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ABSTRACT 24 

Antimicrobial resistance (particularly by extended spectrum -lactamase and aminoglycoside 25 

modifying enzyme production) in neonatal sepsis is a significant global problem, particularly in 26 

low- and middle-income countries, causing an estimated 430,000-680,000 deaths annually. 27 

High rates of resistance are reported for the current WHO-recommended first-line antibiotic 28 

regimen for neonatal sepsis; ampicillin and gentamicin. We assessed the utility of fosfomycin 29 

and amikacin as a potential alternative regimen to be used in settings of increasingly prevalent 30 

antimicrobial resistance.  31 

The combination was studied in a 16 arm dose ranged hollow-fiber infection model (HFIM) 32 

experiment. The presence of amikacin or fosfomycin enhanced bactericidal activity and 33 

prevented emergence of resistance compared to monotherapy of either antibiotic. Modelling 34 

of the experimental quantitative outputs and data from checkerboard assays, indicated 35 

synergy. 36 

We further assessed the combination regimen at clinically relevant doses in HFIM with nine 37 

Enterobacterales strains with high fosfomycin/amikacin MICs and demonstrated successful kill 38 

to sterilisation in 6/9 strains. From these data, we propose a novel combination breakpoint 39 

threshold for microbiological success for this antimicrobial combination against 40 

Enterobacterales - MICF  * MICA < 256 (where MICF and MICA are MICs for fosfomycin and 41 

amikacin). Monte Carlo simulations predict that a standard fosfomycin/amikacin neonatal 42 

regimen will achieve a >99% probability of pharmacodynamic success for strains with MICs 43 

below this threshold.  44 



 4 

We conclude that the combination of fosfomycin with amikacin is a viable regimen for the 45 

empiric treatment of neonatal sepsis and is suitable for further clinical assessment in a 46 

randomised controlled trial.  47 
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Introduction  48 

Neonatal sepsis is a common condition with a high mortality (1).  Leading causative pathogens 49 

are both Gram-negative (e.g. E. coli, K. pneumoniae) and Gram-positive organisms (e.g. 50 

Staphylococcus aureus, Streptococcus agalactiae (Group B streptococci - GBS))  (1).  Neonatal 51 

sepsis accounts for an estimated 430,000 - 680,000 deaths annually, with the highest mortality 52 

in low- and middle-income countries (LMICs) (2, 3).  The World Health Organisation (WHO) 53 

currently recommends a narrow-spectrum β-lactam agent (e.g. amoxicillin or penicillin G) in 54 

combination with gentamicin as the first line empiric regimen to treat neonatal sepsis (4, 5).  55 

This regimen has an acceptable safety profile, is active against common causative wild-type 56 

organisms, is inexpensive and feasible to administer.  However, clinical efficacy is increasingly 57 

compromised by the rise of antimicrobial resistance (AMR). 58 

Multiple epidemiological studies of neonatal sepsis demonstrate significant levels of drug 59 

resistance, particularly to -lactams and gentamicin (6–12), with a variety of increasingly 60 

prevalent resistance mechanisms such as extended spectrum -lactamases (ESBLs) and 61 

aminoglycoside modifying enzymes (AMEs). In hospital settings, resistance rates of Gram-62 

negative bacteria causing neonatal sepsis to amoxicillin and gentamicin are approximately 80% 63 

and 60%, respectively, with some regional variation (6–12).  Alternative options are urgently 64 

required for the treatment of neonatal sepsis caused by multi- and extremely-drug resistant 65 

(MDR and XDR) bacteria and suitable for use in LMIC settings. 66 

A potential replacement regimen would need to provide spectrum of activity against the 67 

commonly encountered pathogens and resistance motifs. Additionally, if the regimen were a 68 



 6 

combination of two agents, a favourable pharmacodynamic interaction would required. 69 

Antimicrobial interactions can be defined by several metrics and definitions (13). However, the 70 

interaction model described by Greco based on Loewe additivity (14, 15) allows determination 71 

and quantification of any interaction with precision and without arbitrary thresholds for 72 

determining the natures of interaction. Conceptually, this can be understtod as follows; the 73 

effect of two agents in combination can be described as Total Drug Effect = A + B + C, where A 74 

and B are the effects of each drug alone, and C is the additional effect of the two agents in 75 

combination. A value of C > 0 indicates synergy; C is negative, the agents are antagonistic; and if 76 

C = 0 the agents have no interaction and the effects of the two drugs are additive only. 77 

Amikacin and fosfomycin have several attributes that make them potential candidates for use 78 

in neonatal sepsis.  They are off-patent with a neonatal licence, have an acceptable safety 79 

profile with limited toxicities (16, 17), and have efficacy against commonly encountered 80 

multidrug resistant (MDR) pathogens. We therefore studied the potential utility of this 81 

combination for neonatal sepsis by assessing in vitro activity, the nature and extent of any 82 

pharmacodynamic interaction using checkerboard assays and hollow fiber infection models 83 

(HFIMs), and defined candidate combination regimens suitable for further clinical study.  84 
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Results 85 

In vitro susceptibility testing 86 

A panel of 40 strains of bacterial species was assembled to give a representative range of 87 

bacteria that cause neonatal sepsis in a LMIC setting, with a majority of strains harbouring 88 

relevant resistance motifs for geographic regions of interest. These include 10 methicillin-89 

resistant Staphyloccocus aureus (MRSA) strains, 10 E. coli and 10 K. pneumoniae strains (all ESBL 90 

or carbapenemase producers), and 10 wild-type S. agalactiae strains (Table S1).  The MIC 91 

distributions for fosfomycin and amikacin against this panel of strains are shown in Table 1. The 92 

modal amikacin MIC was 2-4 mg/L (excluding the intrinsically resistant S. agalactiae, inhibited 93 

by a modal MIC of >32 mg/L); the modal fosfomycin MIC was 2 mg/L (excluding the K. 94 

pneumoniae strains, which have a modal MIC of >32mg/L, likely due to a high incidence of 95 

chromosomal FosA (18)).  96 

 97 

In vitro drug-drug interaction modelling 98 

Checkerboard assays were performed on a selection of the neonatal sepsis panel strains (n=16). 99 

