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Abstract
Parkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clini-
cally, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body 
diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms under-
lying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-
modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, 
we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 
individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. 
Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence 
for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with 
links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic 
commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical 
disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases 
and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent 
development of Lewy body dementia.

Keywords Lewy body diseases · Parkinson’s disease · Single-nucleus RNA-sequencing · Alternative splicing · Human 
brain

Introduction

The Lewy body diseases (LBDs) comprise three neurode-
generative diseases, which are characterised by accumula-
tion of Lewy bodies (α-synuclein-containing aggregates) in 
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neurons and neuronal processes [55, 84]. These disorders, 
which include Parkinson’s disease (PD), Parkinson’s disease 
with dementia (PDD) and dementia with Lewy bodies (DLB), 
have a prevalence in the general population aged ≥ 65 years 
of 2–3% [87], 0.3–0.5% [3] and 1–2% [55], respectively. 
Together, PDD and DLB are collectively known as the Lewy 
body dementias and they are second only to Alzheimer’s dis-
ease (AD) in prevalence among people with dementia [4]. 
All three LBDs are associated with disability and reduced 
quality of life; DLB is associated with earlier mortality and a 
higher cost of care compared with AD [18, 83, 107]. With no 
disease-modifying therapies available for any of the LBDs, 
these diseases present a major unmet clinical need [95].

While a variety of mechanisms, including mitochondrial 
and lysosomal dysfunction, oxidative stress, α-synuclein 
misfolding and neuroinflammation, have been implicated 
in PD pathogenesis [17, 87], less is known about the 
mechanisms underlying PDD and DLB. Elucidating these 
mechanisms could provide a biological basis for the clini-
cal distinction between PDD and DLB, which remains con-
troversial in the field [14, 55, 56, 89, 112]. Clinically, PDD 
and DLB are arbitrarily separated by the diagnostic "1-year 
rule": if dementia is diagnosed before or within 1 year of the 
onset of parkinsonism, it is considered to represent DLB, 
whereas PDD is defined by dementia first presenting more 
than 1 year after the onset of parkinsonism [38, 74]. Thus, 
PDD and DLB are clinically distinguished based only on 
the relative timing of motor and cognitive impairments, 
despite sharing many symptoms (e.g. dementia, depression, 
parkinsonism, REM sleep behaviour disorder and visual hal-
lucinations). Arguably, two of the core clinical features of 
DLB, fluctuating cognition and visual hallucinations, are 
more prevalent in DLB compared with PD/PDD [39, 81], 
suggesting two separate disorders. However, the overlap of 
these core clinical features could also be evidence that the 
disorders are on a spectrum of disease, where DLB repre-
sents a more severe form of PDD.

Neuropathologically, all three LBDs are classed as synu-
cleinopathies, but at the end stage of disease they often present 
with concomitant pathologies, such as tau neurofibrillary tan-
gles and amyloid-β [44, 92, 99]. PD and PDD are thought to 
be purer synucleinopathies, whereas over 90% of DLB cases 
have some, often substantial, AD pathology [38, 52, 71, 74, 
92, 99]. While some neuropathological differences have been 
reported between the Lewy body dementias and PD (e.g. tau 
and amyloid-β pathology at a more advanced stage in the Lewy 
body dementias [99]), these differences do not permit confident 
distinction between the LBDs when no clinical diagnosis is 
present. Genetically, the differences between PDD and DLB are 
not well-characterised, although APOE, GBA and SNCA muta-
tions have been implicated in both [2, 112]. More is known 
about the genetic risk factors contributing to PD and DLB, 
which share some risk loci (GBA, TMEM175 and SNCA) and 

pathways (lysosomal and endocytic pathways) [21, 29, 50, 77, 
93]. However, there is also evidence that association signals 
at SNCA may be distinct in PD and DLB (i.e. located at the 3’ 
and 5’ end of the SNCA gene, respectively) [21, 29, 48, 50], and 
while risk pathways are shared, PD genetic risk factors only 
explain a small portion of DLB phenotypic variance [29, 49].

Identifying therapeutic targets that could modify the develop-
ment of PDD or DLB requires an understanding of the cellular 
and molecular features of these diseases. Transcriptomic profil-
ing, through RNA-sequencing of patient-derived tissue, would 
aid in the identification of such targets, but remains limited in all 
three LBDs. Of all transcriptomic studies of PD and Lewy body 
dementia highlighted in two recent systematic reviews (33 and 
31 gene expression studies in brain, respectively [17, 30]), only 
5 used RNA-sequencing. Furthermore, among transcriptomic 
studies of the three LBDs, few have addressed possible alterna-
tive splicing or the confounding of bulk-tissue transcriptomic 
profiling by differences in cellular composition.

Here, we pair bulk-tissue and single-nucleus RNA-sequenc-
ing to gain a comprehensive view of cell-type-specific tran-
scriptional changes in the LBDs. This combined approach 
is used, because, while single-nucleus RNA-sequencing 
can address confounding by cellular composition, providing 
previously unattainable insight into cell-type-specific tran-
scriptomic pathology [60, 61], compared with bulk-tissue 
RNA-sequencing it has little ability to resolve transcriptomic 
diversity via splicing. This limitation arises due to the trade-off 
that exists between choosing a single-nucleus RNA-sequenc-
ing protocol that has high throughput but only sequences 3′ 
ends of transcripts versus a protocol whose library construc-
tion permits sequencing full-length transcripts but has reduced 
throughput [27]. Using this combined sequencing approach, 
we found transcriptional changes in multiple cortical cell types 
across the LBDs, with more differentially expressed genes 
and pathways identified in PDD and DLB than in PD. We 
also observed widespread alternative splicing, particularly in 
PDD and DLB, with evidence suggesting that specific splicing 
factors play a role in orchestrating the disease-related splic-
ing changes. Collectively, these results identify common and 
distinct molecular pathology in the LBDs across several cell 
types and provide insight into the extent to which the LBDs 
represent discrete diseases with unique pathogenic processes.

Results

Paired single‑nucleus and bulk‑tissue RNA 
sequencing of anterior cingulate cortex 
in individuals with Lewy body disease

We applied single-nucleus and bulk-tissue RNA-sequenc-
ing to adjacent anterior cingulate cortex tissue sections 
from 28 individuals, including non-neurological control 
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individuals and individuals with Lewy body disease 
(Fig. 1). The latter were split into three disease groups, 
consisting of PD, PDD and DLB, based on clinical assess-
ments of retrospectively reviewed case records (n = 7 per 
group). We sampled from the anterior cingulate cortex, 
as it is one of the first cortical areas to be affected by 
α-synuclein pathology [6, 105] and a region where Lewy 
body densities correlate with cognitive impairment in 
PD [59]. Although selected individuals were matched, 
where possible, for demographic and pathologic factors, 
there were significant differences in the proportions of 
sexes between the groups in keeping with previous lit-
erature describing a male bias in DLB [78] (proportion 
female: control = 1/7, PD = 5/7, PDD = 2/7, DLB = 0/7; 
p value = 0.020; Chi-squared test; Supplementary Fig. 1, 
Supplementary Table 1). Disease duration also differed 
significantly between groups, with DLB cases having a 
shorter duration of disease before death, reflecting the fact 
that PDD cases have PD motor symptoms for several years 
before development of dementia (median disease duration 
in years: PD = 12, PDD = 11, DLB = 6; p value = 0.0099; 

Kruskal–Wallis rank sum test; Supplementary Fig. 1, Sup-
plementary Table 1). Using this sample set, we report a 
total of 205,948 droplet-based single-nucleus and 24 bulk-
tissue transcriptomic profiles, with an average of 1,398 
genes per nucleus and 27,802 genes per bulk-tissue sample 
detected, respectively (Supplementary Fig. 2, Supplemen-
tary Fig. 3, Supplementary Table 1).

Increased proportions of microglia and vascular 
cells across Lewy body diseases

Quality control, clustering and classification of major cell 
types in the anterior cingulate cortex was first performed on 
nuclear RNA from each of the 28 individuals, after which 
we used the Conos framework to generate a joint graph of 
nuclei across all individuals [13]. Clusters were assigned 
to 7 broad cell types by significant overlap (Fisher’s exact 
test, p value < 2.2 ×  10–16) with a merged list of marker 
genes derived from two human single-cell datasets (Sup-
plementary Fig. 2) [61, 109]. In total, we identified 75,826 
excitatory neurons, 26,467 inhibitory neurons, 46,662 

Fig. 1  Overview of approach. In this study, anterior cingulate cor-
tex was sampled from a cohort of 28 individuals divided equally 
between four groups: non-neurological controls; Parkinson’s disease 
without cognitive impairment (PD); Parkinson’s disease with demen-
tia (PDD); and dementia with Lewy bodies (DLB) (Supplementary 
Fig. 1, Supplementary Table 1). For each individual, a frozen tissue 
block derived from the anterior cingulate was sectioned (sectioned 
area indicated with green shaded box), with adjacent sections used 
for single-nucleus or bulk-tissue RNA-sequencing (Supplementary 
Fig.  2, Supplementary Fig.  3, Supplementary Table  1). Following 
data pre-processing, single-nucleus RNA-sequencing data was used 
to generate cell-type-specific differential gene expression profiles 

and to deconvolute bulk-tissue RNA-sequencing data. Bulk-tissue 
RNA-sequencing was used in differential gene expression and splic-
ing analyses, with cell-type proportions included as model covari-
ates in both analyses. Results from single-nucleus RNA-sequencing 
and bulk-tissue RNA-sequencing were used in downstream gene set 
enrichment analyses to identify disease-relevant pathways. Further-
more, common risk variants for Alzheimer’s disease (AD), PD risk 
and PD age of onset (PD AOO) were mapped to cell-type-specific 
expression profiles and cell-type-specific differential expression. The 
image of the human brain displays a coronal section cut at the level of 
nucleus accumbens. RNA-seq RNA-sequencing, UMI unique molecu-
lar identifier
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oligodendrocytes, 25,726 astrocytes, 13,788 microglia, 
12,497 oligodendrocyte precursors (OPCs), and 4532 vas-
cular cells (which represented a merge of endothelial cells 
and pericytes), with each cell type consistently identified 
across all individuals in each disease group (Fig. 2a, Sup-
plementary Fig. 4a, b).

Next, we sought to identify significant changes in the 
proportions of these major cell types across all disease 
groups. Although single-nucleus RNA-sequencing shows 
less sampling bias than single-cell sequencing [10], its suit-
ability for estimation of cell-type proportions remains in 
question [33]. Thus, we used Scaden [76], a deep-learning-
based deconvolution algorithm that can train on artificial 

bulk-tissue RNA-sequencing samples simulated from tissue-
matched single-nucleus RNA-sequencing data, to estimate 
cell-type proportions across disease groups. Importantly, 
Scaden permitted pairing of our single-nucleus and bulk-
tissue transcriptomic profiles and modelling of inter-subject 
variability. We observed a low overall correlation between 
single-nucleus-estimated and Scaden-predicted cell-type 
proportions (Spearman’s ρ = 0.25, p value = 0.0009), 
although per-cell-type correlations were higher for some 
cell types (highest in microglia, Spearman’s ρ = 0.79, p 
value = 8.2 ×  10–6; Supplementary Fig. 4c).

