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Abstract

Ultra-high field MRI across the depth of the cortex has the potential to provide ana-

tomically precise biomarkers and mechanistic insights into neurodegenerative disease

like Huntington's disease that show layer-selective vulnerability. Here we compare

multi-parametric mapping (MPM) measures across cortical depths for a 7T 500 μm

whole brain acquisition to (a) layer-specific cell measures from the von Economo his-

tology atlas, (b) layer-specific gene expression, using the Allen Human Brain atlas and

(c) white matter connections using high-fidelity diffusion tractography, at a 1.3 mm

isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that

R2*, but not R1, across cortical depths is highly correlated with layer-specific cell

number and layer-specific gene expression. R1- and R2*-weighted connectivity

strength of cortico-striatal and intra-hemispheric cortical white matter connections

was highly correlated with grey matter R1 and R2* across cortical depths. Limitations

of the layer-specific relationships demonstrated are at least in part related to the high

cross-correlations of von Economo atlas cell counts and layer-specific gene expres-

sion across cortical layers. These findings demonstrate the potential and limitations

of combining 7T MPMs, gene expression and white matter connections to provide an

anatomically precise framework for tracking neurodegenerative disease.
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1 | INTRODUCTION

The advent of ultra-high field (UHF) MRI now enables us to image the

human brain at sub-millimetre resolution in vivo. Combining this tech-

nological advance with quantitative MRI (qMRI) has made in-vivo

histology MRI (hMRI) a distinct possibility (Trampel, Bazin, Pine, &

Weiskopf, 2019; Weiskopf, Mohammadi, Lutti, & Callaghan, 2015).

Multi-parametric maps (MPMs) include qMRI parameters of effective

transverse relaxation rate (R2*), which are sensitive to both myelin

and iron (Edwards, Kirilina, Mohammadi, & Weiskopf, 2018; Kirilina
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et al., 2020; Weiskopf et al., 2013) and longitudinal relaxation rate

(R1), which is mainly sensitive to myelin and to a lesser extent to iron

(Stuber et al., 2014) (for review, see Weiskopf, Edwards, Helms,

Mohammadi, & Kirilina, 2021).

The human neocortex is composed of six distinct cyto-

architectonic cortical layers, which are defined based on cell density,

cell size and cell type. In-vivo high-resolution histology using ultra-

high field (UHF) qMRI has the potential to provide cortical layer-

specific measures that relate to these patterns of cell composition and

associated layer-specific gene expression. Previous studies using high-

resolution qMRI showed myelination patterns across cortical areas

but also assessed cortical profiles of qMRI parameters at 3T

(Carey et al., 2018; Dick et al., 2012; Sereno, Lutti, Weiskopf, &

Dick, 2013) and 7T (Cohen-Adad et al., 2012; Marques, Khabipova, &

Gruetter, 2017; Sprooten et al., 2019). How qMRI measures across

cortical depths relate to cytoarchitecture at different cortical layers

however is largely unknown. Such layer-specific in-vivo histology

could also enable us to investigate neurodegenerative disease with

much greater anatomical precision. For example, in end-stage

Huntington's disease post-mortem studies show involvement of layers

3, 5 and 6 (Rub et al., 2016), while in multiple sclerosis (MS) sub-pial

cortical changes are seen particularly in secondary progressive MS

(Derakhshan, Caramanos, Narayanan, Arnold, & Louis Collins, 2014;

Tardif, Bedell, Eskildsen, Collins, & Pike, 2012). Thus, layer-specific

in-vivo high-resolution qMRI has the potential to provide mechanistic

insights into layer-selective vulnerability, as well as anatomically

precise cortical biomarkers.

In this study, we aim to investigate the relationship between cor-

tical depth measures using 7T qMRI in healthy humans in-vivo to

established histological and gene expression measures. For this pur-

pose, we relate R1 and R2* at different cortical depths from in-vivo

high-resolution MPMs to post-mortem whole brain histology atlases,

gene enrichment atlases and whole brain connectomics derived from

diffusion MRI (dMRI). To this end, we acquired whole brain MPMs at

7T with 500 μm resolution and high-fidelity dMRI in a group of

10 healthy young adults.

We use the von Economo–Koskinas whole brain histology atlas

to provide layer-specific quantitative cell measures. Von Economo

and Koskinas parcellated the cerebral cortex into 56 regions based

on cell type, cell size and cell count (C. F. K. von Economo &

Koskinas, 1925). We could therefore test the hypothesis that qMRI

parameters at different cortical layers would relate to cell measures in

corresponding histology layers. Going beyond cell histology, the Allen

Human Brain Atlas (AHBA) provides a densely sampled atlas of

regional gene expression across the human brain (Hawrylycz

et al., 2012). This allowed us to link qMRI parameters across cortical

depths with layer-specific gene expression (Burt et al., 2018).

Prior to disease onset, Huntington's disease is characterised by

striatal atrophy and a subsequent loss of cortico-striatal white matter

(WM) connections (McColgan et al., 2015) formed by pyramidal tract

neurons in layer 5. To demonstrate the relationship of UHF qMRI

parameters to WM connections we relate qMRI across cortical depths

to WM connections from high-fidelity dMRI.

Our results show significant correlations between R2* maps and

post-mortem layer-specific cytoarchitecture and between R2* and gene

expression pattern. Further, we demonstrate a strong relationship

between WM connections and qMRI across cortical layers. Limitations

of the layer-specific relationships demonstrated are at least in part

related to the high cross-correlations of von Economo atlas cell counts

and layer-specific gene expression across cortical layers. Our findings

highlight the unique opportunities, as well as the limitations, provided

by MR-based in-vivo histology to establish an anatomically precise

framework that can be used to track neurodegenerative disease.

2 | MATERIALS AND METHODS

2.1 | Data acquisition

Data from 10 healthy volunteers (6 females, 4 males, mean age 28

± 3.6 years) were acquired on a 7T whole-body MRI system

(Magnetom 7T, Siemens Healthineers, Erlangen, Germany) equipped

with a 1-channel transmit/32-channel radio-frequency (RF) receive

head coil (Nova Medical, Wilmington, MA). The MPM protocol con-

sisted of two multi-echo fast low angle shot (FLASH) scans with T1-

and PD-weighting (T1w, PDw), plus maps of the radio frequency (RF)

transmit field B1+ and static magnetic field B0. The MPM acquisition

was adapted for whole-brain coverage at 500 μm isotropic resolution

from methods described previously (Kirilina et al., 2020; Lutti, Dick,

Sereno, & Weiskopf, 2014; Trampel et al., 2019; Weiskopf

et al., 2011; Weiskopf et al., 2013).

