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Abstract

Objective: Observational studies have demonstrated that type 2 diabetes is a stronger risk factor 

for coronary heart disease (CHD) in women compared with men. However, it is not clear 

whether this reflects a sex differential in the causal effect of diabetes on CHD risk or results from 

sex-specific residual confounding. 

Methods: Using 270 single nucleotide polymorphisms (SNPs) for type 2 diabetes identified in a 

type 2 diabetes genome-wide association study, we performed a sex-stratified Mendelian 

randomization (MR) study of type 2 diabetes and CHD using individual participant data in UK 

Biobank (N=251,420 women and 212,049 men). Weighted-median, MR Egger, MR-PRESSO 

and radial MR from summary-level analyses were used for pleiotropy assessment. 

Results: MR analyses showed that genetic risk of type 2 diabetes increased the odds of CHD for 

women (odds ratio [OR] 1.13, 95% confidence interval [CI] 1.08-1.18 per 1-log unit increase in 

odds of type 2 diabetes) and men (OR 1.21, 95% CI 1.17-1.26 per 1-log unit increase in odds of 

type 2 diabetes). Sensitivity analyses showed some evidence of directional pleiotropy, however, 

results were similar after correction for outlier SNPs.

Conclusions: This MR analysis supports a causal effect of genetic liability to type 2 diabetes on 

risk of CHD that is not stronger for women than men. Assuming a lack of bias, these findings 

suggest that the prevention and management of type 2 diabetes for CHD risk reduction is of 

equal priority in both sexes.
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Introduction

Type 2 diabetes is a major risk factor for coronary heart disease (CHD)(1). Meta-analysis 

of observational studies demonstrates that type 2 diabetes is associated with a 44% greater relative 

risk of CHD in women compared with men(2). However, whether this reflects sex differences in 

the causal effect of type 2 diabetes on CHD or arises from confounding in observational studies is 

not well understood. Most observational studies adjust for traditional cardiovascular risk factors, 

yet novel biomarkers, social and behavioral factors, or women-specific risk factors, such as 

gestational diabetes, are not generally adjusted for and may explain some of the sex difference(3–

5). Sex differences in screening for and treatment of type 2 diabetes might also contribute to the 

greater excess risk of CHD conferred by type 2 diabetes among women relative to men(6). 

Mendelian randomization (MR) analysis exploits the natural random allocation of genetic 

variants at conception and is an increasingly utilized approach that can limit potential confounding 

in human research(7). Under the assumption that differences in the risk of disease arising from 

genotype mimic changes in the risk of disease acquired during life, MR can be used to detect causal 

effects. Recent MR studies support a causal relationship between genetic predisposition to type 2 

diabetes and CHD(8,9). However, these studies did not evaluate sex differences in the causal role 

of type 2 diabetes in CHD risk. If type 2 diabetes has a stronger causal effect on CHD risk in 

women compared with men, randomly allocated genetic variants that are risk alleles for type 2 

diabetes should also be more strongly associated with the risk of CHD in women than in men. 

Therefore, in this study we conducted a MR analysis to examine the sex-specific causal effect of 

the genetic risk of type 2 diabetes on CHD. 

Methods
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Data sources and study participants

Data from the UK Biobank and a consortium of genome-wide association studies (GWAS) 

for type 2 diabetes were used. The UK Biobank is a large prospective study of over 500,000 

individuals(10). Baseline data collection in the UK Biobank was conducted between 2006 and 

2010 across 22 assessment centers. Participants aged 37 to 73 completed touchscreen 

questionnaires, were interviewed by trained research nurses, had physical measurements taken and 

blood samples extracted and frozen. The presence of type 2 diabetes and CHD was self-reported 

at study baseline and confirmed by a trained nurse. Genotyping was performed using the 

Affymetrix UK BiLEVE Axiom array or the Affymetrix UK Biobank Axiom® array. A combined 

reference panel including UK10K samples was used for imputation(11). In accordance with the 

National Research Ethics Service and the governing Research Ethics Committee of UK Biobank, 

generic Research Tissue Bank approval was obtained, and study participants provided written 

informed consent(10). 

For the present study, we included individual-participant data on 463,469 UK Biobank 

participants who had concordant genetic and self-reported sex, who clustered with the Great 

Britain population in 1000 Genomes(12), whose genetic data was of sufficient quality(13), and 

who provided data on type 2 diabetes and CHD at baseline. Individuals with self-reported type 1 

diabetes, gestational diabetes only, or a diabetes diagnosis prior to the age of 18 were excluded. 

