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Abstract

Background: Research in mental health has found associations between depression and individuals’ behaviors and statuses,
such as social connections and interactions, working status, mobility, and social isolation and loneliness. These behaviors and
statuses can be approximated by the nearby Bluetooth device count (NBDC) detected by Bluetooth sensors in mobile phones.

Objective: This study aimed to explore the value of the NBDC data in predicting depressive symptom severity as measured via
the 8-item Patient Health Questionnaire (PHQ-8).
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Methods: The data used in this paper included 2886 biweekly PHQ-8 records collected from 316 participants recruited from
three study sites in the Netherlands, Spain, and the United Kingdom as part of the EU Remote Assessment of Disease and
Relapse-Central Nervous System (RADAR-CNS) study. From the NBDC data 2 weeks prior to each PHQ-8 score, we extracted
49 Bluetooth features, including statistical features and nonlinear features for measuring the periodicity and regularity of individuals’
life rhythms. Linear mixed-effect models were used to explore associations between Bluetooth features and the PHQ-8 score.
We then applied hierarchical Bayesian linear regression models to predict the PHQ-8 score from the extracted Bluetooth features.

Results: A number of significant associations were found between Bluetooth features and depressive symptom severity. Generally
speaking, along with depressive symptom worsening, one or more of the following changes were found in the preceding 2 weeks
of the NBDC data: (1) the amount decreased, (2) the variance decreased, (3) the periodicity (especially the circadian rhythm)
decreased, and (4) the NBDC sequence became more irregular. Compared with commonly used machine learning models, the

proposed hierarchical Bayesian linear regression model achieved the best prediction metrics (R2=0.526) and a root mean squared
error (RMSE) of 3.891. Bluetooth features can explain an extra 18.8% of the variance in the PHQ-8 score relative to the baseline

model without Bluetooth features (R2=0.338, RMSE=4.547).

Conclusions: Our statistical results indicate that the NBDC data have the potential to reflect changes in individuals’ behaviors
and statuses concurrent with the changes in the depressive state. The prediction results demonstrate that the NBDC data have a
significant value in predicting depressive symptom severity. These findings may have utility for the mental health monitoring
practice in real-world settings.

(JMIR Mhealth Uhealth 2021;9(7):e29840) doi: 10.2196/29840
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Introduction

Existing studies have demonstrated that depression is
significantly associated with individuals’behaviors and statuses,
such as social connections and interactions, working status,
mobility, and social isolation and loneliness [1-4]. For example,
individuals reporting fewer social network connections or less
social support tend to have higher depressive symptomatology
[1]. As the depressive mood and medical comorbidity can make
people unable to work, the unemployment rate in depression is
high [2]. Reduced mobility and physical activity are associated
with depressive symptoms [3]. Loneliness is a specific risk
factor for depression, and a significant proportion of suicides
have a history of social isolation [1,4]. Although these findings
have been replicated in different populations, these studies relied
on participant self-report, which is susceptible to recall bias and
typically does not capture dynamic information [5].

Mobile phone technology provides an unobtrusive, continuous,
and cost-efficient means to capture individuals’ daily behaviors
and statuses using a number of embedded sensors, such as
accelerometers, GPS sensors, and Bluetooth sensors [6]. The
embedded Bluetooth sensor can be used to record individuals’
local proximity information, such as the nearby Bluetooth device
count (NBDC) that includes the Bluetooth signal of other phone
users [7]. The continuously recorded NBDC data represents a
mixed signal that has been used to estimate individuals’
behaviors and statuses, including face-to-face social interactions
[8-10], working status [11], mobility [12], and isolation and
loneliness [13,14]. Therefore, the NBDC data have the potential
to reflect changes in people’s behaviors and statuses during the
depressive state.

There have been a few studies exploring the relationship
between the NBDC data and depression directly. Wang et al

found a negative association (r=−0.362, P=.03) between the
NBDC and self-reported depressive symptoms on the
StudentLife data set, which contained mobile phone data from
48 students across a 10-week term at Dartmouth College [15].
Boonstra et al illustrated the feasibility of collecting nearby
Bluetooth device information for the depression recognition
task, but they did not provide further findings [5].

Several recent studies have investigated the relationships
between Bluetooth proximity data and mental health [16-18].
Moturu et al found that individuals with lower sociability
(estimated by the NBDC) tend to report lower mood more often
[16]. Bogomolov et al established machine learning models to
recognize happiness and stress with features of Bluetooth
records, calls, and text messages, which obtained accuracy rates
of 80.81% and 72.28%, respectively [17,18]. The above three
studies were all performed on the “Friends and Family” data
set, including 8 weeks of mobile phone data from 117
participants living in a major US university’s married graduate
student residency.

