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ABSTRACT
Introduction  Patients with diabetes mellitus are risk of 
premature death. In this study, we developed a machine 
learning-driven predictive risk model for all-cause 
mortality among patients with type 2 diabetes mellitus 
using multiparametric approach with data from different 
domains.
Research design and methods  This study used territory-
wide data of patients with type 2 diabetes attending 
public hospitals or their associated ambulatory/outpatient 
facilities in Hong Kong between January 1, 2009 and 
December 31, 2009. The primary outcome is all-cause 
mortality. The association of risk variables and all-cause 
mortality was assessed using Cox proportional hazards 
models. Machine and deep learning approaches were used 
to improve overall survival prediction and were evaluated 
with fivefold cross validation method.
Results  A total of 273 678 patients (mean age: 65.4±12.7 
years, male: 48.2%, median follow-up: 142 (IQR=106–
142) months) were included, with 91 155 deaths occurring 
on follow-up (33.3%; annualized mortality rate: 3.4%/
year; 2.7 million patient-years). Multivariate Cox regression 
found the following significant predictors of all-cause 
mortality: age, male gender, baseline comorbidities, 
anemia, mean values of neutrophil-to-lymphocyte ratio, 
high-density lipoprotein-cholesterol, total cholesterol, 
triglyceride, HbA1c and fasting blood glucose (FBG), 
measures of variability of both HbA1c and FBG. The 
above parameters were incorporated into a score-based 
predictive risk model that had a c-statistic of 0.73 (95% CI 
0.66 to 0.77), which was improved to 0.86 (0.81 to 0.90) 
and 0.87 (0.84 to 0.91) using random survival forests and 
deep survival learning models, respectively.
Conclusions  A multiparametric model incorporating 
variables from different domains predicted all-cause 
mortality accurately in type 2 diabetes mellitus. The 
predictive and modeling capabilities of machine/deep 
learning survival analysis achieved more accurate 
predictions.

INTRODUCTION
Type 2 diabetes mellitus is one of the most 
common metabolic conditions, with an 
increasing prevalence attributable to aging, 
sedentary lifestyles, environmental changes 
and better disease management.1–3 Patients 

with this condition are at an increased risk 
of premature death and other complica-
tions.4 5 Existing risk models have been devel-
oped, such as QDiabetes for predicting new 
onset diabetes,6 and CORE,7 BRAVO8 and 
Michigan9 models for predicting disease 
progression, complications and mortality. 
These have generated good predictive results 
in western cohorts but are limited by their 
direct applicability to Asian populations. For 
example, Chinese patients have a lower body 
mass index threshold for diabetes develop-
ment and have a higher propensity to suffer 
from chronic kidney disease as a result.10 11 
While Asian population-specific models are 

Significance of this study

What is already known about this subject?
►► Increased variability in metabolic parameters is pre-
dictive of higher mortality in type 2 diabetes mellitus.

What are the new findings?
►► We developed a machine learning-driven predic-
tive risk model for type 2 diabetes mellitus using 
multiparametric approach with data from different 
domains.

►► Measures of variability of fasting glucose and HbA1c 
show similar predictive power for all-cause mortali-
ty, regardless of whether adjustments were made for 
initial values or mean values across follow-up.

►► A multiparametric predictive risk model incorpo-
rating variables from different domains, including 
baseline demographics, comorbidities and laborato-
ry tests, measures of variability of HbA1c and fast-
ing blood glucose predicted all-cause mortality 
accurately.

►► Machine learning-driven algorithms further im-
proved the accuracy of the predictive models.

How might these results change the focus of 
research or clinical practice?

►► A simple, easy-to-use score-based system has been 
devised to enable rapid risk prediction in the clinical 
setting.
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available,12–15 these have generally not incorporated 
temporal measures of variability for longitudinal data or 
machine learning approaches, both of which can enhance 
risk prediction.16 17 Indeed, with the rapid development 
of big data analytics, it has become easier to improve 
discrimination by analyzing complex interactions among 
variables. Previously, a machine learning-driven approach 
has demonstrated superior performance for predicting 
diabetes onset in a Chinese cohort.18

In this territory-wide study, with the aid of machine/
deep learning approaches, we developed a risk model 
for mortality prediction using multiparametric data from 
different domains. These include baseline comorbidities, 
measures of variability of fasting glucose and HbA1c, 
inflammatory and nutritional indices and drug prescrip-
tion details. We tested the hypothesis that machine 
learning methods (random survival forests, RSF19) and 
deep neural survival learning models (DeepSurv20) can 
significantly improve predictive performance when 
compared with Cox regression-based models.

METHODS
Study design and data source
The inclusion criteria were patients who received antidi-
abetic medications or had International Classification of 
Disease, Ninth Edition (ICD-9) codes for type 2 diabetes 
mellitus, and attended any of the 43 public hospitals 
or their associated ambulatory or outpatient facilities 
managed by the Hong Kong Hospital Authority between 
January 1 and December 31, 2009. The Clinical Data 
Analysis and Reporting System, a healthcare database 
that integrates patient information to establish compre-
hensive medical records with accurately linked mortality 
data were used in this study. This system has been used 
for epidemiological research by multiple research teams, 
including our team, in the past,21–24 including model 
development studies.25 26