CHD was defined as self-reported history of angina or myocardial infarction, and linkage with 

hospital admissions data and the national death register was used to also identify incident 

diagnoses of CHD after the baseline visit using international classification of disease (ICD) 9 or 

10 codes (ICD9 410-414, ICD10 I20-I25) using follow-up data from recruitment through the end 

of February 2016 (mean 5.3 [SD 2.4] years), with N=3453 incident cases of CHD for women and 
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N=7420 incident cases for men. Myocardial infarction was also defined using the UK Biobank 

algorithm (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/alg_outcome_mi.pdf).

Sex-specific summary-level data (ß-coefficients and standard errors) for the genetic 

contribution of type 2 diabetes risk were obtained from the European DIAMANTE 

(DIAbetes Meta-Analysis of Trans-Ethnic association studies) GWAS of type 2 diabetes cases 

(N=30,053 women and 41,846 men) and controls (N=434,336 women and 383,767 men) of 

European descent(14). The UK Biobank was excluded from GWAS estimates used in our analyses 

to avoid sample overlap.

Mendelian randomization and selection of SNPs for analyses

Mendelian randomization studies exploit the random assortment and independent 

inheritance of genetic variants in the population, which removes bias due to reverse causation and, 

if conducted appropriately, greatly reduces bias from residual or unmeasured confounding(15). 

However, three key assumptions must be met for genetic variants to serve as instrumental variables 

of an exposure in MR analyses (Supplemental Figure 1)(16). First, the variants must be associated 

with the exposure of interest; second, they must not be associated with confounders of the 

relationship between the exposure and the outcome; third, they must be independent of the 

outcome except for their association via the exposure. This third assumption relates to the issue of 

horizontal pleiotropy, in which one or more variants used in the instrumental variable influences 

the outcome via a pathway other than the exposure of interest. When horizontal pleiotropy has a 

net effect to bias the properties of the genetic instrument, the summary MR estimate can be biased 

either towards or away from the null. In this situation, horizontal pleiotropy leads to bias of the 

underlying ‘true’ causal effect and it is termed unbalanced horizontal, or directional, pleiotropy.
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In this study, we used data from the UK Biobank for individual-participant MR analysis. 

SNPs with significant associations (p<5x10-8) with type 2 diabetes from the sex-combined 

European DIAMANTE GWAS were selected (Supplemental Table 1). We assessed linkage 

disequilibrium (LD; r2>0.2) using PLINK(17) on a reference panel consisting of a random 

selection of 50,000 individuals from UK Biobank. Of 291 genome-wide significant SNPs from the 

European DIAMANTE GWAS, 270 were found in UK Biobank that were bi-allelic, were not in 

LD, and were not derived from GWAS that adjusted for body mass index. The SNPs were aligned 

to the same effect allele, and effect allele frequencies were checked for concordance. These 270 

SNPs were used to generate sex-specific weighted genetic risk scores as the instrumental variable 

for analyses(18). Individual SNPs were coded as 0, 1, or 2 depending on the number of type 2 

diabetes risk alleles. Each SNP was weighted by the corresponding sex-specific ß-coefficient 

obtained from the European DIAMANTE GWAS and then summed for all SNPs. This method 

reduces the risk of false positive results and bias toward the confounded observational association 

that may occur when all data (SNPs, exposure, outcome) are obtained from a single sample(19).

Statistical analysis

The strength of the genetic risk score as an instrument for type 2 diabetes was assessed 

using the F-statistic, where an F-statistic greater than 10 provides evidence against the possibility 

of bias arising due to a weak instrument(20). The association of sex-specific genetic risk scores 

with potential confounders was evaluated to assess the validity of the second assumption of MR 

(i.e., the genetic instrument is not associated with potential confounders) and was also compared 

with the observational association of type 2 diabetes status with potential confounders. 

Two-stage residual inclusion estimation using logistic regression at the second stage(21) 

and Terza standard errors(22) evaluated the association of the genetic risk scores for type 2 
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diabetes with CHD to estimate the odds of CHD per 1-log unit increase in the odds of type 2 

diabetes. This method includes first-stage residuals to correct for endogeneity(21), since 

application of traditional instrumental variable estimation approaches can be problematic for 

models including a binary exposure and a binary outcome(23). Models were adjusted for age, 

genotype array, and the first four principal components of ancestry. 

