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Abstract— As a result of multiple energy sources, hybrid
electric vehicles (HEVs) provide additional flexibility of the
engine operating point, which enables optimization of fuel
economy and emissions reduction. This paper introduces an
energy management (EM) control strategy by an optimal
control approach that jointly optimizes fuel consumption and
various vehicle pollutant emissions. Engine thermal dynamics
are modeled and integrated into the engine-out emission and
fuel consumption models for enhanced modeling accuracy.
The proposed method is formulated as an optimal control
problem (OCP) that is benchmarked against a baseline EM
strategy for fuel consumption only optimization. The proposed
temperature sensitive emission and fuel consumption models
enable a thorough investigation of engine temperature-emissions
relationships, which provide important insights into the optimal
power split during the engine preheating phase. Simulation
results validate the effectiveness of the proposed approach and
highlight the importance of analyzing the fuel consumption-
emissions trade-off, as small compromises in fuel consumption
lead to significant reductions in emissions.

I. INTRODUCTION

Hybrid electric vehicles (HEVs) represent an important
stage for transportation electrification, which has been pro-
moted to address global environmental issues. It is commonly
acknowledged that HEVs provide promising fuel efficiency
and reduced emissions in comparison with conventional in-
ternal combustion engine (ICE) vehicles, due to their capac-
ity of energy recovery and the additional degree of freedom
in meeting the driver power demand. It is therefore of great
interest to study HEV energy management (EM) control,
which involves determining the optimal power allocation
between multiple sources in the powertrain. Over the past
decade, numerous works have been reported in the literature,
with a comprehensive overview of existing EM techniques,
from rule-based to optimization-based [1], [2], [3], [4]. In
particular, most existing EM strategies are optimization-
based due to optimal or sub-optimal guarantees. The main
optimization algorithms encompass dynamic programming
(DP) [5], [6], nonlinear programming [7], [8], Pontryagin
Minimum Principle (PMP) [9], [10], the equivalent consump-
tion minimization strategy (ECMS) [11], model predictive
control (MPC) [12], [13] and machine learning [14].

In most of the existing studies, fuel economy remains the
only objective that is optimized whereas the emissions are
ignored. It is well acknowledged that fuel-efficient engine
operating points do not simultaneously guarantee minimal
engine-out emissions [15]. Therefore, the joint consideration
of emissions and fuel consumption is an essential step to
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design more practical and potent EM control strategies [16],
[17], [18], [19]. In [16], an EM strategy considering the
particulate matter (PM) and nitrogen oxide (NOx) emissions
is proposed. The strategy is proven to be effective in reducing
transient emissions due to the turbocharger lag. A DP-based
optimal control strategy is presented in [18] to find the
optimal HEV power split that results in minimized fuel
consumption and harmful emissions, including NOx, carbon
monoxide (CO) and hydrocarbon (HC). The impact of traffic
conditions and emissions are integrated into the EM control
in [17], where the traffic influence on the driving speed,
acceleration, stop and go are predicted to achieve EM control
parameters tuning. The very recent work [19] proposes an
MPC framework for joint optimization of fuel economy and
emissions (CO, HC and NOx) under a car-following scenario.

The production of emissions is highly influenced by the
engine thermal behavior, which, however, has not been
taken into account in previous studies. An investigation
accounting for the engine thermal behavior is particularly
important for analyzing optimal power split solutions during
the engine preheating phase. The general approach to solve
the optimization problem associated with emissions and fuel
consumption is based on engine static maps [16], [19] by
neglecting the impact of engine temperature changes on the
emissions. However, emissions are sensitive to the engine
temperature, for example, more NOx is produced at a high
engine temperature due to the complex chemical reaction
between nitrogen and oxygen at a high temperature, while
more HC and CO are produced at a low temperature due
to the insufficient combustion of fuel in the engine. As
such, the accuracy of representing the fuel and emission
outputs degrades when the engine temperature is changing
dramatically, such as at the preheating stage.