The PD-weighted and T1-weighted multi-echo FLASH scans were

acquired with flip angles of 5� and 24 � respectively, readouts of alter-

nating polarity to give 6 echoes evenly spaced between 2.8 and

16 ms, and a TR of 25 ms for a total imaging time of 18 min per

volume. Additional parameters were as follows: matrix size (read �
phase � partition) 496 � 434 � 352, sagittal orientation, generalised

autocalibrating partial parallel acquisition (GRAPPA) (Griswold et al.,

2002) with acceleration factor 2 in both phase and partition directions

(inner phase encoding loop), non-selective excitation with a sinc-

shaped RF pulse, readout bandwidth 420 Hz/pixel. The transmit

voltage was calibrated by an initial low-resolution transmit field map

to be optimal over the occipital lobe. Motion was monitored and

corrected prospectively by an optical tracking system (Kineticor,

Honolulu, HI) (Callaghan et al., 2015). For the purposes of prospective

motion correction of the high resolution MPM acquisitions, each

volunteer was scanned while wearing a mouth guard assembly (with

attached passive Moiré pattern markers) moulded to their front teeth

(manufactured by the Department of Cardiology, Endodontology

and Periodontology, University Medical Center Leipzig; (Papoutsi

et al., 2018)). R1, R2* and PD parameter maps were computed using

the hMRI toolbox (Tabelow et al., 2019).

Diffusion weighted images (DWI) were acquired for the same partici-

pants on a 3T Connectom (Siemens Healthineers, Erlangen, Germany)

scanner (300 mT/m maximum gradient strength) using a 32-channel RF

head coil for reception and a body RF coil for transmission. DWI were
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acquired with high isotropic spatial resolution (voxel size = 1.3 �
1.3 � 1.3 mm3) and four interleaved diffusion weighting shells (b =

500 s/mm2, b = 1,000 s/mm2, b = 2,000 s/mm2, b = 3,000 s/mm2) to

enable simultaneous partial volume effect (PVE) and crossing fibre model-

ling of the underlying voxel-wise fibre populations (Jeurissen, Tournier,

Dhollander, Connelly, & Sijbers, 2014). DWI were acquired along 24, 36,

60 and 60 non-collinear diffusion encoding directions in the order of low-

est to highest b-value shell. The diffusion encoding was achieved using

monopolar diffusion weighting gradients and the diffusion weighting direc-

tions were distributed on the whole-sphere for optimum balancing and

eddy current (EC)-induced distortion correction (Andersson &

Sotiropoulos, 2016). A total of 24 non-DWI (b = 0 s/mm2) were also

acquired as baseline signal at every ten DWI (b≠ 0 s/mm2) intervals. A

Centre for Magnetic Resonance Research (CMRR) sequence was used for

the DWI acquisition. This was a single-shot, two-dimensional, multi-slice

spin-echo echo planar imaging (SE-EPI) sequence (flip angle 90�,

TE = 65.60 ms, TR = 5,500 ms, partial Fourier factor = ⅝, in-plane accel-

eration factor in phase encoding (PE) direction (GRAPPA) = 2 (Griswold

et al., 2002). A multi-band acceleration factor (in slice direction) of 2 was

used (CMRR, University of Minnesota, Minneapolis, MN. https://www.

cmrr.umn.edu/multiband/, (Feinberg et al., 2010; Moeller et al., 2010;

Setsompop et al., 2012; Xu et al., 2013). The acquisition included leak-

block kernel reconstruction, readout bandwidth = 1,234 Hz/Px, effective

PE bandwidth = 13.256 Hz/Px, echo spacing = 0.93 ms, acquisition

matrix = 210 � 212.5 (101.2% FOV phase), reconstructed

matrix = 162 � 164, number of axial slices = 90, distance factor = 0%

and frequency selective fat suppression with both saturation RF pulses

and the principle of slice selection gradient reversal (Nagy &

Weiskopf, 2008). The DWI were acquired with phase encoding (PE) in the

anterior–posterior (AP) direction. The DWI acquisition was repeated twice

to improve the signal-to-noise ratio (SNR). Five additional non-DWI

(b = 0 s/mm2) were acquired at the beginning of the DWI sequence pre-

ceded by the acquisition of five non-DWI (b = 0 s/mm2) with reversed PE

gradient polarity, that is, posterior–anterior (PA) instead of anterior–

posterior (AP) encoding direction. The collection of AP-PA non-DWI

(b = 0 s/mm2) enabled correction of susceptibility-induced geometric dis-

tortions in the DWI (Andersson & Sotiropoulos, 2016). The total DWI

acquisition time was approximately 50 min.

An accompanying 3D magnetization-prepared rapid gradient-

echo (MPRAGE) image was acquired in the same session as the

diffusion MRI with the following imaging parameters: voxel size =

1 � 1 � 1 mm3, TR/TE = 2,300/2.91 ms, flip angle = 9�, parallel

acceleration factor (GRAPPA) = 2, field-of-view = 256 and 240 mm,

matrix size = 256 � 240 � 176, sagittal slices acquired with AP phase

encoding, non-selective inversion recovery with inversion time

TI = 900 ms, fat suppression and RF spoiling.