Using Scaden predictions, we identified a significantly 
increased proportion of microglia in all disease groups 

Fig. 2  Cellular diversity of the 
anterior cingulate cortex across 
disease states. a Joint graph of 
all nuclei derived from all indi-
viduals visualised using UMAP 
embedding. Nuclei are coloured 
by cell type. b Cell-type pro-
portions derived from Scaden 
deconvolution (available in Sup-
plementary Table 2). Cell-type 
proportions (upper panel) are 
grouped by cell type and disease 
status and displayed relative to 
the median of controls (within 
a cell type). Significant dif-
ferences in cell-type propor-
tions between disease groups 
(lower panel) were determined 
using the Wilcoxon rank sum 
test, with FDR correction for 
multiple testing. Non-significant 
results (FDR > 0.1) were 
coloured white; **FDR < 0.05; 
*FDR ≤ 0.1. OPC oligoden-
drocyte precursor cell, UMAP 
uniform manifold approxima-
tion and projection
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compared with the control group, and a significantly 
increased proportion of OPCs and vascular cells in DLB 
cases compared with controls (Fig.  2b, FDR-corrected 
p < 0.05, Wilcoxon rank sum test). In addition, we observed 
a nominally significant increase in vascular proportions in 
PDD and PD cases compared with controls (FDR-corrected 
p < 0.1, Fig. 2b). By applying Scaden to a second, larger 
independent PD case–control bulk-tissue RNA-sequencing 
dataset [37], we were able to replicate the observed increase 
in microglial and vascular proportions in PD cases com-
pared with controls (FDR-corrected p < 0.05, Supplementary 
Fig. 5).

Differential gene expression analysis highlights 
transcriptional alterations in multiple cell types 
and differentiates Lewy body dementias from PD

Differential gene expression analyses were separately per-
formed with bulk-tissue and single-nucleus RNA-sequencing 
data to characterise molecular changes across the disease 
groups (“Materials and methods”). Following correction for 
changes in Scaden-predicted cell-type proportions in bulk-
tissue gene expression, only 60 genes (53 unique genes) 
were found differentially expressed (DE) across the six 
pairwise comparisons (FDR < 0.05, Supplementary Table 3). 
Despite the low number of bulk-tissue DE genes identified, 
we noted that gene expression adjusted for cell type and 
experimental covariates resulted in much clearer clustering 
of samples by disease group (as determined through visual 
inspection) compared with uncorrected gene expression and 
gene expression adjusted for experimental covariates alone 
(Supplementary Fig. 6a–c). Notably, separation of disease 
groups was primarily observed on the same axis of variation 
(i.e. the first principal component, PC1), suggesting that (i) 
the genes contributing most to variation between groups are 
similar across disease groups, and thus PD, PDD and DLB 
may represent a neuropathological continuum and (ii) that 
there are gene expression changes between disease groups 
that are independent of differences in cell-type proportions 
(Supplementary Fig. 6a–c). Using pathway enrichment, we 
found that the top 100 genes contributing to PC1 were asso-
ciated with immune-related GO terms (e.g. peptide antigen 
binding and MHC protein complex), as well as terms relat-
ing to endocytic vesicles and unfolded protein binding (Sup-
plementary Fig. 6d, Supplementary Table 4).

Consistent with the view that gene expression changes 
exist between disease groups independent of differences in 
cell-type proportions, using single-nucleus RNA-sequencing 
data, 9,242 unique genes were found DE across cell-type-
specific pairwise comparisons (all six pairwise comparisons, 
|log2(fold change)|>  log2(1.5), FDR < 0.05, Supplementary 
Table 5). Focusing only on comparisons with the control 
group, these analyses highlighted three main themes.

First, differential gene expression was widespread and 
involved glia and neurons. While we found that DE genes 
were detected across all three case–control comparisons and 
across all major cell types, the largest numbers of DE genes 
were observed in excitatory neurons, followed by oligoden-
drocytes (Fig. 3a). In fact, across case–control comparisons, 
the number of DE genes identified in oligodendrocytes 
exceeded that in inhibitory neurons by a factor of up to 11.4-
fold (depending on the case–control comparison; Fig. 3a). 
Comparison of the Lewy body diseases to each other yielded 
similar results; that is, transcriptional alterations across all 
major cell types, but with the largest number of DE genes 
observed in excitatory neurons, followed by oligodendro-
cytes (Supplementary Fig. 7).

Second, DE genes were commonly specific to a cell type. 
Indeed, of the 1131, 2535 and 4816 down-regulated DE 
genes identified across comparisons of PD, PDD and DLB 
with control, 79%, 66% and 67%, respectively, were DE in 
only one cell type (Fig. 3b). Among up-regulated DE genes, 
these percentages ranged from 74 to 76% across the three 
case–control comparisons.

Third, the Lewy body dementias, as distinct from PD, 
were characterised by the predominant down-regulation of 
gene expression relative to control in most cell types; the 
only exception were inhibitory neurons in PDD, where the 
number of up-regulated DE genes exceeded the number of 
down-regulated DE genes (Fig. 3a, b). Furthermore, the tran-
scriptomic profile of the two Lewy body dementias was very 
similar, with 303 down-regulated and 87 up-regulated DE 
genes identified in a comparison of DLB with PDD (Supple-
mentary Fig. 7). In contrast, comparisons of the two Lewy 
body dementias with PD identified > 2000 down-regulated 
and > 1000 up-regulated DE genes, suggesting that while 
there are transcriptional commonalities between PDD and 
DLB, PD is transcriptionally distinct from the Lewy body 
dementias in the anterior cingulate cortex.

Pathway enrichment was used to explore the biological 
implications of cell-type-specific differential gene expres-
sion. Focusing on case–control comparisons, we found that 
down- and up-regulated DE gene sets were enriched for 306 
and 272 GO terms, respectively (each pathway was only 
counted once, even if it appeared across > 1 case–control 
comparison). Using measures of semantic similarity to 
cluster GO terms, and thus reduce pathway redundancy, we 
identified 29 down-regulated and 27 up-regulated GO terms 
(Fig. 3c, Supplementary Table 6). Despite the high propor-
tion of cell-type-specific DE genes, we identified GO terms 
that were perturbed across multiple cell types in a given 
case–control comparison. For example, in comparisons of 
PD with control, terms related to glutamatergic synapses, the 
mitochondrial inner membrane, and post-translational pro-
tein modification were enriched across ≥ 5 cell types. These 
commonalities in GO term enrichment were a feature of both 
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Fig. 3  Cell-type-specific gene expression changes and path-
way enrichments across disease states. a Number of differentially 
expressed (DE) genes across each cell type in pairwise comparisons 
of disease groups to the control group (|log2(fold change)|>  log2(1.5), 
FDR < 0.05). The intensity of the grey colour is proportional to the 
number of DE genes. b Binary plot indicating with bars whether a 
gene (column) is down-regulated (upper panel) or up-regulated 
(lower panel) in a given cell type (rows). Number of DE genes in 
each comparison indicated on the x-axis. c Reduced gene ontology 
(GO) terms associated with cell-type-specific down- and up-regulated 
DE genes identified across pairwise comparisons of disease groups 
with the control group. Due to the magnitude of pathway enrich-
ments, original GO term enrichments (referred to as “child terms”) 

were grouped using semantic similarity. The number of enriched 
child GO terms assigned to each reduced parent term across all cell 
types and comparisons in the panel is indicated in parentheses on the 
y-axis. Reduced GO terms were ordered on the y-axis by the number 
of cell types and comparisons in which the term was found enriched. 
The fill of each tile indicates the −  log10(FDR) of the most signifi-
cant child term associated with the parent term within that compari-
son/cell type. Non-significant results (FDR > 0.05) were coloured 
white. Results for pairwise comparisons between disease groups are 
displayed in Supplementary Fig.  7. All cell-type-specific DE genes 
and pathway enrichments are available in Supplementary Table 5 and 
Supplementary Table  6, respectively. DEG differentially expressed 
gene, OPC oligodendrocyte precursor cell
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down- and up-regulated DE gene sets but were more appar-
ent among (i) down-regulated DE gene sets and (ii) com-
parisons of PDD and DLB with control, with pathway per-
turbations affecting a median of 3–5 cell types, as compared 
with 1–3 in comparisons of PD with control (Supplementary 
Fig. 8a). Furthermore, we noted that consistent with the high 
number of DE genes detected for excitatory neurons, a high 
number of enriched pathways were observed in this cell type 
across all case–control comparisons, particularly in PDD 
and DLB (Supplementary Fig. 8b). This observation was 
even more pronounced in comparisons of the Lewy body 
dementias with PD, where the number of enriched path-
ways identified in excitatory neurons was almost twofold 
higher than the second most-affected cell type. Overall, this 
analysis served to highlight disproportionately large tran-
scriptional differences in PDD and DLB, as compared with 
PD, particularly in excitatory neurons and, to a lesser extent, 
oligodendrocytes.

Genes and pathways genetically associated 
with PD implicate physiological variability of SNCA 
expression in selective vulnerability of neurons

Many of the GO terms enriched among down- and up-reg-
ulated genes, such as receptor-mediated endocytosis, have 
been previously implicated in PD. With this in mind, we 
narrowed our focus to the cell-type-specific expression of 
genes and pathways genetically associated with PD patho-
genesis [12, 16].

PD-associated genes were derived from a recent review 
of mutations that have been reported to cause PD, including 
well-known examples, such as SNCA [16]. Of the 21 genes 
considered, 13 were DE in at least one major cell type and 
one case–control comparison (Fig. 4a). For example, excita-
tory neurons, inhibitory neurons, astrocytes and oligoden-
drocytes all showed significant up-regulation of SNCA in PD 
cases when compared with controls (fold change: 0.64–1.30; 
FDR: 2.6 ×  10–7–7.2 ×  10–157, Fig. 4a).

There is robust genetic evidence linking increased 
SNCA dosage to PD pathogenesis, including (i) duplica-
tion and triplication events in the SNCA gene that underlie 
autosomal dominant forms of PD [26, 97] and (ii) the asso-
ciation of PD risk loci with increased SNCA expression 
[66, 100]. In view of this evidence, we further explored 
SNCA expression, finding that, while SNCA expression 
was up-regulated in PD in all four cell types with a simi-
lar fold change (Fig.  4a), SNCA expression in control 
individuals was highly variable across cell types (Supple-
mentary Fig. 9). This variability in control SNCA expres-
sion extended to (i) the proportion of nuclei expressing 
SNCA, with 61% of excitatory neurons expressing SNCA, 
as compared with < 22% across all other cell types and 
(ii) the range of observed SNCA expression, which was 

wider in excitatory neurons compared with all other cell 
types (Supplementary Fig. 9). These differences in cell-
type-specific SNCA expression were particularly apparent 
between inhibitory and excitatory neurons, irrespective 
of disease group, with a higher proportion of excitatory 
neurons expressing SNCA (Fig. 4b, Supplementary Fig. 9). 
Furthermore, these differences were visible in a cell type 
across disease groups. Indeed, SNCA expression in excita-
tory neurons from the Lewy body dementias, as compared 
with the control group, was marked by (i) a decrease in 
the proportion of SNCA-expressing nuclei in PDD and 
(ii) a shift in the expression range of the top 10% high-
est expressing nuclei to lower levels of SNCA expression 
(Fig. 4c). This was not, however, the case for PD, which 
maintained a similar distribution of SNCA expression to 
the control group, with a slight shift in the expression 
range of the top 10% highest expressing nuclei to higher 
levels of SNCA expression. The absence of a population 
of cells expressing higher levels of SNCA suggests that 
variability in SNCA expression within control ranges may 
contribute to the selective vulnerability of subpopulations 
of excitatory neurons to Lewy body pathology.

