pu

A(x)/Pu
A
′(x) < Pu

A(x)/Pu
A
′(x) = Pu

A(x), resp. and thus, by the

second or third case of Definition 6, Pu
I
′(y) > Pu

I (y)/Pu
I
′(y) < Pu

I (y)/Pu
I
′(y) =

Pu
I (y), resp.

Thus, TFs may be deemed to represent the reasons for recommendations695

to users. In addition, the relations within this argumentative scaffolding may

also highlight ways a user can modify the RS, intuitively driving the user’s

feedback in response to explanations drawn from the scaffolding (see Section 6)

within interactions between the user and the RS. Consider, for example, the

fact that attackers, supporters and neutralisers represent item-aspects which700

may be used as part of an explanation due to the distinct negative, positive or

neutral, resp., effect they have on other item-aspects’ predicted ratings. The

following proposition characterises how they affect linked item-aspects (again,

considering A-Is Fu and Fu′ and corresponding TFs as mentioned earlier, before

Proposition 3, and referring for brevity to any quantity in Fu′ with a prime ′,705

as in the proof of Proposition 3):

Proposition 4. For any x ∈ X and y ∈ (L−(x)∪L+(x)∪L0(x))∩(L−′(x) ∪ L+′(x)
∪L0′(x)):

• if y ∈ A and Pu
A
′(y) > Pu

A(y) then Pu
X
′(x) > Pu

X (x);

• if y ∈ I and ru′(y) > ru(y) then Pu
X
′(x) > Pu

X (x);710

• if y ∈ A and Pu
A
′(y) < Pu

A(y) then Pu
X
′(x) < Pu

X (x);

• if y ∈ I and ru′(y) < ru(y) then Pu
X
′(x) < Pu

X (x).
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Proof. By inspection of Definitions 9 and 10 and Propositions 1 and 2.

Intuitively, if we take an item-aspect’s potential to reduce or increase other

item-aspects’ predicted ratings as an attacking or supporting strength, i.e. ru715

for items (as given in Definition 10) and Pu
A for aspects, adjustments to these at-

tacking or supporting strengths may be characterised as weakening or strength-

ening attackers or supporters. In particular, we consider strengthening to be

decreasing the ru or Pu
A of attackers (thus increasing their potential to reduce

the strengths of arguments they attack) or increasing the ru or Pu
A of supporters720

(thus increasing their potential to increase the predicted ratings of arguments

they support), and weakening to be the inverse. The property captured by

Proposition 4 differs from the traditional properties for strength (i.e. gradual

semantics), such as reinforcement [5] or strict monotonicity [12], where, for

example, strengthening an attacker or a supporter always corresponds to in-725

creasing the attacked or supported, resp., argument’s strength; this behaviour

is not suitable here as strong attackers and strong supporters are at opposite

ends of the same strength scale, i.e. [−1,1]. We posit that our interpretation

of weakening and strengthening makes sense from an argumentation viewpoint

as, in TFs obtained from A-Is, an argument’s semantic meaning is not fixed730

in that the argument may represent a user (strongly) liking its corresponding

item-aspect if its strength is (extremely) positive or (strongly) disliking an item

if the strength is (extremely) negative.

The next proposition shows that if a user profile remains constant, strength-

ening or weakening an argument can only affect another argument’s predicted735

rating if there is a path from the former to the latter via the argumentative

relations:

Proposition 5. Let the profile πu of user u be fixed. For any x, y ∈ X , such

that ru′(x) ≠ ru(x) if x ∈ I and Pu
A
′(x) ≠ Pu

A(x) if x ∈ A, Pu
X
′(y) ≠ Pu

X (y)
if and only if there exists a path x1, . . . , xn such that x1 = x, xn = y and740

xk−1 ∈ L−(xk) ∪ L+(xk) ∪ L0(xk) for k ∈ {2, . . . , n}.