These strains were selected on the basis of having MICs >0.0625mg/L and <32mg/L for 100 

fosfomycin and amikacin. An interaction model originally developed by Greco (14) was fitted to 101 

the dataset to estimate a pharmacodynamic interaction parameter, , for each strain (Fig. 1). A 102 

value of  for the interaction of two agents is interpreted as follows: a lower bound of the 95% 103 

CI of  > 0 indicates a synergistic interaction; an upper bound of the 95% CI of  < 0 indicates an 104 

antagonistic interaction; a 95% CI crossing 0 indicates no evidence of interaction i.e. simple 105 
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additivity (14)). A total of 9/16 individual strains had CIs >0 (and therefore indicated synergy); 106 

the remaining 7/16 strains had CIs crossing 0 (and therefore demonstrated no evidence of 107 

interaction). When the  value output of the models fitted to each strains were combined in a 108 

meta-analysis, the combined  interaction value was 0.1705 (95% CI 0.0811 to 0.2599), with 109 

low inter-strain heterogeneity (I2 = 30.7%, p value = 0.383) indicating a synergistic effect 110 

observed across all species/strains tested. 111 

 112 

Pharmacodynamic interaction of fosfomycin and amikacin using neonatal PK 113 

To determine the nature and magnitude of the pharmacodynamic interaction between 114 

fosfomycin and amikacin using neonatal concentration-time profiles, a hollow fiber infection 115 

model (HFIM) was used (Fig. 2) using the E coli ST195 strain, a CTX-M-14 producer from Laos 116 

(amikacin MIC 4 mg/L; fosfomycin MIC 1 mg/L) (19) . These experiments were conducted 117 

following preliminary dose-finding experiments with each drug alone to define informative 118 

parts of the drug exposure-response and drug exposure-emergence of resistance relationships. 119 

For fosfomycin, the EC20, EC50, and EC80 for bactericidal effect were achieved with fAUC0-24 of 120 

25, 200 and 400 mg*h/L, respectively. For amikacin, the EC20, EC50, and EC80 were achieved with 121 

fAUC0-24 of 50, 200 and 380 mg*h/L, respectively.  122 

The pharmacodynamics of the fosfomycin-amikacin combination was determined in a 16-arm 123 

4x4 experiment that included no-treatment controls, each drug alone at the three doses, and 124 

an interaction matrix of all 2-drug dose combinations as shown in Fig. 3.  When administered 125 

alone, increasing fosfomycin exposures resulted in profound early bacterial killing. However, 126 
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failure to achieve sterility led to rapid regrowth, with emergence of a resistant clone(s) with 127 

fosfomycin MICs of 128mg/L, with maximal emergent resistance at fAUC0-24 of 50 and 200 128 

mg*h/L (Fig. 3, Panels 1-4).  Similarly, progressively increasing exposures of amikacin as 129 

monotherapy led to initial suppression of logarithmic growth with subsequent exposure-130 

dependent emergence of a resistant subpopulation with amikacin MICs 16mg/L, with maximal 131 

emergent resistance at fAUC0-24 of 380 mg*h/L (Fig. 3, Panels 1,5, 9, & 13). 132 

In combination, fosfomycin and amikacin achieved a greater magnitude of initial bacterial kill, 133 

with delayed and reduced emergence of resistance to fosfomycin and amikacin, compared with 134 

equivalent drug exposures in monotherapy. Higher combination exposures achieved sterility. 135 

The relationship between drug exposure and the emergence of resistance with each drug 136 

administered alone formed an ‘inverted U’ (20). Fosfomycin and amikacin in combination 137 

resulted in the suppression of resistance that failed to do so at comparable drug exposures in 138 

monotherapy of each drug (Fig. 3, Panels 11,12 & 14-16).  As the exposure of the other 139 

antibiotic increased, the ‘inverted U’ shifted to the left as emergence of resistance was 140 

progressively suppressed (Fig. 4). 141 

The nature and magnitude of the pharmacodynamic interaction between fosfomycin and 142 

amikacin was estimated by fitting a pharmacodynamic interaction model to the PK-PD data 143 

(Table 2). The R-squared values for the observered vs individual predicted values were 0.875 144 

(free fosfomycin concentrations), 0.963 (free amikacin concentrations), 0.869 (total bacterial 145 

count), 0.944 (fosfomycin-resistant bacterial count) and 0.669 (amikacin-resistant bacterial 146 

count). There were synergistic relationships for the effects of the combination on susceptible, 147 

fosfomycin-resistant, and amikacin-resistant bacteria with  values of 13.046 [95% CI 0.761 – 148 
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25.331], 20.520 [95% CI 11.727 – 29.313], and 25.227 [95% CI 14.485 – 35.969], respectively.  149 

Hence, the combination of fosfomycin and amikacin was synergistic in terms of killing both 150 

drug-susceptible and -resistant subpopulations.  151 

 152 

Assessment of a Neonatal Combination Regimen of Fosfomycin and Amikacin 153 

We assessed the pharmacodynamics of the combination of fosfomycin and amikacin using 154 

neonatal concentration-time profiles of each drug over a 7 day period. For amikacin, we used a 155 

humanised neonatal dose of 15 mg/kg q24h (21) and a median neonatal half-life of 7 hr (22). 156 

For fosfomycin we used a humanised neonatal dose of 100mg/kg q12h with a half-life of 5.2 hr, 157 

based on preliminary data from the NeoFosfo trial (23). We selected nine Gram-negative 158 

bacteria as the challenge strains that had a range of MICs to both drugs and had different 159 

mechanisms of resistance (Table 3).  We successfully recapitulated the target free drug PK 160 

profiles associated with each regimen (data not shown).   161 

The summary pharmacodynamics are shown in Fig. 5 (full pharmacodynamic output are shown 162 

in Fig. S1-9). When administered alone, amikacin and fosfomycin failed to achieve extinction in 163 