PD-associated pathways were leveraged from a recent 
study identifying 46 pathways implicated in PD through 
pathway-specific polygenic risk score and rare variant bur-
den analyses [12]. Based on case–control comparisons, 
we found that pathways that have been genetically asso-
ciated with PD causation (such as terms related to syn-
aptic transmission and vesicle-mediated transport) were 
dysregulated in all major cell types, with the exception of 
vascular cells, wherein only 3 pathways were implicated 
(Fig. 4d, Supplementary Fig. 10, Supplementary Table 7). 
We noted that the number of dysregulated pathways tended 
to increase with increasing clinical disease severity (i.e. 
PD < PDD < DLB) in excitatory neurons and glia, but 
not inhibitory neurons and vascular cells, supporting the 
notion of a disease spectrum. In general, fewer pathways 
were dysregulated in inhibitory neurons, with 12 of 46 
pathways dysregulated in at least one case–control com-
parison, as compared with excitatory neurons, astrocytes 
and oligodendrocytes (23–27 of 46 pathways).

Differentially expressed genes in glia enrich 
for heritability of PD age of onset and risk

To identify cell types through which common genetic vari-
ants associated with PD risk and dementia may be acting, 
we used Hi–C-coupled Multi-marker Analysis of GenoMic 
Annotation (H-MAGMA) [96] and stratified LD score 
regression (sLDSC) [41]. As age of PD onset is correlated 
with clinical progression [34, 58, 85], and there is a sig-
nificant negative genetic correlation between the GWAS for 
PD age of onset (AOO) and PD risk [15], we included both 
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GWASs in our analysis. Furthermore, given the potential 
cooccurrence of Alzheimer’s disease (AD) pathology in 
the Lewy body dementias, we used a recent late-onset AD 
GWAS [54].

Genetic association analyses with H-MAGMA and 
sLDSC were run with two sets of annotations: (i) the top 
10% most cell-type-specific genes from each disease 
group and (ii) cell-type-specific DE genes (|log2(fold 
change)|>  log2(1.5), FDR < 0.05). The latter were tested on 
the basis that DE genes better capture gene expression sig-
natures representative of a given disease state. Using the top 
10% most cell-type-specific genes, we observed a signifi-
cant association between AD genetic risk and genes highly 
expressed in microglia derived from control, PD and PDD 
groups (control,  FDRLDSC = 0.038; PD,  FDRLDSC = 0.019; 
PDD,  FDRLDSC = 0.035; Fig. 5a; Supplementary Table 8), 
replicating previous literature [5, 22, 54]. Furthermore, we 
observed a significant association between genetic deter-
minants of PD age of onset and genes highly expressed in 
OPCs derived from the DLB group  (FDRHMAGMA = 0.022) 
and PD genetic risk and genes highly expressed in oligoden-
drocytes (a cell type of increasing interest to the PD field [5, 
22]) derived from the control group  (FDRHMAGMA = 0.013).

Using cell-type-specific DE genes, we identified a signifi-
cant association between genetic determinants of PD age of 
onset and genes found DE in astrocytes and OPCs from com-
parisons of PD with control (astrocytes,  FDRLDSC = 0.0085; 
OPCs,  FDRLDSC = 0.0085; Fig. 5b). Splitting differentially 
expressed genes by their direction of effect showed that this 
signal was driven by up-regulated genes (Supplementary 
Fig. 11). In addition, we identified a nominal association 
using both methods between PD genetic risk and genes 
found DE in oligodendrocytes from comparisons of PD with 
control  (PHMAGMA = 0.011,  PLDSC = 0.041; Fig. 5b), which 
was driven by up-regulated genes  (FDRHMAGMA = 0.013, 
 PLDSC = 0.044; Supplementary Fig. 11). Finally, we noted 

that genes up-regulated in excitatory neurons from compari-
sons of PDD with control were significantly associated with 
PD genetic risk  (FDRLDSC = 0.040; Supplementary Fig. 11).

Differential splicing distinguishes PDD from DLB 
and highlights the role of specific RNA‑binding 
proteins

Given the limitations of single-nucleus RNA-sequencing in 
the detection of splicing, we applied Leafcutter to our bulk-
tissue RNA-sequencing to assess differential splicing (DS) 
[65]. Leafcutter captures changes in local splicing events 
through construction of intron clusters, wherein overlapping 
introns are connected by the splice junction(s) they share. 
We identified a total of 4656 DS intron clusters in 3751 
genes (FDR < 0.05, |∆PSI|≥ 0.1; Supplementary Table 9) 
across all pairwise comparisons, with the highest number 
identified in comparisons of DLB with control or PD (Sup-
plementary Fig. 12a). Notably, between 28 and 32% of DS 
events were partially annotated with respect to the reference 
transcriptome, with splicing events including novel donor or 
acceptor splice sites, novel exon skip and novel combination 
events (Supplementary Fig. 13a, b). We were, however, able 
to detect these events in larger control cohorts suggesting 
that they represent biologically relevant splicing (Supple-
mentary Note, Supplementary Fig. 13c, d).

DS genes showed a significant enrichment in oligoden-
drocytes across comparisons of all disease groups with 
the control group (i.e. these genes had higher expression 
in oligodendrocytes than expected by chance), an obser-
vation that we replicated using the same external PD 
case–control bulk-tissue RNA-sequencing dataset used 
in replication of deconvolution results (Fig. 6a, Supple-
mentary Note, Supplementary Fig. 15a, Supplementary 
Table 10). In contrast, enrichments in other cell types 
appeared to be disease specific (Fig. 6a). For example, 
only genes found DS in comparisons of PD with control or 
DLB with PD enriched in astrocytes. Notably, as the only 
pairwise comparison, DS genes from DLB compared with 
PDD consistently enriched in all excitatory neuron annota-
tions. Pathway enrichments were observed across 4 of 6 
pairwise comparisons (no enrichments were observed in 
comparisons of PD or PDD with control; Supplementary 
Fig. 12b, Supplementary Table 11). Pathways that were 
shared across comparisons of DLB with control, PD and 
PDD, included terms related to endosomes and enzyme 
activity (in particular, GTPase activity), mirroring terms 
highlighted both by replication analyses and by pathway 
analysis of single-nucleus DE genes (Fig. 6b, Supple-
mentary Note, Supplementary Fig. 12b, Supplementary 
Fig. 15b).

Visualisation of pathway sharing across gene sets derived 
from the three analyses (bulk-tissue differential splicing, 

Fig. 4  Cell-type-specific alterations of PD-associated genes and path-
ways. a Differential expression of PD-associated genes (associated by 
mutations reported to cause PD) across cell types and pairwise com-
parisons of disease groups with the control group. Fill of the tile indi-
cates the  log2(fold change), with non-significant results (FDR > 0.05) 
coloured grey. b UMAP plot of excitatory and inhibitory neurons 
(upper panel, 102,293 nuclei), with SNCA expression levels (lower 
panel). c Ridgeline plot of distribution of SNCA expression levels in 
excitatory neurons across disease groups. Distributions have been 
split into 3 cumulative quantiles, highlighting, where 0–50%, 50–90% 
and 90–100% of the nuclei in each disease group lie. d Number of 
enriched pathways (FDR < 0.05) identified using cell-type-specific 
down- and up-regulated DE genes from each pairwise comparison 
together with 46 PD-associated pathways (associated in a large-scale 
polygenic risk score-based assessment of 2199 gene sets). DEG dif-
ferentially expressed gene, GO gene ontology, OPC oligodendrocyte 
precursor cell, UMAP uniform manifold approximation and projec-
tion. PD-associated genes and pathways were derived from references 
[12, 16], respectively
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gene contributions to bulk-tissue gene expression PC1 and 
single-nucleus differential expression) demonstrated limited 
sharing between the two bulk-tissue analyses (the excep-
tions being “presynapse”, “transport vesicle”, “coated vesi-
cle”, and “endosome membrane”; Fig. 6b; Supplementary 
Fig. 16). Notably, pathway analysis of DS genes from DLB 
compared with PDD implicated a much wider breadth of 
pathways compared with pathway analysis of single-nucleus 
DE genes from the same comparison, and indeed, no path-
ways overlapped between the two analyses in this pairwise 
comparison (Supplementary Fig. 16). This observation sug-
gests that differences between PDD and DLB are not suffi-
ciently captured by consideration of gene expression alone.

Patterns of pathway sharing between each of the bulk-
tissue analyses and single-nucleus differential expression 
highlighted highly shared terms related to synaptic func-
tion, unfolded protein binding, and vesicle transport. Of 
note, RNA splicing was (i) jointly implicated by differential 
splicing and single-nucleus differential expression derived 
from excitatory neurons, oligodendrocytes, astrocytes and 
microglia in comparisons of DLB with control and (ii) sepa-
rately implicated by single-nucleus differential expression 
derived from excitatory neurons and oligodendrocytes in 
comparisons of PDD with control (Fig. 6b). Together with 

the abundant differential splicing observed, these results 
indicated that dysregulation of splicing factors may play a 
role in the pathogenesis of LBDs.

To further investigate this observation, we used a cata-
logue of known RNA-binding protein (RBP) binding motifs 
from the ATtRACT database [45], and defined introns by 
their proximal intronic regions (the 50 nt of an exon and 500 
nt of an intron flanking the 5′ and 3′ splice sites), which are 
an important region for splicing regulation [80]. Proximal 
intronic regions from DS introns were compared with non-
DS introns across each pairwise comparison, identifying a 
total of 4 RBP binding motifs with a significant enrichment 
in DS proximal intronic regions from at least one pairwise 
comparison (Supplementary Table 12). Among these was 
the consensus sequence GGG GGG G in DS proximal intronic 
regions from PDD comparisons with control (Bonferroni-
adjusted p value = 0.000601; Supplementary Table 12). 
This sequence is targeted by 17 RBPs from the ATtRACT 
database (including several members of the hnRNP family, 
such as HNRNPC and FUS), as well as RBPs not included 
in the database, such as RBM25 [25, 36]. Notably, RBM25 
was found DS across comparisons of PDD with control 
in our own dataset and the replication dataset (in-house, 
clu_26788, FDR-adjusted p value = 0.00653; SRP058181, 

Fig. 5  Genetic associations with 
top 10% most cell-type-specific 
genes and cell-type-specific 
differentially expressed genes. 
Genetic associations using a 
top 10% most cell-type-specific 
genes in each disease group and 
b cell-type-specific differen-
tially expressed genes in disease 
comparisons with controls. Two 
methods were used to identify 
associations: Hi–C-coupled 
MAGMA (H-MAGMA) and 
stratified LD score regression 
(sLDSC). The heatmap is col-
oured by degree of significance 
with both or either method, with 
* and ** indicating nominal 
significance (unadjusted p 
value < 0.05) or significance 
(FDR-corrected p value < 0.05; 
corrected for number of cell 
types tested). Results available 
in Supplementary Table 8. AD 
Alzheimer’s disease, OPC oli-
godendrocyte precursor cell
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clu_12260, FDR-adjusted p value = 0.0499; Supplementary 
Table 9). Furthermore, the consensus sequence GAA GGA 
A, targeted by HNRNPM, was enriched in DS proximal 
intronic regions from comparisons of DLB with control and 
PD (Bonferroni-adjusted p values, control vs DLB = 0.0141, 
PD vs DLB = 0.00133). Finally, two consensus sequences, 
CUG GAU U and CUA ACC CUAA targeted by SRSF9 and 
PCBP2, respectively, were enriched in DS proximal intronic 
regions from comparisons of DLB with PDD (Bonferroni-
adjusted p values, CUG GAU U = 0.000958, CUA ACC 
CUAA = 0.0174). Of note, SRp30c (encoded by SRSF9) has 
been shown to interact with hTRA2-β (encoded by TRA2B) 
[110, 113], which targets the consensus sequence AAG AAG 
AAGAA, which we also found to be nominally enriched 
in DS proximal intronic regions from comparisons of DLB 
with PDD (Bonferroni-adjusted p value = 0.0865).