Proof. For any (v,w) ∈ L, Definition 9 shows that if (v,w) ∈ Lu (and thus by
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Definition 10 (v,w) ∈ L− ∪ L+ ∪ L0), then R(u,w) is not defined and ru(v) is

defined if v ∈ I. It can thus be seen from Propositions 1 and 2 that if (v,w) ∈
L− ∪ L+ ∪ L0 and ru′(v) ≠ ru(v) or Pu

A
′(v) ≠ Pu

A(v) then Pu
X
′(w) ≠ Pu

X (w).745

Let the default case for y be such that ∀z ∈ L−(y)∪L+(y)∪L0(y), ru′(z) = ru(z)
if z ∈ I and Pu

A
′(z) ≠ Pu

A(z) if z ∈ A, i.e. nothing has changed and so by

Definitions 5 and 6, Pu
X
′(y) = Pu

X (y).
If x ∈ I then the above logic extends to any a ∈ A such that (x, a) ∈ L−∪L+∪L0,

and then to any i ∈ I such that (a, i) ∈ L− ∪ L+ ∪ L0. If x ∈ A then the above750

logic extends to any i ∈ I such that (x, i) ∈ L− ∪ L+ ∪ L0. Thus the change is

propagated if there is a path between x and y.

If y is such that L−(y) ∪ L+(y) ∪ L0(y) = ∅, by Definitions 9 and 10, R(u, y)
is defined or ∀i ∈ L(y) and ∀v ∈ U , R(v, y) is not defined, therefore Pu

X
′(y) =

Pu
X (y). Thus the change is not propagated if there is no path between x and y.755

Therefore the proposition holds.

This means that in order to explain a predicted rating for a given item-

aspect, we may crop the TF corresponding to Fu so that its explanation is the

sub-graph of the TF consisting of the item-aspects with a path to the explained

item-aspect only. This cropping, along with careful selection of the information760

which constitutes the explanation (described in the next section), can alleviate

any scalability issues which may arise for argumentation scaffolding with many

arguments. For example, Figure 4 shows the sub-graph of the graph in Figure 3

that may be seen as a qualitative explanation for the recommendation f1 to

user u, indicating all item-aspects affecting the recommendation.765

We will re-examine the characteristics of the argumentative scaffolding con-

sidered in this section when we show examples of argumentative explanations

drawn from the argumentative scaffolding, in the next section.

6. Argumentative Explanations

Within our RS, TFs drawn from A-Is form the basis for a variety of ar-770

gumentative explanations for recommendations dictated by predicted ratings.
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Figure 4: Example argumentative explanation for the recommendation of f1 to u using the

TF in Figure 3 after cropping arguments without a path to f1. Predicted ratings are also

shown for reference.

These explanations are ‘argumentative’ because they provide a rationale for the

recommendations using, as their main ‘skeleton’, sub-graphs of TFs (e.g. as in

Figure 4) providing content which can then be presented incrementally to users

in different formats (e.g. as in Figure 5) to support different styles of interac-775

tion. The argumentative scaffolding (Proposition 4 in particular) also points to

controlled forms of feedback from users during interactions. Thus, the use of

our argumentative scaffolding affords great adaptability to our RS, firstly in the

explanations’ customisability with regards to content and format and secondly

in the way it allows modifications to be made to the RS via feedback mech-780

anisms in user interactions. In the remainder of this section we discuss and

illustrate different choices of content and format of argumentative explanations

(Section 6.1) and different forms of feedback (Section 6.2).

6.1. Explanation Customisation

We first consider the explanation content, i.e. the information for the ratio-785

nale behind a recommendation which is delivered to the user: the requirements

for identifying this content obviously vary depending on user and context. We

posit that the subgraph of the TF identified in Proposition 5 provides an excel-

lent source for this information, since it represents every item-aspect which may

have had an effect on the recommendation. This means that explanations that790
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faithfully represent how a recommendation was determined12 may be drawn

from this subgraph (as in Figure 4).

Requirements Content Linguistic Explanation

Catch Me If You Can was recommended

All supporters of f1 a1, a3 because you like Leonardo DiCaprio

and Tom Hanks.

Strongest attacker and
Catch Me If You Can was recommended

strongest supporter of f1
a1, d1 because you like Leonardo DiCaprio,

despite the fact that you dislike Biographies.

A weak attacker of f1
Catch Me If You Can was not recommended

and its own attacker
g3, f2 because it inferred that you don’t like Dramas,

since you disliked Moulin Rouge.

Table 3: Example variations in explanation content for f1, with argumentative artefacts in

the linguistic explanations highlighted in bold. Note that many other variations are possible.