To this end, an optimal control approach to minimize both
fuel consumption and various emissions, including NOx,
CO and HC, of a series HEV, with consideration of engine
preheating, is proposed in this paper. The main contributions
of the paper are therefore as follows: 1) energy management
strategy by optimal control framework for simultaneous
minimization of fuel consumption and emissions that goes
beyond existing strategies by incorporating engine preheating
via temperature sensitive fuel consumption and engine-out
emission models, 2) investigation of the influence of the
engine temperature on the optimal fuel-emissions solutions,
3) investigation of the trade-off between fuel consumption
and various emissions under the more realistic scenario of
engine preheating consideration, and 4) evaluation of the
benefit of the joint fuel and emissions optimization frame-
work by comparisons with a baseline fuel-only optimization
EM strategy in most existing EM control strategies [1], [3].

This paper is organized as follows. Section II introduces
the powertrain and emissions models of a series HEV.



Section III describes the proposed EM strategy and baseline
strategy. Section IV presents numerical examples and com-
parisons, followed by the concluding remarks in Section V.

II. MODEL DESCRIPTION

A. Series Hybrid Electric Vehicle Powertrain Model
The series HEV powertrain is sketched in Fig. 1. As it
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Fig. 1. Powertrain configuration for series hybrid electric vehicles.

can be seen, the series powertrain consists of two energy
branches: the primary source (PS) branch and the secondary
source (SS) branch, which are jointed at a DC-link subject
to the power balance equation:

PPL = PPS + PSS , (1)

where PPS and PSS are power outputs of the PS and SS
branches. The combined electric power PPL is delivered
to the driving wheels via the transmission branch that also
includes an electric motor. When the vehicle is decelerating,
braking energy can be regenerated by operating the motor
as a generator. Mechanical brakes can provide additional
braking power, which is converted into heat and dissipated.

The main characteristic parameters of the vehicle model
are listed in Table. I, which are chosen based on a medium-
sized passenger car with a non plug-in hybrid powertrain.

1) Primary Source Branch: The PS branch contains an
ICE, a permanent magnet synchronous generator (PMSG),
and a rectifier, which are connected in series. The ICE in
the present work is a 2.0L Saab gasoline engine [15]. The
output power of the PS branch is given by:

PPS = ηrηgPe(τeng, ωeng), (2)

where ηg and ηr are constant efficiencies of the generator and
rectifier, and Pe is the engine output power for the engine
torque τeng and the crankshaft speed ωeng . The dynamics
of the engine fuel consumption mass mf and engine-out
emissions masses mNOx, mCO, mHC for NOx, CO and
HC emissions, will be introduced in the next section.

2) Secondary Source Branch: The SS branch contains a
battery and a DC-DC converter, which allows the battery to
be charged and discharged via bidirectional power flow. The
battery in this work is modeled as a series connection of an
ideal voltage source and a resistance [20]. Furthermore, the
SS output power is obtained by:

PSS = η
sign(PSS)
dc Pb , (3)

where ηdc is the efficiency for DC-DC converter and Pb is
the battery output power. In this modeling framework, the
battery state of charge (SoC) is the only dynamic state of

TABLE I
MAIN VEHICLE MODEL PARAMETERS

Description Symbol Value
Vehicle mass m 1380 kg
Wheel radius rw 0.3 m
Air drag coefficient fd 0.47
Tyre rolling coefficient ft 0.01
Conversion Efficiencies ηi, ηt, ηg , ηr 0.96
Battery power limits Pb,max /min 27/-16.5 kW
Battery open circuit voltage VOC 300 V
Battery maximum capacity Qmax 15 Ah
Battery resistance Rb 0.2056 Ω
Battery SoC limits SoCmax /min 0.8/0.5
Gasoline lower heating value QHV 44 kJ/g
Equivalent engine efficiency αf 0.255
Ave. ICE heat discharging rate Pdis 1kW
ICE preheating energy Qreq 892.5 kJ
Fuel thermal-weighting factor ξf 1.85
NOx thermal-weighting factor ξNOx 0.35
CO thermal-weighting factor ξCO 9.83
HC thermal-weighting factor ξHC 12.39
Fuel normalizing factor mf,scale 2000 g
NOx normalizing factor mNOx,scale 100 g
HC normalizing factor mHC,scale 100 g
CO normalizing factor mCO,scale 400 g

the battery system, and its dynamics are governed by:

d

dt
SoC = −

VOC +

√
V 2
OC − 4RbPSS/η

sign(PSS)
dc

2RbQmax
, (4)

where VOC is the battery open circuit voltage, Rb is the
battery resistance, and Qmax is the battery maximum ca-
pacity. The operation of the battery SoC is constrained by
[SoCmin,SoCmax].