Overall, these results highlighted (i) the abundant levels 
of alternative splicing, particularly in PDD and DLB, with 
evidence to suggest that certain splicing factors may play a 
role in orchestrating these disease-related splicing changes 
and (ii) that differential splicing, particularly in comparisons 
of DLB with PDD, captures additional features of disease-
related perturbations, which were not captured by single-
nucleus differential gene expression.

Discussion

Here, we applied paired bulk-tissue and single-nucleus 
RNA-sequencing to transcriptomically profile PD, PDD and 
DLB. Using this approach, we (i) found transcriptional dif-
ferences relative to controls for multiple cell types across the 
LBDs, with PDD and DLB more severely affected than PD; 
(ii) observed high levels of alternative splicing, particularly 
in PDD and DLB; and (iii) identified splicing factors, with 
links to other dementia-related neurodegenerative diseases, 
that may coordinate these disease-related splicing changes. 
Together, these results highlight transcriptomic commonali-
ties and distinctions between the LBDs, which can be used to 
inform our understanding of the relationship between these 
three clinical disorders.

Existing transcriptomic studies of the LBDs have relied 
on bulk-tissue analyses and profiled each disease separately, 
limiting our understanding of the molecular landscape of 
these diseases individually and in relation to one another. In 
addition, few initiatives have addressed genome-wide assess-
ment of splicing in this context, despite studies implicating 
alternative splicing as a disease mechanism in monogenic 
and sporadic forms of PD [31, 66], and complex disease, 
in general [64]. Using multiple sequencing and analytic 
approaches, our analyses had the potential to identify differ-
ences between the LBDs attributable to changes in cell-type 

proportions, cell-type-specific gene expression and bulk-tis-
sue splicing. While we found that increases in microglial and 
vascular cell-type proportions were a feature of LBDs, these 
increases did not distinguish among the LBDs. Importantly, 
the observed microglial increase was consistent with results 
from: (i) an RNA-sequencing-based study of PD modelling 
cellular composition in the frontal cortex, where microglial 
and oligodendrocyte marker gene profiles were increased in 
PD compared to control [79] and (ii) a study of cell num-
bers and DNA content in LBD-affected brain regions, which 
showed an increased number of large-sized and all nuclei 
(implying gliosis) in the anterior cingulate cortex of LBD 
cases compared to controls [82]. In contrast to cell-type pro-
portions, cell-type-specific differential gene expression and 
bulk-tissue differential splicing distinguished PD from the 
Lewy body dementias, with PDD and DLB demonstrating 
a higher degree of commonality. These results suggest that 
irrespective of when dementia onset occurs in the disease 
process it gives rise to similar end-stage, post-mortem tran-
scriptomic signatures in the anterior cingulate cortex.

It is notable that bulk-tissue differential splicing (i) 
was a prominent feature of the LBDs; (ii) discriminated 
between PD and the Lewy body dementias; and (iii) pro-
vided evidence of relationships with other neurodegenera-
tive diseases clinically associated with dementia. Enrich-
ment analyses using DS genes associated with each of the 
three LBDs revealed shared cell-type associations, such as 
the differential splicing of genes highly expressed in oligo-
dendrocytes, as well as disease-specific cell type and path-
way associations. Indeed, splicing analyses highlighted 
pathways relating to GTPase activity and regulation across 
several pairwise comparisons involving DLB, perhaps 
due to their role in a range of cellular processes that have 
been implicated in PD, such as clearance of Golgi-derived 
vesicles through the autophagy–lysosome system, mito-
chondrial fission and fusion, and p38 MAPK signalling 
[12, 82]. RNA splicing was additionally associated with 
the Lewy body dementias, by both differential splicing 
and single-nucleus differential expression. To further 
investigate these observations, we assessed RBP binding 
motif enrichment to identify potential upstream regulators 
of splicing. All four significantly enriched RBP binding 
motifs were targeted by RBPs that have been implicated 
to varying degrees in neurodegenerative diseases, with 
HNRNPC implicated in AD [90], and FUS, HNRNPC, 
HNRNPM and PCBP2 associated with frontotemporal 
dementia (FTD) [11]. Furthermore, not only has PCBP2 
(encoding hnRNP E2) been found to colocalise with TDP-
43 pathology in specific pathological subtypes of FTD 
[57], but SRSF9 together with TRA2B are implicated in tau 
splicing [110]. Given that both Lewy body dementias are 
characterised by co-pathology [92, 99], including tau and 
TDP-43 pathology, we speculate whether dysregulation of 
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splicing might be one of the drivers of this co-pathology. 
Further studies will be required to understand whether this 
is the case.

Looking at cell-type-specific differential gene expres-
sion, the most prominent difference between the LBDs was 
the widespread down-regulation of genes and pathways in 
the Lewy body dementias, as compared with PD. In genetic 
association analyses, these genes did not enrich for genetic 
determinants of PD age of onset or PD risk, suggesting that 
this down-regulation is a consequence of the disease process, 
as opposed to a cause. In contrast, up-regulated genes (iden-
tified primarily in comparisons of PD with control) enriched 

for genetic determinants of PD age of onset and PD risk, 
highlighting known (OPCs/oligodendrocytes [5, 22]) and 
new (astrocytes) cell types in PD pathogenesis. In fact, com-
mon to all three LBDs was the presence of transcriptional 
alterations across multiple cell types. While DE genes were 
found to be largely cell-type-specific (i.e. DE in only one 
cell type), these genes converged on similar pathways, with 
GO terms found to be perturbed across multiple cell types 
in a given case–control comparison. Restricting to genes and 
pathways genetically associated with PD (which arguably 
are more likely to be causal), we similarly saw multiple cell-
type involvement across all three LBDs, albeit with some 
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suggestion of a hierarchy of increasing perturbation in excit-
atory neurons and glia (i.e. PD < PDD < DLB). Together, 
these results suggest the involvement of multiple cell types 
in LBD pathogenesis, and potentially indicate a common 
regulatory response across cell types in each disease.

While we observed transcriptional alterations in multiple 
cell types, some cell types, such as excitatory neurons and 
oligodendrocytes, were more strongly impacted than others 
(most notably, excitatory neurons), implying some degree 
of selective vulnerability. In support of this observation, 
expression of SNCA (encoding α-synuclein, the major com-
ponent of Lewy bodies [102]) in excitatory neurons from 
the Lewy body dementias, as compared with the control 
group, was marked by a decrease in the proportion of SNCA-
expressing nuclei in PDD and a shift in the expression range 
of the top 10% highest expressing nuclei to lower values. 
While we recognise that this is an observational study, it 
is tempting to speculate that (i) variability in physiologi-
cal levels of SNCA may impact on pathogenesis, an area 
of research that has received far less attention as compared 

with increased SNCA dosage [26, 66, 97, 100] and (ii) that 
the absence of cells expressing high physiological levels of 
SNCA may contribute to the selective vulnerability of sub-
populations of excitatory neurons to Lewy body pathology.

There are several limitations to this work. Some of these, 
including the use of post-mortem tissue and the subse-
quent inability to distinguish differences that arise early 
in the disease course from those that arise later, are natu-
ral limitations. Others, however, emphasise key areas for 
future work; the most important are the study of one brain 
region in diseases that gradually affect multiple brain regions 
and the small size of the cohort used. Where possible, we 
attempted to validate results in larger independent control 
and case–control studies, but larger studies covering more 
brain regions will be needed in the continuing assessment 
of the LBDs.

Among technological limitations, a known issue in sin-
gle-nucleus RNA-sequencing is the depletion of transcripts 
that preferentially enrich in the cytoplasmic compartment, 
such as transcripts that localise to neuronal dendrites [10] 
and signatures of microglial activation [104]. This limita-
tion has implications both for differential gene expression, 
but also downstream deconvolution and indeed, the use of 
single-nucleus RNA-sequencing as a reference was found to 
decrease the performance of three deconvolution algorithms 
(including Scaden) on post-mortem human brain data [76]. 
This limitation stresses the importance of relating cell types 
defined by single-nucleus RNA-sequencing back to their 
spatial phenotypes, a process for which the emerging field 
of spatial transcriptomics will be instrumental in resolving 
[70]. Our results provide clear hypotheses to test using spa-
tial transcriptomics both for cell-type-specific DE analysis 
and analysis of differential cell-type proportions.

Among methodological limitations, we recognise that 
RBP binding motif enrichment oversimplifies the biology 
of RBPs. A common feature of RBPs is the presence of mul-
tiple RNA-binding domains, which are thought to interact 
with repeating motifs spaced apart on pre-mRNA transcripts 
[36, 43]; this feature is not captured in the current analysis. 
Similarly, our analyses do not account for sequence context 
[36] (e.g. flanking nucleotide composition, repeated motifs, 
RNA structure) and thus cannot distinguish between RBPs 
that bind similar motifs. Developing tools that could address 
this in silico represents an opportunity to identify additional 
regulators of splicing in the LBDs.

In summary, our comprehensive transcriptomic analysis 
of all three LBDs highlights the complex, multi-cell-type 
transcriptional response to Lewy body pathology and LBD 
co-pathologies. Furthermore, it identifies post-mortem 
molecular signatures in the anterior cingulate cortex that 
distinguish PD from the two Lewy body dementias, such as 
perturbation of RNA splicing, a mechanism linked to sev-
eral dementia-related neurodegenerative diseases. Together, 

Fig. 6  Cell-type enrichments of differentially spliced genes and path-
way sharing across analyses. a Enrichment of the top 100 differen-
tially spliced genes (FDR < 0.05, |∆PSI| ≥ 0.1, with rank determined 
by |∆PSI|) in cell types derived from each disease group. Enrich-
ments were determined using expression-weighted cell-type enrich-
ment (EWCE). The x-axis denotes the disease status of the cell type 
in question, while the y-axis denotes the groups compared in the dif-
ferential splicing analysis. Pairwise comparisons have been grouped 
by whether diseased individuals are compared with control individu-
als (Ref: control) or other diseased individuals (Ref: disease). Tiles 
were coloured by standard deviations (s.d.) from the mean, which 
indicate the distance (in s.d.) of the target list from the mean of the 
bootstrapped samples. Multiple test correction was performed across 
EWCE results using FDR. Non-significant results (FDR > 0.05) 
were coloured white. ***FDR < 0.001; **FDR < 0.01; *FDR < 0.05. 
All results available in Supplementary Table  10. b Clustering of 
shared pathway enrichments using genes identified across the three 
main analyses (represented by grey bar entitled, “Analysis”). These 
included: bulk-tissue differential splicing (“Bulk DS”, Supplemen-
tary Fig. 12); gene contributions to bulk-tissue gene expression PC1 
(“Bulk PC”, Supplementary Fig.  6); and single-nucleus differential 
expression (“snRNA DEG”, Fig.  3). Pathways (in rows) from all 
three analyses were filtered to include only those that appear across 
more than one type of analysis. Pathways are ordered from highest 
to lowest by the number of gene sets in which they are enriched (as 
displayed in the bar plot on the right-hand side). Gene sets (in col-
umns) are clustered using hierarchical clustering on the Pearson cor-
relation between gene sets (pathways were encoded with a binary 
1 for “Present” or 0 for “Absent”, represented on the plot by black 
and white, respectively). Gene sets derived from differential splicing 
(Bulk DS) were collapsed across our own dataset and the replication 
dataset, resulting in one gene set (column) per pairwise comparison. 
Likewise, gene sets derived from up- and down-regulated single-
nucleus DE gene sets were collapsed across cell types (represented 
by the coloured bar entitled, “Cell type”), such that each cell type 
was represented by a single column. Pathway overlaps using pairwise 
comparisons between disease groups are displayed in Supplementary 
Fig. 16. ∆PSI delta percent spliced in, GO gene ontology, OPC oligo-
dendrocyte precursor cell
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these findings have important implications for the design 
of RNA-targeted therapies for these diseases and highlight 
a potential molecular “window” of therapeutic opportunity 
between the initial onset of PD and subsequent development 
of Lewy body dementia.

