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A B S T R A C T

Background: Understanding the spectrum and course of biological responses to coronavirus disease 2019
(COVID-19) may have important therapeutic implications. We sought to characterise biological responses
among patients hospitalised with severe COVID-19 based on serial, routinely collected, physiological and
blood biomarker values.
Methods and findings: We performed a retrospective cohort study of 1335 patients hospitalised with
laboratory-confirmed COVID-19 (median age 70 years, 56 % male), between 1st March and 30th April
2020. Latent profile analysis was performed on serial physiological and blood biomarkers. Patient
characteristics, comorbidities and rates of death and admission to intensive care, were compared
between the latent classes. A five class solution provided the best fit. Class 1 “Typical response” exhibited
a moderately elevated and rising C-reactive protein (CRP), stable lymphopaenia, and the lowest rates of
14-day adverse outcomes. Class 2 “Rapid hyperinflammatory response” comprised older patients, with
higher admission white cell and neutrophil counts, which declined over time, accompanied by a very high
and rising CRP and platelet count, and exibited the highest mortality risk. Class 3 “Progressive
inflammatory response” was similar to the typical response except for a higher and rising CRP, though
similar mortality rate. Class 4 “Inflammatory response with kidney injury” had prominent lymphopaenia,
moderately elevated (and rising) CRP, and severe renal failure. Class 5 “Hyperinflammatory response with
kidney injury” comprised older patients, with a very high and rising CRP, and severe renal failure that
attenuated over time. Physiological measures did not substantially vary between classes at baseline or
early admission.
Conclusions and relevance: Our identification of five distinct classes of biomarker profiles provides
empirical evidence for heterogeneous biological responses to COVID-19. Early hyperinflammatory
responses and kidney injury may signify unique pathophysiology that requires targeted therapy.

© 2021 Published by Elsevier Masson SAS.
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Since March 23rd, 2020, when coronavirus disease 2019
COVID-19) was declared a global pandemic by the World Health
rganization, healthcare services worldwide have faced unprece-
ented rates of morbidity and mortality. Although most individu-
ls with COVID-19 experience a mild illness, a significant minority
evelop severe disease requiring hospitalisation. Within this
roup, a small subset progress to critical disease with acute
espiratory distress syndrome (ARDS), requiring invasive mechan-
cal ventilation and organ support. Older age, male sex and pre-
xisting comorbidities have been proposed as risk factors for
evere COVID-19 and poor outcomes, but the mechanisms
nderlying these associations remain unclear [1–3].
In practice, symptoms and physiological observations, such as

ersistent fever, high respiratory rate and escalating oxygen
equirements identify patients who have progressive disease.
owever, among patients admitted to hospital, specific blood
iomarker profiles have also been associated with poor outcomes,
or example lymphopaenia, neutrophilia, and raised inflammatory
arkers, such as C-reactive protein (CRP) [4,5]. Previous studies
ave examined baseline (admission) biomarker levels, which may
ncompletely describe the subsequent clinical course and have
een limited by sample size [6]. Analysis of serial measures of
lood and physiological markers in large samples may highlight
arlier signs of accelerated progression and provide additional
nsights into the biological processes that lead to adverse
utcomes. Furthermore, in non-COVID related ARDS, patient
ubgroups with different biological responses have been shown
o predict treatment effects [7].

Our aim was to examine whether different patterns of biological
esponses are evident among patients admitted to hospital with
OVID-19. To address this aim, we: (1) examined individual
atient-level physiological and blood biomarkers values at
dmission and their trajectories within their first 14 days of
dmission; (2) characterised and described subgroups of patients
ith distinct biological responses; and (3) examined the associa-
ion between subgroups of biological response and the associated
isk of critical disease (i.e. transfer to an intensive care unit [ICU] or
eath)

ethods

tudy population and study design

We studied consecutive adults (aged >18 years) admitted to a
ulti-site acute NHS Hospital in London (UK) with laboratory-
onfirmed COVID-19 between 1st March and 30th April 2020.
OVID-19 was confirmed by reverse transcription polymerase
hain reaction (RT-PCR) for SARS-CoV2 in oral or nasopharyngeal
wabs. This project was conducted under London South East
esearch Ethics Committee (reference 18/LO/2048) approval
ranted to the King’s Electronic Records Research Interface
KERRI); specific work on COVID-19 research was reviewed with
xpert patient input on a virtual committee with Caldicott
uardian oversight. The study adhered to the principles of the
K Data Protection Act 2018, UK National Health Service (NHS)
nformation governance requirements, and the Declaration of
elsinki.

(NLP) informatics tools belonging to the CogStack/MedCAT
ecosystem [8,9]. Data extraction and processing have been
previously described [10] and more details are in Supplemental
methods.