2.2 | Cortical layer construction

To enable surface-based registration of cortical atlases to individual

subjects the FreeSurfer Version 6.0 recon-all pipeline was used (Fischl

et al., 2004) for cortical surface reconstruction. As the pipeline is

designed for standard T1w MPRAGE images the following modifica-

tions were made for the 7T MPMs. A synthetic FLASH volume with

optimal white matter/grey matter contrast was created using the

FreeSurfer mri_synthesize routine with TR = 20 ms, flip angle = 30�,

TE = 2.5 ms. Inputs to the routine were scaled quantitative PD and

T1 maps (1/R1 volumes, with removal of a small number of negative

and extremely high values produced by estimation errors). SPM seg-

ment (https://www.fil.ion.ucl.ac.uk/spm) was applied to the synthetic

image to create a combined grey matter (GM)/white matter (WM)/

cerebrospinal fluid (CSF) brain mask with a tissue probability cut-off

of 0, which was used to remove the skull from the PD image. The PD

image (normalised such that the average white matter intensity is at

69% (Tabelow et al., 2019)) was then subtracted from 100%, inverting

the contrast and thus making it more MPRAGE-like. Next, Rician den-

oising (http://www.cs.tut.fi/~foi/GCF-BM3D) (Maggioni, Katkovnik,

Egiazarian, & Foi, 2013) was applied and the resulting image was used

for FreeSurfer cortical surface reconstruction. This was preferable to

using the 3T 1 mm isotropic T1w MPRAGE, which would have

required registration to the 7T MPM images.

FreeSurfer was then used to perform surface-based registration

of the von Economo (Scholtens, de Reus, de Lange, Schmidt, & van

den Heuvel, 2018), HCP-MMP 1.0 (Glasser et al., 2016) and Desikan-

Killiany (Desikan et al., 2006) atlases from template to subject space.

The digital von Economo atlas was created by manual segmentation

of individual T1 scans based on the cortical regions defined in the von

Economo–Koskinas post mortem atlas (Scholtens et al., 2018). This

enables direct ROI comparison of von Economo–Koskinas layer-

specific cell measures with 7T MPM measures across cortical depths.

The HCP-MMP 1.0 atlas was chosen for the genetic analysis as the

finer grained resolution of 180 ROIs (compared to 43 ROIs for von

Economo and 34 ROIs for Desikan-Killiany) enabled us to maximise

the number of genetic data points sampled for the Allen Human Brain

Atlas (AHBA). The Desikan-Killiany atlas was chosen for the

connectome analysis as it contains both cortical and sub-cortical ROIs

(as opposed to cortex only for HCP-MMP 1.0). The number of

reconstructed streamlines required for reproducibility rises exponen-

tially with larger parcellation schemes (Yeh, Smith, Liang, Calamante, &

Connelly, 2018), thus we considered using the Desikan-Killiany atlas

to be the optimal approach. With this caveat in mind, we repeated the

connectome analysis using a combined HCP-MMP 1.0 cortical and

subcortical aseg parcellation, produced from FreeSurfer recon-all

pipeline, and have presented this in the Supporting Information. For

all parcellation schemes, analyses were confined to the left hemi-

sphere, except in the case of inter-hemispheric connections in the

connectome analyses.

In order to create cortical layers, first CAT12 (http://www.neuro.

uni-jena.de/cat) was used to create GM and WM tissue probability

maps (TPMs) from the synthetic T1w image. In CAT12, the synthetic

image was spatially normalised using an affine and a non-linear regis-

tration, bias field correction was applied and the image was seg-

mented into GM, WM and CSF (Farokhian, Beheshti, Sone, &

Matsuda, 2017). CAT12 was used instead of SPM segment as it

resulted in more accurate WM segmentations for the 7T images with
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much higher WM tissue probabilities. In order to construct conserva-

tive GM and WM masks, the GM and WM TPMs were thresholded

such that values below 1 converted to 0. This was done in order to

avoid erroneous labelling of GM as WM at the GM/WM boundary.

The GM TPM was manually corrected to improve minor segmentation

errors. Nighres (Huntenburg, Steele, & Bazin, 2018) was used to cre-

ate level set images from the GM and WM masks. The resulting outer

and inner level set images were used to create 8 equi-volume layers.

R1 and R2* were sampled at each layer creating profile-sampled

images. These were masked using ROIs from the von Economo

(Scholtens et al., 2018), HCP-MMP 1.0 (Glasser et al., 2016) and

Desikan-Killiany (Desikan et al., 2006) atlases and mean R1 and R2*

values were extracted for each ROI for each layer per participant.

Values were then averaged across participants and only the left hemi-

sphere was used in order to match the data from the AHBA, since it

contains data from 6 left hemispheres and only 2 right hemispheres.

Thus, this analysis was in keeping with previous analyses using only

the left hemisphere (Arnatkevic Iute, Fulcher, & Fornito, 2019). This

resulted in matrices of 8 � 43 for von Economo and 8 � 180 for

HCP-MMP 1.0 atlases.

We also applied a surface-based pipeline using the FreeSurfer

Version 6.0 recon-all pipeline. The Freesurfer pial and white matter

surfaces were then used to create equi-volume cortical layers using

surface tools (https://github.com/kwagstyl/surface_tools). However,

on visual inspection the pial and GM/WM boundaries created using

CAT12 were more accurate across the whole brain for our data.

2.3 | Diffusion MRI processing

A white matter connectome was created for each participant using

anatomically constrained tractography (Smith, Tournier, Calamante, &

Connelly, 2012) implemented in MRtrix (Tournier, Calamante, &

Connelly, 2012). Raw diffusion images were first visually quality con-

trolled. Denoising (Veraart et al., 2016) and Gibbs ringing artefact

removal was performed (Kellner, Dhital, Kiselev, & Reisert, 2016)

using MRtrix. FSL Eddy and Top-up were used to correct for eddy

currents, susceptibility-related distortion and subject movement

(Andersson & Sotiropoulos, 2016). Bias field correction was then

performed using the ANTS N4 algorithm (Tustison et al., 2010).

Voxel-wise fibre orientation distribution were calculated using multi-

shell multi-tissue constrained spherical deconvolution (MSMT-CSD)

(Jeurissen et al., 2014), with group averaged response functions for

WM, GM and CSF. Intensity normalisation was then performed

on fibre orientation distributions (FODs) and probabilistic whole

brain tractography implemented to generate 10 million streamlines.

Streamlines terminated when exiting the white matter. Spherical

deconvolution informed filtering of tractograms (SIFT2) was used to

remove biases inherent in tractography where longer connections are

over-determined, streamlines follow the straightest path and lack an

associated volume (Smith, Tournier, Calamante, & Connelly, 2013).