Previous studies [15-18] have been performed on relatively
small (approximately 100 participants) homogeneous (eg,
university students) cohorts of participants over relatively short
periods (8-10 weeks), which may limit their generalizability.
Besides, Bluetooth features used in these studies [15-18] have
been limited to basic statistical features (eg, sum, mean, and
standard deviation), which are unable to characterize some
nonlinear aspects (such as complexity, regularity, and
periodicity) of the Bluetooth data. These nonlinear
characteristics can reflect individuals’ life rhythms, such as
circadian and social rhythms, which are affected by depressive
symptoms [19]. Therefore, the associations between the NBDC
data and depression are yet to be fully explored.
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In this paper, we aimed to explore the value of the NBDC data
in predicting self-reported depressive symptom severity in a
relatively large cohort of individuals with a history of recurrent
major depressive disorder. Our first objective was to explore
the associations between statistical Bluetooth features and
depressive symptom severity. Our second objective was to
extract nonlinear features for quantifying complexity, regularity,
and periodicity from the NBDC data and test their associations
with depression. The third objective was to leverage appropriate
machine learning models to predict the severity of depressive
symptoms using extracted Bluetooth features.

Methods

Data Set

Study Participants and Settings
The data used in this study were collected from a major EU
Innovative Medicines Initiative (IMI) research program Remote
Assessment of Disease and Relapse-Central Nervous System
(RADAR-CNS) [20]. The project aimed to investigate the use
of remote measurement technologies (RMTs) to monitor people
with depression, epilepsy, and multiple sclerosis in real-world
settings. The study protocol for the depression component
(Remote Assessment of Disease and Relapse-Major Depressive
Disorder; RADAR-MDD) has been described in detail by
Matcham et al [21]. The RADAR-MDD project aimed to recruit
600 participants with a recent history of depression from three
study sites in Spain (Centro de Investigación Biomédican en
Red [CIBER], Barcelona), the Netherlands (Vrije Universiteit
Medisch Centrum [VUmc], Amsterdam]), and the United
Kingdom (King’s College London [KCL]). Recruitment
procedures varied slightly across sites with eligible participants
identified through existing research infrastructures (in KCL and
VUmc) where consent to be contacted for research purposes
exists; advertisements in general practices, psychologist
practices, and newspapers; Hersenonderzoek.nl [22], a Dutch
online registry (VUmc); and mental health services (in KCL
and CIBER) [21].

Participants were asked to install passive and active remote
monitoring technology (pRMT and aRMT, respectively) apps
and use an activity tracker for up to 2 years of follow-up. Many
categories of passive and active data were collected and
uploaded to an open-source platform, RADAR-base [23].

As the purpose of this paper was to explore the value of the
NBDC data in predicting self-reported depressive symptom
severity, we focused on the NBDC data, 8-item Patient Health
Questionnaire (PHQ-8) data [24], and baseline demographics.
However, according to our previous research, the COVID-19

pandemic and related lockdown policies greatly impacted the
behaviors (particularly mobility, social interactions, and working
environment [working from home]) of European people [25].
To exclude the impact of the COVID-19 pandemic, we
performed a preliminary analysis with the data before February
2020.

PHQ-8 Data
The variability of each participant’s depressive symptom
severity was measured via the PHQ-8, conducted by mobile
phones every 2 weeks. The PHQ-8 score ranges from 0 to 24
(increasing severity) [24]. According to the PHQ-8 score, the
severity of depression can usually be divided into the following
five levels: asymptomatic (PHQ-8 <5), mild (5 ≤ PHQ-8 < 10),
moderate (10 ≤ PHQ-8 < 15), moderately severe (15 ≤ PHQ-8
< 20), and severe (PHQ-8 ≥20) [24].

NBDC Data
The RADAR-base pRMT app scanned other Bluetooth devices
in the participant’s physical proximity once every hour. To
avoid privacy leaks from participants and passers, the Media
Access Control (MAC) address and types of Bluetooth devices
were not recorded in this study. The NBDC was uploaded to
the RADAR-base platform for further analyses.

Figure 1 is a schematic diagram showing an individual’s NBDC
in different scenarios in daily activities and life. At home, the
NBDC is related to the number of family members and
Bluetooth devices in the house, reflecting the participant’s
connections with family (whether living alone) and the number
of other Bluetooth devices. In public transportation (such as the
train, subway, and bus), the NBDC is affected by the number
of surrounding passengers’ Bluetooth devices, reflecting the
participant’s social connections with strangers. Studies have
shown that whether feeling comfortable in the presence of
strangers is related to the intensity of social connections [26].
In the company, the NBDC can reflect the participant’s social
connections and interactions with co-workers. After work, the
NBDC can reflect whether the participant joins other social
activities, such as going to the park or bar. Therefore, the NBDC
data contain information about participants’ social connections
and interactions with family, friends, co-workers, and strangers,
and the data can also reflect participants’ time at home, mobility,
social isolation, and working status, as well as the number of
other Bluetooth devices in the house and working environment.

Figure 2 shows an example of two NBDC sequences collected
over 14 days (336 hours) before two PHQ-8 records from one
participant at two different depression severity levels (mild vs
moderately severe).
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Figure 1. A schematic diagram showing an individual’s nearby Bluetooth devices count (NBDC) in different scenarios in daily activities and life.

Figure 2. An example of two 14-day nearby Bluetooth devices count (NBDC) sequences from the same participant at the mild depression level (A)
and moderately severe level (B). PHQ-8: 8-item Patient Health Questionnaire.

Demographics
Participants’demographics were recorded during the enrollment
session. According to previous studies [27,28], baseline age,
gender, and education level were considered as covariates in
our analyses. Due to the different educational systems in the
three countries in our data set, we used the number of years in
education to represent education level.

