| First author, year | Centre | Population | Prevalence of AIC | Prevalence of AIHA | Onset time post
HSCT (median,
range) | Risk factors-
univariate analysis | Risk factors-multivariate analysis | Survival | Comments | |------------------------------|---|--|--|---|--|---|--|--|--| | Drobyski, 1996 ⁶⁰ | Single centre,
Wisconsin, USA | Adults, 236 T
cell depleted
HSCT | Not reported | 2.9% | 10 months (7-25 months) | Not reported | Not reported | 4/7 died of infectious complications or AIHA complication | | | Chen, 1997 ⁶¹ | Single centre,
UK | Adults, 293
HSCT | Not reported | 3.1% | wAIHA 6-18 months,
cAIHA 2-8 months | Not reported | Not reported | 5/9 died, none of AIHA | 2/4 cAIHA had no
clinically evident
haemolysis | | Horn, 1999 ¹ | Single centre,
San Francisco,
USA | Children with
SCID, 41
haplo (T
depleted)
HSCT | Not reported | 19.5% | Not reported | PBSC as source of stem cell | PBSC as source of stem cell | 1/8 died at
presentation, 3 of
infections (2 with
active haemolysis) | Abnormal T cell reconstitution and function in >70% of patients with AIHA. | | O'Brien, 2004 ²⁶ | Single centre,
Minnesota, USA | Children, 439
HSCT | Not reported | Prevalence:
4.3%
1-year CI
4%, 3-year
CI 5% | 4 months (2–32 months) | Age <10 years,
metabolic disease | Metabolic disease | 10/19 died, 3 because
of AIHA, 5 of infection
during AIHA treatment | All cases of AIHA occurred in MUD HSCT. | | Sanz, 2007 ²⁴ | Single centre,
Spain | Adults, 272
HSCT for
haematologica
I malignancies | Not reported | 3-year CI
4.4% | 147 days
(41–170) | HLA mismatch,
unrelated donor,
extensive cGVHD,
UCBT | Unrelated donor, extensive cGVHD | 10/12 died | | | Page, 2008 ² | Single centre,
Duke University,
USA | 19 UCBT in
children with
metabolic
disorders (1
with
thalassemia) | 2-year CI
56% | 21% | AIC: 247 days (92-
687) | Infants
compared to older
children | Not reported | 5-year OS 80% (entire cohort) | High T cell dose in UCB could account for GVHD and immune dysregulation | | Daikeler, 2013 ²² | Multicentre,
Eurocord | Adults and children, 778 UCBT | 5-year CI of
AID 6.6%,
most
frequently
AIC | 2.5% | AID: 191 days (27-
4267) | For all AID: age <15 years, diagnosis of non-malignant disease, HLA match ≥5/6, no TBI conditioning, interval from diagnosis to UCBT <11.4 months | Risk factors for AID: diagnosis of non- malignant disease and interval from diagnosis to UCBT <11.4 months | 5-year OS was
59% for AIHA, 67% for
Evans syndrome, 91%
for ITP.
6/52 died of AIC (2
AIHA). | 8% mixed chimerism in patients with AID (same as in control group). | | Faraci, 2014 ²⁷ | Multicentre,
Italy | Children,
1574 HSCT | 3-year CI
2.13 %, 10-
year CI
2.5% | 10-yr Cl
1.5% | AIHA 5.2 months
(1.3 -
100.9) | For all AIC: younger age, HSCT from alternative donor, primary non-malignant disorder, UCBT | alternative donor, primary non-malignant disorder | 85% | 87% achieved remission with Rtx (100% in AIHA) | | Sanz, 2014 ³¹ | Single centre,
Spain | Adults,
281 single
UCBT for
haematologica
I malignancies | 3-year CI
6.8% | 3-year CI
5.4% | AIHA: 181 days (25-
543) | cGVHD, diagnosis of CML | cGVHD, diagnosis of CML | 10/15 died: 6 of
infections, 1 of AIHA
(massive haemolysis),
1 of relapse, 1 of
GVHD, 1 of 2 nd tumor | AIC has high mortality.