Socio-demographics and health comorbidities

We collected data on demographic and clinical variables
putatively associated with COVID-19, including age, sex, comor-
bid diseases (asthma, chronic obstructive pulmonary disease
[COPD], hypertension, diabetes, chronic kidney disease [CKD],
ischaemic heart disease [IHD] and heart failure [HF]). Comorbid-
ities were considered present if reported at any time up to the day
of admission from the NLP pipieline. Self-reported ethnicity was
classified as White or Black and Minority Ethnic groups (BAME;
comprising Black, Asian, Mixed and any other non-White
ethnicity). Ethnicity profiles was obtained from administrative
health records (which is reconciled at every clinical encounter
with the NHS Spine's Personal Demographics Service); ethnic
categories are defined as per standard categories from the Office
of National Statistics, United Kingdom. This ethnicity is self-
declared and is identical to submissions to statutory public health
reporting.

Physiological parameters

We examined respiratory rate (breaths per minute), oxygen
saturation (O2 sat; %), systolic and diastolic blood pressure (SBP
and DBP; mmHg), heart rate (beats/min), and temperature (�C).

Blood parameters

Blood biomarkers were selected to represent a diverse range of
biological processes from those routinely obtained at or shortly
after admission during clinical care. Markers with inadequate
coverage over all patients and time, such as troponin, ferritin, or
Ddimer, were not included. The final selection comprised nine
markers: haematological indices (haemoglobin [g/L], platelet
count [plt; x 109/L]), infection response markers (white blood cell
count [wbc, x109/L], lymphocyte count [x109/L], neutrophil count
[x109/L]), renal function (urea [mmol/L], creatinine [mmol/L]),
inflammation (C-reactive protein [crp; mg/L]) and liver synthetic
function (albumin [g/L]). Normal values based on local assays are
detailed in the Supplemental methods. Acute kidney injury was
defined according to the Kidney Disease: Improving Global
Outcomes definition [11].

Statistical analyses

To characterise individual biological responses, we examined
patient-level physiological and blood biomarker values at admis-
sion and their trajectories within the first 14 days of admission
(Objective 1), using linear mixed models. Non-linear models were
estimated for each marker using restricted maximum likelihood
(REML) and empirical Bayes’ estimates of the random intercept and
slopes. Trajectories for each marker were modelled using three
piecewise slopes (0�2 days, 2–7 days, and 7–14 days) and
unstructured covariance matrix. The intervals were chosen using
statistical and clinical criteria described in more detail in
suplemental methods section.
ata extraction and processing

Patients’ demographics, clinical characteristics, laboratory
esults, and vital signs were retrieved and analysed in near-real
ime from structured and unstructured components of the
lectronic health record (EHR), using natural language processing
2

To classify patients based on their baseline levels and rates of
change in physiological and blood biomarkers (Objective 2),
latent profile models were estimated by maximum likelihood.
Patients were classified on the basis of their estimated initial level
and slope (rate of change) over the first two days since admission
of each biomarker (see Supplemental methods for more details).
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The optimal number of latent classes was chosen based on the
Integration Classification Likelihood fit statistic, that combines
the Bayesian Information Criterion and entropy (McLachlan and
Peel, 2000), and prevalence and interpretability of the derived
classes. Demographic characteristics and pre-existing conditions
of the patients assigned to each class were compared using
Kruskal-Wallis and Pearson chi-square tests (objective 3). Class
differences in the estimated biomarker levels at baseline and
their change over the first two days were compared using
regression t-tests.

Finally, to examine the association between subgroups and
risk of in-hospital death or critical disease (i.e. transfer to ICU or
death; Objective 4), we performed a multinomial logit model for
the competing outcomes of ICU admission and death. Indepen-
dent models were estimated for (i) outcomes within the first two
days; (ii) outcomes within days 3�14. Adjustments included age,
sex, ethnicity and pre-existing comorbidities. Sensitivity analyses
are described in Supplemental methods. All methods were
performed in accordance with the relevant guidelines and
regulations.

Results

Between 1st March and 30th April 2020, 1398 patients were
admitted with laboratory-confirmed COVID19 (median (IQR) age
70 (58�83) years, 56 % male, 39 % BAME). Characteristics of the
study population are shown in the first column of Table 1. In total,
1335 patients had serial blood biomarker data available, and were
included in the latent class analyses. Excluded patients were
marginally younger and had a high rate of early ICU admission.

We characterized the trajectories of the physiological and blood
biomarkers for the included sample within the first 14 days of
admission (Supplemental Results and Supplemental Figures 1�5).
Baseline values and estimated trajectories were then used to
identify subgroups.