The content of an explanation may be selected from this subgraph depending

on the user’s requirements. For example, in a basic case where the user requests

information on why an item was recommended, one straightforward way to795

provide an explanation is for the RS to determine the positive factors which led

to this result, which, in our case, would be the supporters in the sub-graph of

the TF. In the case of f1 in the example in Figure 4, this would correspond to

the content column in the first row of Table 3, which in turn could be used to

obtain a linguistic explanation as in the rightmost column in Table 3, using the800

conjunction because for the argumentative relation of support and utilising the

full width of the supporters of f1 in the TF. If a more balanced explanation for

an item being recommended is required, the the style of the explanation in the

rightmost column in the second row of Table 3 may be more appropriate, where

the strongest attacker and strongest supporter in (the sub-graph of) the TF are805

12Note that not all RS explanations have this aim, e.g. see [50].
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shown, again using appropriate conjunctions for the argumentative relations.

However, this still uses only width in the TF and ignores reasons for and against

used arguments. In our running example, consider the case where f1 was not

recommended; the third row of Table 3 shows how depth may be used to justify

the RS’s inference on the user’s sentiment on Dramas. Here, the language810

represents the resolutely negative effects along this chain of reasoning.

We have provided a number of examples for selecting the content of expla-

nations from TFs, but note that other methods could be useful, e.g. including

neutralisers when the RS is explaining its uncertainty about an inference. Balog

et al. [8] use templates to generate inferences of a user’s sentiment on aspects815

in pairwise comparisons, e.g. Catch Me If You Can was recommended because

you like Biographies, especially those starring Leonardo DiCaprio. Our argu-

mentative scaffolding could support such explanations by comparing the aspects

of a movie with their linked items, e.g. in our running example (to use a crude

method) if all the items which are linked to both g2 and a3 are rated more highly820

than those linked to g2 but not a3, we may construct the same argumentative

explanation.

Up to now we have only considered explanations of a linguistic format but

other formats are possible, and the choice of the format is an important factor

in how receptive a user is towards explanations [33]. The optimal format for an825

explanation varies significantly based on a range of factors including the appli-

cation towards which the explanation is targeted and the goals of the explainee

[49]. For example, a researcher testing an RS may prefer a graphical format

which is true to the argumentative scaffolding itself, whereas a user may prefer

a linguistic approach which gives the information in a natural, human-like man-830

ner. Argumentation frameworks themselves have been shown to be an effective

way of supporting anthropomorphised conversational explanations, e.g. Co-

carascu et al. [24] extract argumentation frameworks as explanations for review

aggregations which are then used to facilitate conversations with users. Other

forms of explanations which have been shown to be beneficial in RSs include835

tabular explanations, e.g. as in [70], where (paraphrased in our setting) the at-
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tacking and supporting item-aspects in an explanation may be represented in a

table with other attributes shown, e.g. the item-aspect’s strength and distance

from the recommendation. Visual explanations in the form of charts have also

been shown to perform well in studies on user preferences [38].840

Figure 5 shows four alternative formats (in addition to the graphical format

afforded by sub-graphs of TFs) of user explanation for the example from Fig-

ure 4. Specifically, Figure 5i shows a visual explanation in the form of charts

exploiting the width in the TF, i.e. attacking and supporting aspects coloured

by type and organised by their corresponding predicted ratings, thus giving the845

user a clear indication of each aspect’s contribution to the predicted rating of

the recommended item. Figure 5ii, meanwhile, targets both depth and width

in a linguistic format, which may be textual or spoken, e.g. by an AI assistant,

depending on the requirements and preferences of the user. These explanations

may be generated by templates or more complicated natural language generation850

processes, both employing the TF as the underlying knowledge base. Similar

information is utilised in Figure 5iii, which shows a tabular explanation similar

to those of Vig et al. [70], where predicted ratings (translated to a 1-5 star scale)

are shown alongside a relevance parameter, calculated here by inverting the dis-

tance from the recommended item. Finally, Figure 5iv shows a conversational855

explanation, where the user has requested a counterfactual explanation as to

why the item was not rated more highly. As the conversation progresses, the

RS may step through the TF to formulate reasoning for its interactions, to which

the user may respond with (possibly predetermined, as in [24]) responses. As

with the linguistic explanations, conversational explanations may be textual or860

spoken. Note that other explanation formats are possible, in addition to those

exemplified in Figure 5, e.g. word clouds, as in [75], generated from supporters

with word size weighted by strength.