RTX should be
considered upfront | |--|-----------------------------------|--|-------------------|---|--|--|---|--|--| | Ahmed, 2015 ³⁰ | Single centre,
Texas, USA | Children, 500
1 st HSCT, 72
2 nd HSCT | Not reported | 2.4% after
1st HSCT,
9.7% after
2nd HSCT | 273 days (
119–
4505 days) after 1 st
HSCT, 157 days (70
–256 days) after 2 nd
HSCT | Matched related donor
reduces the risk of
AIHA. No other risk
factors confirmed | Not reported | No difference in
survival between
patients with AIHA or
without | 4 received 2 nd HSCT as
treatment for AlHA, 3
out of 4 unsuccessfully. | | Wang, 2015 ⁵ | Single centre,
London, UK | Adults, 533
HSCT | Not reported | 3.6% | 202 days | Unrelated donor,
concordant gender
recipient/donor | Unrelated donor | CR in 47%, PR 32%.
Alive: 9/19, 4 died of
AIHA | AIHA was associated
with increased
overall mortality (HR
2.48) and
increased TRM (HR
4.38) | | Bhatt, 2016 ³² | Single centre,
New York, USA | Adults and children, 152 double UCBT | 3-year CI
7% | 5.2% | AIC: 10.4 months
(range 5.8–24.5) | Not reported | Not reported | 9/10 alive, 8/10 in remission of AIC | All full donor chimerism. All AIC occurred during IS weaning. Most patients (8/10) had cGHVD. Steroids + early RTX are suggested | | Chang, 2016 ³⁴ | Single centre,
Taiwan | Children, 265
HSCT | Not reported | 5.6% | Not reported | Not reported. | Not reported | 12/15 achieved CR,
2/15 refractory | Among AIHA: 12/15
received UCBT, 13/15
had cGVHD, 9/15 had a
diagnosis of
thalassemia. | | Hwang-Bo,
2017 ⁶² | Single centre,
Korea | Children, 292
HSCT | 2.4% | 0.7% | AIC: 3.6 months | Not reported | Not reported | All alive at median 27 months after HSCT | All pts with AIC received ATG and MUD donor. | | Lv, 2017 ⁶³ | Single centre,
China | Adults, 445
HSCT | 3-yr Cl 4.0% | 1.3% | AIC: 196 days (60 to 756 days) | For all AIC: haplo-
HSCT, source of stem
cell, HLA disparity,
cGVHD. | Haplo-HSCT,
cGVHD. | 3-year OS 83.3% at a
median 355.5 days
(range,
2–1464 days) post
AIC | | | Kruizinga,
2018 ²¹ | Single centre,
the Netherlands | Children, 531
HSCT | 3-yr CI 5% | 2.2% | AIC: 5 months (1-36) | For all AIC: non-
malignant disorder,
CMV reactivation,
non-TBI conditioning | Non-malignant disorder,
CMV reactivation,
Alemtuzumab | 79% | TH2 shifted cytokine profile in patients with AIC. Bortezomib and Sirolimus are promising | | Gonzalez-
Vicent,
2018 ¹⁶ | Multicentre,
Spain | Adults and children, 4099 HSCT | Not reported | 1.5% | 6 months (1-55
months) | Age <15 years, UCBT,
MMUD | Not done | CI of AIHA related mortality is 17%. | DFS 52% (at 40 months). | | | | | | | | | | | Age <15 years and response to treatment have better DFS. Steroids +RTX should be offered upfront. | |----------------------------------|---|---|-------------------|-----------------------|--|---|---|--|---| | Deambrosis,
2019 ³ | Single centre,
Manchester UK | Children with
Hurler
syndrome, 36
UCBT | 22% | 8.3% | AIC: 66 days (range,
22-96 days) | For all AIC: higher pre-
transplant absolute
lymphocyte count and
FluBu conditioning | Higher pre-transplant absolute lymphocyte count | One death, 2 episodes
of life threatening
bleeding. 2 pts
experience
subsequent graft
rejection | In 3 cases anti-RBC AB were of recipient origin. Hypothesis: inadequate recipient immunosuppression in FluBu-conditioned AIC. | | Neely, 2019 ¹⁹ | Single centre,
San Francisco,
USA | Children, 442
HSCT | 4.5% | 2.0% | AIC: 5.2 months
(1.5-15.1) | For all AIC; older age.