Latent profile models: identifying subgroups of COVID-19 patients

A 5-class solution provided the optimal grouping (additional
details are provided in the Supplemental results). Overall,
physiological measures were similar across all 5 classes, both at
baseline (intercept) and 2-day rate of change (slopes, Table 2) and
are therefore not described further in detail. All classes exhibited
elevated CRP levels which further increased over time. Classes 2
and 5 showed the highest CRP levels at baseline and Class 1 the
lowest. The fastest rate of increase in CRP after admission was
found in Class 2 and the slowest in Class 5 (Figs. 1 and 2).
Differences in other blood biomarkers observed between classes
are displayed in Table 2, Figs. 1 and Supplemental Figures 6 and 7.

Class 1 (38 %) represented the typical COVID-19 biological
response in our cohort and was assigned as the reference group for
comparisons. These patients exhibited lymphopaenia, moderately
elevated CRP and mild anaemia (by standard haemoglobin cut-offs
for men). Within the first two days the lymphocyte count remained
stable, CRP increased (p < 0.001 vs baseline), and haemoglobin
decreased (p < 0.001). Class 1 patients were 56 % male, 36 % non-
White ethnicity and their most common comorbidities were
hypertension (49 %) and diabetes (33 %). Class 1 had the lowest rate
of death or ICU admission within the first two days of admission
and days 3�14 (3% and 17 %, respectively).

Class 2 (9%, rapid hyperinflammatory response) was charac-
terised by prominent markers of infection response (high white
cell count, neutrophilia, markedly elevated CRP), anaemia (by
male-specific haemoglobin cut-offs), elevated urea and hypoalbi-
minaemia (Table 2). Compared with the typical COVID-19 patient
response (i.e. Class 1), there were several markers suggesting a
more severe infection response at baseline (evidenced by higher
white cell count, higher neutrophil count, and higher CRP; Table 2)
but also a higher platelet count (median 279 � 109/L [IQR 201, 393]
for Class 2 versus 186 � 109/L [IQR 145, 234] for Class 1, p < 0.001).
Lymphocyte count was not significantly different from Class 1

Table 1
Baseline characteristics across COVID-19 subgroups identified using latent profile analysis.

Variable Total Class 1 Class 2 Class 3 Class 4 Class 5 Class p-value*
N (%) 1335 511 (38 %) 123 (9%) 497 (37 %) 80 (6%) 124 (9%)

Demographics
Age in years (IQR) 70(58�83) 68 (55�83) 73 (62�86) 68 (56�82) 69 (59�81) 78 (70�88) p < .001
Male 754 (56) 285 (56) 64 (52) 264 (53) 54 (68) 87 (70) p = .002
BAME ethnicity (n = 999) 392 (39) 129 (36) 23 (24) 157 (42) 42 (66) 41 (39) p < .001
Comorbidities
Asthma 184 (14) 63 (12) 16 (13) 83 (17) 12 (15) 10 (8) p = .090
COPD 148 (11) 57 (11) 18 (15) 44 (9) 6 (8) 23 (19) p<.016
Hypertension 732 (55) 251 (49) 64 (52) 262 (53) 65 (81) 90 (73) p < .001
IHD 195 (15) 64 (13) 19 (15) 67 (13) 17 (21) 28 (23) p = .021
Heart failure 125 (9) 47 (9) 12 (10) 36 (7) 15 (19) 15 (12) p = .017
Diabetes 463 (35) 167 (33) 37 (30) 153 (31) 51 (64) 55 (44) p < .001
CKD 242 (18) 56 (11) 19 (15) 51 (10) 55 (69) 61 (49) p < .001
Symptom duration prior to admission
Days (n = 1144) (IQR) 5 (1�7) 4 (1�7) 3 (1�7) 5 (2�8) 3 (1�7) 2 (1�5) p = .007
Symptoms after admission 191 (14) 80 (16) 24 (20) 64 (13) 10 (13) 13 (10) p = .199
In-hospital outcome
Death 273 (20) 71 (14) 47 (38) 87 (18) 17 (21) 51 (41)
Within 0�2 days 45 (3) 6 (1) 10 (8) 17 (3) 2 (3) 10 (8) p < .001
Within 3�14 days (n = 1251) 228 (18) 65 (13) 37 (34) 70 (15) 15 (20) 41 (37) p < .001
ICU 105 (8) 26 (5) 11 (9) 55 (11) 9 (11) 4 (3)
Within 0�2 days 39 (3) 8 (2) 5 (4) 20 (4) 4 (5) 2 (2) p = .082
Within 3�14 days (n = 1251) 66 (5) 18 (4) 6 (6) 35 (8) 5 (7) 2 (2) p = .036
Death or ICU (composite)

Within 0�2 days 84 (6) 14 (3) 15 (12) 37 (7) 6 (7) 12 (10) p < .001
Within 3�14 days (n = 1251) 294 (24) 83 (17) 43 (40) 105 (23) 20 (29) 43 (38) p < .001

Data are presented as n (%) or median (IQR).
BAME, Black and Minority Ethnic group; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease;
Descriptive statistics: whole sample and by latent class.