FreeSurfer was used (Fischl et al., 2004) to segment and parcellate

the whole brain 3T MPRAGE image. The resulting Desikan-Killiany

(Desikan et al., 2006) and associated subcortical aseg parcellation,

produced from FreeSurfer recon-all pipeline, was used to construct

the WM connection matrix. R1 and R2* weighted connectomes were

also created by taking the average R1/R2* value across streamlines

connecting a pair of ROIs, where higher R1/R2* were used as indica-

tors for a higher myelination and stronger connectivity. This is analo-

gous to fractional anisotropy weighting of streamlines, which is

commonly used in white matter connectome studies, but more

directly targets the myelination of connections (van den Heuvel &

Sporns, 2011). Cortico-striatal, cortico-thalamic, cortico-cortical, inter-

hemispheric and intra-hemispheric connections were then extracted

for each Desikan-Killiany ROI per subject and averaged across the

group.

2.4 | Cell histology and genetic atlases

Cell count and cell size data across cortical layers for the von

Economo atlas were taken from (C. von Economo, 2009), which pro-

vides cell count and cell size data for each cortical layer 1–6 in every

von Economo atlas ROI. By translating the von Economo regions into

comparable FreeSurfer Desikan-Killiany atlas regions (Scholtens, de

Reus, & van den Heuvel, 2015) demonstrated highly significant corre-

lation with post-mortem cortical thickness and in-vivo MRI cortical

thickness. Subsequently the von Economo regions themselves have

been mapped to MRI template space (Scholtens et al., 2018; van den

Heuvel, Scholtens, & Kahn, 2019). This enabled us to directly test the

sensitivity of UHF qMRI parameters to cytoarchitecture.

Layer-specific cell staining intensity measures from the Big Brain

atlas were also used to examine cortical depth MPM measures, as a

complementary layer-specific histology atlas to von Economo (these

results are presented in the Supporting Information).

Gene expression data for the AHBA was extracted for 180 left-

hemisphere regions of the HCP-MMP 1.0 atlas as detailed by

(Arnatkevic Iute et al., 2019). Data was available from six neurotypical

human brains (6 left hemispheres and 2 right hemispheres). Only data

for the left hemisphere was used as the dataset for the right hemi-

sphere was incomplete. Genetic data processing involved six steps:

gene information re-annotation, data filtering, probe selection, sample

assignment, data normalisation and gene filtering. The code to run

these processing steps is available at https://github.com/BMHLab/

AHBAprocessing. The processed data for 180 left-hemisphere regions

of the HCP-MMP 1.0 atlas is available at https://doi.org/10.6084/

m9.figshare.6852911. Lists of genes specific to cortical layers 2–6

were obtained from the supplementary information of Bernard

et al. (2012). These lists are derived from Macaque layer-specific gene

expression data from a range of cortical regions including the anterior

cingulate, dorsolateral prefrontal cortex, orbitofrontal cortex, primary

motor and somatosensory cortices, temporal area, hippocampus and

primary auditory cortex. Rhesus macaque and humans have strong

similarities in molecular architecture, making this a highly predictive

nonhuman primate model system for human neocortical gene

expression (Bernard et al., 2012).
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2.5 | Experimental design and statistical analysis

For R1 and R2* pairwise Pearson correlations were performed at the

ROI level (N = 43) and between each cortical depth and each von

Economo cortical layer across 43 regions of the MRI template space

von Economo atlas. This resulted in 8x6 (8 depths in MRI x 6 layers in

von Economo) correlations for each quantitative map. A Bonferroni-

corrected p(corrected) < .05 threshold was applied to correct for mul-

tiple comparisons (implemented by a p(uncorrected) < .05/(8 � 6)).

Pearson correlation 95% confidence interval (CI) values are provided

for analyses at the ROI level. The R2*, R1 and von Economo cell count

analyses were repeated but excluding selected ROIs. To assess the

possible effect of typical artefacts at 7T the frontal and temporal pole

ROIs from the von Economo atlas were excluded. To assess the possi-

bility that the observed relationships were driven by primary sensory

areas the von Economo ROIs precentral area, agranular frontal area

and striate area were excluded (see Supporting Information). Potential

outlier ROIs were also investigated by taking the residuals from the

linear fit for the R2*/R1 versus von Economo cell count analyses and

plotting them for each ROI onto the FreeSurfer average inflated corti-

cal surfaces (see Figure S12).

For the genetic analysis, R1 and R2* were each averaged for each

layer within each HCP-MMP 1.0 ROI. A principal component analysis

(PCA) was performed on gene expression data for layers 2, 3, 4, 5 and

6 separately to identify the dominant patterns of gene expression var-

iation across HCP-MMP 1.0 ROIs. For each PCA the first principal

component was selected, and Pearson correlations were performed

between R1 and R2* at the ROI level (N = 180), respectively

(Bonferroni-corrected p < .05/5). Correlations were also performed

for mean gene expression for each gene list in order to confirm the

direction of correlation from the PCA analysis. Across cortical depths

Pearson correlations were performed between R2* and layer-specific

genes creating a matrix of 8 depths � 5 layers (for each gene set)

(Bonferroni-corrected p < .05/[8 � 5]). Cross-correlations for layer-

specific genes were also examined and are presented in Supporting

Information.

For the connectome analysis white matter connections were split

into 5 groups (cortico-striatal, cortico-thalamic, cortico-cortical, inter-

hemispheric or intra-hemispheric). Correlations were then performed

between these white matter subtypes and MRI cortical depth across

the 34 Desikan-Killiany atlas regions resulting in an 8 depths � 5 con-

nection sub-type correlation matrix. Bonferroni correction was

applied for multiple comparisons (Bonferroni-corrected p < .05/

[8 � 5]). Streamlines were either multiplied by: (a) cross-sectional area

(Smith, Tournier, Calamante, & Connelly, 2015) based on diffusion sig-

nal (streamline weighting), (b) average R1 (R1 weighting) or (c) average

R2* (R2* weighting).

R2* analyses for von Economo, Big Brain, layer specific gene

expression and the connectomics analysis were also performed at the

single subject level. Similarly the R1 and R2* weighted connectome

analyses were repeated for single subjects. These analyses are pres-

ented in Supporting Information (Figures S5–S9).