Data extraction
Baseline patient characteristics include demographic 
details such as age and sex, prior comorbidities (heart 
failure (HF), ischemic heart disease (IHD), ischemic 
stroke, aborted sudden cardiac death (SCD) of all causes 
including acute myocardial infarction, atrial fibrillation 
(AF), peripheral vascular disease, intracranial hemor-
rhage, osteoporosis, dementia, hypertension, chronic 
obstructive pulmonary disease (COPD), cancer, renal 
and ophthalmological diabetic complications), antidia-
betic and cardiovascular medications. The ICD-9 codes 
for the aforementioned comorbidities are summarized 
in online supplemental table 1. The duration of living 
with type 2 diabetes mellitus from the point of diagnosis 
until December 31, 2009 was also extracted, and deter-
mined by the earliest fulfillment of any of the following 
criteria in this order: (1) initial documentation of type 
2 diabetes mellitus related ICD-9 codes; (2) earliest 
HbA1c>6.5%; (3) earliest fasting blood glucose (FBG) 

>7 mmol/L. Time-till all-cause mortality was determined 
as the number of days from the starting date of patient 
inclusion, January 1, 2009, until the day of death or the 
end of the follow-up period, December 31, 2019.

The following laboratory data were collected at base-
line: neutrophil-lymphocyte ratio (NLR) was derived 
by dividing the absolute neutrophil by the lymphocyte 
count, anemia defined as <13 g/dL for men and <12 g/
dL for women, biochemical test results including (1) 
creatinine, sodium, potassium, (2) urea, (3) albumin 
and total protein, (4) alanine aminotransferase and alka-
line phosphatase, (5) FBG and HbA1c; (6) high-density 
lipoprotein-cholesterol (HDL-C), directly measured low-
density lipoprotein-cholesterol (LDL-C), total choles-
terol, and triglyceride.

The number of antidiabetic drugs by class were 
extracted: (1) insulin, (2) biguanide, (3) sulphonylurea, 
(4) alpha-glucosidase inhibitor, (5) thiazolidinedione, 
(6) dipeptidyl peptidase-4 inhibitor, (7) glucagon-like 
peptide receptor-1 agonist, (8) meglitinide. Similarly, the 
number of antihypertensive medications of the following 
classes were also extracted: (1) angiotensinogen-
converting-enzyme inhibitor/angiotensin receptor 
blocker, (2) beta-adrenergic receptor blocker, (3) 
calcium channel blocker, (4) diuretics. Lipid-lowering 
agents were also extracted.

Variability calculations
To calculate FBG and HbA1c variability, data points were 
obtained for the period between January 1, 2004 and 
December 31, 2008. Only patients with three or more 
measurements for the specific parameter were included 
for the variability analysis of the respective parameter. The 
different measures are detailed below and summarized 
in online supplemental table 2: (1)SD, (2) absolute vari-
ability score defined as 100× no. of measurements>0.5/
no. of measurements, (3) percentage variability score 
defined as 100× no. of measurements>10% of previous 
measurement/no. of measurements, (4) normalized 
absolute variability score given by (2)/individual mean, 
(5) normalized percentage variability score given by (3) 
/individual mean, (6) SD/individual baseline, (7) coef-
ficient of variation given by SD/individual mean, (8) 
variability independent of mean given by SD/individual 
meanˆ(ln(population SD)/ln(population mean)).

Outcomes and statistical analysis
The primary outcome for the present student is all-cause 
mortality. Univariate Cox regression was applied to iden-
tify significant predictors for all-cause mortality and HR 
with 95% CI were reported. Variables achieving p<0.10 
were included in a diabetes duration-adjusted multivar-
iate model. Statistical significance is defined as p<0.05. 
FBG and HbA1c variability of the same formula were 
paired and added to the multivariate model to assess 
their predictiveness through comparison of HR, thus 
preventing problems with collinearity.

https://dx.doi.org/10.1136/bmjdrc-2020-001950
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To generate a predictive score, Cox regression was 
repeated for the final multivariate model with measures of 
variability included. HR between 1 and 1.50 was awarded 
1 mark in the score. To adjust for the U-shaped rela-
tionship against mortality reported for HDL-C, LDL-C, 
total cholesterol and HbA1c, these parameters were 
first divided by deciles to serve as cut-offs and undergo 
univariate Cox regression. Thereafter, the decile with the 
smallest HR was selected as the reference and compared 
against the remaining deciles through univariate Cox 
regression again. The minimum and maximum cut-offs 
for the deciles that had an insignificant difference with 
the reference decile were selected as the cut-offs to be 
used in the score. To demonstrate the U-shaped relation-
ship, the HR of deciles was plotted graphically. Similar 
methods were employed to illustrate the U-shaped 
relationship by existing studies.27–29 Cut-off values for 
continuous variables in the score were found through 
maximizing sensitivity and specificity. Age and diabetes 
duration were rounded to the nearest whole number, 
while other parameters were rounded to two decimal 
points. The predictive value of the score was evaluated 
through the generation of a receiver operating charac-
teristic (ROC) curve and area under the-curve (AUC) 
calculated.

To further evaluate the predictive value of the measures 
of variability, the measures were also divided into quar-
tiles, with the first quartile as a reference, to perform 
univariate Cox regression and assess the AUC of the 
quartile cut-offs. The quartile HR of the FBG and HbA1c 
measures of variability were illustrated graphically. Statis-
tical analyses were performed using RStudio software 
(V.1.1.456) and Python (V.3.6).