To assess and account for potential directional horizontal pleiotropy, we also performed 

summary-level MR analyses using SNP to type 2 diabetes estimates from DIAMANTE and SNP 

to CHD estimates in UK Biobank. For summary-level analyses, we obtained odds ratios (ORs) 

and 95% confidence intervals (CI) for the causal effect of a 1-log unit increase in the odds of 

genetic liability to type 2 diabetes on the odds of CHD using the weighted-median, MR Egger, 

Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO), and radial MR 

methods(24–27). The weighted-median method calculates a median of the SNP-specific causal 

estimates from the ratio method for each SNP(25). It has been shown to yield consistent estimates 

when the weights of up to half the instruments are not valid. The MR Egger method is equivalent 

to an inverse-variance weighted method but does not constrain the intercept to zero, and as such, 

the MR Egger estimate is the slope of the modified linear regression equation and the intercept 

represents the average pleiotropic effect across SNPs(24). A non-zero intercept provides evidence 

of unbalanced horizontal pleiotropy, and the slope of the regression coefficient should provide an 

estimate that is free from bias induced by unbalanced horizontal pleiotropy. Analyses were 

conducted using the ‘MendelianRandomization’ package in R Studio version 1.2.1206. The MR-

PRESSO test detects and corrects for horizontal pleiotropy and was performed using the 

‘MRPRESSO’ package in R(26). The first part of the test (MR-PRESSO global test) identifies the 

presence of horizontal pleiotropy, the second part corrects the causal estimate for identified 
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pleiotropy via outlier removal, and the third part (MR-PRESSO distortion test) tests whether the 

causal estimate significantly differs before and after correction. Additional analyses for pleiotropy 

assessment used radial MR Egger models to identify outliers in the UK Biobank analysis using the 

‘WSpiller/RadialMR’ package in R with modified second order weights(27), and analyses were 

repeated after exclusion of sex-specific outliers. P-values for the test of interaction for estimates 

from separate analyses was used to assess interaction by sex for each analysis(28). 

Results

Characteristics of the UK Biobank participants are presented in Table 1 and Supplemental 

Table 3. The mean age was 57 (standard deviation [SD] = 8) years and 46% of participants were 

men. The prevalence of type 2 diabetes was 4% in women and 8% in men. CHD was documented 

among 5% of women (N=12 716) and 12% of men (N=26 344), with myocardial infarction 

diagnosed in 1.5% of women (N=3807) and 6% of men (N=12 871). Both women and men with 

CHD were more likely to have traditional CHD risk factors (older age, type 2 diabetes, history of 

smoking, dyslipidemia, and hypertension) (Supplemental Table 3).

The sex-specific 270-SNP genetic risk score showed a strong association with type 2 

diabetes in both sexes (F-statistic 683 for women and 1005 for men, Supplemental Table 2), thus 

satisfying the first assumption of MR that the genetic instrument is associated with the exposure. 

We evaluated whether the apparent difference in instrument strength by sex was due to sex 

differences in the prevalence of type 2 diabetes. In a random subset of UK Biobank participants 

with 750 cases of type 2 diabetes for both women (N=18 493) and men (N=9100), the adjusted F 

statistic of 47 (R-squared 0.02) for women, and adjusted F statistic 45 (R-squared 0.03) for men 

were similar (data not shown). Thus, because the difference in instrument strength by sex is a 
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product of greater prevalence of type 2 diabetes in men, it is not likely to appreciably affect the 

comparative validity of estimates derived from MR analyses.

Potential confounders were similarly distributed across quartiles of the genetic risk score 

for both women and men (Table 2). Conversely, conventional observational analyses showed that 

type 2 diabetes status was strongly associated with all potential confounders assessed (Table 2), 

highlighting the need for instrumental variables in this setting.

Individual-participant results from TSRI analyses in UK Biobank showed similar effects 

of genetic risk of type 2 diabetes on CHD for each sex (OR 1.13, 95% CI 1.08-1.18 for women; 

OR 1.21, 95% CI 1.17-1.26 for men, Table 3). Sensitivity analyses using the weighted median 

method showed attenuated results (OR 1.04, 95% CI 1.00-1.08 for women; OR 1.06, 95% CI 1.03-

1.09 for men, Table 3). Using MR Egger, evidence of directional pleiotropy was observed in 

women (OR 1.01, 95% CI 0.96-1.06 and intercept 0.004, 95% CI 0.000 to 0.008, Table 3) and men 

(OR 1.00, 95% CI 0.96-1.04 and intercept 0.008, 95% CI 0.004 to 0.011, Table 3). Results from 