* p-value from difference of mean Kruskall-Wallis, Pearson chi-square or for ICU/death 10df Wld test from multinomial logit.
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median 1.1 �109/L [IQR 0.7, 1.6] for Class 2 versus 0.9 � 109/L [IQR
.6, 1.2] for Class 1, p = NS). Within the first two days, these patients
howed the fastest rising CRP and fastest declining white cell and
eutrophil counts, though all remained above clinically normal
alues. Haemoglobin decreased. The 2-day trajectory of lympho-
yte count was similar to the typical response (median D
0.0 � 109/L [IQR -0.2, 0.1] for Class 2 versus -0.1 �109/L [IQR
0.1, 0.0] for Class 1, p = NS), as was the evolution of platelet count
median D -18.6 � 109/L [-46.7, 15.1] for Class 2 versus -13.0 � 109/L
-31.2, 3.4] for Class 1, p = .011. Compared with the typical response,
lass 2 patients were older (median age 73 years), predominantly
hite (76 %), and with moderate prevalence of comorbidities

hypertension 52 %, diabetes 30 %). Class 2 had the highest
ikelihood of death within the first two days of admission and days
�14 (38 % and 8% respectively).
Class 3 (18 %, progressive inflammatory response) displayed

eutrophilia (with normal-range white cell and lymphocyte
ounts) and raised CRP. Compared to the typical response, patients
n Class 3 had higher CRP (p < 0.001) and infection response

but a higher likelihood of being transferred to ICU within the first
two days of admission (4%) and in days 3�14 (8%). Death rates for
this group were not significantly higher than for Class 1 within the
first two days of admission (3%) and days 3�14 (15 %).

Class 4 (6%, inflammatory response with renal injury) was
characterised by severe renal failure (median urea 16.7 mmol/L
and creatinine 408umol/L), anaemia, prominent lymphopaenia
(the lowest among all classes) and hypoalbiminaemia. Compared
with the typical COVID19 response, this group had sligthly higher
baseline CRP but significantly lower lymphocyte count (p < 0.001
for both). Neutrophil counts and haemoglobin were also signifi-
cantly lower (p < 0.001); with haemoglobin below clinically
normal levels for men and women. Within the first two days,
Class 4 patients showed slowly improving creatinine (though still
clinically abnormal) and worsening anaemia. Compared to Class 1,
these patients were more likely to be male (68 %), BAME descent
(66 %), and had the highest comorbidity burden among classes
(hypertension 81 %, IHD 21 %, heart failure 19 %, diabetes 64 % and
CKD 69 %).

able 2
aseline and 2-day rate of change for biomarkers by COVID-19 subgroups identified using latent profile analysis.

Biomarker Class 1: Typical response Class 2: Rapid
hyperinflammatory
response

Class 3: Progressive
inflammatory response

Class 4: Inflammatory
response with renal injury

Class 5: Hyperinflammatory
response with renal injury

Baseline 2-day D Baseline 2-day D Baseline 2-day D Baseline 2-day D Baseline 2-day D

Physiological
Respiratory rate,
/min

19.0 [18.0,
20.0]

�0.1 [-1.3,
1.7]

20.0 [18.0,
22.0]

0.5 [-1.4,
2.3]

20.0 [18.0,
22.0]

�0.0 [-1.8,
1.9]

19.0 [18.0,
20.0]

0.1 [-1.1, 1.8] 20.0 [18.0,
22.0]

�0.1 [-1.4,
1.9]

Oxygen saturation, % 97.0 [95.0,
98.0]

�0.4 [-1.1,
0.2]

96.0 [94.0,
97.0]

�0.5 [-1.2,
0.2]

96.0 [95.0,
97.0]

�0.4 [-1.1,
0.3]

96.0 [95.0,
98.0]

�0.2 [-0.7,
0.6]

96.0 [95.0,
98.0]

�0.5 [-1.4,
0.2]

Heart rate, /min 83.0 [71.0,
90.0]

�1.4 [-7.0,
4.0]

88.0 [80.0,
100.0]

�3.5 [-11.4,
4.0]

87.0 [77.0,
97.0]

�2.9 [-8.8,
3.8]

80.5 [69.5,
90.0]

�1.8 [-9.1,
5.0]

82.0 [71.0,
92.0]

�2.2 [-10.5,
6.6]

Temperature, OC 36.9 [36.6,
37.4]

�0.0 [-0.3,
0.3]

36.8 [36.6,
37.3]

�0.1 [-0.3,
0.3]

37.1 [36.7,
37.6]

�0.1 [-0.4,
0.2]