9/9 and 7/9 strains, respectively.  All arms with strains inhibited by fosfomycin MICs >4mg/L 164 

treated with fosfomycin monotherapy had rapid emergence of resistance within 24h. The three 165 

strains inhibited by fosfomycin MICs 4mg/L were either killed to sterility (two strains) or had 166 

delayed emergence of resistance towards the end of the experiment. In contrast, the 167 

combination regimen achieved extinction in 6/9 strains. The strains for which the combination 168 

failed were all inhibited by MICs  32mg/L and  8mg/L for fosfomycin and amikacin, 169 
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respectively.  The distribution of combined fosfomycin and amikacin MICs versus response is 170 

shown in Fig. 5a. In this figure, a plane (or line) delineated two groups of strains, defined by the 171 

fosfomycin/amikacin MICs, that predicted success (defined as sterility at the end of the 172 

experiment) and failure. This ‘breakpoint plane’ was described in the following Cartesian format 173 

𝑀𝐼𝐶𝐴 ∗ 𝑀𝐼𝐶𝐹 = 256, where MICA and MICF are amikacin and fosfomycin MICs, respectively.  In 174 

a clinical context, this means that if the product of the amikacin and fosfomycin MICs inhibiting 175 

a bacterial pathogen is < 256, then treatment with a neonatal regimen of fosfomycin and 176 

amikacin in combination can be predicted to succeed (i.e. the bacterium is ‘sensitive’ to this 177 

combination). 178 

The amikacin/fosfomycin combination success data can also be arranged according to the 179 

fAUC:MIC ratio for each drug, as shown in Fig. 5b, with a similar plane describing the threshold 180 

for successful treatment with the combination. This target plane can be described with the 181 

form (𝑓𝐴𝑈𝐶𝐹/ 𝑀𝐼𝐶𝐹) ∗ (𝑓𝐴𝑈𝐶𝐴/ 𝑀𝐼𝐶𝐴)  = 2709.5 (where F and A subscripts denote 182 

fosfomycin and amikacin fAUCs and MICs respectively).  Interpreted in a clinical context, if the 183 

product of the amikacin and fosfomycin fAUC:MIC ratios is >2709.5, then the target for 184 

pharmacodynamic success has been met, with predicted treatment success. 185 

 186 

Monte Carlo Simulations 187 

Amikacin and fosfomycin fAUCs  for 10,000 neonates were created using a Monte Carlo 188 

simulation from a neonatal fosfomycin model that included neonatal covariate distributions 189 

based on a neonatal cohorts from the NeoFosfo trial and a recently completed global neonatal 190 
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sepsis observational study (NeoOBS) (23, 24) and a recently published neonatal amikacin model 191 

(25). Simulated dosing regimes were fosfomycin 100mg/kg q12 for neonates 7 days old and 192 

150mg/kg q12 for neonates >7 days, as suggested by the NeoFosfo trial results and the EMA 193 

dosing recommendations (23, 26). Simulated amikacin dosages were 15mg/kg q24 for all 194 

neonates > 2kg; neonates weighing  2kg were dosed at q48 if 7 days old and q36 if >7 days 195 

old (27).  196 

Using the target relationships defined above, we calculated a combined probability of 197 

pharmacodyamic target attainment for both drugs across MIC ranges (1 – 256 mg/L) (Table 4). 198 

These simulated fAUCs demonstrated 99% predicted target attainment for Enterobacterales 199 

with amikacin and fosfomycin MICs below the ‘breakpoint plane’.  This indicates a high 200 

likelihood that fosfomycin and amikacin in combination at the simulated dosing regimens (i.e. 201 

at standard neonatal doses) will successfully treat neonatal sepsis caused by these pathogens.  202 
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Discussion 203 

In both static and dynamic in vitro pharmacological models there was unequivocal synergistic 204 

interactions between amikacin and fosfomycin when measuring by bactericidal killing and the 205 

prevention of emergence of antimicrobial resistance. In particular, the addition of increasing 206 

doses of the second agents suppresses the ‘inverted U’ of antimicrobial resistance emergence 207 

(20) (Fig. 4) preventing the resistance observed at equivalent doses in monotherapy. These 208 

characteristics are unaffected by the presence of resistance mechanisms that render first line 209 

agents ineffective (e.g. ESBL and AMEs) in the bacteria tested in our experiments. The 210 

combination fosfomycin and amikacin is therefore a potentially useful regiment for empiric 211 

treatment of neonatal sepsis in the context of high prevalence of these resistance mechanisms 212 

Prediction of antimicrobial success has traditionally been conceived using breakpoint 213 

thresholds on a scale of a single drug concentration, with the treatment success dependent 214 

upon the bacteria being inhibited by a MIC being above or below a certain threshold on this 215 

scale. Our data suggests that using conventional monotherapy breakpoints is of limited value in 216 

combination antibiotics (Fig. 5). Here, we propose a novel two-dimensional breakpoint 217 

concentration threshold for treatment success defined by the Cartesian function of the 218 

pathogen’s fosfomycin and amikacin MIC; 𝑀𝐼𝐶𝐴 ∗ 𝑀𝐼𝐶𝐹 = 256, where A and F subscripts 219 

denote amikacin and fosfomycin MICs respectively.  Enterobacterales pathogens that are 220 

inhibited by amikacin and fosfomycin MICs lying beneath this threshold (i.e. MICA*MICF < 256) 221 

can be predicted to be successfully treated by the standard regimen of these agents used in 222 

neonates i.e. it is specific to a neonatal context. 223 
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In a further extension, we also propose a novel combination pharmacodynamic target threshold 224 

for the combination regimen for predicted treatment success, described in the following 225 