MR-PRESSO after outlier correction were slightly attenuated compared with those from TSRI 

analyses for both women (three outliers removed, OR 1.08, 95% CI 1.05-1.13) and men (five 

outliers removed, OR 1.13, 95% CI 1.10-1.17, Table 3). Analyses excluding SNPs from the genetic 

instrument that were identified as outliers by radial MR showed similar effect estimates as the 

TSRI results: OR 1.09, 95% CI 1.05-1.14 for women; OR 1.24, 95% CI 1.20-1.29 for men (Table 

3). We employed additional measures to assess for heterogeneity based on MR-Egger regression, 

including the Cochran Q-test and I-squared statistic. The Q-test showed evidence of heterogeneity 

in the effect of type 2 diabetes SNPs on CHD for both women (Q-statistic 395.8) and men (Q-

statistic 666.0). The I-squared (I2) statistic measures heterogeneity in the genetic associations with 

the exposure, and results (I2 84.7% for women and 87.1% men) showed some evidence of 
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heterogeneity in the associations of SNPs with type 2 diabetes. Such heterogeneity could be 

reflective of multiple causal pathways between type 2 diabetes and risk of CHD.

Discussion

In this MR study of the sex-specific effect of type 2 diabetes on CHD, we found that genetic 

predisposition to type 2 diabetes does not confer a greater excess risk of CHD for women than for 

men. While our results are consistent with previous sex-combined MR studies providing support 

for a causal role of type 2 diabetes in CHD risk(8,9), the finding that the causal effect of genetic 

liability to type 2 diabetes on CHD risk is not stronger for women than men is novel and differs 

from sex-specific estimates from the accumulated observational evidence(2). This includes a 

recent analysis in the UK Biobank, which showed a stronger association of type 2 diabetes with 

CHD for women than men(29). 

There are several potential explanations for the differences between the findings of our MR 

study and the observational evidence. As with any observational study, studies of sex differences 

in the association of type 2 diabetes with CHD may not have controlled for all relevant confounders 

or may have controlled for confounders that were poorly measured, leading to residual 

confounding. If this residual confounding differs between the sexes, a sex difference in the 

observational association of type 2 diabetes with CHD could arise. For example, men are typically 

at higher absolute risk of CHD, and the prevalence of many cardiovascular risk factors is higher 

for men than for women(1). However, cardiovascular risk factors including type 2 diabetes appear 

to confer a greater relative CHD risk for women than for men in observational analyses(29). 

Furthermore, among individuals with type 2 diabetes compared to those without type 2 diabetes, 

several studies have shown that the differences in cardiovascular risk factors including blood 

pressure, dyslipidemia, and particularly anthropometric variables are greater among women than 
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men(3,6). Although women generally display a more favorable cardiometabolic risk profile than 

men, this favorable risk profile declines and ultimately reverses as glycemic control 

deteriorates(30).

Yet observational evidence of sex differences in the association of other major risk factors 

with CHD is not universally observed, suggesting mechanisms other than confounding alone may 

be involved. An alternative explanation is that sex differences in the effect of diabetes on CHD 

risk seen in observational studies reflect the more adverse deterioration in cardiovascular risk 

profile along the glucose intolerance spectrum in women than men. A recent MR study showed 

that the association of BMI with the risk of diabetes was stronger for women than men(31). 

Accordingly, a pathway of type 2 diabetes progression and glycemic dysregulation that leads to 

more adverse complications of diabetes for women than men may underpin the observational 

findings, rather than a direct sex difference in the effect of diabetes on CHD risk.

Furthermore, women may be perceived as having lower cardiovascular risk and 

consequently, type 2 diabetes and comorbid cardiovascular risk factors may be treated less 

aggressively(32,33). Guidelines for the diagnosis and treatment of type 2 diabetes and CHD are 

not sex-specific; our results of a similar causal association of type 2 diabetes with CHD by sex 

would support the notion that for a given state of glycemic dysregulation and burden of 

cardiovascular risk factors, prevention and management of type 2 diabetes for the reduction of 

CHD risk should be of equal priority for both women and men. In addition, sex-specific 

confounders, such as reproductive factors including gestational diabetes, are rarely adjusted for in 

observational studies that include both sexes; this could inflate the association of type 2 diabetes 

with CHD in women if the cumulative duration of the exposure to diabetes is greater, on average, 

among women than men. Sex-specific residual confounding may therefore explain some of the 

Page 14 of 73

CONFIDENTIAL-For Peer Review Only

Diabetes Care



14

discrepancy between the MR and observational evidence. Alternatively, the discrepancy might 

arise if the MR analysis does not account for genetic variation in the risk of type 2 diabetes that 

derives from sex chromosomes, as the GWAS data includes only autosomal SNPs. For example, 

a recent MR study observed a causal association of genetically determined testosterone (X 

chromosome) with increased type 2 diabetes risk for women but not for men(34). Multiple other 

mechanisms could also play a role in conferring higher CHD risks for women with type 2 diabetes 

compared with men independent of glucose dysregulation or diabetes, including sex differences in 

microvasculature such as vascular responsivity to aldosterone(35).