37.0 [36.6,
37.5]

�0.1 [-0.7,
0.3]

36.7 [36.5,
37.0]

�0.0 [-0.3,
0.3]

Systolic blood
pressure, mmHg

122.0 [110.0,
135.0]

�1.1 [-6.7,
4.5]

121.0 [108.0,
137.0]

0.8 [-5.2,
8.0]

127.0 [114.0,
142.0]

�1.1 [-7.3,
4.9]

133.5 [118.5,
154.0]

�3.4 [-13.0,
3.5]

121.0 [107.5,
133.0]

4.6 [-4.6,
12.1]

Diastolic blood
pressure, mmHg

70.0 [62.0,
78.0]

�0.3 [-2.9,
2.4]

70.0 [61.0,
78.0]

0.4 [-4.0,
3.3]

74.0 [66.0,
84.0]

�0.5 [-4.0,
2.3]

75.0 [66.5,
89.5]

�2.3 [-6.5,
1.5]

66.0 [58.0,
77.5]

1.4 [-3.3, 5.4]

Blood-based
WBC count, x109/L 4.8 [3.9, 5.7] �0.5 [-1.0,

0.2]
16.8 [14.2,
20.9]

�2.9 [-4.7,
-0.6]

8.3 [7.2, 9.7] �0.9 [-1.8,
-0.2]

5.0 [3.7, 6.1] �0.5 [-1.2,
-0.1]

9.4 [7.9, 11.1] �1.2 [-2.7,
-0.4]

Lymphocyte count,
x109/L

0.9 [0.6, 1.2] �0.1 [-0.1,
0.0]

1.1 [0.7, 1.6] �0.0 [-0.2,
0.1]

1.1 [0.8, 1.5] �0.0 [-0.1,
0.1]

0.6 [0.5, 1.0] �0.0 [-0.1,
0.1]

0.9 [0.6, 1.3] �0.0 [-0.1,
0.0]

Neutrophil count,
x109/L

3.4 [2.5, 4.1] �0.4 [-0.9,
0.3]

13.5 [12.1,
17.2]

�2.1 [-4.0,
-0.5]

6.5 [5.5, 7.8] �0.8 [-1.7,
0.1]

3.8 [2.8, 4.7] �0.4 [-0.9,
0.0]

7.9 [6.4, 9.4] �1.0 [-2.6,
0.2]

Urea, mmol/L 5.6 [4.0, 8.5] �0.7 [-1.5,
-0.1]

9.0 [6.0, 12.6] �0.6 [-2.0,
0.2]

5.8 [4.2, 8.6] �0.5 [-1.3,
0.3]

16.7 [13.7,
23.9]

�0.9 [-3.7,
2.8]

20.0 [15.5,
28.6]

�2.7 [-7.3,
0.6]

Creatinine, umol/L 85.0 [68.0,
107.0]

�11.4
[-18.1, -6.1]

95.0 [66.0,
152.0]

�12.2
[-25.6, -4.4]

81.0 [63.0,
101.0]

�11.5
[-17.5, -5.1]

408.0 [234.0,
692.0]

�12.0
[-60.7, 14.1]

210.0 [164.0,
298.0]

�38.6 [-76.2,
-14.6]

C-reactive protein,
mg/L

45.6 [20.2,
84.0]

25.9 [4.6,
45.6]

133.3 [79.4,
227.0]

44.0 [3.1,
82.4]

94.0 [48.5,
154.4]

33.1 [4.2,
79.1]

62.6 [32.1,
129.3]

31.2 [2.3,
83.4]

133.1 [78.0,
208.1]

20.5 [-19.0,
74.2]

Haemoglobin, g/L 128.0 [112.0,
141.0]

�9.6 [-11.8,
-7.2]

126.0 [106.0,
140.0]

�11.2 [-14.7,
-8.7]

131.0 [118.0,
142.0]

�10.1
[-12.2, -8.1]

104.0 [90.0,
116.0]

�7.0 [-9.7,
-5.3]

121.0 [105.0,
136.0]

�9.9 [-13.9,
-6.7]

Platelet count, x109/L 186.0 [145.0,
234.0]

�13.0
[-31.2, 3.4]

279.0 [201.0,
393.0]

�18.6
[-46.7, 15.1]

239.0 [184.0,
303.0]

�1.7 [-22.4,
22.4]

159.0 [118.0,
223.0]

�18.6
[-35.5, -5.0]

219.0 [154.0,
271.0]

�14.2 [-35.9,
-1.0]

Albumin, g/L 37.0 [34.0,
40.0]

�4.8 [-5.5,
-3.8]

34.0 [30.0,
37.5]

�5.3 [-6.8,
-4.0]

37.0 [34.0,
40.0]

�4.9 [-5.6,
-4.0]