Cartersian format: (𝑓𝐴𝑈𝐶𝐹/ 𝑀𝐼𝐶𝐹) ∗ (𝑓𝐴𝑈𝐶𝐴/ 𝑀𝐼𝐶𝐴)  = 2709.5.  The probabilities of standard 226 

neonatal regimens of these drugs attaining this threshold, for bacteria inhibited by a range of 227 

MIC combinations and incorporating the variability of neonatal drug exposure, are summarised 228 

in Table 4.  229 

We aimed to ensure a diversity of resistance mechanisms across the strains used, with 230 

commonly encountered resistance motifs in LMICs represented, acknowledging we are limited 231 

to the nine strains used. Whilst it is possible that bacteria with resistance mechanisms not 232 

examined in our experiments do not follow the relationship described, we nevertheless believe 233 

that the pharmacodynamic relationship described above can be applied to bacterial pathogens 234 

using the phenotype alone (i.e. MIC), agnostic of the genotype, as for currently used breakpoint 235 

concentrations.  236 

In our HFIM experiments the monotherapy arms failed with strains inhibited by fosfomycin and 237 

amikacin MICs below their EUCAST breakpoint concentrations (32mg/L for fosfomycin and 238 

8mg/L for amikacin (28)). The underperformance of amikacin partially supports the recent 239 

downward revision of aminoglycoside breakpoint concentrations by EUCAST with a 240 

recommendation to avoid aminoglycoside monotherapy for systemic infections (28), but also 241 

reflects the observed greater tendency of aminoglycoside exposure to generate emergence of 242 

resistant small-colony variants in vitro than is observed in vivo (29). Failure of fosfomycin as 243 

monotherapy for strains inhibited by MICs >4mg/L supports suggestions that the breakpoint 244 

concentration for neonatal systemic infections should be lower than the currently stated 245 
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EUCAST breakpoint for adult systemic infections of 32mg/L (28) (as has previously also been 246 

suggested in an adult context too (30)). However, the ideal breakpoint concentration for 247 

fosfomycin alone is difficult to define because this agent should not be used as monotherapy 248 

due to potential for rapid emergence of resistance (31, 32). 249 

There is an increasing number of experimental models of neonatal infection and sepsis (33, 34). 250 

HFIMs has been previously used to explore the pharmacodynamics of vancomycin and 251 

teicoplanin for neonatal sepsis (33, 35).  HFIM has the advantage of enabling the simulation of 252 

neonatal pharmacokinetics to explore drug exposure effect and drug exposure resistance 253 

relationships that are specific to this special population. This is extremely difficult to achieve in 254 

laboratory animal models, due to inherent pharmacokinetic differences with humans.  255 

Furthermore, laboratory animal models of bacteraemia have additional difficulties in 256 

establishing pharmacodynamic relationships to due to the relatively low and intermittently 257 

detectable bacterial densities.  The HFIM overcomes these limitations.   258 

However, the HFIM does not replicate the anatomical barriers that may be important for 259 

infections of the lung and brain, and does not contain any immunological effectors (even if 260 

these are immature in neonates) that may contribute to antimicrobial activity. Furthermore, 261 

the relatively high density of the inoculum used in HFIM to ensure reproducible results (circa. 262 

106 cfu/mL) is higher than the estimates for the bacterial density in the bloodstream of 263 

neonates with sepsis (circa. 100-103 CFU/mL) (36, 37). For these reasons, the conclusions from 264 

the HFIM may be conservative and represent a worst-case scenario for regimen identification.  265 

Furthermore, the conclusions of these experiments are applicable only to the treatment of 266 

systemic infections (i.e. neonatal sepsis) given the replication of neonatal systemic drug 267 
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exposures. Whilst both amikacin and fosfomycin have a degree of CSF penetration (amikacin 268 

has a CSF partition coefficient of 0.1 in neonates (38); fosfomycin has a CSF coefficient of 0.15-269 

0.2 in adults (39), with neonatal data expected in the Neofosfo trial (23)), the CSF drug 270 

exposures and the behaviour of bacterial inoculums in neonatal meningitis will be significantly 271 

different to those modelled in this system. As such, we cannot comment on the adequacy of 272 

this regimen for neonatal meningitis. 273 

Despite these limitations, we conclude these experiments demonstrate that the regimen of 274 

fosfomycin and amikacin in combination is synergistic in both bactericidal effect and prevention 275 

of acquired antimicrobial resistance to either drug, with a defined threshold for probable 276 

treatment success. Additionally both agents have attributes that make them suitable for use in 277 

LMIC settings: i) Stability at room temperature (40, 41); ii) Ease of administration with once or 278 

twice daily dosing; iii) Minimal toxicities; iv) Off-patent status, and therefore potential 279 

affordability; v) Potential activity, in combination, to the predominant bacterial causes of 280 

neonatal sepsis. We conclude that this combination regimen could be considered appropriate 281 

for empiric treatment of neonatal sepsis in LMIC settings, contingent on the following: i) 282 

epidemiological MIC distributions for both drugs favourably related to the proposed breakpoint 283 

threshold; and ii) a favourable assessment of efficacy and safety in a multi-centre neonatal 284 

sepsis clinical trial.  285 
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Methods and Materials 286 

Antimicrobial agents. Amikacin (Alfa Aesar, Haverhill), and fosfomycin (Sigma-Aldrich, St Louis) 287 

were purchased.  Both agents were stored at 2-8oC in anhydrous form.  Fresh solutions were 288 

prepared in sterile distilled water prior to any use.  For the in vitro hollow fiber infection model 289 

(HFIM) experiments, a licensed pharamaceutical preparation of fosfomycin (Fomicyt, Kent 290 

Pharmaceuticals Ltd) were used and were prepared using sterile distilled water. 291 

Media and agar. Cation-adjusted Muller Hinton broth (MHB) (Sigma-Aldrich, St Louis) was used 292 

as the primary media in all experiments. As fosfomycin requires the presence of glucose-6-293 

phosphate (G6P) for bacterial cell entry (42)  the MHB was supplemented with 25mg/L G6P 294 