Development of machine/deep models for survival learning
Machine/deep learning survival analysis models can 
directly capture the relationships between risk predictors 
and mortality outcome without prior functional assump-
tions typically made in Cox analysis models. Here we 
used an RSF model, a type of machine learning method 
for survival analysis, relying on the intuition that the 
best survival learning model, when combined with weak 
decision tree learning models, can minimize the overall 
survival prediction errors. The prediction errors are 
measured by performance evaluators, for example, preci-
sion, recall, AUC and C-index. The out-of-bag (OOB) 
method was adopted whenever a bootstrap sample (bag 
ones) is down with replacement from the training dataset. 
The bootstrapping technique is used to grow the tree and 
results in well-defined subsets. Some of the bootstrap are 
duplicates and are members of the in-bag subset, and 
the remaining individuals define the OOB subset for 
the final tree. Each individual in the OOB subset for a 
tree is passive. A unique terminal node membership and 
terminal node statistic were assigned. An OOB ensemble 
statistic for each individual is formed by combining the 
terminal node statistics from all trees where an individual 
is an OOB member. Finally, the class with the maximum 

frequency in the OOB ensemble statistic serves as the 
predicted class label for the member. More detailed 
descriptions of these concepts were described by Breiman 
et al.30

The variable’s importance of interest is calculated 
as the prediction error (squared loss) of the original 
ensemble event-specific cumulative probability function 
subtracted from the prediction error of the original 
ensemble event-specific cumulative probability function 
(obtained when each OOB instance is just dropped down 
its in-bag competing risks tree).31 32 In this study, RSF was 
used for mortality prediction and the most important 
predictors were ranked according to variable importance 
measure in RSF. Variables that were important predictors 
of risk outcome have a larger importance value, indi-
cating higher predictive strength, whereas non-predictive 
variables have zero or negative values.

We further employed a nonlinear deep learning survival 
method termed Cox proportional hazards DeepSurv 
approach. This can inherently and adaptively model the 
high-level interaction patterns among risk predictors and 
thus can better capture the complex nonlinear relation-
ship between patients’ covariates (eg, clinical features) 
and mortality outcome directly. Specifically, DeepSurv is 
a deep feed-forward neural network that can predict the 
effects of a patient’s baseline covariates on their hazard 
rate parameterized by the weights of the neural network. 
The input of DeepSurv is the baseline variables of the 
patient with diabetes. The hidden layers of DeepSurv 
consist of a fully connected layer of nodes, followed by 
a dropout layer.33 The output of the DeepSurv is a single 
node with a linear activation which estimates the log-
risk function in the Cox model. In this study, we train 
DeepSurv by presetting the objective function to be the 
average negative log form of Cox partial likelihood with 
L2-regularization,34 in order to model for mortality risk 
prediction of the patients with diabetes. Gradient descent 
optimization was used to find the weights of DeepSurv. 
The hyperparameters of DeepSurv including the number 
of hidden layers, the number of nodes in each layer and 
dropout probability were determined from a random 
hyperparameter search approach.35

The RSF, DeepSurv and multivariate Cox regression 
models adopted the same set of predictors. A fivefold 
cross-validation approach was performed to compare the 
survival prediction performance of RSF and DeepSurv in 
terms of precision, recall, AUC and HC-index over the 
standard Cox model. The R packages, randomForestSRC 
(V.2.9.3), ggplot2 (V.3.3.2), and python package DeepSurv 
(V.0.1.0) were used to generate the mortality prediction 
results.

RESULTS
Baseline characteristics
The study cohort included 273 876 patients (mean age: 
65.4±12.7 years, male: 48.2%, diabetes duration=6.18 
± 4.56 years) with a median follow-up of 142 (IQR 
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(IQR)=106–142) months, which corresponded to a total 
of 2 660 465 patient-years. The baseline demographics, 
clinical, laboratory and drug details are shown in tables 1 
and 2 for continuous and discrete variables, respectively. 
The most prevalent comorbidities were hypertension, IHD 
and HF. The percentage of patients on n=0, 1, 2, 3, and 4 
antidiabetic medications were 13.3%, 34.8%, 46.1%, 5.4% 
and 0.4%, respectively. At baseline, the fasting glucose 
and HbA1c were 8.02±1.95 mmol/L and 7.75%±2.59%, 
respectively. The median number for fasting glucose and 
HbA1c measurements were 7 (IQR=4–11) and 7 (IQR=4–
10), respectively. The different measures of variability for 
fasting glucose or HbA1c are quantified for subsequent 
use to predict mortality (detailed methodology is shown 
in online supplemental table 2.

Predictors of all-cause mortality
Over a median follow-up period of 142 (IQR=106–142) 
months, 91 155 deaths were recorded (33.3%), which 
corresponded to an annualized mortality rate of 3.43%. 
The significant univariate predictors for all-cause 

mortality are presented in table 3. All measures of vari-
ability for FBG and HbA1c were significant predictors as 
well. The graphical comparison of HR from quartile cut-
offs of FBG and HbA1c variability predictors are shown in 
online supplemental figure 1A,B, with the details summa-
rized in online supplemental tables 3 and 4.