34.0 [30.0,
37.0]

�4.8 [-5.5,
-3.9]

33.0 [30.0,
37.0]

�5.4 [-7.0,
-4.1]

ata are presented as median [IQR].
aseline denotes the index value on admission (intercept), 2-day D represents the rate of change within 2 days of admission (i.e. the slopes). Latent classes were derived based
om both the intercept and slopes (in a single model).
ormal values for blood biomarkers (based on local assays) include: WBC count 4�11 �109/L (leucopaenia defined as <4 � 109), lymphocyte count 1.3–4.0 � 109/L
lymphopaenia defined as <1.3 � 109/L; severe lymphopaenia defined as <0.6 � 109/L), urea 3.3–6.7 mmol/L, creatinine 45�120mmol/L, C-reactive protein <5 mg/L,
aemoglobin 115�155 g/L for women and 130�165 g/L for men, platelet count 140�400 � 109/L (thrombocytopaenia defined as <140 � 109/L), albumin 35�50 g/L
hypoalbuminaemia defined as <35 g/L).
arkers (white cell count and neutrophils, lymphocytes; all
 < 0.001). Within the first two days, trajectories of all biomarkers
ere similar to the typical response, with the exception of a lesser
rop in platelet count (median D -1.7 � 109/L [IQR -22.4, 22.4] for
lass 3 versus -13.0 � 109/L [IQR -31.2, 3.4] for Class 1, p < 0.001).
his group had a similar distribution of comorbidities as Class 1,
4

Finally, Class 5 (9%, hyperinflammatory response with renal
injury) was also characterised by renal failure (median urea
20.0 mmol/L and creatinine 210umol/L), anaemia, hypoalbumi-
naemia, lymphopaenia and elevated neutrophil count. Median
creatinine levels were lower than for Class 4 and haemoglobin
levels were higher, suggesting less chronic and severe of renal
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failure. The rise in CRP was much more attenuated in this group
compared with the other ‘hyperinflammatory’ Class 2. Compared
with Class 1 (typical response), they exhibited more severe
infection response (higher white cell, neutrophil and platelet

group (COPD 19 %, hypertension 73 %, CKD 49 %, diabetes 44 %, IHD
23 %). Compared with Class 1 these patients had higher death rates
within the first two days of admission (8%) and in days 3�14 (37 %).

Association between classes and adverse in-hospital outcomes

Within the first two days, 39 of 1335 (3%) patients were
admitted to ICU and 45 (3%) died without ICU admission. Beyond 2
days, among 1251 patients who were alive and not admitted to ICU,
66 patients (5.2 %) were subsequently admitted to ICU and 228
patients (18.2 %) died in hospital within 14 days. Outcomes are
summarised in Table 1. Kaplan Meier survival curves are shown in
Supplemental Figure 8.

Latent profile membership was associated with outcomes in
days 0�2 and between 3�14 days (Table 3). These associations
were attenuated when adjusted for demographics (Model 3) and
comorbidities (Model 4). Nonetheless, differences by latent profile
remained (p < .001) with both Classes 2 and 5 showing elevated
risk of death or a combined endpoint of death or ICU admission.

Discussion

We have identified five distinct classes of biological response to
COVID-19, based on early physiological and blood biomarker
profiles during hospitalisation. All classes displayed evidence of
inflammation, to varying degrees, and included patients across the
spectrum of demographic and comorbidity characteristics, with
some preferential distribution of older age (Classes 2 and 5) and

Fig. 1. Baseline and early change profiles of the 15 examined markers by subgroup identified by latent profile analysis (5-class solution). Horizontal dashed lines indicate a
difference of 0.5 standard deviations from the average over all classes of the estimated baseline level (left panel) or from the average estimated change over the 2 days
following admission (right panel).

Fig. 2. Schematic diagram illustrating baseline (admission) values and trajectories
of C-reactive protein by class. Circles represent classes identified by latent profile
analysis, with a cross-sectional area proportional to the number of patients in each
group and position on the diagram determined by the relative values of baseline C-
reactive protein (CRP) on the x-axis and 2-day rate of change on the y-axis (the scale
representing the minimum to maximum observed among all groups). *Acute kidney
injury was defined according to the Kidney Disease: Improving Global Outcomes
definition [11].
counts; all p < 0.01) and lower haemoglobin (p = 0.042). Within the
first two days of admission, this group showed the fastest recovery
rate of serum creatinine, although levels remained clinically
abnormally. Patients in Class 5 were older than other classes
(median age 78 years), predominantly male (70 %) and White
ethnicity (61 %). Comorbidity burden was high and varied in this
5