3) Transmission Branch: From the flow within the trans-
mission branch, the relationship between PPL and the output
power of the powertrain Pt is expressed as:

Pt = (ηiηmηt)
sign(Pt)PPL, (5)

where ηi and ηt are constant efficiencies of the inverter and
the transmission. ηm is the efficiency of the bidirectional
motor/generator represented by an efficiency map for varying
motor load torque and angular speed, as shown in Fig. 2.
With consideration of the mechanical braking power Ph < 0,
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Fig. 2. Efficiency map of the reversible Permanent Magnet Synchronous
(PMS) machine (positive torque = generator, negative torque = motor).
Dotted lines present the torque bounds due to power limitation [20].

the driving power Pv that acts on the wheels is:

Pv = Pt + Ph . (6)



B. Fuel Consumption and Emission Models
In this subsection, the dynamics of ICE temperature are

modeled, and the fuel consumption and emission models,
which are functions of ICE temperature, are developed.

1) Engine Temperature Model: The engine temperature
index Item is introduced to indicate the percentage of the
engine temperature, where Item = 0 represents the cold
engine condition at an ambient temperature Tamb, and Item=
1 represents the steady state temperature Tss engine works
at. The dynamic equation of Item is given as:

d

dt
Item =

ṁfQHV (1− αf )− Pdis
Qreq

, (7)

where ṁf is the instantaneous fuel rate, QHV is the gasoline
lower heating value, αf is the equivalent fuel efficiency,
Pdis is the average heat discharging rate by engine cooling
and exhaust waste gas, and Qreq is the estimated total heat
demand for preheating, which is calculated by:

Qreq = (Tss − Tamb)β, (8)

where Tss = 105◦C is the engine working temperature,
Tamb=20◦C is the nominal cold temperature, and β=10.5
kJ/K is an empirical conversion coefficient [15].

2) Fuel Consumption Model: In the context of series
HEVs, conventional EM strategies targeting optimal fuel
economy simply assume the ICE to be operated at optimal
efficiency points, with the consequence that the fuel mass rate
relationship to the PS output power can be approximated as a
linear function [10], [13]. However, the high-efficient region
for fuel consumption may not necessarily be equivalent to
the minimum emissions region. Thus, the dynamics of the
engine fuel mass consumption in this work is described
as a nonlinear function of the engine torque τeng and the
crankshaft speed ωeng , as with a parallel hybrid electric or
a conventional vehicle [15]:

ṁf = ṁf,ss(τeng, ωeng)[Item + ξf (1− Item)], (9)

where ṁf represents the instantaneous fuel mass rate,
ṁf,ss(τeng, ωeng) is the fuel mass rate obtained from the ICE
static map (see Fig. 3), and ξf is assumed to be a constant
ratio representing the cold start and fully hot fuel mass rate
and it is estimated by fitting cold-start data of the Saab engine
with equation (9).

3) Engine-out Emission Model: Similarly, the dynamics
of emissions mass rate are described by [15]:

ṁi = ṁi,ss(τeng, ωeng)[Item + ξi(1− Item)], (10)

where ṁi is the instantaneous mass rate for emission i with
i ∈ {NOx,CO,HC}, ṁi,ss(τeng, ωeng) is the mass rate of
emission i obtained from the static maps respectively for
the three emissions (see Fig. 3), and ξi is assumed to be
a constant ratio representing the cold start and fully hot
emission mass rate of species i and it is estimated by fitting
cold-start data of the Saab engine with equation (10).

III. OPTIMIZATION PROBLEM FORMULATION

This section introduces the EM control strategy for series
HEVs to optimize the fuel economy and the engine-out
emissions. The EM optimization strategy finds the SS branch
power PSS , the engine torque τeng and the engine crankshaft
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Fig. 3. Fuel mass rate and emission rate maps with respect to engine
torque Te and crankshaft speed ωe for a 2.0L Saab gasoline engine at hot
steady state [15].

speed ωeng over a specified time-horizon [0, T ] for a given
driving cycle, such that both the fuel consumption mf (T )
and the emissions mi(T ) can be co-optimized and the battery
is charge-sustained at the end of the mission, subject to the
ICE and battery operational constraints. Before introducing
the novel scheme, a baseline strategy for benchmarking
purposes is introduced first.