Table 1  Baseline characteristics for continuous variables

Characteristics Mean SD

Age 65.4 12.7

Follow-up duration (days) 3546 1208

Diabetes duration (years) 6.18 4.56

Liver function test

 � Alkaline phosphatase (U/L) 81.1 37.6

 � Alanine aminotransferase (U/L) 28.8 52.9

 � Total protein (g/L) 74.5 6.67

 � Albumin (g/L) 38.9 5.04

Complete blood count

 � Lymphocyte count (×109/L) 1.89 1.04

 � Neutrophil count (×109/L) 5.35 2.69

 � Neutrophil-lymphocyte ratio 3.72 4.37

 � Hemoglobin count (×109/L) 12.8 1.86

Lipid profile

 � HDL-C (mmol/L) 1.23 0.348

 � LDL-C (mmol/L) 3.09 0.941

 � Total cholesterol (mmol/L) 5.12 1.13

 � Triglyceride (mmol/L) 1.63 1.51

Renal function test

 � Creatinine (umol/L) 102 87.2

 � Potassium (mmol/L) 4.24 0.522

 � Sodium (mmol/L) 139 3.48

 � Urea (mmol/L) 6.96 4.11

Glycemic control

 � Fasting blood glucose 8.02 1.95

 � HbA1c 7.75 2.59

HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density 
lipoprotein-cholesterol.

Table 2  Baseline characteristics for discrete variables

Characteristics Number Percentage

Male 132 040 48.2

Baseline anemia 39 799 14.5

Antidiabetic agent

 � Biguanide 185 881 67.9

 � Sulphonylurea 173 525 63.4

 � Insulin 29 697 10.8

 � Meglitinide 27 0.01

 � Dipeptidyl peptidase-4 
inhibitor

325 0.12

 � Thiazolidinedione 3698 1.35

 � Glucagon-like peptide-1 
agonist

17 0.006

 � Acarbose 3292 1.20

Cardiovascular drugs

 � ACEI/ARB 121 786 44.5

 � Beta-adrenergic receptor 
blocker

92 309 33.7

 � Calcium channel blocker 109 225 39.9

 � Diuretic 52 096 19.0

 � Lipid-lowering agent 61 401 22.4

Comorbidities

 � Diabetic renal complication 3381 1.23

 � PVD 346 0.13

 � Diabetic ophthalmological 
complication

3543 1.29

 � Ischemic Stroke 8986 3.28

 � SCD 6420 2.34

 � AF 7772 2.84

 � HF 11 189 4.09

 � Intracranial hemorrhage 3264 1.19

 � IHD 26 423 9.65

 � Osteoporosis 137 0.050

 � Dementia 2842 1.04

 � Hypertension 64 246 23.5

 � Chronic obstructive 
pulmonary disease

818 0.299

 � Cancer 12 190 4.45

ACEI, angiotensinogen converting enzyme inhibitor; AF, atrial 
fibrillation; ARB, angiotensin receptor blocker; HF, heart failure; 
IHD, ischemic heart disease; PVD, peripheral vascular disease; 
SCD, sudden cardiac death.

https://dx.doi.org/10.1136/bmjdrc-2020-001950
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Table 3  Univariate predictors for all-cause mortality

HR 95% CI P value

Age 1.090 (1.089 to 1.091) <0.0001

Male 1.12 (1.11 to 1.14) <0.0001

Complete blood count

 � Neutrophil-lymphocyte ratio 1.033 (1.032 to 1.034) <0.0001

 � Baseline anemia 3.50 (3.45 to 3.55) <0.0001

Lipid profile

 � HDL-C 0.836 (0.815 to 0.857) <0.0001

 � LDL-C 0.883 (0.874 to 0.892) <0.0001

 � Total cholesterol 0.910 (0.903 to 0.916) <0.0001

 � Triglyceride 0.963 (0.957 to 0.970) <0.0001

Comorbidity

 � Renal diabetic complication 3.68 (3.54 to 3.83) <0.0001

 � Ophthalmological diabetic complication 2.73 (2.62 to 2.84) <0.0001

 � Peripheral vascular disease 4.39 (3.91 to 4.93) <0.0001

 � Ischemic stroke 2.85 (2.78 to 2.93) <0.0001

 � Sudden cardiac death 2.48 (2.40 to 2.56) <0.0001

 � Atrial fibrillation 3.54 (3.45 to 3.64) <0.0001

 � Heart failure 4.74 (4.64 to 4.85) <0.0001

 � Intracranial hemorrhage 2.70 (2.59 to 2.82) <0.0001

 � Ischemic heart disease 2.24 (2.20 to 2.28) <0.0001

 � Osteoporosis 2.87 (2.34 to 3.52) <0.0001

 � Dementia 5.92 (5.69 to 6.16) <0.0001

 � Hypertension 2.55 (2.52 to 2.59) <0.0001

 � Chronic obstructive pulmonary disease 4.55 (4.22 to 4.91) <0.0001

 � Cancer 2.48 (2.42 to 2.54) <0.0001

FBG

 � Mean 1.00 (0.997 to 1.01) 0.527

 � Absolute successive variability score 1.008 (1.007 to 1.008) <0.0001

 � Percentage successive variability score 1.01 (1.009 to 1.01) <0.0001

 � SD 1.15 (1.15 to 1.16) <0.0001

 � Normalized absolute successive variability score 1.065 (1.06 to 1.07) <0.0001

 � Normalized percentage successive variability score 1.07 (1.067 to 1.074) <0.0001