comorbidity burden (Classes 4 and 5). Notably, early physiological
(clinical) markers, including respiratory rate and oxygen satura-
tion, although used in the classification technique, were not
ultimately different between classes. However, differences in
mortality rates were observed between classes. Therefore, these
data demonstrate heterogeneous patterns of biological response to
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OVID-19 with different disease trajectories, which may have
rognostic and therapeutic relevance.
The typical COVID-19 biological response in our cohort (38 % of

atients), displayed a moderate and rising CRP, and mild and stable
ymphopaenia in the early hospitalisation period. These features
ave been noted in previous COVID-19 studies [2,4,5,12]. Several
tudies have also reported thrombocytopaenia on presentation,
hough it’s abilityto discriminate between mild and moderate versus
evere or critical disease, may not be as robust or consistent as
ymphopaenia [12–15]. In our cohort, there was some variation in
bsolute platelet counts between classes, however admission values
ere within a normal physiological range for all classes, and only fell
elow normal at 2 days in Class 4. Inflammation has been strongly
mplicated in the pathogenesis of COVID-19, and all classes in our
tudy displayed evidence of an inflammatory response (i.e. elevated
RP), which increased further in the early admission period. Two
roups, however, had greater than typical levels of inflammation
Classes 2 and 5) corresponding with a greater risk of in-hospital
ortality. Both of these hyperinflammatory groups included
atients who were significantly older than average and Class 2
xhibited greater neutrophilia than the typical response. A strong
ssociation with older age has been noted in nearly all studies of
evere COVID-19 [2–5]. Ageing is also reportedly associated with a
hronic low grade inflammatory state [16] and impaired innate and
daptive immunity (‘immunosenescence’) [17]. A severe uncon-
rolledinflammatoryresponse,possiblyheraldedbyearly neutrophil
ngagement, may be one mechanism of adverse outcomes among
lder patients with COVID-19.
We also identified two groups characterised by renal failure

Classes 4 and 5) who had discordant white cell and inflammatory
esponses. Class 4 had lower white cell counts (lymphocytes and
eutrophils) and an attenuated rise in CRP compared with Class 5.
everal factors may contribute to these group differences. Class 4
ontained more individuals from BAME groups than Class 5 (66 %
ersus 39 %) and familial reductions in white cell and neutrophil
ounts are widely recognised in people of African ancestry [18,19].
onversely, patients in class 5 were, on average, older, and age-
elated immunosenscence may have predisposed class 5 individu-

to COVID-19. Systemic persistent inflammation is commonly seen
in patients with end-stage renal disease who are uraemic, and such
mechanisms may be further activated by superimposed infection
such as COVID-19 [20] This may be a direct association (e.g. worse
endothelial dysfunction), indirect via polypharmacy, or comorbid-
ity burden may be a surrogate for fraily-related immune
dysfunction. However, when comparing Class 2 and Class 5 (two
groups of similar age and ethnicity but unequal prevalence of
comorbidities) we do not observe a significant difference in
inflammatory response. Thus, additional unrecognised factors
likely influence the tendency towards hyperinflammation.

Class 3 patients had broadly similar biomarker profiles, clinical
characteristics, and mortality risk as the typical response, with the
exception of a greater and steeper trajectory of inflammatory
response. Although we have labelled these patients as having more
progressive COVID-19 disease, they also presented slightly later to
hospital than Class 1, which may be a relevant confounder. The
lower 2-day decline in platelet count as compared with Class 1,
may refelect the initial stages of longitudinal recovery in this
biomarker, as has been noted in other studies [12]. The observation
that neutrophil and CRP counts remain high or increase further in
this group, as compared with the typical response, may reflect
discordant platelet and inflammatory responses or possible
secondary (bacterial) infection contributing to infection severity.

It is striking that clinical (physiological) markers, which are
often relied on for clinical risk stratification in the acute setting, did
not vary significantly between classes of COVID-19 response, nor
were they clinically abnormal. This mirrors anecdotal observations
that systemic haemodynamic changes are infrequent in the early
stages of COVID-19, and suggests that in the early hospitalisation
period, additional relevant information can be gained from serial
measurement of selected blood biomarkers. The absolute changes
in biomarker values were relatively small, compared with those
seen in non-COVID pneumonia or sepsis [21], nevertheless there
were clinically meaningful differences between classes.

Although the aim of our study was not risk stratification, we
observed differentmortality rates between the classes. This supports
the notion that biomarker-defined classes could reflect prognosti-

able 3
ultinomial logit regression analysis of mortality risk across COVID-19 subgroups.