6.2. Feedback

We now consider our RS’s capability for explanation-driven feedback, re-865

garding the way in which a user may interact with the explanation to provide
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Figure 5: Possible visual (i), linguistic (ii), tabular (iii) and conversational (iv) explanations

for f1’s predicted rating in our running example.

the RS with more information. This is an important factor in that recommen-

dations are highly unlikely to be perfect the first time and, even if they are,

user preferences are dynamic and so in the ideal case an RS will adapt to their

changes over time [21]. Our consideration here is whether and how the RS is870

able to elicit more information from the user via feedback mechanisms in these

interactions.

Our explanations can leverage the argumentative reading of recommenda-

tions afforded by TFs to support feedback. For example, let us focus on explana-

tions for a positive or negative predicted rating consisting of strong supporters875

or strong attackers, resp. In both cases, if the user disagrees with the predicted

rating of the recommended item being so high or so low, resp., weakening the

supporters or attackers, resp., will be guaranteed to adjust the predicted rating

as desired, by Proposition 4. Meanwhile, if a user agrees with the contribution

of an attacker or supporter, strengthening it will increase the effect it has. In the880

visual and tabular explanations in Figure 5, it is easy to see how this intuitive

behaviour allows simple indications of potential adjustments to the predicted
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ratings to be integrated into the explanation format such that their effect on

the recommended item’s predicted rating is clearly shown to the user. For ex-

ample, a modifiable bar in the chart or selectable stars in the table for Leonardo885

DiCaprio could be shown along with an indication that any reduction in the

predicted rating for Leonardo DiCaprio (thus the weakening of a supporter)

would in turn reduce the predicted rating of Catch Me If You Can.

Other modifications supported by our RS, e.g. adjusting the user-specific

constants or selecting a different set of similar users, could also be enacted by890

the argumentative explanations, e.g. if a user states that they care less/more

about a particular type or that they do not consider the similar users’ tastes

to align with their own, resp. In the linguistic and conversational explanations,

template-based interactions could be structured to include selectable user re-

sponses initiating desired modifications. For example, if a user initiates a con-895

versational explanation with an indicated discrepancy, e.g. I liked Catch Me If

You Can, why didn’t you recommend it to me?, then the interaction with the

user may be structured to include some of the possible modifications we have

mentioned, e.g. as shown in Figure 6. In the first interaction here, the user

is told that the genres, particularly Drama, were the main reasons (possibly900

obtained by determining the type with the strongest attackers) for this movie

not being recommended. The user may then state they are satisfied with the

explanation, reduce µgenre (which may be guaranteed to increase Catch Me If

You Can’s predicted rating due to the genres’ negative effect on it) or ask for

more reasons. In the illustration in the figure, the user does the latter, and in905

the second interaction the attacker Moulin Rouge is highlighted as the negative

reasoning. The user may then state that they are satisfied with the explanation

or give a higher rating to Moulin Rouge or Drama, both of which may be guar-

anteed to increase Catch Me If You Can’s predicted rating by Proposition 4.

Less constrained approaches may also be taken within an iterative feedback910

process: if some of this (unconstrained) feedback leads to temporary unintended

effects on other item-aspects’ predicted ratings, further interactions will provide

an opportunity for recalibration to adhere to users’ preferences.
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Figure 6: An example conversational interaction driven by the argumentative explanations.

7. User Studies

We now present the results from two user studies examining the qualities915

of argumentative explanations as judged by humans, specifically with regards

to varying the explanations’ content and format. Our aim with these user

studies is to explore whether the variety of contents and formats that our RS

encompasses is worthwhile, and to inform deployment of our methodology to

build applications. Given this focus, we leave as future work a comparison with920

explanations offered by other methods from the literature (including by other

hybrid RSs and by content-based RSs). We also leave as future work user studies

on explanations’ feedback, since feedback warrants a full investigation in itself,

requiring full deployment of our RS and data collection on recommendations’

take-up.925

In order to perform these user studies, we used crowdsourcing to elicit rat-

ings from, recommend movies to and generate explanations for participants,

before asking them to rate the varying explanations that we provided. This is

an inherently imperfect process since it is difficult to measure how users evaluate

explanations of recommendations without consuming the items that are recom-930
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mended to them, though many works have somewhat remedied this issue, e.g.