Data Inclusion Criteria and Data Preprocessing
For each PHQ-8 record, we considered a “PHQ-8 interval” of
14 days before the day when the participant fills in the PHQ-8
questionnaire, as the PHQ-8 score is used to represent the
depressive symptom severity of the participant for the past 2
weeks. To reduce the impact of the COVID-19 pandemic and
missing data on our analysis, we specified the following two
data inclusion criteria:

1. As mentioned in the data set section, to exclude the impact
of the COVID-19 pandemic, we restricted our analysis to
PHQ-8 records prior to February 2020.

2. Saeb et al [29] and Farhan et al [30] used 50% as each day’s
completeness threshold for passive data. In our data set,

89.62% of days have 50% (12 hours) or more of the NBDC
data. We considered one day as a “valid day” if it contained
at least 12 hours of the NBDC data. Then, we empirically
selected PHQ-8 intervals with at least 10 valid days as valid
PHQ-8 intervals to retain the majority (81.78%) of PHQ-8
intervals.

For the NBDC sequence in each selected PHQ-8 interval, we
used linear interpolation to impute the missing hours in all valid
days and discarded the NBDC data that did not belong to a valid
day. The “NBDC sequence” in the rest of this paper refers to
the preprocessed NBDC data in the 14-day PHQ-8 interval.

Feature Extraction
According to past Bluetooth-related research [15-18] and
research on nonlinear features of signal processing [31,32], we
extracted 49 Bluetooth features from the NBDC sequence in
the PHQ-8 interval in the following three categories:
second-order statistics, multiscale entropy (MSE), and frequency
domain (FD). Table 1 summarizes all Bluetooth features
extracted in this paper.
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Table 1. Summary of 49 Bluetooth features used in this paper and their short descriptions.

Number of
features
(N=49)

DescriptionAbbreviationCategory

16Second-order features (max, min, mean, and standard deviation)

calculated in the PHQ-8a interval based on daily statistical
Bluetooth features (max, min, mean, and standard deviation).

[Second-order feature]_[Daily feature], eg,
Max_Mean

Statistical features

24Multiscale entropy of the NBDCb sequences from scale 1 to
scale 24.

MSE_1, MSE_2, …, MSE_24Multiscale entropy
(MSE)

3The sums of spectrum power in LF, MF, and HF.LF_sum, MF_sum, HF_sumFrequency do-

mainc

3The percentages of spectrum power in LF, MF, and HF to the
total spectrum power.

LF_pct, MF_pct, HF_pctFrequency domain

3Spectral entropy in LF, MF, and HF.LF_se, MF_se, HF_seFrequency domain

aPHQ-8: 8-item Patient Health Questionnaire.
bNBDC: nearby Bluetooth device count.
cLF: low frequency (0-0.75 cycles/day); MF: middle frequency (0.75-1.25 cycles/day); HF: high frequency (>1.25 cycles/day).

Second-Order Statistical Features
We first calculated four daily features (max, min, mean, and
standard deviation) of daily NBDC data from all valid days in
the PHQ-8 interval. For each daily feature, we calculated four
second-order features (max, min, mean, and standard deviation)
to reflect the amount and variance of the NBDC in the PHQ-8
interval. These features were denoted in the following format:
[Second-order feature]_[Daily feature]. For example, the average
value of the daily maximum number of the NBDC in the PHQ-8
interval was denoted as Mean_Max. A total of 16 second-order
statistical features were extracted.

Nonlinear Bluetooth Features
The second-order statistical features can only reflect the amount
(max, min, and mean) and variance (standard deviation) of the
NBDC data. To exploit more information embedded in the
NBDC data, we proposed MSE and FD features to measure the
nonlinear characteristics, such as regularity, complexity, and
periodicity, of the NBDC sequence.

Multiscale Entropy Features

MSE analysis has been used to provide insights into the
complexity and periodicity of signals over a range of timescales
since the method was proposed by Costa et at [31]. It has been
widely used in the field of signal analysis, such as heart rate

variability analysis [33], electroencephalogram analysis [34],
and gait dynamics analysis [35]. Compared with other entropy
techniques (eg, sample entropy and approximate entropy), the
advantage of MSE analysis is that the assessments of complexity
at shorter and longer timescales can be analyzed separately [36].
The MSE at short timescales reflects the complexity of the
sequence. The larger the MSE at short timescales, the more
chaotic and irregular the signal. The MSE at relatively long
timescales assesses fluctuations occurring at a certain period,
reflecting the periodicity of the signal.

To explore the complexity and periodicity of the NBDC
sequence on different timescales (from 1 hour to 24 hours), we
calculated MSE features of the NBDC sequences from scale 1
to scale 24, denoted as MSE_1, MSE_2, …, MSE_24. Figure 3
shows an example of MSE features calculated on two NBDC
sequences at different depression severity levels from the same
participant shown in Figure 2. In this example, the NBDC
sequence at the mild depression level (PHQ-8=7) has lower
MSE at relatively short timescales (scale 1-3) and higher MSE
at relatively long timescales than the sequence at the moderately
severe depression level (PHQ-8=15). This indicated that this
participant’s NBDC sequence at the mild depression level was
more regular and periodic than the NBDC sequence at the
moderately severe depression level.
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Figure 3. An example of multiscale entropy (scale 1-24) of two 14-day nearby Bluetooth device count (NBDC) sequences at the mild depression level
(blue) and the moderately severe level (orange) from the same participant as in Figure 2. PHQ-8: 8-item Patient Health Questionnaire.