Materials and methods

Sample selection

Individuals with clinical parkinsonism and/or dementia with 
Lewy bodies (DLB) and pathologically confirmed PD were 
obtained from the Parkinson’s UK Tissue Bank. Clinical 
assessment of individuals was carried out on clinical notes 
collated retrospectively using records from movement dis-
order neurologists, neurosurgeons, psychiatrists, geriatri-
cians, PD nurse specialists and general practitioners. Clini-
cal parkinsonism was defined using the current MDS task 
force criteria [88] and Lewy body dementia by the most 
recent clinical diagnostic criteria for PDD and DLB [38, 
74]. The 1-year rule, alongside positive clinical features for 
DLB (spontaneous parkinsonism, REM sleep behaviour 
disorder, fluctuating cognition and complex visual halluci-
nations) were used to separate individuals with PDD and 
DLB. Pathologic assessment was performed on representa-
tive tissue sections from recommended brain regions in the 
Braak α-synuclein [20] and Braak tau [19] staging systems 
as part of the routine diagnostic process for the Parkinson’s 
UK Tissue Bank. A maximum Braak tau stage of 3 was 
used to filter out individuals with excessive Alzheimer’s 
pathology, thus ensuring that dementia in these individuals 
arose from α-synucleinopathy. PD without cognitive impair-
ment was defined either by (i) a lack of evidence of positive 
cognitive features, such as memory impairment, executive 
dysfunction and visuo-spatial dysfunction in retrospective 
clinical case notes or (ii) where positive cognitive features 
were reported present, cognitive impairment was ruled out 
based on objective cognitive testing or positive cognitive 
features were proven to be adverse effects of medication. In 
addition, where possible, individuals were selected based on 
a post-mortem interval of less than 24 h to ensure optimal 
tissue quality for nuclear extraction. In total, 7 PD, 7 PDD 
and 7 DLB individuals were selected, matched where pos-
sible for demographic and pathologic factors, along with 7 
age-matched non-neurological control individuals. Control 
individuals were defined by a lack of clinical neurological 
features and no definitive pathological diagnoses. To ensure 
consistency, a cutoff of Braak tau stage 3 was also used for 
control individuals. The severity of α-synuclein pathology in 
the anterior cingulate was graded semi-quantitatively from 
0 to 3 based on the validated scoring system from Alafuzoff 
et al. [6] Furthermore, Lewy pathology (i.e. Lewy bodies 

and Lewy neurites) was scored using the most recent LP 
consensus criteria [9]. For each individual, a tissue block 
of cortical grey matter from the anterior cingulate was 
sectioned at 80 µm thickness. Adjacent sections were sub-
sequently used for bulk-tissue RNA isolation (2 sections 
per sample) or isolation of nuclei for single-nuclei RNA-
sequencing. Clinical, pathological and sample measures for 
the cohort are available in Supplementary Table 1.

Isolation of nuclei

Nuclei were isolated using buffers prepared as in Krish-
naswami et al. [60], including nuclei isolation medium #1 
(NIM1), nuclei isolation medium #2 (NIM2), Homogenisa-
tion Buffer (HB), 29% and 50% vol/vol iodixanol dilutions. 
Briefly, brain tissue sections were suspended in 800 µL HB 
and homogenised in a pre-cooled 2 mL dounce homogen-
iser, with five strokes of the loose pestle, followed by 10–15 
strokes with the tight pestle. The homogenate was filtered 
through a BD Falcon tube with a cell strainer cap (35 µm) 
and centrifuged at 1000g for 8 min. Thereafter, nuclei were 
subjected to an additional clean-up step (density gradient 
centrifugation), as detailed in Krishnaswami et al., albeit 
with centrifugation of the layered nuclei/29% iodixanol solu-
tion at 13,000g for 40 min at 4 °C. The supernatant was care-
fully removed, and the nuclei pellet washed with PBS buffer 
(PBS + 1% BSA + 0.2 U/ml RNAseIn), filtered through a BD 
Falcon tube with a cell strainer cap, centrifuged at 500g for 
5 min at 4 °C and washed again. Nuclei were counted using 
an LUNA-FL Dual Fluorescence Cell Counter (Logos Bio-
systems, L20001) using Acridine orange dye to stain nuclei.

Nuclei encapsulation and single‑nucleus 
RNA‑sequencing data generation

All samples were processed as per 10× Genomics Chro-
mium Single Cell Reagent Kits Protocol (chemistry: Sin-
gle Cell 3′ v2). Following manufacturer’s guidelines, the 
samples were processed to target 10,000 nuclei per sample. 
Briefly, we performed 8 cycles of cDNA amplification and 
14 cycles of final indexing PCR. cDNA concentrations were 
measured using Qubit dsDNA HS Assay Kit (ThermoFisher, 
Q32851), and cDNA and library preparations were assessed 
using the Bioanalyzer High-Sensitivity DNA Kit (Agilent, 
5067-4627). All samples were pooled to equimolar concen-
tration and sequenced together across 28 lanes on an Illu-
mina Hi-Seq 4000.

Single‑nucleus RNA‑sequencing data processing

Sequenced reads were demultiplexed and processed using 
Cell Ranger (v 3.0.2) and thereafter mapped to the GRCh38 
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human reference genome using gene annotations from 
Ensembl v93 [35, 116]. Across each of the 28 sequenced 
samples, reads mapped to primary transcripts were sum-
marised as counts. Droplets containing nuclei were distin-
guished from empty droplets (containing ambient RNA) 
using the EmptyDrops algorithm, as implemented in the 
R package DropletUtils (v 1.6.1) [69]. An ambient profile 
threshold of 300 UMI was used to determine the background 
RNA content of the empty droplets. Thereafter we removed 
nuclei with > 5% mitochondrial content and genes expressed 
in < 5 nuclei. Once low-quality nuclei had been filtered out, 
the dataset was normalised using the NormalizeData() 
function in Seurat (v 3.2.0) [103]. The default normalis-
ing method used by Seurat (version 3) is a global-scaling 
normalisation method, “LogNormalize”. The method nor-
malises the gene expression values in each cell (n) by mul-
tiplying n by the total expression of the cell (a size factor of 
10,000 for each cell is used by default) and log-transforming 
the result. After this normalisation step, we used Seurat’s 
pipeline to cluster the nuclei. First, distances were calculated 
between two nuclei with similar gene expression patterns 
using Euclidean algorithm and edges were drawn. Second, 
a Louvain algorithm was used to cluster the nuclei. Finally, 
clustering was carried out using the FindClusters() func-
tion using 30 principal components (PCs) and a resolution 
parameter of 2. The clustered cells were tested to remove 
barcodes with more than 1 nuclei encapsulated in the droplet 
using DoubletFinder (v 2.0.2), with the expected proportion 
of doublets set at ~ 7% [72].

Cell‑type identification

The remaining nuclei were visualised using a non-linear 
dimensionality reduction algorithm known as Uniform 
Manifold Approximation and Projection (UMAP, v 0.1.10) 
[73]. We then used the Wilcoxon rank sum test (FDR < 0.05) 
implemented in the Seurat function FindAllMarkers() to 
identify genes differentially expressed in one cluster com-
pared with all other clusters. Cell types were assigned by 
testing genes differential to a particular cell type for enrich-
ment (Fisher’s exact test) for cell-type markers from two 
human single-cell datasets [61, 109]. Nuclei classified as 
endothelial cells and pericytes were merged into one class 
referred to as vascular cells.

A joint graph of 205,498 nuclei from across all individu-
als from each of their respective filtered datasets (referred to 
as the panel of datasets) was generated using the R package, 
Clustering On Network Of Samples (Conos, v 1.1.2) [13]. 
This was done to bring panel datasets into a common expres-
sion space accounting for technical differences between 
datasets, which could be used for downstream cell-type-
specific differential expression analyses between disease 
groups. buildGraph() was used to construct a graph with 

parameters for nearest neighbour parameters set at k = 30, 
k.self = 5, in space of 30 CPCA (common principal compo-
nent). The embedGraph() function was used to partition cells 
into 7 clusters for the 7 broad cell types.

Bulk‑tissue RNA‑sequencing data generation

RNA isolation was performed by the commercial com-
pany, BioXpedia A/S. Samples were lysed with QIAzol and 
RNA extracted using the RNeasy 96 Kit (Qiagen) with an 
optional on-membrane DNase treatment, as per manufac-
turer instructions. Samples were thereafter quantified by 
absorption on the QIAxpert (Qiagen) and their RNA integ-
rity number (RIN) assessed using the Agilent 4200 Tapesta-
tion (Agilent). RIN ranged from 1.6 to 7.8, with a median 
of 6.5. Only samples derived from tissue-sections with a 
RIN ≥ 4.2 were included in downstream RNA sequencing. 
As a result, only 24 samples were sequenced (5 controls, 7 
PD, 6 PDD and 6 DLB; Supplementary Table 1). 250 ng of 
total RNA was used as input for cDNA library construction 
with the TruSeq Stranded mRNA Sample Preparation Kit 
(Illumina), as per manufacturer instructions. To minimise 
read mis-assignment in downstream sample de-multiplexing, 
xGen UDI-UMI Adapters (Integrated DNA Technologies, 
Inc.) were used. Libraries were multiplexed on the NovaSeq 
S2 Flow Cell (the same 24 libraries were run across both 
lanes) for paired-end 100 bp sequencing on the NovaSeq 
6000 Sequencing System (Illumina) to obtain an average 
read depth of ~ 180 M paired-end reads per sample.

Bulk‑tissue RNA‑sequencing data processing

Fastp (v 0.20.0), a fast all-in-one FASTQ pre-processor, was 
used for adapter trimming, read filtering and base correc-
tion [28]. Fastp default settings were used for quality filter-
ing and base correction. Processed reads were mapped to 
the GRCh38 human reference genome via STAR (v 2.7.0a) 
using gene annotations from Ensembl v97 [35, 116]. Multi-
sample 2-pass mapping was used, wherein two rounds of 
mapping were performed to improve the sensitivity of novel 
splice junction detection. ENCODE standard options for 
long RNA-seq were used, with the exception of (i) -out-
FilterMultimapNmax, which was set to 1, thus retaining 
only uniquely mapped reads and (ii) -alignSJDBoverhang-
Min, which was set to the STAR default of a minimum 3 bp 
overhang required for an annotated spliced alignment. Pro-
cessed reads were also quantified with Salmon (v 0.14.1) 
using the mapping-based mode, with sequence-specific, 
fragment GC-content and positional bias correction options 
enabled (-seqBias, -gcBias, -posBias) [86]. A decoy-aware 
transcriptome file based on GRCh38 and Ensembl v97 was 
generated using MashMap2 (v 2.0) [53] and used as a refer-
ence together with the appropriate option for the sequencing 
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library type (-libType ISF). The R package tximport (v 
1.14.2) was used to transform Salmon transcript-level abun-
dance estimates to gene-level abundance estimates [101]. 
Genes found to overlap ENCODE blacklist regions were 
removed from downstream analyses (“Key resources”) [7]. 
Pre-alignment quality control metrics were generated using 
Fastp and FastQC (v 0.11.8) [8], and post-alignment qual-
ity control metrics using RSeQC (v 2.6.4) [111]. Pipeline 
source code can be found in https:// github. com/ RHRey 
nolds/ RNAse qProc essing.