(Sigma-Aldrich, St Louis) in experiments where fosfomycin is used. Mueller Hinton agar (MHA) 295 

was used in all agar plates. Commercially pre-prepared 20mL round MHA plates (Fisher 296 

Scientific, Waltham) or self-prepared 50ml square MHA plates (MHA from Sigma-Aldrich; 297 

square plates from VWR, Radnor) were used in all experiments. For drug-containing plates, 298 

MHA was supplemented with antibiotic (with 25mg/L G6P in the case of fosfomycin) and 299 

prepared within each antibiotic’s stability limits. Drug concentrations in agar were four times 300 

the MIC of the specific bacterial strain used in a given experiment. 301 

Bacterial Isolates. Isolates were supplied by JMI, IHMA, Public Health England (PHE), LGC  302 

standards, University of Birmingham, University of Oxford, and Royal Liverpool University 303 

Hospital. For the initial non-dynamic in vitro experiments, a collection of strains was collated 304 

representing a range of common possible neonatal sepsis bacterial pathogens and resistance 305 

mechanisms in an AMR prevalent environment. In total, this included 10 strains of each of the 306 

following: Group B streptococci, methicillin resistant Staphylococcus aureus (MRSA), Escherichia 307 
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coli, and Klebsiella pneumoniae. All of the Gram-negative bacteria were extended spectrum -308 

lactamase (ESBL) (nine E. coli and nine K. pneumoniae strains) or carbapenemase producers 309 

(one E. coli and one K. pneumoniae strain). Some of these strains were used in the HFIM based 310 

on their MICs, including a further two K. pneumoniae and one E. coli (ESBL producers) not 311 

included in the original 40 strain panel. (Full details of the isolates are detailed in 312 

Supplementary Data Table 1). All isolates were stored in glycerol at -80oC and sub-cultured onto 313 

two MHA plates for 18-24h at 37oC prior to each experiment. In each non-HFIM experiment, 314 

colonies were suspended in PBS to MacFarland standard 0.5 (1x108 CFU/mL) and diluted to the 315 

target concentration. For HFIM experiments, bacteria was incubated in MHB until the bacteria 316 

entered exponential growth, and quantified by optical density (600nm) according to a strain 317 

specific standard growth curve. 318 

Antimicrobial susceptibility testing. Fosfomycin and amikacin minimum inhibitory 319 

concentrations (MICs) for the panel of representative neonatal sepsis bacterial pathogens were 320 

determined using the EUCAST broth microdilution methodology (43). E. coli ATCC 25922 or S. 321 

aureus ATCC 29213 were used as controls in all experiments. The antibiotic gradient strip assay 322 

method was used for isolates from the hollow fiber experiment. Briefly, an inoculum of the 323 

isolate was made using a suspension of a sweep of colonies into PBS to a McFarland standard of 324 

0.5. A lawn of the inoculum was plated onto a MHA plate and an antibiotic gradient strip (Etest, 325 

Biomerieux, Marcy-l’Étoile, France) placed on the plate, which is subsequently incubated for 18-326 

24h at 37oC before reading. Interpretation of susceptibility was determined using  2020 EUCAST 327 

breakpoints (28). The breakpoint for IV fosfomycin was used for fosfomycin MIC interpretation. 328 
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In vitro pharmacodynamic assays. Checkerboard assays were used on selected strains to assess 329 

the pharmacodynamic interaction of the fosfomycin/amikacin combination. Strains were 330 

selected based on having MICs 32mg/L and >0.0625 mg/L to both fosfomycin and amikacin.  331 

100 L of antimicrobials in sterile distilled water were added to the an 8x8 grid on a 96 well 332 

plate, with concentration gradients created with 1:2 serial dilutions along each axis, with the 333 

final row/column having 0 mg/L of the appropriate drug. The drug concentration range used on 334 

each plate was chosen according to the drug MICs of each strain, with the maximum 335 

concentration of each antimicrobial being 4x MIC for that strain. The inoculum was made up to 336 

1x106 CFU/mL in MHB and quantified using 1:10 serial dilution onto MHA plates. 100l of the 337 

inoculum was added to each well of the prepared checkerboard. The well containing 0 mg/mL 338 

of each drug acted as the positive control; an additional row of blank MHB on the plate acted as 339 

negative control. Plates were incubated 18-24h at 37oC before being read by optical 340 

densitometer (Varioskan, Thermo Fisher) at 600nm. Plates were considered valid if the MIC on 341 

the monotherapy rows of the checkerboard were within 1 dilution of previously determined 342 

MICs, the negative controls had no growth, and the prepared inoculum was within 6-14 x 105 343 

CFU/mL. 344 

Raw optical densitometer (OD) readings were normalised to that of the positive control. The 345 

readouts were then modelled using Greco’s model of drug synergy (15) using ADAPT 5 (44), 346 

with determination of , with confidence intervals calculated using standard error of the model 347 

outputs. Meta-analysis was performed on the output of the combination using the R package 348 

‘Metafor’ (45). 349 
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Hollow Fiber Infection Model. The hollow fiber infection model (HFIM) is a well-established 350 

dynamic model stimulating the pharmacodynamic effect of antimicrobials with physiological 351 

dynamic concentrations  (46). The HFIM method was used largely as described previously (33). 352 

Briefly, each arm in the HFIM is set up as demonstrated in Fig. 2; monotherapy arms omit the 353 

supplementary compartments. MHB is pumped into the central compartment at a rate set to 354 

simulate a physiological clearance rate for the drug, with all media in the central compartment 355 

above 300 mL removed via an elimination pump. The target simulated half-lives for fosfomycin 356 

and amikacin were 5.1 and 7 hours respectively. The neonatal half-life of fosfomycin was 357 

determined from then unpublished data from the NeoFosfo trial (23). The neonatal half-life of 358 

amikacin was sourced from the SPC (47) and confirmed with other published neonatal clinical 359 

PK data (48–52)  To account for the difference in clearance between fosfomycin and amikacin, 360 

supplementary compartments were set up according the principles laid out by Blaser (53). 361 