[15], where instead of asking users to read a book they have been recommended,

they are asked to read a summary describing it. There is also evidence that in

the particular domain of movies, users are able to estimate the value of items

reasonably well even without consuming them [46].935

Our first user study concerns the content of an explanation. We used Ama-

zon’s Mechanical Turk to conduct an experiment where 76 participants were

asked to rate a maximum of 70 movies on a scale of 1-5 stars (translated to our

[−1,1] scale, straightforwardly, using the formula y = ((x−1)/2)−1), along with

the option to state that they had not seen the movie. Once participants had940

rated ten films positively (> 3 stars) or after rating all films, we calculated rec-

ommendations using our RS for the participants who had rated at least 2 movies

positively (to avoid cases where there was inadequate information for the RS to

generate reasonable recommendations). Participants were shown three recom-

mendations, i.e. movies they had not seen with the highest predicted rating,945

along with an explanation for each. As mentioned, we wished to vary expla-

nation content in this study, and so we varied the width and depth of the TF

utilised in the explanations (as discussed in Section 6.1).

We delivered the explanations in a linguistic, textual format throughout and

we did not permit any feedback from participants. We thus had:950

• a baseline explanation which did not utilise the argumentative scaffolding:

users similar to you gave high ratings to this film; we chose this baseline

as it has a similar format to explanations found in the literature (e.g. on

Amazon) and is thus likely familiar to users;

• one partial explanation which utilised width by mentioning between 1955

and 5 of the recommended item’s linked aspects which had the highest

predicted ratings, i.e. the recommended item’s strongest supporters, e.g.

you like films starring Anjelica Huston, films starring Owen Wilson, films

directed by Wes Anderson, comedy films and Drama films; and

• one full explanation which utilised width and depth by taking the partial960
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explanations and adding these aspects’ linked items which had the high-

est predicted ratings, i.e. their strongest supporters, e.g. you like films

directed by Ridley Scott such as Gladiator, Action films such as Mission:

Impossible II and Drama films such as The Big Kahuna.

The number of examples depended on the number of supporters that were965

available in the argumentative scaffolding. For each explanation, participants

were prompted with the message “what follows is an explanation for our rec-

ommendation, please rate this explanation”, followed by the explanation and a

scale [0,1] allowing the participants to provide their rating, from very poor (0)

to great (1). The order of the three explanations (baseline, partial, full) was970

randomly determined for each participant.

Figure 7 shows that participants generally preferred full compared to par-

tial explanations and partial compared to baseline explanations, in agreement

with previous research [13]. This also aligns with the findings of Kulesza

et al. [43] that users value completeness in explanations, even at the expense975

of soundness (though our argumentative explanations are necessarily sound

due to their faithfulness to the RS). Similarly, we find that the more aspects

present, the higher the explanation rating. This visual inspection is supported

by an analysis of variance, that shows a significant effect of explanation type

(F (2,216) = 4.31, p = .014) and number of aspects (F (1,216) = 18.53, p < .001)980

but no effect of order (F (1,216) = 0.13, p = .720) and no significant interactions

(p > .140). Interestingly, although there is a general preference for more informa-

tion, since explanations with 4 or 5 aspects received significantly higher ratings

than explanations with 1, 2 or 3 aspects, there might be evidence for a non-

linear effect, since we observe a very small, non-significant difference between985

explanations with 4 vs. explanations with 5 aspects. Of course, this saturation

effect requires further validation and experimentation with explanations that

contain more aspects than used here; for example, it would be interesting to

consider whether a threshold for the number of aspects included may exist to-

wards higher user satisfaction. We leave this investigation to future work. A990
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Figure 7: Results from the first user study showing the mean explanation rating from users

by explanation format and number of aspects with standard error indicated.

final point we can take from the experiment overall was that, despite the general

trend towards explanations with more information, users’ explanatory prefer-

ences clearly varied among the three types and over the number of aspects,

showing the value of argumentative scaffolding’s ability to support numerous

forms of argumentative explanation.995

In our second user study, we investigate user take-up on various formats for

explanations. Specifically, we consider three forms of interactive explanations

(IEs), which are: IE1, of a tabular format; IE2, of a linguistic format; and

IE3, of a conversational format. These are along the lines of formats (ii)-(iv) in

Figure 5 (we left the evaluation of take-up of the visual format of explanations,1000

i.e. format (i) in Figure 5, to future work). Note that IE1 contains somewhat

less content than IE2 and IE3, since it utilises only width, and not depth, of the

underpinning argumentative scaffolding.