Processing of PD case–control replication dataset

Replication of several downstream bulk-tissue RNA-
sequencing analyses were performed using a PD case–con-
trol bulk-tissue RNA-sequencing dataset provided by Dumi-
triu et al. [37] and processed for re-use by recount2 [32]. 
The dataset was accessed via recount2 (recount accession 
ID: SRP058181). The original study contained RNA-
sequencing of prefrontal cortical samples (Brodmann Area 
9) derived from 44 control individuals and 29 individuals 
with PD. Paired-end 101-bp sequencing was applied to each 
sample, with a mean depth of 83.3 million read pairs per 
sample. All samples were of a reasonably high quality, with 
RIN values ranging from 5.8 to 9.1 and a median of 7.6. 
Accessed samples were checked for any mismatch between 
the reported sex of brain donors and the sex as determined 
by the expression of sex-specific genes (XIST and DDX3Y). 
As a result, one control sample was removed (recount sam-
ple ID: SRR2015746; study sample ID: C0061); the sample 
was reported to be male, but notable expression of XIST was 
observed. Furthermore, as sample demographics from the 
original study included whether PD patients were diagnosed 
with dementia, the 29 PD cases were split into those with 
and without dementia (PD, n = 18; PDD, n = 11).

Deconvolution

Cell-type proportions in bulk-tissue RNA-sequencing sam-
ples were estimated using Scaden (v 0.9.2), a deep-learning-
based deconvolution algorithm [76]. Unlike linear-regres-
sion-based deconvolution algorithms, Scaden does not 
require cell-type-specific gene expression profiles. Instead, 
Scaden trains on artificial bulk-tissue RNA-sequencing sam-
ples simulated from tissue-specific single-cell RNA-sequenc-
ing data, after which the model is used to predict cell-type 
proportions from real bulk-tissue RNA-sequencing samples. 
In this study, training data was generated separately for each 
individual with paired single-nucleus RNA- and bulk-tissue 
RNA-sequencing, allowing Scaden to capture cross-subject 
heterogeneity. This yielded a total of 24,000 artificial bulk-
tissue RNA-sequencing samples (1000 samples per indi-
vidual). Prior to generation of training data, single-nucleus 

RNA-sequencing counts per cell were normalised using the 
total counts over all genes, ensuring that every cell had the 
same total count after normalisation. Thereafter, artificial 
bulk-tissue RNA-sequencing samples were simulated using 
the Scaden bulk_simulation.py script, which sub-samples 
cells from input single-nucleus RNA-sequencing data and 
then aggregates expression across sub-sampled cells. Here, 
1000 cells were used per simulated sample. Artificial bulk-
tissue RNA-sequencing samples were combined and stored 
in a h5ad file, using the Scaden create_h5ad_file.py script. To 
ensure generated training data and bulk-tissue RNA-sequenc-
ing samples (in the form of counts normalised by library size) 
for prediction shared the same features (genes) and feature 
scale, both datasets were pre-processed with scaden process 
(the two datasets shared a total of 13,191 genes following 
processing). Following this, each of the three Scaden ensem-
ble models was independently trained (scaden train) for 5000 
steps, as recommended by the developers to prevent overfit-
ting, using the default values for batch size and learning rate 
[76]. Finally, predictions for cell-type proportions were made 
with scaden predict.

Replication of predicted cell-type proportions was per-
formed using a second independent PD case–control dataset 
accessed from recount2 (see “Processing of PD case–control 
replication dataset”). As the Scaden algorithm requires that 
training data and prediction data have a perfect overlap of 
features, it was necessary to re-perform pre-processing with 
scaden process (using library-normalised counts from the 
replication dataset; the two datasets shared a total of 14,094 
genes following processing) and to train a new model (using 
the same parameters as previously). In both datasets, sig-
nificant differences in cell-type proportions between disease 
groups were a two-sided Wilcoxon rank sum test, with FDR-
correction for multiple testing.

Bulk‑tissue RNA‑sequencing covariate selection

Sources of variation in bulk-tissue RNA-sequencing data 
were identified using principal component analysis (PCA) 
performed on gene-level expression filtered to include only 
genes with count > 0 in all samples (28,692 genes) and trans-
formed with DESeq2’s vst(), which applies a variance sta-
bilising transformation. RIN and age of death were signifi-
cantly correlated with the first and second PC, respectively. 
Furthermore, cell-type proportions for excitatory and inhibi-
tory neurons, microglia and astrocytes were significantly 
correlated with the first, third and fourth PC, respectively. 
Thus, the final model for differential expression and splic-
ing (referred to as the “cell-type- and covariate-corrected” 
model) consisted of the disease group and the top 4 PCs 
(which collectively explained 52.6% of the total variance).

To explore the effect of accounting for cell-type propor-
tions, vst-transformed gene expression was batch-corrected 

https://github.com/RHReynolds/RNAseqProcessing
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using the final “cell-type- and covariate-corrected” model 
or a minimised “covariate-corrected” model consisting of 
disease group, age of death, RIN and sex. Samples were 
thereafter plotted by their first two principal components 
to determine how well disease groups separated (Supple-
mentary Fig. 6). Batch correction was performed using the 
removeBatchEffect() function from the R package, limma (v 
3.42.2) [91]. Prior to correction, covariates to be used in the 
model were scaled to ensure that variables that are measured 
on different scales (e.g. age of death vs RIN) are comparable.

As in the original study [37], the final model for the rep-
lication dataset (see “Processing of PD case–control replica-
tion dataset”) included disease group and the covariates age 
of death, RIN and post-mortem interval (PMI). In addition, 
cell-type proportions for all cell types were included in the 
final model, as these were significantly correlated with sev-
eral of the top 8 PCs.

Differential gene expression

Single‑nucleus RNA‑sequencing

We used Model-based Analysis of Single-cell Transcrip-
tomics (MAST, v 1.12.0), a method specifically designed 
to carry out differential expression analysis, on our single-
nucleus RNA-sequencing data [40]. MAST is a two-part, 
generalised linear model. The first part of the model uses 
logistic regression to model whether a gene is expressed i.e. 
the discrete rate of expression of each gene over the back-
ground of other transcripts. The second part of the model 
models the level of expression (conditional on whether a 
gene is expressed in a cell) using a Gaussian linear model. 
Information from both parts of the model are combined to 
model changes in gene expression levels and with control 
for multiple sources of variation, such as cell–cell varia-
tion. MAST also models the cellular detection rate, which is 
defined as the fraction of genes that are detectably expressed 
in each cell. The cellular detection rate acts as a substitution 
for both technical and biological factors, such as dropout, 
cell volume and other extrinsic factors that could influence 
gene expression. Controlling for the cellular detection rate 
improves the sensitivity (true positive rate) and specificity 
(true negative rate) of MAST in the presence of confound-
ing between the cellular detection rate and true biological 
signals.

To perform differential expression, cell-type-specific 
nuclei from each of the 28 filtered sample count matrices (see 
“Single-nucleus RNA-sequencing data processing”) were 
merged to create 7 cell-type count matrices. Genes that were 
expressed in ≤ 3 nuclei were removed from the analysis. Fol-
lowing this, differential expression analysis was performed 
separately for each cell type, across all pairwise combina-
tions of the disease groups (n = 6). A likelihood ratio test was 

used, with age of death, post-mortem interval (PMI), and sex 
included as covariates. Genes with FDR < 0.05 and absolute 
fold-change > 1.5 were considered significant.

Bulk‑tissue RNA‑sequencing

Bulk-tissue differential gene expression was assessed using 
the DESeq2 R package (v 1.26.0) and gene-level expression 
filtered to include only genes with count > 0 in all samples 
(28,692 genes) [68]. With one exception (the maximum 
number of iterations allowed for convergence, maxit = 1000), 
default parameters were used, including the default Wald 
test of significance. Differentially expressed genes were 
identified in a pairwise manner, controlling for covariates 
identified using gene-level expression (see “Bulk-tissue 
RNA-sequencing covariate selection”). Multiple testing was 
performed by FDR-correction, with a cutoff of FDR < 0.05 
applied for significance.

Differential splicing analysis

Differential splicing was assessed using Leafcutter (v 0.2.8), 
which detects splicing variation using sequencing reads with 
a gapped alignment to the genome (here, termed junction 
reads) [65]. Junction reads, which are presumed to repre-
sent intron excision events, are used to quantify intron usage 
across samples without any reliance on existing reference 
annotation. Importantly, Leafcutter does not estimate iso-
form abundance or exon inclusion levels, but rather cap-
tures changes in local splicing events through construction 
of intron clusters, wherein overlapping introns are connected 
by the splice junction(s) they share. As input, splice junc-
tions outputted by STAR (SJ.out.tab) were first filtered to 
remove any regions that overlapped ENCODE blacklist 
regions (“Key resources”) [7] and thereafter converted to 
the .junc files used by Leafcutter for intron clustering. The 
conversion was performed using custom R code (convert_
STAR_SJ_to_junc() in https:// github. com/ RHRey nolds/ 
RNAse qProc essing). Intron clusters were defined using 
Leafcutter’s leafcutter_cluster.py with thresholds ensuring 
the removal of: (i) introns supported by < 30 junction reads 
across all 24 samples or < 0.1% of the total number of junc-
tion read counts for the entire cluster and (ii) introns of more 
than 1 Mb. This yielded a total of 43,544 clusters encom-
passing 152,298 introns that were used for further analy-
sis. Differentially spliced (DS) clusters were identified in a 
pairwise manner, controlling for covariates identified using 
gene-level expression (see “Bulk-tissue RNA-sequencing 
covariate selection”), and annotated to genes using exon files 
generated from GRch38 Ensembl v97 (with the Leafcutter 
helper script gtf_to_exons.R). As per Leafcutter default fil-
ters, only introns detected in ≥ 5 samples were tested and an 
intron cluster was only tested if detected in ≥ 3 individuals 

https://github.com/RHReynolds/RNAseqProcessing
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in each comparison group with an overall coverage of ≥ 20 
junction reads. p values were FDR-corrected for multiple 
testing and an intron cluster and its overlapping gene were 
considered differentially spliced if (i) FDR < 0.05 and (ii) the 
intron cluster contained at least one intron with an absolute 
delta percent-spliced-in value (|∆PSI|) ≥ 0.1. The latter filter 
was applied to improve the specificity of Leafcutter [106].

Annotation of differential splicing events

Introns within intron clusters were annotated using anno-
tate_junc_ref() from the R package Detecting Aberrant 
Splicing Events from RNA-sequencing (dasper, v 1.1.4) 
[117], which categorises junctions based on (i) whether the 
junction is present within the entire set of annotated introns 
or (ii) whether both, one of, or neither the donor and accep-
tor splice site precisely overlap the boundary of a known 
exon. For both checks, Ensembl v97 was used. When defin-
ing and clustering introns, leafcutter_cluster.py adds 1 bp 
to the end of a junction read; thus, to ensure optimal map-
ping to reference annotation, 1 bp was removed from all 
intron ends prior to use of annotate_junc_ref() using custom 
code (convert_leafcutter.R from https:// github. com/ RHRey 
nolds/ LBD- seq- bulk- analy ses). Junctions (and the introns 
they represent) were then classified into one of the follow-
ing categories: annotated, novel exon skip, novel combi-
nation, novel acceptor, novel donor, ambiguous gene and 
unannotated (“none”) (Supplementary Fig. 13). Annotated 
junctions are those that match the boundaries of an exist-
ing intron. Unannotated junctions have neither end over-
lapping a known exon. Novel acceptors and novel donors 
are junctions, where one end (acceptor or donor) matches 
the boundary of a known exon. Novel exon skip and novel 
combination junctions have both ends overlapping known 
exon boundaries, which are not part of the set of annotated 
introns. They are distinguished by whether their start or end 
overlaps exons derived from the same transcript. That is, for 
an event to be a novel exon skip, both the start and end must 
overlap an exon contained in the same transcript, whereas 
to be a novel combination, the start and end overlap exons 
are from different transcripts. Junctions that mapped to more 
than one gene (“ambiguous gene”) were not considered in 
downstream analyses.