 � SD/initial FBG 1.01 (1.009 to 1.01) <0.0001

 � Coefficient of variation 1.019 (1.018 to 1.019) <0.0001

 � Variability independent of mean 1.011 (1.01 to 1.011) <0.0001

HbA1c

 � Mean 1.07 (1.06 to 1.07) <0.0001

 � Absolute successive variability score 1.01 (1.007 to 1.01) <0.0001

 � Percentage successive variability score 1.008 (1.08 to 1.009) <0.0001

 � SD 1.19 (1.18 to 1.20) <0.0001

 � Normalized absolute successive variability score 1.055 (1.05 to 1.06) <0.0001

 � Normalized percentage successive variability score 1.063 (1.06 to 1.07) <0.0001

 � SD/initial HbA1c 1.014 (1.01 to 1.014) <0.0001

 � Coefficient of variation 1.017 (1.016 to 1.018) <0.0001

 � Variability independent of mean 1.011 (1.01 to 1.012) <0.0001

FBG, fasting blood glucose; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein cholesterol.
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The following parameters remained significant predic-
tors following multivariate adjustment (table 4): (1) age 
and male gender, baseline comorbidities or complica-
tions (hypertension, HF and AF, COPD, cancer, dementia, 
ischemic stroke, intracranial hemorrhage, aborted SCD, 
diabetic renal and ophthalmological complications), 
(2) laboratory tests (anemia, neutrophil-to-lymphocyte 
ratio (NLR); HDL-C, total cholesterol, triglyceride; mean 
HbA1c and mean FBG), (3) eight different measures 
of variability for HbA1c and FBG (table 4). A U-shaped 
relationship between HDL-C, LDL-C, total cholesterol 
(figure 1A–C), but not for triglyceride (figure 1D) and 
all-cause mortality. A U-shaped relationship was also 
observed for HbA1c but not for FBG (figure 1E,F).

Development of a score-based predictive risk model based on 
Cox regression
A score-based predictive risk model for all-cause mortality 
was developed by incorporating significant predictors 
from multivariate analysis. One point was allocated for 
each significant predictor where the HR was less than 
1.5, and 2 points for HRs between 1.5 and 2.5. Out of 
the eight measures of variability for HbA1c and FBG, SD 
had the highest HR and greatest statistical significance 
when adjusted to the multivariate model (FBG: HR=1.08, 
95% CI 1.07 to 1.10, p<0.0001; HbA1c: HR=1.11, 95% CI 
1.07 to 1.14, p<0.0001). It was therefore selected to be 
included in the mortality score. Altogether, the predic-
tive risk model had a total score out of 25 (table 5). ROC 
analysis was performed, demonstrating the AUC of 0.729 
(95% CI 0.727 to 0.731; online supplemental figure 2). 
Kaplan-Meier curve and the Kaplan-Meier curve strati-
fied by male gender are shown in online supplemental 
figure 3 for patients with diabetes. The survival curve 
generated by the multivariate Cox regression model is 
shown in online supplemental figure 4.

Results of machine/deep learning approaches for risk 
modeling
A RSF model was further performed to predict mortality 
outcome. The optimal tree number of the RSF model 
selected as 400 using a fivefold cross-validation approach 
to minimize the overall squared error rate in the testing 
set is shown in online supplemental figure 5. In addi-
tion, as shown in online supplemental figure 6 about the 
detailed main results of using the RSF model to predict 
the mortality outcome of patients with diabetes, the 
overall ensemble survivals (top left panel) are indicated 
by the red line and the Nelson-Aalen estimator is given by 
the green line. Brier score (0=perfect, 0.25>worse than 
guessing) stratified by ensemble mortality based on the 
inverse probability of censoring weight method is shown 
in the top right panel. We stratify the cohort into four 
groups of 0–25, 25–50, 50–75 and 75–100 percentile 
mortality (the overall, non-stratified, Brier score is shown 
by the red line). Continuous rank probability score given 
by the integrated Brier score divided by time is shown in 
the bottom left panel, while the illustration of mortality 

of each patient with diabetes versus observed time of 
mortality event was shown in the bottom right panel. The 
mortality events are shown as blue points, and we indi-
cated censored observations using red points. Predicted 
OOB survivals and the cumulative hazard using the RSF 
model are shown in online supplemental figure 7. The 
predicted survival curves of patients with diabetes via the 
RSF model are shown in online supplemental figure 8 
where blue curves correspond to censored observations 
while red curves represent the observations experiencing 
mortality events. The 10 most important predictors 
ranked by the RSF model are shown in online supple-
mental table 5.

Finally, we compared the survival analysis performance 
of the RSF model and DeepSurv as typical machine 
learning and deep learning approaches, respectively, 
over multivariate Cox model to predict the mortality 
outcome of the patients with diabetes using the five-
fold cross-validation method. Sobol solver36 was used 
to sample each hyperparameter of DeepSurv from a 
predefined range and k-means cross-validation (k=3) 
was used to evaluate the performance of the parameter 
configuration settings. For k-means cross-validation, the 
dataset was split into k subsets with one subset used as the 
test set and the remaining as the training set to measure 
the prediction error. The role of the test and training 
set was switched until all subsets have been used as the 
test set, and a mean prediction error would be derived.37 
Using the configuration with the largest validation 
C-index on the testing set to avoid models that overfit, 
we selected the best hyperparameters of the DeepSurv 
network which included: number of dense layers=4, 
learning rate=0.0003, ℓ2 regularization coefficient=3.25, 
dropout rate=0.36, exponential learning rate decay 
constant=0.0005 and momentum=0.86. In all instances, 
the ReLU activation function was applied.38