FD Features

FD analysis has been widely used in the signal processing field,
especially for signals with periodic characteristics [32]. People’s
behaviors follow a quasiperiodic routine, such as sleeping at
night, working on weekdays, and gathering with friends on
weekends [19,37]. We therefore leveraged FD analysis to
explore the periodic patterns in the NBDC data. Fast Fourier
transformation (FFT) was performed to transform the NBDC
sequence from the time domain to the FD. We set the sample
rate to 24 hours, and then, the spectrum generated by FFT had
the frequency axis scaled to reflect cycles per day.

Figure 4 is an example of a NBDC sequence in the time domain
and its spectrum in the FD. According to the spectrum’s
definition, spectrum power around 1 cycle per day reflects the
participant’s circadian rhythm (approximately 24-hour rhythm)

[19]. To explore the periodic rhythms of different period lengths,
we empirically defined the following three frequency intervals:
low frequency (LF) (0-0.75 cycles/day), middle frequency (MF)
(0.75-1.25 cycles/day), and high frequency (HF) (>1.25
cycles/day). The power in MF represents the circadian rhythm.
Similarly, the power in LF represents the long-term (>1 day)
rhythm, while the power in HF represents the short-term (<1
day) rhythm.

The sums of spectrum power in these three frequency intervals
were calculated and denoted as LF_sum, MF_sum, and HF_sum,
respectively. The percentages of spectrum powers in these three
frequency intervals to the total spectrum power were extracted
and denoted as LF_pct, MF_pct, and HF_pct, respectively. To
estimate the complexity and regularity of the spectrum, we
calculated spectral entropy (SE) [38] in these three intervals,
denoted as LF_se, MF_se, and HF_se, respectively.
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Figure 4. An example of a 14-day nearby Bluetooth devices count (NBDC) sequence in the time domain (A) and its spectrum in the frequency domain
(B).

Statistical Methods
The linear mixed-effect model contains both fixed and random
effects, allowing for both within-participant and
between-participants variations over repeated measurements
[39]. Therefore, we used linear mixed-effect models in our
statistical analyses.

Pairwise Association Analyses
To explore the association between each Bluetooth feature and
depression severity, a series of pairwise linear mixed-effect
models with random participant intercepts were performed to
regress the PHQ-8 score with each of the Bluetooth features.
All mixed-effect models, baseline age, gender, and years in
education were considered as covariates. The z-test was used
to evaluate the statistical significance of the coefficient of each
model. The Benjamini-Hochberg method [40] was used for
correction of multiple comparisons, and the significant level
for the adjusted P value was set to .05. All linear mixed-effect
models were implemented by using the R package “lmerTest,”
and the Benjamini-Hochberg method was performed by using
the command “p.adjust” in R software (R Foundation for
Statistical Computing).

Likelihood Ratio Test
One objective of this paper was to assess what value these
Bluetooth features provide beyond other information that might
be readily available, such as baseline demographics. The
likelihood ratio test is a statistical test of goodness of fit between
two nested models [41]. If the model with more parameters fits
the data significantly better, it indicates that additional
parameters provide more information and improve the model’s
fitness [41]. Therefore, we built three nested linear mixed-effect
models with random participant intercepts (model A, model B,
and model C). The predictors of model A were only
demographics. The predictors of model B were demographics

and 16 second-order statistical features. The predictors of model
C were demographics and all 49 Bluetooth features. The
likelihood ratio tests were performed to test whether these
Bluetooth features have a significant value in fitting the PHQ-8
score regression model.

Prediction Models
Another objective of this paper was to examine whether it is
possible to predict participants’ depressive symptom severity
using Bluetooth features combined with some known
information (demographics and previous PHQ-8 scores). A
subset of PHQ-8 intervals was selected for the prediction task
based on the following two additional criteria:

1. To ensure that each participant had sufficient PHQ-8
intervals for the time-series cross-validation (described in
the following model evaluation section), the number of
valid PHQ-8 intervals for each participant should be at least
3.

2. To test whether the model can predict variability of
depression severity, the difference of one participant’s
PHQ-8 scores should be more than or equal to 5 (clinically
meaningful change) [42].

Hierarchical Bayesian Linear Regression Model
The hierarchical Bayesian approach is an intermediate method
compared to the completely pooled model and individualized
model, capturing the whole population’s characteristics while
allowing individual differences [43]. We leveraged the
hierarchical Bayesian linear regression model to predict
participants’ PHQ-8 scores using Bluetooth features,
demographics (age, gender, and years in education), and the
last observed PHQ-8 score. In this study, we implemented the
hierarchical Bayesian linear regression using the “PyMC3”
package [44] in Python. To compare the results with other
commonly used machine learning models, we also implemented
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the LASSO regression model [45] and XGBoost regression
model [46] using the Scikit-learn machine learning library [47]
in Python. As depressive mood has a strong autocorrelation
[48], we considered a baseline hierarchical Bayesian linear
regression model with the last observed PHQ-8 score and
demographics as predictors.