Gene set enrichment

Functional enrichment of cell‑type‑specific differentially 
expressed genes

Functional term enrichment analysis for cell-type-specific 
differentially expressed genes from each pairwise compari-
son was performed using the overrepresentation analysis 
module from the R package implementation of WEB-based 

Gene SeT AnaLysis Toolkit (WebGestaltR, v 0.4.4) [67]. 
Two separate analyses were performed using (i) only non-
redundant Gene Ontology (GO) terms (which are generated 
by selecting the most general terms in each branch of the GO 
directed acyclic graph structure from all terms with 20–500 
genes) and (ii) 46 biological pathways associated with PD 
risk in a large-scale pathway-specific polygenic risk analy-
sis [12]. For both analyses, default values for WebGestalt 
parameters were used, which include a minimum and maxi-
mum overlap of 10 and 500, respectively. FDR-correction 
for multiple testing was performed, and significant pathways 
were those with FDR < 0.05.

Functional enrichment of differentially spliced genes

Gene set enrichment for GO terms was performed using 
enrichGO() and clusterCompare() from clusterProfiler (v 
3.14.3), which permit GO enrichment analysis (based on a 
hypergeometric distribution) and comparison across multi-
ple gene lists [115]. Two separate analyses were run using (i) 
all differentially spliced genes (FDR < 0.05, |∆PSI|> = 0.1) 
across each pairwise comparison in the discovery dataset 
and (ii) genes overlapping validated intron clusters with ≥ 1 
intron that shared the same direction of effect. In both anal-
yses, default parameters were used; these included FDR-
correction for multiple testing and filtering for terms with 
FDR < 0.05.

Functional enrichment of genes associated with bulk‑tissue 
gene expression principal components

Genes contributing to PC1, following batch correction of 
cell-type proportions (as described in “Bulk-tissue RNA-
sequencing covariate selection”), were extracted using 
get_pva_var() from the R package, factoextra (v 1.0.7). The 
top 100 genes contributing to gene-expression-derived PC1 
were used for gene set enrichment with enrichGO() from 
clusterProfiler [115]. Default parameters were used, which 
included FDR-correction for multiple testing and filtering 
for terms with FDR < 0.05.

Visualisation of GO term overlaps between analyses

Overlapping GO-derived pathway enrichments from each 
of the three analyses (i.e. single-nucleus differential expres-
sion, bulk-tissue differential splicing, and gene expression 
contributions to bulk-tissue PC1) were visualised using the 
ComplexHeatmap R package (v 2.7.7) [47]. Pathways from 
all three analyses were filtered to include only those that 
were shared across more than one type of analysis. Pathways 
were encoded by a binary 1 and 0 for present and absent, 
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respectively, permitting clustering of gene sets by Pearson 
correlation. Gene sets derived from differential splicing were 
collapsed across our own dataset and the replication dataset, 
resulting in one gene set per pairwise comparison. Like-
wise, gene sets derived from up- and down-regulated sin-
gle-nucleus DE gene sets were collapsed across cell types, 
resulting in 7 gene sets per pairwise comparison.

Reduction of GO terms using semantic similarity

To reduce redundancy across GO-derived pathway enrich-
ment analyses derived from various analyses (i.e. single-
nucleus differential expression, bulk-tissue differential 
splicing, genes contributing to bulk-tissue PC1), two steps 
were taken. First, GO terms were filtered to exclude terms 
with ≥ 20 genes or ≤ 2000 genes. Second, semantic simi-
larity of all enriched GO terms was calculated using mgo-
Sim() from the GOSemSim R package (v 2.17.1) [114] 
and a graph-based measure of semantic similarity (meas-
ure = “Wang”) [108]. Thereafter, reduceSimMatrix() from 
the rrvgo R package (v 1.1.4) was used to reduce terms [94]. 
This function reduces terms by generating a distance matrix 
from the semantic similarity scores, which is hierarchically 
clustered using complete linkage (a “bottom-up” cluster-
ing approach). Both steps were combined into the function 
go_reduce(), available at: https:// github. com/ RHRey nolds/ 
rutils. The hierarchical tree was then cut at a threshold of 
0.9 (leading to fewer groups), and the term with the highest 
semantic similarity score was used to represent each group 
of terms. This reduction was performed separately for each 
of the three analyses.

Cell‑type enrichment of differentially spliced genes

Expression-weighted cell-type enrichment (v 0.99.2) was 
used to determine whether differentially spliced genes dem-
onstrate higher expression in certain cell types than would 
be expected by chance [98]. EWCE requires two inputs: 
a gene list and gene cell-type specificity values derived 
from single-cell/nucleus data (here, termed a specificity 
matrix). Two sets of gene lists were run. The first set of 
gene lists included the top 100 differentially spliced genes 
(FDR < 0.05, |∆PSI|> = 0.1, ranked by p value) across each 
pairwise comparison in the discovery dataset. In the case, 
where a gene had multiple significant intron clusters, the 
most significant cluster with the highest |∆PSI| was used for 
ranking. The second set of gene lists included genes over-
lapping validated intron clusters with ≥ 1 intron that shared 
the same direction of effect. Both sets of gene lists were 
run together with gene cell-type specificity values separately 
derived from each disease group (i.e. control, PD, PDD and 
DLB); specificity matrices were generated for cell types in 
each disease group using the generate.cell.data() function of 

the EWCE package. For each combination of gene list and 
specificity matrix, 100,000 bootstrap replicates were used. 
Transcript length and GC-content biases were controlled by 
selecting bootstrap replicates with comparable properties to 
the target gene lists. Data are displayed as standard devia-
tions from the mean, which indicate the distance of the mean 
expression of the target gene list from the mean expression 
of the bootstrap replicates.

RNA‑binding protein binding motif analysis

Generating sequences

Two sets of sequences were generated per pairwise com-
parison. These sets included all differentially spliced introns 
(FDR < 0.05, |∆PSI|) and non-differentially spliced introns 
(FDR > 0.05), as defined by their 5′ and 3′ proximal intronic 
regions (500 nucleotides of proximal intron and 50 nucleo-
tides of exon flanking the 5′ and 3′ splice sites). A 5′ or 3′ 
splice site could be associated with more than one intron 
(e.g. in the case of two introns with the same 5′ splice site, 
but varying 3′ splice sites), and thus could be associated 
with more than one |∆PSI| value. In these cases, the highest 
|∆PSI| was assigned to the proximal intronic region.

Enrichment of RBP binding motifs

The position weight matrices (PWMs) of RBP binding 
motifs in humans were collected from the ATtRACT data-
base (v 0.99β) [45]. Motifs < 7 nucleotides in length and 
with a quality score of < 1 were removed to reduce false 
positives in the motif matches (quality score estimates the 
binding affinity between RBPs and binding sites). Further-
more, to remove redundancy between multiple motifs for 
one RBP, the longest available motif was selected. Finally, 
RBPs that had a median TPM of 0 in GTEx (v 8) anterior 
cingulate cortex samples were removed (e.g. RBMY1A1) 
[46]. This resulted in 82 unique PWMs, which were used 
to identify enrichment of RBP binding motifs. Analysis 
of Motif Enrichment (AME, v 5.1.1) [75] was used with 
default parameters (-scoring avg) to compare enrichment 
of RBP binding motifs between differentially spliced and 
non-differentially spliced proximal intronic regions. RBP 
binding motifs with an enrichment-optimised and Bonfer-
roni-adjusted p < 0.05 were considered to be significantly 
over-represented in differentially spliced proximal intronic 
regions compared with non-differentially spliced proximal 
intronic regions.

Integration with GWAS

To test for enrichment of genetic association of a gene 
set to a trait we employed two orthogonal methods, 

https://github.com/RHReynolds/rutils
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Hi–C-coupled Multi-marker Analysis of GenoMic Annota-
tion (H-MAGMA) [96] and stratified LD score regression 
(sLDSC) [41]. Both methods were run with two sets of 
annotations: (i) the top 10% most cell-type-specific genes, 
as determined using specificity values derived from EWCE 
(see “Cell-type enrichment of differentially spliced genes”) 
and (ii) cell-type-specific differentially expressed genes 
(FDR < 0.05, |log2(fold change)|>  log2(1.5)). These anno-
tations were run with 3 genome-wide association studies 
(GWASs), including Alzheimer’s disease (AD), Parkinson’s 
disease (PD) and Parkinson’s disease Age of Onset (PD 
AOO) (Table 1) [15, 54, 77] In both analyses, p values were 
FDR-corrected for the number of cell types tested.

H‑MAGMA

Hi–C-coupled MAGMA (H-MAGMA) (v 1.08b of 
MAGMA [63]) was used to carry out gene-set enrichment 
analysis using three GWAS summary statistics. Gencode 
v26 (“Key resources”) was used to assign exonic SNPs and 
promoter SNPs, which is defined as 2 kb upstream of the 
transcription start site (TSS), to their target genes based on 
their genomic location. Chromatin interactions to exons and 
promoters generated from Hi–C performed on adult dorso-
lateral prefrontal cortex, were used to assign intergenic and 
intronic SNPs to their cognate genes [96]. Gene-level asso-
ciation statistics were computed using window coordinates 
of 10 kb downstream and 35 kb upstream.

sLDSC

Stratified LDSC (v 1.0.1) was used to test whether cell-type-
specific DE genes or the top 10% most cell-type-specific 
genes contributed to the common SNP heritability of AD, 
PD or PD AOO [24, 42]. To ensure gene lists were suf-
ficiently large, only gene lists with more than 20 genes 
were run. Gene coordinates (Ensembl v97, GRCh38) were 
extended by 100 kb upstream and downstream of their tran-
scription start and end site, to capture regulatory elements 
that might contribute to disease heritability [42]. All annota-
tions were constructed in a binary format (1 if the SNP was 
present within the annotation and 0 if not), using all SNPs 
with a minor allele frequency > 5%. Annotations were then 

added individually to the baseline model of 53 annotations 
provided by Finucane et al. (v 1.2, GRCh38), comprising 
genome-wide annotations reflecting genetic architecture. 
As annotations and the baseline model were mapped to 
GRCh38, all GWAS summary statistics were converted 
from GRCh37 to GRCh38 using the R implementation of 
the LiftOver tool, which is available from the rtracklayer 
package (v 1.46.0) [62]. HapMap Project Phase 3 (Hap-
Map3) SNPs and 1000 Genomes Project Phase 3 European 
population SNPs were used for the regression and LD refer-
ence panels, respectively [1, 51]. The MHC region (chr6: 
25,000,000–34,000,000, GRCh38) was excluded from all 
analyses owing to the complex and long-range LD patterns 
in this region. For all stratified LDSC analyses, we report a 
one-tailed p value (coefficient p value) based on the coeffi-
cient z-score outputted by stratified LDSC. A one-tailed test 
was used as we were only interested in annotation categories 
with a significantly positive contribution to trait heritability, 
conditional upon the baseline model.