The comparative performance results of the different 
models are shown in table  6. Both RSF and DeepSurv 
models significantly outperform the multivariate Cox 
model (precision: 0.85 (95% CI 0.81 to 0.89), recall: 0.86 
(0.82 to 0.89), AUC: 0.85 (0.82 to 0.91), C-index: 0.86 
(0.81 to 0.90) for DeepSurv model, while precision: 0.85, 
recall: 0.87, AUC: 0.86, C index: 0.87 for RSF model) 
based on the same validation inputs of the risk predictors 
(P for trend <0.001). In addition, the Cox score (preci-
sion: 0.88 (0.83 to 0.92), recall: 0.87 (0.84 to 0.91), AUC: 
0.86 (0.82 to 0.89), C-index: 0.87 (0.84 to 0.91)) demon-
strated better performance than multivariate Cox model 
(precision: 0.75 (0.72 to 0.79), recall: 0.73 (0.67 to 0.77), 
AUC: 0.73 (0.68 to 0.76), C-index: 0.73 (0.66 to 0.77)). 
The advantages of machine/deep learning approaches 
over the Cox model arise from the fact of their strength 
to describe survival data with both linear and nonlinear 
effects from covariates. However, it should be noted that 
in comparison to DeepSurv, RSF allows influential predic-
tors to be identified more easily by generating an ‘impor-
tance ranking’ of the variables with standard bootstrap 
theory. This enables the investigation of the predictive 
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Table 4  Multivariate Cox regression for all-cause mortality

HR 95% CI P value

Age 1.06 (1.06 to 1.06) <0.0001

Male 1.35 (1.31 to 1.40) <0.0001

Complete blood count

 � Neutrophil-lymphocyte ratio 1.02 (1.02 to 1.03) <0.0001

 � Baseline anemia 1.94 (1.87 to 2.01) <0.0001

Lipid profile

 � High-density lipoprotein cholesterol 0.891 (0.849 to 0.935) <0.0001

 � Low-density lipoprotein cholesterol 1.01 (0.986 to 1.04) 0.348

 � Total cholesterol 1.04 (1.01 to 1.06) 0.001

 � Triglyceride 1.02 (1.01 to 1.03) 0.001

Comorbidity

 � Renal diabetic complication 1.28 (1.20 to 1.36) <0.0001

 � Ophthalmological diabetic complication 1.18 (1.11 to 1.26) <0.0001

 � Peripheral vascular disease 1.16 (0.984 to 1.37) 0.078

 � Ischemic stroke 1.25 (1.18 to 1.32) <0.0001

 � Sudden cardiac death 1.17 (1.09 to 1.25) <0.0001

 � Atrial fibrillation 1.30 (1.23 to 1.37) <0.0001

 � Heart failure 1.62 (1.54 to 1.69) <0.0001

 � Intracranial hemorrhage 1.28 (1.16 to 1.41) <0.0001

 � Ischemic heart disease 1.01 (0.971 to 1.05) 0.574

 � Osteoporosis 1.03 (0.769 to 1.38) 0.842

 � Dementia 1.81 (1.64 to 2.00) <0.0001

 � Hypertension 1.30 (1.26 to 1.35) <0.0001

 � Chronic obstructive pulmonary disease 1.43 (1.20 to 1.70) <0.0001

 � Cancer 1.41 (1.33 to 1.49) <0.0001

 � Mean FBG 1.01 (1.00 to 1.02) 0.011

 � Mean HbA1c 1.06 (1.04 to 1.08) <0.0001

FBG

 � Absolute successive variability score 1.00 (1.00 to 1.00) 0.033

 � Percentage successive variability score 1.00 (1.00 to 1.00) <0.0001

 � SD 1.08 (1.07 to 1.10) <0.0001

 � Normalized absolute successive variability score 1.02 (1.01 to 1.02) <0.0001

 � Normalized percentage successive variability score 1.03 (1.02 to 1.03) <0.0001

 � SD/initial 1.00 (1.00 to 1.00) <0.0001

 � Coefficient of variation 1.01 (1.01 to 1.01) <0.0001

 � Variability independent of mean 1.01 (1.01 to 1.01) <0.0001

HbA1c

 � Absolute successive variability score 1.00 (1.00 to 1.00) <0.0001

 � Percentage successive variability score 1.00 (1.00 to 1.00) <0.0001

 � SD 1.11 (1.07 to 1.14) <0.0001

 � Normalized absolute successive variability score 1.02 (1.01 to 1.03) <0.0001

 � Normalized percentage successive variability score 1.03 (1.02 to 1.04) <0.0001

 � SD/initial 1.01 (1.01 to 1.01) <0.0001

 � Coefficient of variation 1.01 (1.00 to 1.01) <0.0001

 � Variability independent of mean 1.00 (1.00 to 1.01) <0.0001

FBG, fasting blood glucose.
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strength of associated risk predictors for clinicians to esti-
mate the mortality probability just referring to the most 
important variables.

DISCUSSION
In this study, we developed a machine learning-driven 
predictive risk model for type 2 diabetes mellitus using 
a multiparametric approach with data from different 
domains. Our novel findings are that (1) measures of vari-
ability of fasting glucose and HbA1c show similar predic-
tive power for all-cause mortality, regardless of whether 
adjustments were made for initial values or mean values 
across follow-up; (2) a multiparametric predictive risk 

model incorporating variables from different domains, 
including baseline demographics, comorbidities and 
laboratory tests, measures of variability of HbA1c and 
FBG predicted all-cause mortality accurately and (3) 
machine learning-driven algorithms further improved 
the accuracy of the predictive models.