Model Evaluation
We selected root mean squared error (RMSE) and the predicted

coefficient of determination (R2) as two metrics for model

discrimination evaluation. As we used the temporal data, “future
data” should not predict “past data.” Therefore, only the data
observed before test data can be included in the training set. We
applied leave-all-out (LAO) and leave-one-out (LOO)
time-series cross-validation [48]. As the number of PHQ-8
intervals of each participant in our data was different, we made
some minor modifications to these two schemes (Figure 5).

Figure 5. Two schematic diagrams of leave-all-out time-series cross-validation (A) and leave-one-out time-series cross-validation (B), where T is the
maximum number of PHQ-8 intervals of one participant, J is the number of participants, the training set is indicated by blue, the test set is indicated by
orange, and unused data are indicated by green. PHQ-8: 8-item Patient Health Questionnaire.

LAO Time-Series Cross-Validation

Each participant’s data were divided into a sequence of t
consecutive same-sized test sets, where the size of each test set
is the length of one PHQ-8 interval (14 days) and t is the number
of PHQ-8 intervals of this participant. The corresponding
training set included all PHQ-8 intervals before each test set.
Then, test sets and training sets were pooled across all
participants. This process generated T-1 test and training set
pairs (no prior data to predict the first PHQ-8 score), where T
is the maximum number of PHQ-8 intervals of one participant
in our data set (t≤T).

LOO Time-Series Cross-Validation

Each participant’s data were divided into a training set and a
test set. The training set was constructed using the first two
PHQ-8 intervals of a participant, with the test set containing

the rest of the participant’s PHQ-8 intervals. Then, the training
set was pooled with all data from all other participants. This
scheme generated J training and test set pairs, where J is the
number of participants in our data set.

Results

Data Summary
According to our date inclusion criteria, from June 2018 to
February 2020, 2886 PHQ-8 intervals from 316 participants
collected from three study sites were selected for our analysis.
Table 2 shows the descriptive statistics for all 49 Bluetooth
features, and Figure 6 presents pairwise Spearman correlation
coefficients between all features. Table 3 presents a summary
of the demographics and distribution of PHQ-8 records of all
selected participants. Figure 7 presents boxplots of the NBDC
for every hour in the whole population.
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Table 2. Descriptive statistics for all 49 Bluetooth features.

MaxQ3MedianQ1MinSDMeanFeaturea

Second-order statistics

621.0060.0040.0025.001.0048.4849.79Max_Max

90.006.004.002.000.006.225.09Min_Max

268.2921.6214.079.230.7518.9418.56Mean_Max

195.1916.2210.456.140.0014.0513.14Std_Max

43.002.001.000.000.002.081.59Max_Min

3.000.000.000.000.000.270.06Min_Min

13.710.790.210.000.000.880.58Mean_Min

11.940.700.420.000.000.620.50Std_Min

185.9815.399.515.600.3412.7612.31Max_Std

21.611.320.870.560.001.451.20Min_Std

70.655.243.252.170.164.874.55Mean_Std

62.524.042.431.340.093.713.24Std_Std

136.1011.046.884.380.179.349.32Max_Mean

32.002.501.420.500.002.141.88Min_Mean

49.555.283.402.190.074.194.42Mean_Mean

49.372.541.450.840.052.592.13Std_Mean

Multiscale entropy (MSE)

2.441.130.710.420.050.460.80MSE_1

3.581.310.850.560.040.540.97MSE_2

9.411.421.010.700.090.661.12MSE_3

8.831.511.150.820.050.691.23MSE_4

8.511.621.270.930.100.821.35MSE_5

8.001.631.280.970.080.841.38MSE_6

7.721.701.331.010.100.971.47MSE_7

7.401.671.301.000.101.071.50MSE_8

7.301.721.320.990.101.221.58MSE_9

7.081.721.300.970.081.231.58MSE_10

7.021.671.250.950.091.291.58MSE_11

6.701.661.230.920.101.331.59MSE_12

6.551.791.300.980.111.461.74MSE_13

6.701.871.361.010.111.531.85MSE_14

6.551.951.391.030.131.621.96MSE_15

6.401.951.391.030.131.621.98MSE_16

6.142.081.391.020.141.672.04MSE_17

6.042.081.391.010.151.652.03MSE_18

6.042.081.391.010.171.692.09MSE_19

5.942.081.390.980.171.672.09MSE_20

5.832.201.390.980.181.662.10MSE_21

5.832.301.390.980.181.682.13MSE_22

5.614.281.390.980.181.692.17MSE_23

5.354.281.390.980.201.702.27MSE_24
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MaxQ3MedianQ1MinSDMeanFeaturea

Frequency domain (FD)

85956.16184.8053.8717.410.052469.74330.66LFb_sum

34970.3583.0525.778.160.021166.32157.24MFc_sum

64127.16403.38151.7455.720.473272.44602.22HFd_sum

0.630.310.230.170.030.100.25LF_pcte

0.740.170.110.070.010.100.13MF_pct

0.920.720.640.530.120.150.62HF_pct

1.000.900.850.780.380.100.83LF_sef

0.990.880.830.770.400.090.82MF_se

0.990.920.900.880.720.040.90HF_se

aDefinitions of Bluetooth features in this table are shown in Table 1.
bLF: low frequency (0-0.75 cycles/day).
cMF: middle frequency (0.75-1.25 cycles/day).
dHF: high frequency (>1.25 cycles/day).
epct: percentage of spectrum power.
fse: spectral entropy.