Outcome Model 1 Model 2 Model 3 Model 4 Model 5
RRR (95 % CI) RRR (95 % CI) RRR (95 % CI) RRR (95 % CI) RRR (95 % CI)

Death* p = .004 p < .001 p < .001 p < .001 p = .017
Class1 reference
Class2 7.67 (2.73,21.55) 3.63 (2.24,5.86) 3.21 (1.93,5.33) 3.20 (1.91,5.36) 2.28 (1.33,3.93)
Class3 3.06 (1.20,7.83) 1.26 (0.87,1.81) 1.29 (0.88,1.89) 1.30 (0.89,1.92) 1.11 (0.74,1.65)
Class4 2.23 (0.44,11.30) 1.77 (0.94,3.32) 1.82 (0.95,3.51) 1.58 (0.78,3.21) 1.33 (0.64,2.75)
Class5 7.39 (2.63,20.77) 3.78 (2.37,6.04) 2.70 (1.65,4.40) 2.40 (1.43,4,01) 1.79 (1.05,3.05)
Death or ICU* p < .001 p < .001 p < .001 p < .001 p<.027
Class1 reference
Class2 4.93 (2.31,10.52) 3.30 (2.10,5.18) 3.07 (1.93,4.87) 3.06 (1.92,4.87) 2.18 (1.33,3.55)
Class3 2.86 (1.52,5.35) 1.48 (1.07,2.03) 1.52 (1.09, 2.10) 1.52 (1.10,2.12) 1.26 (0.90,1.78)
Class4 2.88 (1.07,7.72) 1.85 (1.05,3.25) 1.77 (1.00,3.14) 1.56 (0.84,2.90) 1.31 (0.69,2.47)
Class5 3.80 (1.71,8.45) 3.11(1.99,4.86) 2.40 (1.52,3.80) 2.18 (1.35,3.52) 1.63 (0.99,2.69)

RR, relative risk ratio.
odel 1 – Outcomes within 0�2 days, unadjusted.
odel 2 – Outcomes between 3�14 days, unadjusted.
odel 3 – Outcomes between 3�14 days, adjusted for age and sex.
odel 4 – Outcomes between 3�14 days, adjusted for age, sex and pre-existing comorbidities.
odel 5 – Outcomes between 3�14 days, adjusted for age, sex, pre-existing comorbidities, and baseline NEWS2 score.
* p-values derived using Wald test with 5 degrees of freedom, compared with Class 1 (reference class).
ls to a heightened inflammatory response. Both classes 4 and 5
ad higher levels of inflammation than the typical response (Class
), and a greater prevalence of comorbidity. Since Class 4 and Class
 (the typical response) had a similar age distribution and
ymptom duration, we may infer that the excess comorbidity
urden in Class 4 explained the increased inflammatory response
6

cally-relevant mechanisms of COVID-19 pathophysiology, that
would benefit from stratified approaches to therapy. Many existing
COVID-19 clinical trials have intentionally broad enrollment criteria,
designed to capture the full public health impact of the disease [22].
However, the use of targeted therapies may be more effective in
patient subgroups with biologically similar responses and
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information from biomarker trajectories may inform the design and
timing of application of new therapies for COVID-19.

Strengths of our study include the large cohort and assessment
of serial measures beyond baseline, which enable more compre-
hensive characterisation of hospitalised patients with COVID-19
and their disease course. The analytical approach used allows us to
capture the complexity and heterogeneity of biological responses
as it accounts for between and within-person variability (that is, it
accounts for the fact that each patient is different at baseline and
has unique rates of change over time). Although our findings can be
drivers for hypothesis-generation, causality cannot be ascertained
and external validation is required. Some other limitations should
be acknowledged. Data regarding ICU admission must be consid-
ered within the context of clinical decision making regarding
eligibility versus ceilings of care for frail individuals. Although we
selected a parsimonious model of routinely collected biomarkers
that cover a wide range of potential biological processes, other
blood parameters (e.g., such as troponin, Ddimers and ferritin)
were not included due to missingness or lack of repeated testing.
Future studies should aim to explore these additional biomarkers
to further our understanding of COVID-19 pathophysiology. Our
data were derived from patients admitted to hospital with COVID-
19 and who had biomarker data available up to and including 14
days. This study did not examine the clustering of complications or
organ-specific dysfunction, such as thromboembolism, cardiovas-
cular or cerebrovascular ischaemia. These outcomes typically occur
later in the course of severe disease, outside of the window in
which our models were based. Additional research is needed to
establish whether these complications may influence clustering or
be differentially distributed across classes. Further research is also
needed to explore ethnic variation in biomarker data, which may
have influenced the clinical phenotypes in this study.

Conclusions

We have provided empirical evidence of potentially distinct
biological responses to COVID-19 in hospitalised patients, based on
the trajectories of physiological and blood biomarkers. These
classes may indicate different (dominant) mechanisms of disease
that warrant stratified approaches to COVID-19 therapy. In
particular, further research is needed to determine whether
patients with early hyperinflammatory responses and kidney
injury warrant earlier or specific inflammation-targeted interven-
tion(s) in order to improve their in-hospital outcomes.
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