3 | RESULTS

3.1 | R2* and R1-based myelination patterns
across cortical regions and depths

The first aim of this study was to use UHF qMRI to reproduce known

myelination patterns across both primary sensory and association cor-

tices. We expected that both effective transverse relaxation rate (R2*)

and longitudinal relaxation rate (R1) would be higher in primary sen-

sory areas, such as the primary visual cortex V1, than the rest of the

cortex. To this aim, R2* and R1 were sampled at 50% equi-volume

cortical depth and averaged across all participants. Visual inspection

of R1 and R2* revealed high values in the motor and auditory cortices

and in the primary visual area V1 (Figure 1) consistent with post-

mortem histology and cortical myelination patterns reported for 3T

T1-weighted/T2-weighted images (Glasser et al., 2016), 3T R1

maps (Sereno et al., 2013), 7T R1 maps (Haast, Ivanov, Formisano, &

Uludag, 2016) and R2* maps (Marques et al., 2017).

R1 was highest for V1, consistent with previous T1w/T2w ratio

maps and R1 maps at 3T. However, the middle temporal area (MT),

which is reported as heavily myelinated at 3T, showed lower R1

values (Glasser et al., 2016; Sereno et al., 2013) compared to most

other regions tested in the visual cortex. These patterns were gener-

ally consistent across depths (Figure 2a). For R2* both V1 and region

MT values were greater nearest the pial surface, and then initially

decreased in the middle depths before increasing between the middle

and deep depths reaching highest values at the GM/WM boundary

(Figure 2b).

Sensorimotor myelination patterns were consistent with patterns

of T1w/T2w ratio maps at 3T and with post mortem histology (Geyer

et al., 1996; Glasser et al., 2016; Hopf, 1968). Brodmann Area (BA) 3b

showed higher R1 values than BA 3a, except for the two most super-

ficial depths. BA 2 and BA 1 showed low values for both R1 and R2*,

across all cortical depths. The values in the primary motor cortex, BA

4, were highest relative to other regions in the middle depths for both

R1 and R2*. In BA 3a, R1 and R2* values decrease sharply between

the superficial and middle depths (Figure 2c,d). In general, R2* tends

to be higher in very superficial layers, which may be caused by

susceptibility effects in pial surface veins containing paramagnetic

deoxygenated haemoglobin (i.e., the blood oxygen level dependent

[BOLD] effect).

For the auditory cortex R1 values for primary auditory cortex A1,

para belt, posterior belt (PBelt) and medial belt (MBelt) were similar,

while R2* showed better discrimination of these regions. For both R1

and R2* retroinsular cortex (RI) showed the lowest values relative to

neighbouring regions. This is consistent with T1w/T2w patterns at 3T

(Glasser et al., 2016). Sharp decreases in R2* were seen between the

superficial and middle depths in particular for lateral belt (LBelt) and

parabelt (PBelt). Again, this may be related to blood vessel artefacts at

the pial surface causing higher values at the most superficial layers.

With this exception, patterns were consistent with the literature

across cortical depths for R2* and R1 (Figure 2e,f).
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The superior parietal cortex was chosen as an example of a multi-

modal association area. Using T1w/T2w at 3T (Glasser et al., 2016)

reported that MIP has less myelin than lateral intra-parietal dorsal cor-

tex (LIPd) and lateral intra-parietal ventral cortex (LIPv), but MIP has

more myelin than lateral parietal 7 area (7PL) and intra-parietal 1 (IP1)

area. R2* values (Figure 3h) were most consistent with this showing

higher MIP values compared with 7PL and IP1 across most cortical

depths, with LIPd values higher than MIP in the superficial and middle

depths. R1 values (Figure 2g) are less consistent as LIPd and LIPv are

lower than MIP across most cortical depths.

In summary the R1 and R2* values we measured using 7T qMRI

for sensory, motor and association cortices were generally consistent

with known patterns of myelination, supporting their validity. Therefore,

we proceeded to investigate their relationship to cytoarchitectonics,

layer-specific gene expression and connectomics.

3.2 | R2* is highly correlated with von Economo
cell count

To examine the sensitivity of the R1 and the R2* measures to

cytoarchitectonic properties, we compared R1 and R2* at the ROI

level and across cortical depths with von Economo cell count and cell

size. Motivated by the relation between cyto- and myeloarchitecture

and the myelin-sensitive quantitative MRI measures (Dinse et al.,

2015; Hellwig, 1993), we hypothesised that UHF qMRI parameters

across cortical depths would correlate with cell measures in post-

mortem cortical layers, such R1 and R2* at depths near the pial

surface would correlate with superficial layers, R1 and R2* at mid-depths

would correlate with layer 4, while R1 and R2* at depths near the

GM/WM boundary would show greater correlation with deep layers.

However, we note that cells at a given layer will also affect qMRI values

in layers below them, as qMRI measures are sensitive to myelin and iron,

which are present in axon collaterals.

At the ROI level significant correlations were seen between R2*

and von Economo cell count (rho = 0.65, p = 2.93 � 10�6, 95% CI

0.45–0.80) (Figure 3a). Across cortical layers Bonferroni corrected sig-

nificant correlations for R2* were seen in von Economo layers 2 (across

all R2* cortical depths), 3 (for mid cortical R2*, depths 3–6), 4 (across

R2* cortical depths 1–7) and 6 (for R2* superficial layers, depths 2–3)

(Figure 3b). Correlations for R2* were absent for von Economo layers

1 and 5. This is likely due to the small number of cells in layer 1 and the

large size of pyramidal cells in layer 5 (C. von Economo, 2009).

For the R1 analysis, no Bonferroni-corrected significant correla-

tions were seen at the ROI level for von Economo cell count

(Figure 3c). Across layers no Bonferroni-corrected significant correla-

tions were seen for the von Economo data (Figure 3d).

Correlations at between R2* and von Economo at the ROI level

and across cortical depths remained similar both with the exclusion of

ROIs prone to 7T artefact and primary sensory areas. Similar patterns

between R1 and von Economo were also seen when these ROIs were

excluded (see Figures S10 and S11).

Our findings show R2* but not R1 is highly correlated with cell

count across cortical depths particularly for layers 2, 3, 4 and 6. The

presence of high cross correlations of von Economo cell count

between layers (see Figure S2) may at least partly account for the lack

of layer specificity of the observed correlations between the MRI

parameters and histological measures.