Numerous factors have been associated with prema-
ture mortality in patients with type 2 diabetes mellitus. 
Prior epidemiological studies have identified key risk 
factors including age, comorbidities, healthcare utiliza-
tion patterns and laboratory findings.39 40 In our study, we 
also identified similar predictors that included advanced 
age, male gender, high neutrophil and low lymphocyte 

Figure 1  Graphical representation of HRs for all-cause mortality: (A) LDL-C, (B) HDL-C, (C) total cholesterol, (D) triglyceride, 
(E) mean HbA1c, (F) mean fasting blood glucose. HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-
cholesterol.
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count, increased levels of urea, creatinine and potassium, 
as well as reduced levels of HDL-C, LDL-C, triglycerides, 
total cholesterol and sodium. Moreover, U-shaped rela-
tionships between LDL-C, HDL-C and total cholesterol 

were found in our cohort. These findings are in keeping 
with U-shaped relationships between cholesterol and all-
cause mortality41 and for LDL-C42 in the general Korean 
populations. Similar relationships were found for HDL-C, 
where extremely high LDL-C levels were paradoxi-
cally associated with higher mortality.43 The association 
between all-cause mortality and elevated creatinine, urea 
and potassium, which are classic features of renal failure, 
is supported by evidence suggesting that the Asian popu-
lation has a higher risk of developing diabetic nephrop-
athy compared with Caucasians.11 It is widely accepted 
that current predictive models that have largely been 
developed using Western cohorts only provide moderate 
levels of accuracy and at times do not lend themselves 
relevant to disease management protocols that vary by 
country. Development of country/territory-specific risk 
prediction models allows for local population-based 
confounders and clinician management approaches to 
be incorporated into these models thus providing a more 
accurate risk prediction for the local population.

Diabetes mellitus is characterized by the presence of 
systemic chronic inflammation, which is accompanied 
by increased oxidative stress. To quantify the degree of 
inflammation, the NLR has been used as a surrogate 
measure, as it reflects the balance between proinflam-
matory and anti-inflammatory pathway activation. In our 
cohort, we found that raised NLR was associated with all-
cause mortality risk. We extend previous findings of our 
group and other groups that increased NLR has been 
associated with insulin resistance in patients with newly 
diagnosed type 2 diabetes,44 the progression of diabetic 
nephropathy45 and complications in diabetes.46 Conse-
quently, the increased oxidative stress environment in 
diabetes can induce adverse remodeling of the heart, 
which in turn increases the risk of HF, arrhythmias and 
cardiovascular mortality.47 48

Glycemic variability refers to the fluctuations in glucose 
levels and can be measured as a daily variation or variation 
between different clinical visits.49 50 Similarly, variability 
in HbA1c levels has been quantified. Both measures 
have been associated with a higher risk of complications 
and mortality in patients with diabetes mellitus in both 
randomized controlled trials and real-world settings.51–55 
There are several methods that can be used to calcu-
late variability, such as SD, CV and score based on the 
frequency exceeding a fixed percentage change in the 
absolute values. Prior studies have demonstrated the 

Table 5  A score-based predictive risk model for all-cause 
mortality in type 2 diabetes mellitus

Criteria Score

Age >70 1

Male Male 1

Complete blood count

 � Neutrophil-lymphocyte ratio >2.85 1

 � Baseline anemia Present 2

Lipid profile

 � High-density lipoprotein-
cholesterol (mmol/L)

<1.10 or>1.67 1

 � Total cholesterol (mmol/L) <5.60 or>6.50 1

 � Total triglyceride (mmol/L) >1.24 1

Comorbidity

 � Renal diabetic complication Present 1

 � Ophthalmological diabetic 
complication

Present 1

 � Peripheral vascular disease Present 1

 � Ischemic stroke Present 1

 � Sudden cardiac death Present 1

 � Atrial fibrillation Present 1

 � Heart failure Present 1

 � Intracranial hemorrhage Present 1

 � Dementia Present 2

 � Hypertension Present 1

 � Chronic obstructive 
pulmonary disease

Present 1

 � Cancer Present 1

Fasting blood glucose and HbA1C: baseline mean and 
measures of variability

 � Mean HbA1c (%) <6.34 or>7.52 1

 � Mean FBG (mmol/L) >6.12 1

 � SD: FBG >1.63 1

 � SD: HbA1c >0.79 1

Cut-off for age is rounded to the nearest whole number.
FBG, fasting blood glucose.