The diagnosis of type 2 diabetes is defined by a cut-point along a continuum of glycemia 

that is based on the risk of associated complications such as retinopathy(36). Accordingly, an 

individual with borderline glycemia who is not yet diagnosed with type 2 diabetes may display 

phenotypic and genetic similarity when compared to an individual with diagnosed diabetes. 

Exposure misclassification of this type would tend to bias individual-participant MR estimates 

toward the null, leading to underestimation of the MR results. In our individual-participant MR, 

this scenario would only affect our conclusion when pre-diabetes affected a differential proportion 

of women and men in the study population. Of note, this should not influence summary-level MR 

results as the exposure is fully defined by genotype. 

There are several strengths of our study, including the use of MR, which under specific 

assumptions can be used to test the hypothesis that a particular risk factor is causal for an 

outcome(16). In accordance with the first assumption of MR, the sex-specific genetic risk scores 

were very strong instruments for type 2 diabetes for both women and men. Meeting the second 

and third assumptions of MR, the genetic risk scores were shown to be broadly independent of 

measured potential confounding factors. Furthermore, for both women and men, results of 
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sensitivity analyses after correction for outliers were similar to initial results. However, there are 

also limitations of our study. Although the genetic risk scores were strong instruments for type 2 

diabetes, our instruments may have been underpowered to detect modest differences in sex-

specific causal effects. Furthermore, our analysis used genetic risk scores derived from 270 

genome-wide significant type 2 diabetes SNPs in the sex-combined European DIAMANTE 

GWAS(14). Genetic instruments obtained from the SNPs that are associated with type 2 diabetes 

in sex-specific GWAS could also have been constructed. However, the European DIAMANTE 

GWAS observed only one significant sex-differentiated SNP(14) and thus, the impact of the use 

of a sex-combined instrument is unlikely to have changed our results substantially. Moreover, such 

an instrument would not permit direct comparison of sex differences in the overall genetic 

predisposition to type 2 diabetes, but instead compares the causal effect of two distinct sex-specific 

instruments on CHD risk.  

SNPs included in the genetic instruments for type 2 diabetes may affect CHD risk via 

pathways separate from their effect on type 2 diabetes risk, and these pathways could differ by 

sex. For example, there was some evidence of directional pleiotropy using MR Egger. However, 

the intercept for both men and women neared zero and MR-Egger generally lacks power. 

Moreover, results from outlier-robust sensitivity analyses were more similar to the overall results. 

This suggests that our primary results are in fact robust and that MR Egger results may have been 

influenced by sensitivity of this method to extreme outliers(37). 

These results might reflect multiple different scenarios(38), some of which may have 

downstream effects on type 2 diabetes risk and may differentially affect CHD risk by sex. Taken 

together, we cannot exclude a sex-specific causal effect via other pathways not captured in our 

genetic instrument. Of note, our instrumental variables for type 2 diabetes were derived from the 
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DIAMANTE GWAS effect estimates without adjustment for BMI since the influence of BMI on 

type 2 diabetes risk may be sex-differential(31). Considering the important role of BMI in type 2 

diabetes risk, adjusting for measures of adiposity in the type 2 diabetes GRS could bias a true 

differential effect of type 2 diabetes on CHD to the null. In addition, the UK Biobank and the 

European DIAMANTE GWAS used for our analyses include primarily European populations, and 

therefore, we cannot assess sex differences in the causal effect of type 2 diabetes with CHD across 

ethnicities. Furthermore, despite the large sample size of the UK Biobank, a low overall response 

rate of ~5.5% limits the generalizability of our results. Considering that the participating 

population is unlikely representative of the general UK population, as recently demonstrated(39), 

it is possible that our findings might be biased if there is a sex-specific selection bias that is 

associated with both the exposure and the outcome. Finally, a recent study demonstrated an 

association of autosomal loci with sex, which may introduce bias due to sex differences in study 

participation(40). If risk alleles for type 2 diabetes were associated with study participation in a 

sex-specific manner, this may have resulted in an inability to consistently detect a sex difference 

in the causal effect of type 2 diabetes with CHD in our MR analyses.