F IGURE 1 R2* and R1 values sampled at 50%
cortical depth projected on FreeSurfer average
inflated cortical surfaces (a) R2* (in 1/s) (b) R1
(in 1/s)
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3.3 | R2* is highly correlated with layer-
specific genes

To further examine the relationship between qMRI parameters and

layer-specific properties, we next investigated the relationship

between R1 and R2* and layer-specific genes. In a similar vein to the

cytoarchitectural features, we hypothesised qMRI parameters in

depths near the pial surface would correlate with genes specific to

layers 2 and 3, mid-depths would correlate with layer 4 and depths

near the GM/WM boundary would correlate with layers 5 and

6. Again, we note that cells at a given layer may affect qMRI values in

layers below them, as qMRI measures are sensitive to myelin and iron,

which are present in axon collaterals.

Percentage of total variance explained for the first PCA compo-

nent were as follows; layer 2–21%, layer 3–24%, layer 4–34%, layer

5–32% and layer 6–42%. Significant Bonferroni-corrected correla-

tions were seen for R2* averaged across layers and ROI with genes

specific to cortical layer 2 (rho = � 0.73, p = 2.24 � 10�30, 95% CI

�0.79 to �0.66), layer 3 (rho = �0.78, p = 1.32 � 10�36, 95% CI

�0.83 to �0.71), layer 4 (rho = 0.76, p = 3.51 � 10�34, 95% CI 0.69–

0.82) and layer 5 (rho = �0.80, p = 1.01 � 10�39, 95% CI �0.85 to

�0.74), but not layer 6 (rho = 0.086, p = 1.26, 95% CI �0.07 to 0.23;

F IGURE 2 R1 and R2* profiles across
primary sensory, primary motor and
association cortices. Cortical depth
profile, where y-axis is MRI contrast
(R1 or R2*) and x-axis is equi-volume
cortical depth (1—nearest pial surface,
8—nearest grey matter/white matter
[GM/WM] boundary), for visual cortex
(a) R1 and (b) R2*, sensorimotor motor

cortex (c) R1 and (d) R2*, auditory cortex
(e) R1 and (f) R2* and superior parietal
cortex (g) R1 and (h) R2*. GM—grey
matter, WM—white matter, V1—primary
visual area, V2–V6—visual areas 2 to
6, MT—middle temporal area. 1—area
1, 2—area 2, 3a—area 3a, 3b—area 3b,
4—area 4 (primary motor cortex).
A1—primary auditory cortex, RI—
retroinsular cortex, MBelt—medial belt,
LBelt—lateral belt, PBelt—parabelt.
7PL—lateral area 7P, LIPv—area lateral
intra-parietal ventral, IP1—intra-parietal
1, MIP—medial intra-parietal area,
LIPd—area lateral intra-parietal dorsal.
Standard error of the mean (SEM) is
displayed as error bars for each cortical
depth. Cortical labels refer to Glasser
et al. (2016). Myeloarchitectonic profiles
presented alongside graphs are
reproduced from Zilles, Palomero-
Gallagher, and Amunts (2015) and based
on original drawings by Vogt and
Vogt (1919) were layers are defined
based on myeloarchitectonics not equi-
volume cortical layers. Profiles are
provided for areas V1 (singulostriate—
absence of inner Baillarger stripe), BA4
(astriate—Baillarger stripes cannot be
delineated), A1 (unitostriate—both
Baillarger stripes appear to be fused to a
broad band) and IPL (bistriate—both
Baillarger stripes are clearly detectable).
These images are not included in the

CC-BY 4.0 licence
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F IGURE 3 Relationship between R2*, R1 and
von Economo cell count. (a) Average R2* against
von Economo (VE) cell count for each VE MRI
region of interest (ROI). Each blue dot is an ROI,
were the y-axis represents the average R2*, for
each ROI across participants, and the x-axis
represents the average VE cell count, the red line
represents a least squares linear regression line.
(b) R2* across cortical depths against von

Economo cortical layer cell count, where the
y-axis represents R2* for each equi-volume
cortical depth 1–8 and the x-axis represents VE
cell number for each cortical layer I-VI, the colours
represent the correlations across VE ROIs for R2*
and VE cell count (highest—yellow, lowest—blue).
(c) Average R1 against von Economo (VE) cell
count for each VE MRI region of interest (ROI).
(d) R1 across cortical depths against von Economo
cortical layer cell count. Asterisks indicate
Bonferroni-corrected significant correlations

F IGURE 4 7T MRI R2* and cortical layer-specific genes. R2* against (a) layer 2 genes, (b) layer 3 genes, (c) layer 4 genes, (d) layer 5 genes.
Each blue dot represents an ROI from the HCP-MMP 1.0 atlas, the y-axis represents R2*, averaged across participants, and the x-axis represents
the PCA score for each ROI from the first PCA component of layer-specific gene expression. (e) R2* across cortical depths, where the y-axis
represents R2* for each equi-volume cortical depth 1–8 and the x-axis represents the PCA score for each ROI from the first PCA component of
layer-specific gene expression for layers II–VI, the colours represent the correlations across HCP-MMP 1.0 ROIs for R2* and layer-specific gene
expression (most positive—yellow, most negative—blue). Asterisks indicate Bonferroni-corrected significant correlations
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Figure 4a–d). Similarly, significant correlations were seen for R2*

across cortical depths (averaged across ROIs) and genes specific for

layers 2, 3, 4 and 5, but not for layer 6 (Figure 4e). Significant correla-

tions for both PCA and mean gene expression analyses were in the

same direction. No correlations between ROI averaged R1 and layer-

specific genes were significant (p > .2, uncorrected for all correlations).

In order to assess whether specific genes were driving the correlations

with R2*, for each individual gene in the layer-specific gene lists corre-

lations were performed between gene expression and ROI averaged

R2*. This did not identify a single gene or group of genes that were

driving these results (see Table S1). Cross-correlations of the PCA

score of the first component for each set of layer-specific genes

were observed, particularly for layers 2, 3 and 5 (see Supporting

Information).