Key resources

Resource Source/reference Identifier/URL

Biological Samples
Frozen human 

anterior cingulate 
cortex samples

Parkinson’s UK Tis-
sue Bank

Critical Commercial Assays
Chromium Single 

Cell 3’ Gene 
Expression Kit, v2

10 × Genomics PN-120237

Qubit dsDNA HS 
Assay Kit

ThermoFisher Q32851

Bioanalyzer High-
Sensitivity DNA 
Kit

Agilent 5067-4627

QIAzol Qiagen 79306
RNeasy 96 Kit Qiagen 74181
TruSeq Stranded 

mRNA Library 
Prep Kit

Illumina 20020594

Table 1  Summary of GWAS 
datasets

AD Alzheimer’s disease, PD Parkinson’s disease

Disease First author, year N cases N controls PMID References

AD Jansen, 2019 71,880 383,378 30617256 [54]
PD—risk Nalls, 2019 (excluding 

23 and Me contribu-
tions)

33,674 (18,618 proxy 
cases from UK 
Biobank)

449,056 31701892 [77]

PD—age of onset Blauwendraat, 2019 17,415 30957308 [15]
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Resource Source/reference Identifier/URL

xGen UDI-UMI 
Adapters, 1–96

Integrated DNA 
Technologies

10005903

Deposited Data
ATtRACT database 

(v 0.99β)
Giudice et al., 2016 

[45]
https:// attra ct. cnic. es/ 

index
Cell-type marker 

genes
Wang et al., 2018 http:// resou rce. psych 

encode. org/ (DER-
21_Single_cell_
markergenes_UMI.
xlsx)

ENCODE blacklist 
regions (v 2)

Amemiya et al., 
2019 [7]

https:// github. com/ 
Boyle- Lab/ Black list/ 
blob/ master/ lists/ 
hg38- black list. v2. 
bed. gz

Ensembl GRCh38 
Ensembl v97

Ensembl genome 
browser

ftp:// ftp. ensem bl. 
org/ pub/ relea se- 97/ 
gtf/ homo_ sapie 
ns/ Homo_ sapie ns. 
GRCh38. 97. gtf. gz

H-MAGMA: Hi-C 
gene-SNP pairs for 
adult dorsolateral 
prefrontal cortex

Sey et al., 2020 [96] https:// github. com/ 
thewo nlab/H- 
MAGMA/ blob/ 
master/ Input_ Files/ 
Adult_ brain. genes. 
annot

Gencode v26 https:// www. genco 
degen es. org/ human/ 
relea se_ 26lif t37. html

GTEx portal (v 8) GTEx Consortium, 
2015 [46]

https:// www. gtexp ortal. 
org/

LDSC baseline 
annotations (v 1.2)

Finucane et al., 2015 
[41]

https:// data. broad insti 
tute. org/ alkes group/ 
LDSCO RE/

PD-associated genes Blauwendraat et al., 
2020 [16]

PD-associated path-
ways

Bandres-Ciga et al., 
2020 [12]

https:// pdgen etics. shiny 
apps. io/ pathw aysbr 
owser/

Recount2 Collado-Torres et al., 
2015 [32]

https:// jhubi ostat istics. 
shiny apps. io/ recou nt/

Software and Algorithms
Analysis of Motif 

Enrichment (AME, 
v 5.1.1)

McLeay et al., 2010 
[75]

http:// meme- suite. org/ 
doc/ ame. html? man_ 
type= web

Bulk-tissue RNA-
sequencing 
pipeline

https:// github. com/ 
RHRey nolds/ RNAse 
qProc essing

Cell Ranger (v 3.0.2) 10 × Genomics https:// suppo rt. 10xge 
nomics. com/ single- 
cell- gene- expre ssion/ 
softw are/ pipel ines/ 
latest/ insta llati on

clusterProfiler (v 
3.14.3)

Yu et al., 2012 [115] https:// github. com/ 
YuLab- SMU/ clust 
erPro filer

Conos (v 1.1.2) Barkas et al., 2019 
[13]

https:// github. com/ 
kharc henko lab/ conos

Resource Source/reference Identifier/URL

ComplexHeatmap (v 
2.7.7)

Gu et al., 2016 [47] https:// github. com/ 
joker goo/ Compl 
exHea tmap

DESeq2 (v 1.26.0) Love et al., 2014 
[68]

https:// github. com/ 
mikel ove/ DESeq2

Detecting Aber-
rant Splicing 
Events from 
RNA-sequencing 
(dasper, v 1.1.4)

Zhang et al., 2021 
[117]

https:// github. com/ 
dzhan g32/ dasper

DoubletFinder (v 
2.0.2)

McGinnis et al., 
2019 [72]

https:// github. com/ 
chris- mcgin nis- ucsf/ 
Doubl etFin der

DropletUtils (v 
1.6.1)

Lun et al., 2019 [69] https:// github. com/ 
Mario niLab/ Dropl 
etUti ls

EWCE (v 0.99.2) Skene et al., 2016 
[98]

https:// github. com/ 
Natha nSkene/ EWCE

Factoextra (v 1.0.7) https:// github. com/ 
kassa mbara/ facto 
extra

Fastp (v 0.20.0) Chen et al., 2018 
[28]

https:// github. com/ 
OpenG ene/ fastp

FastQC (v 0.11.8) Andrews et al., 2010 
[8]

http:// www. bioin forma 
tics. babra ham. ac. uk/ 
proje cts/ fastqc/

GoSemSim (v 
2.17.0)

Yu et al., 2010 [114] https:// github. com/ 
YuLab- SMU/ GOSem 
Sim

ggplot2 (v 3.3.2) https:// ggplo t2. tidyv 
erse. org/

LDSC (v 1.0.1) Bulik-Sullivan et al., 
2015 [23]

https:// github. com/ 
bulik/ ldsc

Leafcutter (v 0.2.8) Li et al., 2018 [65] https:// github. com/ 
david aknow les/ leafc 
utter/

Limma (v 3.42.2) Ritchie et al., 2015 
[91]

https:// github. com/ 
cran/ limma

MAGMA (v 1.0.8b) de Leeuw et al., 
2015 [63]

https:// ctg. cncr. nl/ softw 
are/ magma

MashMap2 (v 2.0) Jain et al., 2018 [53] https:// github. com/ 
marbl/ MashM ap

MAST (v 1.12.0) Finak et al., 2015 
[40]

https:// github. com/ 
RGLab/ MAST/

recount (v 1.11.8) Collado-Torres et al., 
2015 [32]

https:// github. com/ 
leekg roup/ recou nt

rrvgo (v 1.1.4) Sayols et al., 2020 
[94]

https:// ssayo ls. github. 
io/ rrvgo/

RSeQC (v 2.6.4) Wang et al., 2012 
[111]

http:// rseqc. sourc 
eforge. net/

rtracklayer (v 1.46.0) Lawrence et al., 
2009 [62]

https:// github. com/ 
lawre mi/ rtrac klayer

rutils (v 0.99.2) https:// github. com/ 
RHRey nolds/ rutils

Salmon (v 0.14.1) Patro et al., 2017 
[86]

https:// salmon. readt 
hedocs. io/ en/ latest/ 
index. html

https://attract.cnic.es/index
https://attract.cnic.es/index
http://resource.psychencode.org/
http://resource.psychencode.org/
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz
ftp://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/Homo_sapiens.GRCh38.97.gtf.gz
ftp://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/Homo_sapiens.GRCh38.97.gtf.gz
ftp://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/Homo_sapiens.GRCh38.97.gtf.gz
ftp://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/Homo_sapiens.GRCh38.97.gtf.gz
ftp://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/Homo_sapiens.GRCh38.97.gtf.gz
https://github.com/thewonlab/H-MAGMA/blob/master/Input_Files/Adult_brain.genes.annot
https://github.com/thewonlab/H-MAGMA/blob/master/Input_Files/Adult_brain.genes.annot
https://github.com/thewonlab/H-MAGMA/blob/master/Input_Files/Adult_brain.genes.annot
https://github.com/thewonlab/H-MAGMA/blob/master/Input_Files/Adult_brain.genes.annot
https://github.com/thewonlab/H-MAGMA/blob/master/Input_Files/Adult_brain.genes.annot
https://github.com/thewonlab/H-MAGMA/blob/master/Input_Files/Adult_brain.genes.annot
https://www.gencodegenes.org/human/release_26lift37.html
https://www.gencodegenes.org/human/release_26lift37.html
https://www.gencodegenes.org/human/release_26lift37.html
https://www.gtexportal.org/
https://www.gtexportal.org/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://pdgenetics.shinyapps.io/pathwaysbrowser/
https://pdgenetics.shinyapps.io/pathwaysbrowser/
https://pdgenetics.shinyapps.io/pathwaysbrowser/
https://jhubiostatistics.shinyapps.io/recount/
https://jhubiostatistics.shinyapps.io/recount/
http://meme-suite.org/doc/ame.html?man_type=web
http://meme-suite.org/doc/ame.html?man_type=web
http://meme-suite.org/doc/ame.html?man_type=web
https://github.com/RHReynolds/RNAseqProcessing
https://github.com/RHReynolds/RNAseqProcessing
https://github.com/RHReynolds/RNAseqProcessing
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation
https://github.com/YuLab-SMU/clusterProfiler
https://github.com/YuLab-SMU/clusterProfiler
https://github.com/YuLab-SMU/clusterProfiler
https://github.com/kharchenkolab/conos
https://github.com/kharchenkolab/conos
https://github.com/jokergoo/ComplexHeatmap
https://github.com/jokergoo/ComplexHeatmap
https://github.com/jokergoo/ComplexHeatmap
https://github.com/mikelove/DESeq2
https://github.com/mikelove/DESeq2
https://github.com/dzhang32/dasper
https://github.com/dzhang32/dasper
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/MarioniLab/DropletUtils
https://github.com/MarioniLab/DropletUtils
https://github.com/MarioniLab/DropletUtils
https://github.com/NathanSkene/EWCE
https://github.com/NathanSkene/EWCE
https://github.com/kassambara/factoextra
https://github.com/kassambara/factoextra
https://github.com/kassambara/factoextra
https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/YuLab-SMU/GOSemSim
https://github.com/YuLab-SMU/GOSemSim
https://github.com/YuLab-SMU/GOSemSim
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
https://github.com/davidaknowles/leafcutter/
https://github.com/davidaknowles/leafcutter/
https://github.com/davidaknowles/leafcutter/
https://github.com/cran/limma
https://github.com/cran/limma
https://ctg.cncr.nl/software/magma
https://ctg.cncr.nl/software/magma
https://github.com/marbl/MashMap
https://github.com/marbl/MashMap
https://github.com/RGLab/MAST/
https://github.com/RGLab/MAST/
https://github.com/leekgroup/recount
https://github.com/leekgroup/recount
https://ssayols.github.io/rrvgo/
https://ssayols.github.io/rrvgo/
http://rseqc.sourceforge.net/
http://rseqc.sourceforge.net/
https://github.com/lawremi/rtracklayer
https://github.com/lawremi/rtracklayer
https://github.com/RHReynolds/rutils
https://github.com/RHReynolds/rutils
https://salmon.readthedocs.io/en/latest/index.html
https://salmon.readthedocs.io/en/latest/index.html
https://salmon.readthedocs.io/en/latest/index.html
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Resource Source/reference Identifier/URL

Seurat (v 3.2.0) Stuart et al. 2019 
[103]

https:// github. com/ satij 
alab/ seurat/

Scaden (v 0.9.2) Menden et al., 2020 
[76]

https:// github. com/ 
Kevin Menden/ scaden

STAR (v 2.7.0a) Dobin et al., 2013 
[35]

https:// github. com/ 
alexd obin/ STAR

Tximport (v 1.14.2) Soneson et al., 2015 
[101]

https:// github. com/ 
mikel ove/ tximp ort

UMAP (v 0.1.10) McInnes et al., 2018 
[73]

https:// github. com/ 
lmcin nes/ umap

WebGestaltR (v 
0.4.4)

Liao et al. [67] https:// github. com/ 
bzhan glab/ WebGe 
staltR

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00401- 021- 02343-x.
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