Conclusion 

The present MR analysis supports a causal effect of type 2 diabetes on the risk of CHD, 

with similar effects seen between women and men. In the absence of bias, these findings suggest 

that the prevention and management of type 2 diabetes for the reduction of CHD risk should be 

of equal priority for both women and men. 
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Table 1. Population Characteristics, UK Biobank (N=463 469)

Women (N=251 420) Men (N=212 049)
Age, mean (SD*), years 56.6 (7.95) 57.0 (8.12)
Array type, No. (%)                                         
  BiLEVE 24 920 (9.9) 24 897 (11.7)
  Axiom 226 489 (90.1) 187 147 (88.3)
Type 2 diabetes, No. (%) 9964 (4.0) 16 917 (8.0)
Body mass index, mean (SD), kg/m2 27.0 (5.1) 27.9 (4.2)
Waist circumference, mean (SD), cm 84.6 (12.5) 97.1 (11.4)
Smoking history, No. (%)
  Never 146 521 (58.3) 102 139 (48.2)
  Previous 81 252 (32.3) 82 970 (39.1)
  Current 22 574 (9.0) 26 011 (12.3)
Dyslipidemia, No. (%) 25 549 (10.2) 33 843 (16.0)
Hypertension, No. (%) 57 721 (23.0) 64 668  (30.5)
Systolic BP†, mean (SD), mmHg 135.3 (19.1) 141.1 (17.4)
Diastolic BP, mean (SD), mmHg 80.5 (9.9) 84.0 (9.9)
Coronary heart disease, No. (%) 12 716 (5.1) 26 344 (12.4)
  Myocardial infarction, No. (%) 3807 (1.5) 12 871 (6.0)
  Angina, No. (%) 4864 (1.9) 10 219 (4.8)

*SD: standard deviation; †BP: blood pressure
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Table 2. A
ssociation of sex-specific genetic risk scores (270 SN

Ps *) for type 2 diabetes, by quartile, w
ith potential confounders, and 

association of observational type 2 diabetes w
ith potential confounders in the U

K
 B

iobank.

G
enetic type 2 diabetes risk

Type 2 diabetes diagnosis
Q

uartiles of genetic risk score
O

bservational association
W

om
en

Q
1

Q
2

Q
3

Q
4

N
o D

iabetes
D

iabetes
Q

uartile range
13.82-<15.94

15.94-<16.31
16.31-<16.68

16.68-<18.71
N

o. participants
62 856

62 854
62 855

62 855
N

o. participants
241 456

9964
H

eight, m
ean (SD

†), cm
162.8 (6.2)

162.6 (6.3)
162.5 (6.2)

162.5 (6.3)
H

eight, m
ean (SD

), cm
162.7 (6.2)

161.4 (6.3)

W
eight, m

ean (SD
), kg 

70.8 (13.8)
71.3 (13.9)

71.6 (14.0)
72.0 (14.1)

W
eight, m

ean (SD
), kg 

70.9 (13.5)
84.6 (18.2)

B
ody m

ass index, m
ean 

(SD
), kg/m

2
26.7 (5.1)

27.0 (5.1)
27.1 (5.2)

27.3 (5.2)
B

ody m
ass index, m

ean 
(SD

), kg/m
2

26.8 (5.0)
32.5 (6.6)

W
aist, m

ean (SD
), cm

83.7 (12.3)
84.3 (12.4)

84.8 (12.5)
85.5 (12.7)

W
aist, m

ean (SD
), cm

84.0 (12.0)
99.1 (14.8)

C
urrent sm

oking, N
 (%

)
5543 (8.8)

5564 (8.9)
5755 (9.2)

5781 (9.2)
C

urrent sm
oking, N

 (%
)

21 585 (8.9)
1058 (10.6)

D
yslipidem

ia, N
 (%

)
5796 (9.2)

6108 (9.7)
6497 (10.3)

7148 (11.4)
D

yslipidem
ia, N

 (%
)

51 833 (21.5)
5888 (59.1)

H
ypertension, N

 (%
)

13 190 (21.0)
14 032 (22.3)

14 769 (23.5)
15 730 (25.0)

H
ypertension, N

 (%
)

22 024 (9.1)
3525 (35.4)

Type 2 diabetes, N
 (%

)
1204 (1.9)

1898 (3.0)
2560 (4.1)

4302 (6.8)