We once again used Mechanical Turk to conduct our experiment, where we

asked 75 participants for ratings on 70 movies each before generating expla-1005

nations for recommendations for the participants who had rated at least five

movies including at least three positive and/or three negative ratings. Each

participant was then presented with three positive recommendations and/or

(resp.) three negative recommendations. If a participant showed disagreement

with the recommendation, we offered two types of IE for that recommendation,1010

asking the participants which of the two IEs they preferred to give pairwise
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Figure 8: An example conversational interaction from the second user study.

comparisons between explanation formats. We had 51 such occurrences, as 23

participants did not rate enough movies or indicated that they agreed with the

recommendations (and one participant gave nonsensical responses). These pair-

wise comparisons were IE1 vs. IE2 (i.e. comparing tabular and textual formats)1015

and IE2 vs. IE3 (i.e. comparing textual and conversational formats). We also

counterbalanced the order of presentation, and so showed: 17 participants IE1

and then IE2, 15 participants IE2 and then IE1, 9 participants IE2 and then

IE3 and 10 participants IE3 and then IE2. An example IE3 adapted from the

second user study is shown in Figure 8 (showing how content and collaborative1020

filtering can both be channeled within the interaction with the user).

The overall results from our second user study are shown in Figure 9, demon-

strating a slight preference for IE1 over IE2, i.e. tabular format over textual

(despite the tabular IE having slightly less information), and a preference for

IE2 over IE3, i.e. textual format over conversational. The sample size was1025
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Figure 9: Results from the second user study showing the participants’ diverse preferences in

explanation format in the the pairwise comparisons. (The order in which explanations were

delivered to the participants had little effect on these results and so this was ignored.)

fairly small but feedback from the participants regarding the latter compari-

son referred to a preference for having all the information up front, statically.

However, the most clear finding was that the participants’ preferences varied

significantly regarding explanation format, highlighted by the fact that few par-

ticipants opted for the ‘no preference’ option. This demonstrates the importance1030

of the argumentative scaffolding, which naturally supports a host of different

explanation formats, allowing diverse user preferences to be accounted for.

8. Conclusions

We have proposed a novel RS, built on argumentative scaffolding. The

method is explainable, in a flexible way, while also giving reasonable results1035

when compared with existing (non-explainable) RSs in the literature (which we

have proven empirically): it is encouraging to see that effectiveness (in the form

of precision) does not need to be sacrificed to support explainability. Our RS

is also adaptive in two important ways. The argumentative scaffolding firstly

allows the extraction of a diverse repertoire of explanations, varying in their1040
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characteristics of content and format, and so allows the customisation to the

explanatory preferences of users, which we show in a user study both differ

across users and show a general inclination towards more information. The

second adaptive feature of our method is the ability to support feedback mech-

anisms, given the link between the argumentative scaffolding/explanations and1045

the predicted ratings driving the recommendations, proven here via theoretical

analysis. We illustrate with a number of examples how the former capability

may be used to address the issue of an unachievable one-size-fits-all explanation

for humans, and how the latter helps to achieve the perpetual goal for RSs of

aligning recommendations with user preferences, particularly because they are1050

dynamic and thus change over time.

This paper opens a number of potentially fruitful avenues for future work.

The user studies highlight numerous directions for future work. We would firstly

like to undertake a comprehensive analysis of the explanation content, varying

not just width and depth in the explanations but also the method for selecting1055

arguments, e.g. considering attackers to generate counterfactual explanations

or pairwise comparisons of arguments as in [8]. Further user studies on the

explanation format would also be a very interesting research direction, since the

most suitable format would likely not only depend on the individual user but

also the chosen application. An investigation aiming to ascertain the most ef-1060

fective forms of feedback mechanisms (not covered in the experiments described

above) would require a much lengthier and more complex experiment, e.g. to

ensure statistical significance in rating accuracy improvements after feedback

had been provided (again, see [8]). The experimental process could also be fur-

ther enhanced, e.g. by asking participants how much they would pay to watch1065

a certain (unseen) movie, after having seen different types of explanations.