A. Fuel-only Optimization Strategy (Baseline Method)

The fuel-only optimization strategy utilizes the general
power-split optimization framework to minimize fuel con-
sumption. The objective function is given as:

Jfuel =

∫ T

0

ṁf dt , (11)

where ṁf is the only term in the objective function, and
the optimal solutions of (11) can be set as a baseline for
comparing the performance of the joint optimization on both
fuel consumption and emissions.

B. Joint Emission Optimization Strategy

In contrast to the baseline formulation, the proposed
EM strategy is obtained by minimizing the following milt-
objective cost function:

Jjoint =

∫ T

0

Wfuel
ṁf

mf, scale
+
∑
i

Wi
ṁi

mi, scale
dt , (12)

where i ∈ {NOx, CO, HC}, Wfuel +
∑
iWi = 1, mf, scale

and mi, scale are constant given in Table. I so that the
individual costs are normalized, and Wfuel and Wi are
weighting factors of fuel and emissions, respectively.

C. Tuning of Weighting Factors

One of the fundamental challenges for multi-objective
optimization is the weight tuning. In order to find the
effective trade-off between the four objectives with minimum
tuning of the weights, pairwise interactions between fuel
and emissions costs are first investigated. In this context,
the following sub-optimization problems are formulated: 1)



minimizing the weighted sum of fuel consumption and one
of the emissions:

Jpartial1 =

∫ T

0

Wfuel
ṁf

mf, scale
+Wi

ṁi

mi, scale
dt , (13)

where i ∈ {NOx, CO, HC} and Wfuel + Wi = 1; and 2)
minimizing the weighted sum of two emissions:

Jpartial2 =

∫ T

0

Wi
ṁi

mi, scale
+Wj

ṁj

mj, scale
dt , (14)

where i, j ∈ {NOx, CO, HC} with i 6= j and Wi +Wj=1.
For both cases, mf, scale, mi, scale, mj, scale are normalizing
factors, given in Table. I and Wfuel, Wi, Wj are constant
weights tuned to balance the control performance.

D. Optimal Control Problem Formulation
For a given driving cycle in terms of speed v and accel-

eration a, the driving force acting on the wheels Fv can be
calculated as:

Fv = ma+ fTmg + fDv
2 +mg sin θ, (15)

where m is the vehicle mass, fT and fD are the coefficients
of tyre rolling and aerodynamic drag resistance, respectively,
and θ is the road slope. As such, the load power demand PPL
at the DC-link can be calculated directly from the power at
the wheels, Pv = Fvv, as follows [20]: PPL =

Pv
ηiηmηt

, ∀Pv ≥ 0,

PPL = (Pv − Ph)ηiηmηt, ∀Pv < 0.
(16)

where Ph in this context is calculated by: Ph = min{0, Pv−
PSS,min /(ηiηmηt)}.

Thus, to find the optimal power-split provided by the
primary and secondary sources which minimize both fuel
consumption and emissions, the OCP is formulated as:

min
u

J (17a)

s.t.:
d

dt
x = f(x, u) , (17b)

Ψ(x,u) ≤ 0 , (17c)
b(x(0), x(L)) = 0 , (17d)

where J ∈ {Jfuel, Jpartial1 , Jpartial2 , Jjoint}, the state
variable is x , [SoC, Item, mf , mi]

>, the control variable
is u , [Pss, τeng, ωeng]

>, and the state space model d
dtx =

f(x,u) is described as:

d

dt
x =


−VOC +

√
V 2
OC − 4RbPSS/η

sign(PSS)
dc

2RbQmax
ṁfQHV (1− αf )− Pdis

Qreq
ṁf,ss(τeng, ωeng)(Item + ξf (1− Item))
ṁi,ss(τeng, ωeng)(Item + ξi(1− Item))


,

(18)
with i ∈ {NOx,CO,HC}. The inequality constraint (17c) is
imposed due to physical and operation limits:

0 ≤ PPS ≤ PPSmax
, PSSmin

≤ PSS ≤ PSSmax
(19a)

SoCmin ≤ SoC ≤ SoCmax, 0 ≤ Item ≤ 1, (19b)
PPS + PSS ≥ PPL , (19c)

where (19c) is designed to relax the equality constraint (1)
since the fuel consumption is minimized and the battery aims
to achieve charge sustaining, both PPS and PSS find their
minimum boundaries as solutions. The problem is completed
by the boundary conditions (17d), expressed as follows:

SoC(0) = 0.65, SoC(T ) = 0.65, (20a)
Item(0) = 0, mf (0) = 0, (20b)
mNOx

(0) = 0, mCO(0) = 0, mHC(0) = 0. (20c)

IV. NUMERICAL RESULTS

The performance of the proposed scheme is evaluated in
this Section and its solution is compared with the solution
of the baseline strategy described in Section III. The driving
cycle defines the speed profile that needs to be followed
by the HEVs. Without loss of generality, the first three
stages of the worldwide harmonized light vehicles test cycles
(WLTP) cycle (excluding the extra high) are selected, to
emulate non-highway driving. As shown in Fig. 4, the speed
profile utilized in this work is formed by three individual
profiles, separated based on their average speeds: low (WL-
L), medium (WL-M) and high (WL-H). By using (16), it is
immediate to determine the PL power demand as illustrated
in Fig. 4. The numerical evaluation of the proposed EM

Fig. 4. Speed profile of the WLTP with three different stages and the
associated power demand PPL obtained by (16).

method is performed in two steps:

1) A thorough investigation of pairwise relationships
between fuel cost and each emission by using the
objective functions (13) and (14) is conducted. The
results provide useful insight into the weighting of the
proposed fourfold joint optimization in (12).

2) With the weights found in step 1), the benefits of the
joint optimization in terms of the fuel consumption
and emissions are illustrated by comparisons with
the baseline method, and the influence of the engine
temperature is analyzed.

All the optimization problems are solved by GPOPS-II [21]
in the Matlab environment on a personal computer with Intel
Core i5 1.8 GHz and 8 GB of RAM.

Some insightful results for the tuning of the weights are
reported in Fig. 5. As it can seen, a monotonically decreasing
relationship between fuel consumption and NOx outputs is
illustrated in Fig. 5(a). Similarly, a negative relationship also
holds between NOx and CO, and and between NOx and HC
as shown in Figs. 5(b) and 5(c), respectively. Conversely, the
relationship between HC and CO is positive as indicated in
Fig. 5(d). Based on the above analysis, the objective function



Fig. 5. Pairwise trade-offs between fuel and emissions (a) fuel consumption
and NOx; (b) CO and NOx; (c) HC and NOx; (d) CO and HC. All the
emissions and fuel consumption are normalized.

of the proposed method (12) can be rewritten as:

Jjoint =

∫ T

0

Wfuel
ṁf

mf,scale
+ WNOx

ṁNOx

mNOX,scale
+

WHC

(
ṁHC

mHC,scale
+

ṁCO

mCO,scale

)
dt , (21)

where Wfuel +WNOx + 2WHC = 1 and WHC = WCO.
Moreover, the optimal solutions in Fig. 5(a) show that when
WNOx increases from 0 to 0.3, it yields a 37% reduction
in mNOx with only 6.1% increase in mf . However, further
increasing Wfuel from 0.3 will lead to a significant increase
in fuel cost. As such, WNOx = 0.3 is a proper choice in
terms of the trade-off between NOx and fuel cost, as a small
compromise in fuel cost leads to a significant reduction in
NOx. As with the fuel consumption, HC and CO also have
a negative relationship with NOx, and WNOx=0.3 remains
a proper selection yielding effective trade-offs between the
NOx and other emissions. Therefore, it is appropriate to set
WNOx=0.3 and Wfuel+2WHC =0.7 for (21).

Next, the proposed joint OCP is solved for a set of weights
(see Table II) based on the previously identified values, and
the solutions are benchmarked against the baseline solution
(see Table III and Fig. 6). Compared to the baseline method,

TABLE II
DESIGN OF WEIGHTING FACTORS FOR THE PROPOSED APPROACH (21)

Strategy Wfuel WNOx WHC
Joint-1 0.1 0.3 0.3
Joint-2 0.2 0.3 0.25
Joint-3 0.3 0.3 0.2

TABLE III
FUEL CONSUMPTION AND EMISSIONS OF JOINT OPTIMIZTION (21)

COMPARED WITH BASELINE METHOD (11)