C
oronary heart disease, 

N
 (%

)
3008 (4.8)

3077 (5.0)
3247 (5.2)

3348 (5.3)
C

oronary heart disease, 
N

 (%
)

10 823 (4.5)
1893 (19.0)

M
en

Q
1

Q
2

Q
3

Q
4

N
o D

iabetes
D

iabetes

Q
uartile range

14.58-<16.67
16.67-<17.05

17.05-<17.43
17.43-19.54

N
o. participants

53 014
53 011

53 012
53 012

N
o. participants

195 132
16 917

H
eight, m

ean (SD
), cm

176.0 (6.8)
175.8 (6.8)

175.8 (6.8)
175.7 (6.8)

H
eight, m

ean (SD
), cm

175.9 (6.8)
174.7 (6.8)

W
eight, m

ean (SD
), kg 

85.9 (14.4)
86.0 (14.3)

86.3 (14.3)
86.5 (14.2)

W
eight, m

ean (SD
), kg 

85.4 (13.7)
95.4 (17.5)

B
ody m

ass index, m
ean 

(SD
), kg/m

2
27.7 (4.3)

27.8 (4.3)
27.9 (4.3)

28.0 (4.2)
B

ody m
ass index, m

ean 
(SD

), kg/m
2

27.6 (4.0)
31.2 (5.2)

W
aist, m

ean (SD
), cm

96.8 (11.5)
96.9 (11.4)

97.2 (11.3)
97.4 (11.2)

W
aist, m

ean (SD
), cm

96.2 (10.8) 
106.3 (13.2)

C
urrent sm

oking, N
 (%

)
6417 (12.1)

6492 (12.2)
6670 (12.6)

6555 (12.4)
C

urrent sm
oking, N

 (%
)

23 931 (12.3)
2203 (13.0)
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D
yslipidem

ia, N
 (%

)
7925 (14.9)

8349 (15.7)
8473 (16.0)

9096 (17.2)
D

yslipidem
ia, N

 (%
)

27 627 (14.2)
10 749 (63.5)

H
ypertension, N

 (%
)

15 205 (28.7)
15 784 (29.8)

16 386 (30.9)
17 293 (32.6)

H
ypertension, N

 (%
)

53 919 (27.6)
6216 (36.7)

Type 2 diabetes, N
 (%

)
2157 (4.1)

3248 (6.1)
4495 (8.5)

7017 (13.2)
Type 2 diabetes, N

 (%
)

C
oronary heart disease, 

N
 (%

)
6136 (11.6)

6512 (12.3)
6663 (12.6)

7033 (13.3)
C

oronary heart disease, 
N

 (%
)

21 132 (10.8)
5212 (30.8)

*SN
P: single nucleotide polym

orphism
; †SD

: standard deviation
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Table 3. Mendelian randomization analysis of type 2 diabetes and risk of coronary heart disease, 

by sex, in UK Biobank*. Results indicate the increased risk of coronary heart disease per 1-log 

unit increase in genetic risk of type 2 diabetes (odds ratio [OR] and 95% confidence interval 

[CI]). 

Women Men

OR (95% CI) p-value OR (95% CI) p-value

Two-stage residual 
inclusion estimation†

1.13 (1.08-1.18) 5.84 x 10-08 1.21 (1.17-1.26) 2.31 x 10-24

Weighted-median‡. 1.04 (1.00-1.08) 0.067   1.06 (1.03-1.09) <0.001     

MR-Egger‡ 1.01 (0.96-1.06) 0.81 1.00 (0.96-1.04) 0.99

MR PRESSO (outlier-
corrected)‡

1.08 (1.05-1.13) 3.11 x 10-05 1.13 (1.10-1.17) 1.57 x 10-12

Sex-specific outliers 
removed†‡§

1.09 (1.05-1.14) 6.76 x 10-05 1.24 (1.20-1.29) 2.78 x 10-27

Intercept (95% CI) p-value Intercept (95% CI) p-value

MR-Egger (intercept)‡ 0.002 (0.000-0.008) 0.027 0.008 (0.004, 0.011) <0.001

Q-test‡ 395.8 666.0

I-squared‡ 84.7% 87.1%

*Genetic instrument comprised of N=270 SNPs for type 2 diabetes identified in European  

DIAMANTE GWAS. 