Table 6  Survival prediction performance comparison between Cox, RSF and DeepSurv model with fivefold cross-validation 
approach

Model Precision (95% CI) Recall (95% CI) AUC (95% CI) C-index (95% CI)

Multivariate Cox 0.75 (0.72 to 0.79) 0.73 (0.67 to 0.77) 0.73 (0.68 to 0.76) 0.73 (0.66 to 0.77)

Cox score 0.78 (0.74 to 0.82) 0.79 (0.74 to 0.83) 0.77 (0.73 to 0.81) 0.76 (0.72 to 0.82)

DeepSurv 0.85 (0.81 to 0.89) 0.86 (0.82 to 0.89) 0.85 (0.82 to 0.91) 0.86 (0.81 to 0.90)

RSF 0.88 (0.83 to 0.92) 0.87 (0.84 to 0.91) 0.86 (0.82 to 0.89) 0.87 (0.84 to 0.91)

AUC, area under the curve; RSF, random survival forests.
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importance of such measures of variability in the predic-
tion of adverse outcomes,16 17 but a systematic and direct 
comparison of different methodologies has not been 
made with regard to their predictive performance. In our 
study, eight different measures of variability for HbA1c 
and FBG were compared, all of which showed significant 
predictive values. Our findings illustrate that temporal 
variability in these laboratory tests is important, regard-
less of the methodology employed for its calculation. In 
our study, we also found that mean FBG did not predict 
mortality. Instead, all of the different measures of its vari-
ability were all predictive, suggesting that it is intermittent 
poor glucose control rather than chronic hypoglycemia 
that are more closely associated with all-cause mortality.

Standard survival model such as Cox proportional 
hazards model is a semiparametric analysis model to 
calculate the effects of observed patient’s covariates on 
the mortality risk outcome. The Cox model assumes the 
effect of each covariate is proportional. However, in many 
practical applications, the assumption is not true and 
risks losing decision information among the observed 
patient’s covariates. Furthermore, it cannot account for 
the presence of U-shaped relationships as only a single 
HR is derived for each covariate. Therefore, numerous 
nonlinear survival models were developed to better fit 
survival data with nonlinear log-risk functions (eg, time-
encoded methods56) or learning the nonlinear relation-
ship directly using machine learning and deep learning 
techniques (eg, feed-forward neural network risk-
predicting methods57). RSF model19 that is constructed by 
an ensemble of binary decision trees has been identified 
as an alternative approach to Cox proportional hazard 
model in analyzing time-to-event survival data when the 
linear proportional hazard assumption is violated. Deep-
Surv58 whose multilayer perceptron architecture is deeper 
than Faraggi-Simon’s feed-forward model and minimizes 
the negative log Cox partial likelihood with a risk not 
necessarily linear, is capable to efficiently learn complex 
non-linear relationships between patient’s covariates and 
mortality outcome. For model selection among tradi-
tional Cox model, the Cox-based score model, RSF, and 
DeepSurv in risk prediction tasks, there exists a tradeoff: 
(1) traditional Cox models (as well as Cox based score 
models) provide good model interpretation ability but 
less accurate predictions since they sacrificed the consid-
eration of nonlinear inter-dependent patterns among the 
variables; (2) machine learning or deep learning-based 
models significantly improves prediction performance 
especially when the size of instance cohort is rather large 
(n>1000) but some (eg, DeepSurv) may not provide 
good interpretations about the resulting predictions. 
Prediction accuracy and model interpretability are the 
two most important considerations for risk prediction 
model selection for clinical use. This study demonstrates 
the superiority of adopting RSF model for the risk predic-
tion due to both its highest prediction accuracy and good 
model interpretability.

The findings of this study illustrate that machine/deep 
survival learning models can better capture the highly 
complex and nonlinear relationships between prognostic 
variables and an individual patient’s risk of mortality 
without prior variable selection or domain knowledge, 
compared with the traditional Cox analysis model. Appli-
cation of machine/deep learning to survival analysis 
performs much better than the standard Cox model in 
predicting mortality risk of patients with diabetes mellitus. 
Additionally, machine/deep survival learning models will 
enable clinicians to provide personalized survival estima-
tions based on the computed probability of mortality 
risk. In practice, medical researchers can use machine/
deep survival learning models to improve overall survival 
prediction performance based on prognostic character-
istics of the patients with diabetes mellitus and subse-
quently inform early efficient treatment options and even 
reduce mortality risk.

Strengths and limitations
The following strengths of our study should be noted. 
First, this was a territory-wide study with large patient 
numbers with complete and long follow-up of mortality 
over 10 years, owing to the linkage of the electronic 
health records to the death registry. Second, the avail-
ability of different data types including prior comorbid-
ities, laboratory test results that included longitudinal 
data and drug details meant that we were able to build 
a comprehensive risk model for accurate prediction. 
Third, the application of the latest machine learning 
techniques was able to further improve the risk predic-
tions of the models.

However, there are some limitations that should be 
noted. First, this was a retrospective study and therefore 
carries the potential bias, such as information bias, that is 
found in all studies of this type. Second, as with all studies 
using administrative databases, undercoding is a possi-
bility. This was nevertheless mitigated by our definition 
of diabetes to include patients with the appropriate ICD 
coding and those who were on any diabetic medication 
or met the criteria of diabetes by either HbA1c or fasting 
glucose results. Patients with type 1 diabetes mellitus were 
not included given a different disease course and patho-
genesis. Further research is needed to explore the potential 
for the present findings to be extrapolated onto patients 
with type 1 diabetes mellitus. Third, although the deep 
neural network survival learning approach demonstrates 
significant potential in providing much more accurate 
predictions, the model’s weak interpretability becomes the 
main obstacle for its real application in clinical practices. 
Investigations of developing interpretable deep survival 
learning models that provide highly accurate predictions 
with supportive explanations for patients with diabetes 
mellitus become our next research concentration.

CONCLUSION
A multiparametric model incorporating variables from 
different domains predicted all-cause mortality accurately 
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in type 2 diabetes mellitus and a machine/deep learning-
driven approach provided further improvements for risk 
prediction.
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