Throughout the HFIM experiments, inoculum concentrations were determined by serial dilution 362 

1:10. A total of 10L of each dilution was pipetted onto MHA plates; one drug-free and two 363 

containing either fosfomycin or amikacin. An additional 100L of the original inoculum was 364 

plated onto a drug-free MHA plate to lower the limit of detection for total bacterial 365 

quantification (i.e. to 10 CFU/mL). Plates were then incubated at 37oC for 18-24 hr for drug free 366 

plates, and 42-48 hr for drug-containing plates. After incubation, colonies were counted for at 367 

least two dilutions and the CFU/mL of the original inoculum was calculated. 368 

Preliminary monotherapy experiments were performed with the ESBL-producing ST195 E. coli 369 

strain (fosfomycin MIC 1mg/L, amikacin MIC 4 mg/L; supplied by the University of Birmingham) 370 

(19). PK and PD outputs of these experiments were modelled using Pmetrics (54) and 371 
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parameters simulated using ADAPT (44) to determine the fosfomycin and amikacin doses 372 

required to achieve EC20, EC50 and EC80 in terms of bactericidal effect within the HFIM. A 16-arm 373 

HFIM experiment was performed using a 4x4 dosing matrix using these three doses and no 374 

dose for both antibiotics in combination. The experiment was run over 96 hours, with a target 375 

initial inoculum of 1x106 CFU/mL of ST195 inoculated into the hollow fiber cartridges. A dose of 376 

fosfomycin corresponding to the EC20, EC50 and EC80 was administered every 12 hours to the 377 

primary central compartment only; an amikacin dose achieving the EC20, EC50 and EC80 was 378 

administered to the primary and supplementary central compartments every 24 hours. 379 

PK samples were taken for bioanalysis at four timepoints in dosing windows in days 1 and 3 of 380 

the experiment. Samples of inoculum were taken from each hollow fiber cartridge at 4 381 

timepoints during the first 24h, then once daily before administration of dose until the 96h 382 

timepoint. Each sample was prepared and plated onto drug-free square agar plates and 383 

fosfomycin- and amikacin- containing plates, as described above. MICs from any viable colonies 384 

from each arm on the final timepoint were determined via antibiotic gradient strip assay . 385 

Further HFIM experiments were performed assessing the effect of clinically relevant fosfomycin 386 

and amikacin doses leading to neonatal-like pharmacokinetic profile alone and in combination 387 

against a variety of bacteria with different fosfomycin and amikacin MICs. PK profiles of 388 

fosfomycin and amikacin were designed to have half-lives of 5.1 and 7 hours, with Cmax values 389 

of 250mg/L and 40mg/L respectively. These were determined from the sources used to 390 

determine the half-life, as described earlier. Nine parallel experiments were performed using 391 

nine Gram-negative strains with a wide distribution of fosfomycin and amikacin MICs (Table 3). 392 

Each individual experiment consisted of 4 arms; monotherapy arms for both fosfomycin and 393 
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amikacin, a combination therapy arm, and an untreated control. As this experiment aimed to 394 

replicate clinically relevant drug exposures in neonates, each experiment lasted 7 days to 395 

reflect the typical treatment course of neonatal sepsis. Four PK samples were taken in each of 396 

three dose intervals distributed evenly throughout the experiment. Four inoculum samples 397 

were taken on day 1, and once every 24h thereafter. These samples were quantified on drug-398 

free, fosfomycin-, and amikacin-containing square MHA plates. MICs from any viable colonies 399 

from each arm on the final timepoint were determined via antibiotic gradient strip assay. 400 

Amikacin Bioanalysis. The internal standard, [2H5] amikacin (Alsachim, Illkirch-Graffenstaden, 401 

France) was prepared in acetonitrile plus 5% trichloroacetic acid (TCA) (25 mg/L, Fisher 402 

Scientific, UK) and 150 L was added to a 96-well protein precipitation plate (Phenomenex, 403 

Cheshire, UK).  Fifty L each of samples, blanks, calibrators in the range 0.5 – 50 mg/L and 404 

quality controls (0.75, 7.5 and 37.5 mg/L) were mixed with the internal standard on an orbital 405 

shaker.  Liquid was drawn through the protein precipitation plate into a collection plate using a 406 

positive pressure manifold.  Samples were evaporated under nitrogen (40 L/min) followed by 407 

reconstitution in water (Fisher Scientific, UK) and 0.1% heptafluorobutyric acid [Sigma-Aldrich, 408 

UK] and mixed using an orbital shaker prior to analysis by LC-MS-MS. 409 

LC-MS-MS analysis was performed using an Agilent 1290 Infinity HPLC coupled to an Agilent 410 

6420 triple quadrupole mass spectrometer fitted with an electrospray source controlled using 411 

Agilent MassHunter Data Acquisition software (Ver B.06.00).  Analytes were injected (5 L) onto 412 

a Discovery® HS C18 HPLC Column (2.1 mm x 50 mm, 3 µm, 50°C) and separated over a 3.5 min. 413 

gradient using a mixture of solvents A (LC-MS grade water with 0.1% (v/v) heptafluorobutyric 414 

acid) and B (HPLC grade acetonitrile with 0.1% (v/v) heptafluorobutyric acid). Separations were 415 
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performed by applying a linear gradient of 2% to 98% solvent B over 3 mins at 0.5 mL/min 416 

followed by an equilibration step (0.5 mins at 2% solvent B).  417 

The mass spectrometer was operated in positive ion mode using a Multiple Reaction 418 

Monitoring (MRM) method with the specified mass transitions and collision energies: amikacin 419 

586.4 > 163.2 (Ce 30 ev) and [2H5] amikacin 591.3 > 163.2 (Ce 30 ev). Mass spectrometry 420 

readouts were processed using Agilent Mass Hunter Quantitative Analysis (Ver B.05.02). 421 