Figure 6. A correlation plot of pairwise Spearman correlations between all 49 Bluetooth features. Definitions of Bluetooth features in this figure are
shown in Table 1.
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Table 3. Summary of the demographics and 8-item Patient Health Questionnaire (PHQ-8) record distribution of all selected participants.

ValueCharacteristic

316Number of participants

Demographics

51.0 (35.0, 59.0)Age at baseline, median (Q1, Q3)

234 (74.1%)Female sex, n (%)

16.0 (14.0, 19.0)Number of years in education, median (Q1, Q3)

PHQ-8 record distribution

2886Number of PHQ-8 intervals

8.0 (3.0, 14.0)Number of PHQ-8 intervals for each participant, median (Q1, Q3)

9.0 (5.0, 15.0)PHQ-8 score, median (Q1, Q3)

Figure 7. Boxplots of the nearby Bluetooth devices count (NBDC) for every hour in the whole population. Boxes extend between the 25th and 75th
percentiles, and green solid lines inside the boxes are medians. Note the relative stationary NBDC during the night-time hours.

Association Analysis Results
The significant associations between depression severity (the
PHQ-8 score) and Bluetooth features are presented in Table 4.

Associations Between the PHQ-8 Score and
Second-Order Statistical Features
There were 10 second-order statistical features significantly
associated with the PHQ-8 score. All these significant
associations were negative, that is, the larger the value of these
features, the lower the PHQ-8 score. Notably, Min_Max (the
minimum value of daily maximum NBDC in the past 14 days)
had the strongest association (z=−4.431, P<.001), which
indicated that participants with a lower PHQ-8 score tended to
have more daily social activities (such as social interactions and
traveling) in the past 2 weeks. In addition, four features related
to daily variance (Max_Std, Min_Std, Mean_Std, and Std_Std)
of the NBDC were all significantly and negatively associated
with depression.

Associations Between the PHQ-8 Score and Multiscale
Entropy Features
MSE at scale 1, scale 2, and scale 3 (MSE_1, MSE_2, and
MSE_3) were significantly and positively associated with the
PHQ-8 score, while MSE at scale 16 and scale 22 (MSE_16 and
MSE_22) were significantly and negatively associated with
depressive symptom severity. According to the explanations of
MSE we mentioned in the Methods section, these associations
indicated that participants with more irregular and chaotic
NBDC sequences were likely to have more severe depressive
symptoms, while those with periodic and regular NBDC
sequences may have lower PHQ-8 scores.

Associations Between the PHQ-8 Score and FD Features
There were five FD features significantly associated with the
PHQ-8 score. The spectrum power was related to both the
amount and frequency components of the NBDC sequence, so
it had relatively strong correlations with second-order statistical
features (Figure 6). Therefore, the spectrum power of three
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frequency intervals (LF_sum, MF_sum, and HF_sum) were all
significantly and negatively associated with the PHQ-8 score.
Among them, the MF_sum had the strongest association
(z=−4.766, P<.001) with depression, which indicated that the
circadian rhythm of the NBDC sequence is important to reflect
the severity of depression. Likewise, the percentage of

middle-frequency power (MF_pct) was significantly and
negatively associated with depressive symptom severity. The
spectral entropy of HF (HF_se) was significantly and positively
associated with depression. This indicated that participants with
irregular short-term (<1 day) rhythms were likely to have more
severe depressive symptoms.

Table 4. Coefficient estimates, standard error, z-test statistics, and P values from pairwise linear mixed-effect models for exploring associations between
Bluetooth features and the depressive symptom severity (8-item Patient Health Questionnaire).

Adjusted P valueb,cz scoreSEEstimateFeaturea

Second-order statistics

<.001−4.4310.012−0.052Min_Max

.005−2.8090.006−0.016Mean_max

.008−2.6570.006−0.015Max_Std

<.001−3.8380.056−0.215Min_Std

.005−2.8020.023−0.065Mean_Std

.02−2.3850.020−0.048Std_Std

<.001−3.4980.008−0.030Max_Mean

.04−2.0360.046−0.093Min_Mean

.001−3.2250.026−0.083Mean_Mean

.001−3.4640.027−0.095Std_Mean

Multiscale entropy (MSE)

.0052.8530.2250.642MSE_1

.022.2550.1920.433MSE_2

.041.9850.2020.401MSE_3

.01−2.4290.042−0.102MSE_16

.005−2.8600.043−0.123MSE_22

Frequency domain (FD)

<.001−3.8650.005−0.021LFd_sum

<.001−4.7660.014−0.067MFe_sum

.009−2.6060.010−0.027HFf_sum

.02−2.2590.812−1.834MF_pctg

.042.0991.8203.821HF_seh

aDefinitions of Bluetooth features in this table are shown in Table 1.
bOnly significant associations (adjusted P value <.05) are reported.
cP values were adjusted by the Benjamini-Hochberg method for correction of multiple comparisons.
dLF: low frequency (0-0.75 cycles/day).
eMF: middle frequency (0.75-1.25 cycles/day).
fHF: high frequency (>1.25 cycles/day).
gpct: percentage of spectrum power.
hse: spectral entropy.