3.4 | R1 and R2* across cortical depths are highly
correlated with R1/R2*-weighted white matter
connections determined by DWI

The last step in our assessment examined the relationship between

cortical depth dependent qMRI parameters and white matter connec-

tions estimated by DWI-based tractography. We hypothesised that

UHF qMRI parameters across all cortical depths would correlate with

characteristics of the cortico-cortical connections, as these project

across cortical layers 2–6, while qMRI parameters near the GM/WM

boundary would correlate with characteristics of cortico-striatal and

cortico-thalamic connections as these project to the deep cortical

layers 5 and 6.

For this analysis, whole brain diffusion tractography was per-

formed in the same participants. A white matter connectome was

generated and connections were then sub-divided into cortico-striatal

(C-S), cortico-thalamic (C-T) and cortico-cortical (C-C). C-C connec-

tions were further sub-divided into inter-hemispheric (inter-H) and

intra-hemispheric (intra-H), as inter-H connections are more vulnera-

ble than intra-H connections in a number of neurodegenerative dis-

eases (Lanskey et al., 2018; McColgan et al., 2017; Qiu et al., 2016).

Following a tractometry approach, streamlines were either multiplied

by: cross-sectional area (Smith et al., 2015) based on diffusion signal

(streamline weighting); average R1 (R1 weighting); average R2* (R2*

weighting). This type of tractometry is analogous to fractional anisot-

ropy weighting performed in previous connectome studies (van den

Heuvel & Sporns, 2011). Correlations were then performed for

streamline-weighted connection subtypes against both R1 and R2*

across cortical depths. White matter connections weighted by R1 and

R2* were also correlated with R1 and R2*, respectively, across cortical

depths.

The streamline-weighted connectome was not significantly corre-

lated with either R1 or R2* across all cortical depths after Bonferroni

correction (Figure 5a,b). However, the R1-weighted connectome

showed Bonferroni corrected significance with R1 across nearly all

cortical depths for cortico-striatal (depths 2–8), particularly at the

GM/WM boundary, and intra-hemispheric connections (depths 2–3

and 7–8) (Figure 5c). Similarly the R2*-weighted connectome showed

Bonferroni-corrected significance with R2* across nearly all cortical

depths for cortico-striatal (depths 1–7) and intra-hemispheric (depths

1–8) white matter connections. Significant correlations were also seen

for cortico-thalamic connections at superficial depths (depths 1–2)

(Figure 5d).

4 | DISCUSSION

The aim of this study was to examine the potential and limitations of

7T qMRI measures across cortical depths by comparing cortical depth

MPM measures for a 7T 500 μm whole brain acquisition to layer-

specific cell histology and layer-specific gene expression and white

matter connections derived from high-fidelity diffusion tractography.

We show that R2* at different cortical depths strongly correlates with

layer-specific cell count and layer-specific genes. Both, cortical grey

matter R2* and R1 have strong correlations with cortical-striatal and

intra-hemispheric R1 and R2*-weighted white matter connections.

Correlations for all analyses were largely seen across cortical depths.

The low layer-specificity may be related to high correlations of cell

counts and gene expression across cortical layers. Our findings high-

light the potential and limitations of cortical depth qMRI parameters

as biomarkers for tracking the progression of neurodegenerative dis-

eases with layer-specific vulnerability.

We first demonstrated that myelination profiles for the 7T MPMs

presented here are consistent with post-mortem histology and previ-

ous 7T and 3T studies using R1 (Haast et al., 2016; Sereno

et al., 2013), R2* (Marques et al., 2017) and T1w/T2w ratios (Glasser

et al., 2016) as myelin markers. R2* across cortical depths is highly

correlated with layer-specific cell counts from the von Economo atlas,

indicating the sensitivity of R2* to layer-specific cytoarchitectonics. A

one-to-one relationship of UHF qMRI and post-mortem histology,

whereby UHF qMRI parameters at the pial surface would show high

correlation with cells in superficial cortical layers and qMRI parame-

ters at the GM/WM boundary would show correlation with cells in

the deep layers, however was not demonstrated. The reason for this

is at least in part related to high correlations of cell counts and cell

staining across cortical layers (see Supporting Information). Given the

high correlation across layers for post-mortem histology atlases, it is

difficult to determine with this data alone the exact layer-specificity

of qMRI.

In comparing 7T qMRI correlations with von Economo cell count

a clear pattern emerges such that R2* shows higher correlations than

R1 with post-mortem histological atlases. The relation between

cytoarchitecture and the R2* and R1 parameters is believed to be

largely mediated by the dependence of myeloarchitecture on

cytoarchitecture (Dinse et al., 2015; Hellwig, 1993), since myelo-

architecture is known to influence macromolecular concentration and

iron concentration as major MRI contrast drivers (Kirilina et al., 2020).

The increased correlations of R2* over R1 with cytoarchitecture may

be due to the co-localisation of iron and myelin typical in cortical

regions (Fukunaga et al., 2010) leading to an additive effect for the
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myelination contrast particularly in R2* (Callaghan, Helms, Lutti,

Mohammadi, & Weiskopf, 2015; Stuber et al., 2014). The correlation

with cell number/cell staining intensity and R2* may thus reflect the

iron present in both oligodendrocytes and neurons (Kirilina

et al., 2020; Ward, Zucca, Duyn, Crichton, & Zecca, 2014) and macro-

molecules in myelin, whereas lower correlations are seen with R1 as

this is mainly sensitive to macromolecules in myelin in oligodendro-

cytes, but much less so to the iron (Stuber et al., 2014).

This is supported by a recent study that used weighted gene co-

expression network analysis (WGCNA) to understand the cellular

composition underlying the R2t* component of R2*. The R2t* relaxa-

tion rate constant is sensitised to the cellular environment of water

molecules. Using the AHBA the authors showed that R2t* was related

to the regional expression of neurons and glia, including astrocytes,

microglia and oligodendrocyte precursor cells (Wen, Goyal, Astafiev,

Raichle, & Yablonskiy, 2018).

The increased contrast and sensitivity may make R2* a more reli-

able measure of myelination at 7T, since the contrast in R2* driven by

microstructural iron is increasing with field strength in addition to the

overall SNR increase due to the higher field. This was further indi-

cated by cortical profiles in the middle temporal area and superior

parietal cortex where R1 and R2* cortical profiles diverged, such that

R2* was more reflective of patterns seen in (Glasser et al., 2016).