Prior to sample analysis, the analytical method was validated to assess recovery and matrix 422 

effects, inter- and intra-day accuracy and precision, carryover, dilution integrity, stability in 423 

matrix (4 hours at room temperature and 3 freeze thaw cycles) and processed sample stability 424 

(reinjection of extracts after 24hrs).  The average recovery from matrix was 75.3%.  The limit of 425 

quantification (LLQ) was defined as 0.5 mg/L and the limit of detection (LOD) 0.25 mg/L.  The 426 

inter- and intra-day %CV on the three QC levels ranged from 2.5% – 5.7% and 2.9% – 6.41% 427 

respectively.  The analyte was found to be stable in all conditions described above. 428 

Fosfomycin Bioanalysis. The internal standard, Ethyl Phosphonic acid (Sigma Aldrich, UK) was 429 

prepared in acetonitrile (5 mg/L, Fisher Scientific UK) and 200 L was added to a 96-well protein 430 

precipitation plate (Phenomenex, Cheshire, UK).  Fifty L each of samples, blanks, calibrators in 431 

the range 1 – 500 mg/L and quality controls (3.5, 35 and 350 mg/L) were mixed with the 432 

internal standard on an orbital shaker.  Liquid was drawn through the protein precipitation 433 

plate into a collection plate using a positive pressure manifold with water and 2mM Ammonium 434 

acetate (150 L) added to each well, before sealing and mixing on an orbital shaker.  435 



 24 

LC-MS-MS analysis was carried out using the same technical setup as described above.  436 

Analytes were injected (5 L) onto an Agilent ZORBAX RRHD HILIC Plus 95Å Column (2.1 mm x 437 

50 mm, 1.8 µm, 40°C) and separated over a 3.5 min. gradient using a mixture of solvents A (LC-438 

MS grade water with 2mM (v/v) ammonium acetate) and B (HPLC grade acetonitrile). 439 

Separations were performed by applying a linear gradient of 100% to 0% solvent B over 2 mins 440 

at 0.4 mL/min followed by an equilibration step (1.5 mins at 100% solvent B).  441 

The mass spectrometer was operated in negative ion mode using a Multiple Reaction 442 

Monitoring (MRM) method with the specified mass transitions and collision energies: 443 

fosfomycin 137.1 > 79.0 (Ce 20 ev) and EPA 109.1 > 79.0 (Ce 20 ev). Mass spectrometry 444 

readouts were processed as described above. 445 

This fosfomycin analytical method underwent the same validation process as the amikacin 446 

method described above. The average recovery from matrix was 80.9%.  The LLQ was defined 447 

as 1 mg/L and the LOD 0.5 mg/L.  The inter and intra day %CV on the three QC levels ranged 448 

from 6.5% – 8.1% and 4.7% – 6.9% respectively.  The analyte was found to be stable in all 449 

conditions described above. 450 

Modelling. Population PK models were constructed using the pharmacokinetic and 451 

pharmacodynamic outputs of the hollow fiber experiments using the population PK program 452 

Pmetrics using a nonparametric adaptive grid NPAG estimation routine (54). The structural 453 

model was based on Greco’s models of pharmacological synergy (15) (described in full in 454 

Appendix 1). 455 
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Monte Carlo Simulation. A neonatal model for fosfomycin developed from the Neofosfo trial 456 

(23, 55) and previously published neonatal amikacin (56) was used to simulate 457 

fosfomycin/amikacin PK profiles from 10,000 neonates the linPK package in R (https://cran.r-458 

project.org/web/packages/linpk/index.html). The simulated population was based on the 459 

demographic distribution of neonates in the Neofosfo trial (23) combined with data from an 460 

international multi-centre neonatal observational trial (24). From the simulated PK profiles, 461 

individual fAUC0-24h values were calculated from the first 24h. 462 

Data availability: The programs ADAPT and Pmetrics are pubically available, with instructions, 463 

at https://bmsr.usc.edu/software/adapt/ and http://www.lapk.org/pmetrics.php respectively.  464 

https://bmsr.usc.edu/software/adapt/
http://www.lapk.org/pmetrics.php
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Tables 641 

Bacterial species 

Amikacin MIC (mg/L) 

0.0
625 

0.125 0.25 0.5 1 2 4 8 16 32 >32 

E. coli - - - - - 1 3 2 3 1 - 

K. pneumoniae - - - - 1 3 2 2 - - 2 

MRSA - - - - - 4 3 - - - 3 

S. agalactiae - - - - - - - - 1 1 8 

 642 

Bacterial species 

Fosfomycin MIC (mg/L) 

0.0
625 

0.125 0.25 0.5 1 2 4 8 16 32 >32 

E. coli - - - - - 5 2 1 - - 2 

K. pneumoniae - - - - - - 1 - - 1 8 

MRSA - - 1 2 2 2 2 - - - 1 

S. agalactiae - - - - - 2 2 2 1 2 1 

Tables 1a and 1b: Fosfomycin and amikacin MIC distributions in the neonatal sepsis bacterial 643 

pathogen panel. 644 

  645 
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 646 

Parameter Mean  Median 95% Credibility 
interval 

V1 (L) 0.459 0.469 0.416 – 0.5 

V2 (L) 0.359 0.312 0.306 – 0.417 

Cl1 (L/h) 0.082 0.077 0.0755 – 0.0967 

Cl2 (L/h) 0.038 0.031 0.0308 – 0.0369 

Kgs 1.320 1.124 1.000 - 1.579 

Kks 2.698 2.922 2.700 - 3.000 

E501s (mg/L) 9.081 6.805 4.417 – 11.260 

E502s (mg/L) 11.674 6.768 4.041 – 17.540 

s 16.288  13.046 3.439 – 29.997 

Kgr1 1.375 1.324 1.239 – 1.329 

Kkr1 2.384 2.221 1.933 – 2.902 

E501r1 (mg/L) 34.554 28.833 28.228 – 42.833 

r1 17.023 20.520 11.021 – 22.068 

Kgr2 1.361 1.367 1.299 – 1.375 

Kkr2 2.325 2.070 1.972 – 2.872 

E502r2 (mg/L) 37.795 39.150 28.819 – 43.860 

r2 19.815 25.227 7.259 – 29.675 

H1s 3.794 4.801 2.726 – 4.996 

H2s 3.347 3.923 0.735 – 4.967 
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H1r1 2.160 2.488 1.205 – 2.831 