†Results from two-stage residual inclusion estimation using individual participant data  

and weighted genetic risk score in UK Biobank. Adjusted for age, genotype array, 

principle components of ancestry. P-value for interaction=0.02.
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‡Results from summary-level analyses using SNP-type 2 diabetes estimates from 

DIAMANTE GWAS (excluding UK Biobank) and SNP-CHD estimates from UK 

Biobank. P-values for interaction: weighted median 0.43; MR-Egger 0.76; MR-PRESSO 

0.07.

§Analysis with type 2 diabetes genetic instrument comprised of N=258 SNPs for women 

and N=245 SNPs for men, after SNPs identified as sex-specific outliers using radial MR 

excluded from genetic instrument. P-value for interaction <0.001.
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Supplem
ental Figure 1. 

A
ssum

ptions of M
endelian random

ization: 1) The variants m
ust be associated w

ith the exposure of interest; 2) The variants m
ust not 

be associated w
ith confounders of the relationship betw

een the exposure and the outcom
e; 3) The variants m

ust be independent of the 

outcom
e except for their association via the exposure. SN

P: single nucleotide polym
orphism

; C
: C

onfounders
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Supplem
ental Table 1. D

etails of the 270 single nucleotide polym
orphism

s (SN
P) used as a genetic instrum

ent for type 2 diabetes in 

M
endelian random

ization analyses. B
eta coefficients and standard errors (SE) for the association of each SN

P w
ith type 2 diabetes 

from
 the European D

IA
M

A
N

TE genom
e-w

ide association study. O
utlier SN

Ps identified using radial M
R

.

W
O

M
E

N
M

E
N

SN
P

*
L

ocus
C

hr
†

E
ffect 

A
llele

N
on-

effect 
A

llele

B
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SE
B
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SE

O
U

T
L

IE
R

‡
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20A
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A
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0.082

0.013
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W
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T
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W
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T

C
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0.012
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G
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G
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2
T

C
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D
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B
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T

C
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0.011
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G
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T
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0.012
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H
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ETS1
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Supplemental Table 2. Association of sex-specific genetic risk scores for type 2 diabetes with 

type 2 diabetes*. Genetic risk score comprised of 270 SNPs from the European DIAMANTE 

genome-wide association study. 

Women Men
F statistic 683 1077
R-squared 0.02 0.03
Odds ratio (95% 
confidence interval)†

1.70 (1.66-1.73) 1.70 (1.67-1.73)

*Adjusted for age, genotype array, and four principal components of 
ancestry.
†Odds ratios for the risk of type 2 diabetes per standard deviation increase in 
type 2 diabetes genetic risk score.
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Supplemental Table 3: Population Characteristics, UK Biobank (N=463 469), stratified by sex 

and coronary heart disease status.

Women (N=251 420) Men (N=212 049)
Without CHD 
(N=238 704)

With CHD 
(N=12 716)

Without CHD 
(N=185 705)

With CHD 
(N=26 344)

Age, mean (SD*), years 56.3 (8.0) 61.6 (6.1) 56.3 (8.2) 61.5 (6.2)
Array type, No. (%)
  BiLEVE 23 257 (9.7) 1663 (13.1) 21 256 (11.4) 3641 (13.8)
  Axiom 215 436 (90.3) 11 053 (86.9) 164 446 (88.9) 22 701 (86.2)
Type 2 diabetes, No. (%) 8071 (3.3) 1893 (14.9) 11 705 (6.3) 5212 (19.8)
Body mass index, mean 
(SD), kg/m2

26.9 (5.1) 29.3 (5.8) 27.7 (4.2) 29.1 (4.6)

Waist circumference, 
mean (SD), cm

84.2 (12.3) 90.8 (13.8) 96.5 (11.1) 100.9 (12.0)

Smoking history, No. (%)
  Never 140 460 (58.8) 6061 (47.7) 93 156 (51.8) 8983 (34.1)
  Previous 76 325 (32.0) 4927 (38.7) 69 566 (37.5) 13 404 (50.9)
  Current 20 937 (8.8) 1637 (12.9) 22 237 (12.0) 3774 (14.3)
Dyslipidemia, No. (%) 21 515 (9.0) 4034 (31.7) 24 773 (13.3) 9070 (34.4)
Hypertension, No. (%) 51 335 (21.5) 6386  (50.2) 51 029 (27.5) 13 639 (51.8)
Systolic BP†, mean (SD), 
mmHg

135.1 (19.1) 140.1 (19.7) 141.0 (17.2) 141.4 (18.7)

Diastolic BP, mean (SD), 
mmHg

80.6 (9.9) 79.8 (10.5) 84.3 (9.8) 81.7 (10.6)

*SD: standard deviation; †BP: blood pressure
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