Results of Likelihood Ratio Tests
The results of the likelihood ratio tests are presented in Table
5. Model B (with second-order statistical Bluetooth features)
and model C (with all Bluetooth features) fitted data
significantly better than model A (without Bluetooth features),

indicating that Bluetooth features could improve the statistical
model significantly. The goodness of fit of model C was
significantly better than that of model B, indicating that
nonlinear Bluetooth features (MSE and FD features) provided
additional information to the statistical model.
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Table 5. Results of the likelihood ratio tests of the three nested linear mixed-effect models.

P valueChi-squareaDifference of parametersModel

.0131.0416Model Bb vs model Ac

<.001135.1949Model Cd vs model A

<.001104.1533Model C vs model B

aThe critical values of the likelihood ratio statistic are as follows: χ2
0.05(16)=26.296, χ2

0.05(33)=47.400, and χ2
0.05(49)=66.339.

bPredictors of model B: demographics + 16 second-order statistical features.
cPredictors of model A: demographics.
dPredictors of model C: demographics + 16 second-order statistical features + 24 multiscale entropy features + nine frequency domain features.

Performance of Prediction Models
A subset of 183 participants was selected for the prediction
models. The results of the LAO and LOO time-series

cross-validation are presented in Table 6. The R2 score of the
baseline model was 0.338 in LAO time-series cross-validation,
which showed that more than 30% variance could be explained

by the last observed PHQ-8 score and baseline demographics.

In LOO time-series cross-validation, the R2 score of the baseline
model was negative, which indicated that the baseline model
did not explain any variance in the LOO time-series
cross-validation. To assess the improvement from nonlinear
Bluetooth features, we tested the hierarchical Bayesian model
with and without nonlinear Bluetooth features separately.

Table 6. Results of the leave-all-out time-series cross-validation and leave-one-out time-series cross-validation of the hierarchical Bayesian linear
regression model, commonly used machine learning models, and the baseline model.

Leave-one-outLeave-all-outModel

RMSER2RMSEaR2

5.802−0.0744.5470.338Baseline modelb

5.1780.1444.1140.458LASSO regression

4.5230.3464.0920.464XGBoost regression

4.5010.3534.0260.481Hierarchical Bayesian linear (second-order statistical fea-
tures)

4.4260.3873.8910.526Hierarchical Bayesian linear (all Bluetooth features)

aRMSE: root mean squared error.
bThe baseline model is the hierarchical Bayesian linear regression model with only the last observed 8-item Patient Health Questionnaire score and
demographics as predictors.

In the subset, the maximum number of PHQ-8 intervals of one
participant was 27, so the LAO time-series cross-validation
went through T-1=26 iterations. The hierarchical Bayesian linear
regression model with all Bluetooth features achieved the best

result (R2=0.526, RMSE=3.891), beating the LASSO and
XGBoost regression models. Compared with the result of the

baseline model (R2=0.338), the improvement in the R2 score
was 0.188, which means the Bluetooth features explained an
additional 18.8% of data variance. The nonlinear Bluetooth
features explained an additional 4.5% of data variance in the
hierarchical Bayesian model.

The number of subset participants was 183, so J=183 iterations
of the LOO time-series cross-validation were performed. The
hierarchical Bayesian linear model with all Bluetooth features

had the best performance (R2=0.387, RMSE=4.426), but the
result was close to that of the XGBoost regression model

(R2=0.346, RMSE=4.523).

The performance of the hierarchical Bayesian linear regression
model evaluated by the LAO cross-validation was better than

the LOO cross-validation performance. One potential reason is
that only the first two PHQ-8 intervals of one participant were
used for training in the LOO cross-validation, which may have
caused the model to underfit the patterns at the participant level.

Discussion

Principal Findings
This paper explored the value of the NBDC data in predicting
depression severity. Compared with previous Bluetooth-related
studies [15-18], our study was performed on a larger (N=316)
multicenter data set with a longer follow-up (median 4 months).
We extracted 49 features from the NBDC sequences in the
following three categories: second-order statistical features,
MSE features, and FD features. To the best of our knowledge,
this is the first time that MSE and FD features have been used
in NBDC and depression data analyses. According to the results
of association analyses (Table 4), when depression symptoms
worsened (increase in the PHQ-8 score), one or more of the
following changes were seen in the preceding 14 days of the
NBDC sequence: (1) the amount decreased, which is consistent
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with the finding by Wang et al [15], (2) the variance decreased,
(3) the periodicity (especially the circadian rhythm) decreased,
and (4) the NBDC sequence became more irregular and chaotic.