In patients with
malignancies, no T
cell recovery at time of
AIC. | Not done | Higher mortality
among AIC compared
to controls (15% vs
7%). | 40% mixed chimerism at AIC onset. | | Scordo, 2019 ⁴² | Single centre,
New York, USA | Adults, 408
CD34+
selected
HSCT for
haematologica
I malignancies | 3-year CI
5.8% | 2.4% | AIC: 189 days
(39 -840) | Diseases risk index>3 | | 1 patient died of AIHA.
6-month OS after AIC
74%. | AIC is not a risk factor for NRM but increases relapse. | | Lv, 2019 ²⁵ | Multicentre,
China | Adults,
1377 HSCT
for
haematologica
I malignancies | Not reported | 3-year CI
2.2% | 215 days (34-756) | Haplo-HSCT, HLA
mismatch, cGVHD,
ATG | Haplo-HSCT, cGVHD | | All full donor chimerism. Patients with AIHA have lower rate of relapse, higher DFS and OS | | Szanto, 2020 ²⁰ | Single centre,
the Netherlands | Children, 380
HSCT | 5-year CI
7.8% | 6.3%(mostly
Evans) | AIC: 133 days (46 – 445) | For all AIC: UCBT,
aGVHD grade II-IV,
serotherapy, no
chemotherapy before
HSCT. | All AIC: aGVHD grade II-
IV, serotherapy, no
chemotherapy before
HSCT. | OS 83% | All full donor chimerism. AIC patients have lower T and NK and increased IgA, IgM, and IgG | | Miller, 2020 ²⁹ | Multicentre,
EBMT | Adults and children with AA, 530 HSCT | 5-year CI
4.6% | 1.3% | AIC: 10.6 months
(2.6–91.5) | For all AIC:
Alemtuzumab, RIC,
PBSC | All AIC: RIC, PBSC | 5 year OS 85.9%. 2
died of infection with
AIC not in remission | | | Lum, 2020 ²⁸ | Single centre,
Newcastle, UK | Children with
primary
immunodeficie
ncy, 502
HSCT | 5-year CI
9.4% | 3.7% | AIC: 6.5 months (2.5 months to 18.2 years) | For all AIC: pre-HSCT
AIC, MMUD,
Alemtuzumab, ATG,
aGVHD g II-IV,
cGVHD | Alemtuzumab | 5 year TRM 12 % at
median 5.8 years | RIC associated with the need for >2 line of therapy | | Koo, 2020 ¹⁸ | Single centre,
USA | Children, 354
HSCT | 5.6% | 3.6% | AIC:
219 days (range, 97-
1205 days) | MMUD. | | Only 25%
of patients had a
CR with initial therapy | Mixed chimerism is not a risk factor. | | | | | | High prevalence of | |--|--|--|--|----------------------------------| | | | | | steroid related side | | | | | | effects (AVN, cataract) | | | | | | and | | | | | | hypogammaglobulinemi a post RTX. | | | | | | a post RTX. | ## Table I: Summary of relevant studies reporting incidence and risk factors of post-HSCT AIHA. Abbreviations: 6-MP 6-mercaptopurine, AA aplastic anaemia, AB antibody, aGVHD acute graft versus host disease, AIC autoimmune cytopenia, AID autoimmune disease, AIHA autoimmune haemolytic anaemia, ATG anti-thymocyte globulin, AVN avascular necrosis, cAIHA cold autoimmune haemolytic anaemia, cGVHD chronic graft versus host disease, CI cumulative incidence, CML chronic myelocytic leukaemia, CR complete remission, CSA cyclosporine, DFS disease free survival, EBMT European society for Blood and Marrow Transplantation, FluBU Fludarabine Busulphan, GVHD graft versus host disease, haplo haploidentical, HLA human leukocyte antigen, HR hazard ratio, HSCT haematopoietic stem cell transplantation, IS immune-suppressive, ITP immune thrombocytopenia, IVIG Intra-venous Immunoglobulin, MMF mycophenolate mofetil, MMUD mismatched unrelated donor, MP methylprednisolone, MSD matched sibling donor, NRM non-relapse mortality, OS overall survival, PBSC peripheral blood stem cells, PR partial remission, RBC red blood cell, RIC reduced intensity conditioning, RTX Rituximab, SCID severe combined immune-deficiency, TBI total body irradiation, TRM transplant related mortality, UCBT umbilical cord blood transplantation, UK United Kingdom, USA United States of America, wAIHA warm autoimmune haemolytic anaemia