Strategy mf [g] mNOx [g] mHC [g] mCO [g]
Baseline 669.2 16.1 13.1 58.8
Joint-1 679.2(+1.5%) 15.6(-3.5%) 12.3(-6.1%) 50.5(-14.1%)
Joint-2 676.3(+1.1%) 15.5(-3.8%) 12.2(-7%) 50.9(-13.4%)
Joint-3 675.1(+0.9%) 15.5(-3.6%) 12.8(-2.8%) 55(-6.4%)

1 2 3
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Fig. 6. Optimality of the proposed joint optimization strategy compared
with the baseline solution in terms of fuel consumption and emissions.

all the joint optimization strategies can significantly reduce
the emissions with marginal fuel increase. For example, the
joint optimization strategy 2 with Wfuel=0.2, WNOx=0.3,
WHC =WCO=0.25 can reduce all three types of emissions
by 3.75% of NOx, 7.02% of HC, and 13.40% of CO as
compared to the baseline solution, with 1.07% fuel increase.

Then, the influence of the engine temperature on the
optimal fuel and emission solutions is investigated. With
the weighting factors set to Wfuel = 0.2, WNOx = 0.3,
WHC = 0.25, the engine temperature profile of the joint
optimization solution is compared with that of the baseline
solution in Fig. 7. As it can be seen, although the ICE
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Fig. 7. Engine temperature index Item of the proposed joint optimization
and the baseline solution.

temperatures Item of both strategies can reach the working
condition Item=1 at the steady state, the proposed method
tends to speed up the preheating process leading to a faster
temperature convergence with a settling time of 324s, 6.4%
earlier than the baseline solution.

The comparison in terms of fuel consumption and emis-
sions shown in Fig. 8 further implies that the faster pre-
heating of the joint optimization methods can significantly
cut CO and HC emissions, as their mass rates are extremely
high when the engine is cold (before 300 s) but both HC and
CO are less than the baseline much before 300s due to the
fact that ξCO, ξHC � 1 [15]. At the same time, relatively
higher engine temperature for the joint optimization case
yields more NOx, as the mass rate of NOx increases as the
Item increases (as a result of ξNOx � 1). Despite the joint
optimization solution produces more NOx than the baseline
solution during the preheating phase, the joint optimization
produces fewer NOx emissions as compared to the baseline
strategy when the ICE temperature in both cases reaches
the working condition as emission is co-optimized. Similar
behavior can be observed in the fuel usage profile. Moreover,
the peak at about 60s indicates when the fuel mass rate
of the joint optimization method becomes smaller than the
baseline strategy. This is also the time when the temperature
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Fig. 8. Fuel and emissions mass differences of the proposed energy
management strategy against the baseline method. (a) Fuel, (b) Nox, (c)
HC, and (d) CO.

difference between the two methods is the highest, as shown
in Fig. 7. The SoC profiles shown in Fig. 9 indicate that the
additional fuel mass rate before 60s requested by the joint
optimization strategy is intended to increase the temperature
of the engine, while charging the battery so that less engine
power is required in the remainder of the mission. As such,
the proposed approach is able to reduce all three emissions
(CO, NOx and HC) with a marginal fuel increase.
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Fig. 9. Battery state of charge of the proposed joint optimization and
baseline solution.

V. CONCLUSION

This paper proposes an optimal EM strategy for series
HEVs to minimize both fuel consumption and emissions
(NOx, HC and CO) with consideration of engine preheating.
An important step for designing the fuel-emissions joint
optimization framework is to identify the correlation between
these costs. This paper studies the pairwise trade-off between
fuel and each emission, which yields the weights of the
joint optimization. By modeling the engine temperature, the
relationships between fuel, emissions and temperature in the
optimization results are examined. In contrast with the fuel-
only optimization approach, the proposed joint EM method
encourages faster engine preheating, which can significantly
reduce emissions with a small compromise in fuel consump-
tion. A representative example shows that the proposed joint
optimization strategy is able to reduce 3.75% of NOx, 7.02%
of HC, and 13.40% of CO, at a price of 1.07% more fuel
usage as compared with the baseline method.

Further studies focus on the integration of additional mod-
eling details, such as the engine start-stop system, and real-
time implementation (e.g. nonlinear model predictive control

(NMPC) techniques or data-driven optimization methods).
Moreover, robust optimization schemes will be developed to
cope with the uncertainty in model and decision parameters.
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