These changes in the NBDC data can be explained by depression
symptoms. The main manifestations of depression include
negative feelings (such as sadness, guilt, stress, and tiredness)
and loss of interest or pleasure [49]. This may lead to changes
in behaviors, such as increased time at home [29,50], decreased
mobility [3,29], loss of the ability to work or study [2,49],
reduced intensity of social interactions [1], unstable and irregular
sleep [51], and decreased engagement in activities [52]. The
increased time at home, inability to work or study, and
diminished social interactions are reflected in the reduced
amount of the NBDC sequence. The decreased mobility and
engagement in activities may be possible reasons why
participants with higher PHQ-8 scores have lower
variance-related features (Max_Std, Min_Std, Mean_Std, and
Std_Std). Depression also may lead to misalignment of the
circadian rhythm and make people’s life rhythms (such as sleep
rhythms and social rhythms) more irregular [19]. This can be
reflected in reduced periodicity and increased irregularity of
the NBDC sequence. Saeb et al [29] and Farhan et al [30] found
similar findings in GPS data, and showed that the circadian
rhythm of the GPS signal was significantly and negatively
correlated with depression.

From the perspective of the statistical model, Bluetooth features
extracted in this paper significantly improved the goodness of
fit for the PHQ-8 score, and nonlinear Bluetooth features (MSE
and FD features) can provide additional information to
second-order statistical features (Table 5). From the perspective
of the prediction model, these 49 Bluetooth features explained
an extra 18.8% of the variance in the PHQ-8 score relative to
the baseline model, containing only the last PHQ-8 score and
demographics, and MSE and FD features explained an extra
4.5% of data variance in the hierarchical Bayesian model (Table
6). From the perspective of the correlations between Bluetooth
features (Figure 6), we can observe that, except for three FD
features related to the spectrum power that had relatively strong
correlations with second-order statistical features, the
correlations between other nonlinear Bluetooth features and
second-order statistical features were not obvious. This indicated
that the MSE and FD features captured dimensions of
information to second-order statistical features.

In our prediction model, the hierarchical Bayesian linear
regression model achieved the best results in both the LAO and
LOO time-series cross-validation. Compared with other models,
one of the advantages of the hierarchical Bayesian model is that
it performs individual predictions while considering the
population’s common characteristics [43]. Therefore, the
hierarchical Bayesian model can be considered a suitable
prediction modelling method for longitudinal data. The LOO
time-series cross-validation results illustrated that the
hierarchical Bayesian model could predict depression for
participants with few observations (only two PHQ intervals in
the training set) that overcomes the cold start problem. The
hierarchical Bayesian linear model achieved a better result in
the LAO time-series cross-validation, which indicated that the
prediction results gradually became more accurate and

individualized when each participant had more data available
in the training set.

Limitations
The RADAR-MDD project was designed for long-term
monitoring (up to 2 years) and collecting many other passive
data, such as GPS data, acceleration data, app usage, and screen
lightness, which need to be collected simultaneously through
the mobile phone. Therefore, to avoid excessive battery
consumption, nearby Bluetooth devices were scanned hourly
in this study. However, some past studies suggested scanning
nearby Bluetooth devices every 5 minutes to achieve high
enough temporal resolution [9,18]. Although hourly NBDC
data can also reflect individuals’ behaviors and statuses, our
lower data resolution may cause the loss of some dynamic
information. On the other hand, using the relatively low
resolution enabled us to collect multimodal data without
excessive battery consumption. As the NBDC data are related
to individuals’ movement and location information, we will
combine the NBDC data with GPS and acceleration data for
future analysis to understand the context of the Bluetooth data.

As we mentioned in the Methods section, the MAC addresses
and types of Bluetooth devices were not recorded for private
issues. This made it impossible to distinguish between mobile
phones and other Bluetooth devices (such as headphones,
printers, and laptops), and between strangers’and acquaintances’
devices. The advantage of the NBDC data is that the data contain
mixed and rich information. The disadvantage is that it is
difficult to explain the specific reasons for changes in the
NBDC, that is, we cannot know whether the changes in the
NBDC are caused by social interactions, working status,
traveling, or isolation. Therefore, this paper did not explain in
depth the actual meaning behind the Bluetooth features. For
this limitation, we plan to use hashed MAC addresses in future
research.

For the FD features, the division of the frequency intervals of
the spectrum of the NBDC sequence in this paper was manually
specified by our experience. The purpose of extracting these
FD features was to prove that the NBDC sequence’s FD has
the potential to provide more information about individuals’
behaviors and life rhythms. It is necessary to discuss the optimal
boundaries of frequency intervals of the NBDC data in future
research.

This paper applied the hierarchical Bayesian linear regression
model to explore the linear relationships between Bluetooth
features and depression. However, there may be nonlinear
relationships between social connections and depressive
symptom severity. The Gaussian process [53], using the kernel
method to find nonlinear relationships, will be considered in
future research.

Conclusion
Our statistical results indicated that the NBDC data have the
potential to reflect changes in individuals’behaviors and statuses
during a depressive state. The prediction results demonstrated
that the NBDC data have significant value in predicting
depressive symptom severity. The nonlinear Bluetooth features
proposed in this paper provide additional information to
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statistical and prediction models. The hierarchical Bayesian
model is an appropriate prediction model for predicting
depression with longitudinal data, as both participant-level and

population-level characteristics are considered in the model.
These findings may support the mental health monitoring
practice in real-world settings.
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