Further improvements to the RS itself could also be targeted including gener-

ating the user-specific constants systematically and optimally, e.g. by learning

on bootstrapping, or by allowing different forms of aspects to be considered,

e.g. those of a continuous nature. Moreover, it would be interesting to consider1070

hierarchical forms of A-Is, where aspects may admit sub-aspects and the argu-
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mentation scaffolding would be, as a result, more complex. Another important

line of work would be the deployment of the RS in other contexts, e.g. in recom-

mendation in e-commerce or music streaming, where A-Is seem to be perfectly

suitable, as does the interactive nature of our explanations. These alternative1075

contexts, e.g music streaming, may be more amenable to implicit feedback, as

discussed in Section 2. It would also be interesting to investigate how the RS’s

context affects the preferred explanatory characteristics, e.g. is the requirement

for more information more prevalent in an e-commerce setting? The study of

the integration of mechanisms for implicit feedback, e.g. users stopping movies1080

early as negative ratings, into our RS is also left as future work.
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ing Recommendation Technologies Through Argumentation. In Argumen-1160

tation in Artificial Intelligence (pp. 403–422). Springer.

[23] Christakopoulou, K., Radlinski, F., & Hofmann, K. (2016). Towards

conversational recommender systems. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (pp. 815–824).1165

[24] Cocarascu, O., Rago, A., & Toni, F. (2019). Extracting dialogical expla-

nations for review aggregations with argumentative dialogical agents. In

Proceedings of the 18th International Conference on Autonomous Agents

and MultiAgent Systems, AAMAS (pp. 1261–1269).

[25] Costa, F., Ouyang, S., Dolog, P., & Lawlor, A. (2018). Automatic gener-1170

ation of natural language explanations. In Proceedings of the 23rd Inter-

national Conference on Intelligent User Interfaces Companion (pp. 57:1–

57:2).

[26] Czarkowski, M. (2006). A scrutable adaptive hypertext . Ph.D. thesis Uni-

versity of Sydney, Australia. URL: http://hdl.handle.net/2123/10206.1175

[27] Dacrema, M. F., Cremonesi, P., & Jannach, D. (2019). Are we really mak-

ing much progress? A worrying analysis of recent neural recommendation

approaches. In Proceedings of the 13th ACM Conference on Recommender

Systems, RecSys (pp. 101–109).

50

http://hdl.handle.net/2123/10206


[28] Dalton, J., Ajayi, V., & Main, R. (2018). Vote Goat: Conversational movie1180

recommendation. In The 41st International ACM SIGIR Conference on

Research & Development in Information Retrieval (pp. 1285–1288).

[29] Du, M., Liu, N., & Hu, X. (2020). Techniques for interpretable machine

learning. Communications of the ACM , 63 , 68–77.

[30] Dung, P. M. (1995). On the acceptability of arguments and its fundamental1185

role in nonmonotonic reasoning, logic programming and n-person games.

Artificial Intelligence, 77 , 321 – 357.

[31] Gabbay, D. M. (2016). Logical foundations for bipolar and tripolar argu-

mentation networks: preliminary results. Journal of Logic and Computa-

tion, 26 , 247–292.1190
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[64] Teze, J. C., Gottifredi, S., Garćıa, A. J., & Simari, G. R. (2015). Improv-

ing argumentation-based recommender systems through context-adaptable

selection criteria. Expert Systems with Applications, 42 , 8243–8258.1295

[65] Tintarev, N., & Masthoff, J. (2007). A Survey of Explanations in Recom-

mender Systems. In Proceedings of the 23rd International Conference on

Data Engineering Workshops, ICDE (pp. 801–810).

[66] Tintarev, N., & Masthoff, J. (2015). Explaining recommendations: Design

and evaluation. In Recommender Systems Handbook (pp. 353–382).1300

[67] Toulmin, S. E. (1958). The uses of argument . Cambridge University Press.
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