H2r2 2.776 2.913 0.883 – 3.942 

Table 2: Parameter values estimates with 95% credibility interval from HFIM PKPD model. V = 647 

Volume of distribution; C = clearance, Kg = bacterial growth constant; Kk = bacterial kill 648 

constant; E50 = Concentration of drug achieving 50% of efficacy;  = interaction parameter; H = 649 

Hill constant. Parameter suffices are defined as follows; 1 = relating to fosfomycin; 2 = relating 650 

to amikacin; s = relating to wildtype bacterial population; r1 = relating to ‘fosfomycin resistant’ 651 

bacterial population; r2 = relating to ‘amikacin resistant’ bacterial population.  652 

  653 
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 654 

Table 3: Details of strains used in HFIM testing physiological pharmacokinetics of 655 

fosfomycin/amikacin. NS = not sequenced, at time of writing.  656 

Strain 
Number 

Species Resistance 
mechanisms 

Amikacin 
MIC 

Fosfomycin MIC 

ST195 E. coli CTX-M-14 4 1 

I1057 E. coli 
CTX-M-15, CMY-23, FQ-

resistant 
32 2 

NCTC 13451 E. coli 

CTX-M-15, OXA-1, 
TEM-1, aac6'-lb-cr, 

mph(A), catB4, tet(A), 
dfrA7, aadA5, sulI 

16 4 

BAA2523 E. coli OXA-48 4 8 

L75546 
K. 

pneumoniae 
NS 64 4 

1237221 
K. 

pneumoniae 
SHV-OSBL, CTX-M-15 8 32 

1216477 
K. 

pneumoniae 
SHV-OSBL, TEM-OSBL, 

CTX-M-15 
8 32 

NCTC 13438 
K. 

pneumoniae 
KPC3 32 32 

1256506 
K. 

pneumoniae 
SHV-OSBL; TEM-OSBL; 

CTX-M-2; CMY-2 
2 128 

L41464 
K. 

pneumoniae 
NS 16 128 
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 Amikacin MIC (mg/L) 
1 2 4 8 16 32 64 128 256 

Fo
sf

o
m

yc
in

 M
IC

 (
m

g/
L)

 256 91.33% 51.81% 3.43% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

128 99.42% 91.33% 51.81% 3.43% 0.00% 0.00% 0.00% 0.00% 0.00% 

64 99.97% 99.42% 91.33% 51.81% 3.43% 0.00% 0.00% 0.00% 0.00% 

32 100.00% 99.97% 99.42% 91.33% 51.81% 3.43% 0.00% 0.00% 0.00% 

16 100.00% 100.00% 99.97% 99.42% 91.33% 51.81% 3.43% 0.00% 0.00% 

8 100.00% 100.00% 100.00% 99.97% 99.42% 91.33% 51.81% 3.43% 0.00% 

4 100.00% 100.00% 100.00% 100.00% 99.97% 99.42% 91.33% 51.81% 3.43% 

2 100.00% 100.00% 100.00% 100.00% 100.00% 99.97% 99.42% 91.33% 51.81% 

1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.97% 99.42% 91.33% 

Table 4: Probability of attainment of the target (𝑓𝐴𝑈𝐶𝐹/ 𝑀𝐼𝐶𝐹) ∗ (𝑓𝐴𝑈𝐶𝐴/ 𝑀𝐼𝐶𝐴)  > 2709.5 657 

across a range of amikacin and fosfomycin MICs using 10,000 Monte Carlo simulated neonatal 658 

amikacin and fosfomycin fAUCs. Grey shading denotes MIC combinations with probability of 659 

target attainment < 95%.  660 
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Figures  661 

 662 

Figure 1– Modelled output for checkerboard assays to three antimicrobial combinations against 663 

16 isolates, with a combined total statistic for each combination. Figure 1a details full results of 664 

all strains; Figure 1b shows the same data with the two isolates with wide CI intervals censored 665 

(the total statistic is unchanged and still includes data from these isolates).   is the interaction 666 

parameter in the Greco model indicating the level of synergy. A confidence interval (CI) >0 667 

indicates presence of synergy; CI <0 indicates antagonism; a CI containing 0 indicates no 668 

interaction with additive effects only.  and p values for combined statistic are given below the 669 

figures. I2 represents the heterogeneity in effect between individual strains.   670 
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 671 

Figure 2 – Schematic setup of HFIM for combination antimicrobials. For arms with a single drug 672 

administered, the supplementary compartments were omitted.  673 
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 674 

 675 

Figure 3 – Pharmacodynamic output of 16-arm fosfomycin/amikacin combination HFIM 676 

experiment, with labelled fAUC0-24 for each arm. Grey cross in arm 15 was a real data-point in 677 

the initial experiment but was not reproducible in repeat experiments. It is demonstrated here 678 

for completeness but was not included in the modelling.   679 
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 680 

Figure 4 – Pharmacodynamic relationships of emergence of resistance in relation to modelled 681 

fAUC:MIC ratios for each agent. (A) Increasing fosfomycin fAUC:MIC on a background of fixed 682 
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Amikacin fAUC:MIC; (B) Increasing amikacin fAUC:MIC on a background of fixed fosfomycin 683 

fAUC:MIC.  684 
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 685 

 686 

Figure 5 – Summary of pharmacodynamic outputs of fosfomycin/amikacin antimicrobial 687 

combination and monotherapy regimens in HFIM shown by pathogen fosfomycin/amikacin 688 

MICs (A) and fosfomycin/amikacin fAUC:MIC ratio (B). Success is defined by bacterial kill to 689 

sterility at the end of the experiment. 690 