Consistently, a higher sensitivity of R2* compared to R1 was also

found for the gene expression analysis. For cortical layer-specific

genes significant correlations are seen for layers 2, 3, 4 and 5 and R2*.

For layers 2, 3 and 5 correlations with R2* were negative, whereas

correlation with layer 4 was positive. This is in keeping with a study at

3T examining gene expression at different cortical levels using the

T1w/T2w ratio (Burt et al., 2018). In Burt et al. layer-specific gene lists

were obtained from a study analysing the visual and mid-temporal

cortex of post-mortem adult brains, where genes were assigned to

cortical layers (Zeng et al., 2012). For our study we replicated these

findings using a more extensive layer-specific gene list obtained from

a study of 10 distinct cortical regions in the macaque (Bernard

et al., 2012). The previously reported negative correlations between

T1w/T2w ratios with layers 1–3 and positive correlations with layer

4 genes have been interpreted in the context of the thick and well-

defined granular layer 4 in primary sensory areas in contrast to a grad-

ual loss of the granular layer in association cortices with progression

up hierarchical levels (Burt et al., 2018). During cortical development

there is a complex interplay between genes driving layer-specific

development, such that genes associated with development of super-

ficial layers suppress those involved in development of deep layers

and vice versa (Greig, Woodworth, Galazo, Padmanabhan, & Macklis,

2013). While this does not explain the R2* negative correlation with

layer 2, 3 and 5 specific genes and positive correlation with layer

4 genes we observed, the interplay between layer-specific genes may

be a contributing factor. We note that correlations with layer-specific

gene expression were again found across multiple cortical depths.

This may be partly explained by the high cross-correlations between

layer-specific genes (Figures 4 and Figure S2c) obfuscating the layer

specificity of qMRI measures.

To link cortical grey matter and white matter connections, that is,

the connectome, we tested correlations between specific (R1 and R2*

weighted) white matter connections with R1 and R2* across cortical

depths. Significant correlations were seen for both R1 and R2* with

cortico-striatal and intra-hemispheric white matter connections. For

R1 the strongest correlations for cortico-striatal connections were

seen at the lowest cortical depths, consistent with pyramidal tract

F IGURE 5 Cortical depth 7T qMRI is
related to white matter connection
subtypes. (a) R1 cortical depth against
streamline-weighted connections, where
the y-axis represents R1 across cortical
depths averaged across participants and
the x-axis represents streamline weighted
connectivity for different white matter
connection subtypes (cortical-striatal

(C-S), cortical-thalamic (C-T), cortical-
cortical (C-C), Inter-hemispheric (Inter-H),
Intra-hemispheric (Intra-H), averaged
across participants. Colours represent
correlation across Desikan-Killiany atlas
ROIs for R1 and streamline weighted
connectivity (highest—yellow, lowest—
blue), (b) R2* cortical depth against
streamline-weighted connections,
(c) R1 cortical depth against R1-weighted
connections, (d) R2* cortical depth
against R2*-weighted connections.
Asterisks indicate Bonferroni-corrected
significant correlations
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neurons in layer 5 forming ipsilateral connections with the striatum

(Shepherd, 2013), while intra-hemispheric connections showed corre-

lations across all cortical depths for R2*, consistent with intra-

telencephalic pyramidal neurons present in layers 2–6 forming

cortico-cortical connections (Molyneaux, Arlotta, Menezes, & Macklis,

2007). Correlations between R2* and cortico-striatal connections

were highest at superficial depths, however this may be related to the

directional dependence of R2* in white matter due to microstructure

orientation and myelin concentration (Rudko et al., 2014). No signifi-

cant correlations were seen for streamline weighted connections, this

suggests that there is a stronger relationship with R1/R2* in white

matter and cortical grey matter than inter-modal comparisons using

diffusion MRI based streamline weighting in white matter and qMRI

(R1/R2*) measures in grey matter.

A previous study has shown that Big Brain cell staining intensities

across cortical depths are strongly correlated with intra-hemispheric

white matter connections between cortical regions (Wei, Scholtens,

Turk, & van den Heuvel, 2019). This is in keeping with our results

showing high correlations between intra-hemispheric connections and

R1 and R2* across cortical depths.

In this study, we have shown that R2* at different cortical depths

strongly correlates with layer-specific cell count, cell staining intensity

and layer-specific genes. Furthermore, both cortical grey matter R2*

and R1 have strong correlations with cortical-striatal and intra-

hemispheric R1 and R2*-weighted white matter connections. We note

that these correlations typically spread across multiple cortical depths

for the qMRI measures. This can be partly explained by high correla-

tions across layers we observed for cytoarchitectonics and gene

expression data. Limited spatial sampling density and consequent par-

tial volume effects at the qMRI resolution of 500 μm compared to

typically smaller thickness of anatomical layers, as discussed by (Dinse

et al., 2015), most likely further contributed to the lack of layer speci-

ficity. Challenges of precise registration, segmentation and MRI-based

depth/layer definition may add further to spatial imprecisions and

reduce the effective spatial resolution (Bazin et al., 2014; Trampel

et al., 2019).

Despite the limited specificity of qMRI layer measures this study

demonstrates their sensitivity to and connection to neurobiologically

relevant cytoarchitecture, gene expression and white matter connec-

tions. This suggests that the metrics can be used to build an anatomi-

cal framework that could be used to track plasticity and pathology

more precisely compared to previous approaches that ignored

layer differences. Particularly, the origin and the spread of neuro-

degeneration may be mapped. For example, Huntington's disease

causes striatal atrophy (Tabrizi et al., 2009) and loss of cortico-striatal

white matter connections (McColgan et al., 2015; McColgan

et al., 2017) prior to symptom onset, with subsequent cell death

in cortical layers 3, 5 and 6 during the end stages of disease (Rub

et al., 2016). Track disease progression with the proposed framework,

we expect that deep cortical layers will be affected first, in keeping

with the early loss of cortico-striatal connections, followed by super-

ficial layers and that the inter-regional patterns of cortical degenera-

tion will be associated with the regional expression of HD related

genes (Figure 6). Thus, the combination of 7T MPMs, white matter

connections and pathogenic gene expression can be used to form a

comprehensive picture of the mechanism of neurodegeneration, going

beyond conventional non-invasive approaches.
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