A nonlinear invariant attack on T-310
with the original Boolean function

Nicolas T. Courtois

University College London, Gower Street, London, UK

Abstract. There are numerous results on non-linear invariant attacks on T-310.
In all such attacks found so far, both the Boolean functions and the cipher wiring
were contrived and chosen by the attacker. In this article we show how to con-
struct an invariant attack with the original Boolean function which was used to
encrypt government communications in the 1980s.

Keywords: Boolean functions - Feistel ciphers- T-310 - Generalized Linear Cryptanal-
ysis - Polynomial invariants - Annihilators - k-normality - Algebraic Cryptanalysis

1 Introduction

In current work on non-linear cryptanalysis of block ciphers there were first attacks on
really contrived block ciphers in [10, 2] and further ciphers which are very academic
and not used in real-life applications. For example we have attacks on full SCREAM,
iSCREAM, Midori64, [27] and many others. Can we break a real-life cipher? Another
family of works approaches this question as follows: given the cipher wiring (in T-310
or in DES) under what conditions a certain polynomial invariant works? The key tool
here is the so called Fundamental Equation (FE) in [6] and the best attacks of this type
found so far are constructed by multiplying many well chosen polynomials together, cf.
[19]. Some of these attacks have a very large success rate, so eventually if we make a
slight modification to our real-life Boolean function, we eventually get an attack which
works, cf. [17]. However until now, no researcher has yet succeeded to find a non-linear
attack specifically designed to work with one single real-life Boolean function which
he has not chosen. We simply need to adapt our whole non-linear attack to this specific
Boolean function.

In the present article we show how to eventually achieve this. Here the cipher wiring
will be special and specifically designed to make our attack work. This is particularly
interesting because one cannot hope to change the Boolean function inside any real-life
historical cipher machine in order to make an attack work. This is fixed and imple-
mented in hardware. In contrast, it is possible and allowed to change the cipher wiring
in T-310. The long term key in T-310 takes the form of a printed board, and was changed
every few years [13]. In this paper we show that a super weak choice is possible.

This result is particularly significant for T-310, a government encryption system,
the cost of which is thousands of times more complex and costly, than with modern
commercial ciphers such as AES, cf. [15]. With our attack a large number of rounds
does not help. We will construct an invariant property which propagates for any number
of rounds.

This article is organised as follows. In Section 2 we describe our cipher. In Section
3 we study our Boolean function which is a central object of attention here. In Section
4.1 we study how our Boolean function can be annihilated by some polynomials. In
Section 5 we describe our attack which comes with a mathematical proof. In Section
5.3. we give an example of a long-term key and explain possible variants of our result.
We also explain how it can be re-interpreted in the light of a more general construction
with many cycles cf. [19] and in Appendix A we discuss which features of our Boolean
function would be relevant in further improved attacks.

2 T-310: a Complex Compressing Feistel Cipher with 4 Branches

We recall the definition of T-310 block cipher from [25]. T-310 operates on 36 bits
blocks and the secret key on 240 bits.

I! 12 I3 4
4,8,12,...,36 3,7,11,...,35 2,6,10,...,34 1,5,9,...,33

1 bit removed Wi bitreplaced=~-f_ S~
by a constant 9 . P
<D [« 1
key bits Sm,2 (/ seleation
81,82 -
'

// /
4,8,12,.. 3,7,11,. 2,6,10,.. 1,5,9,...,33

Fig. 1. High-level overview of one round of T-310

In each round only 2 key bits K, L are used and the same 2 bits are repeated after 120
rounds. The secret key is defined as 5112012 € {0, 1}240 which is 240 bits. In addition
each round has a round constant called F which derived from the public IV value. In
all, for any F,K,L € GF(2)3 one round of this block cipher is a permutation'. on 36
bits. The wiring? of the cipher is defined by two functions: D : {1...9} — {0...36},
P:{1...27} = {1...36}. For example D(5) = 36 means that input bit 36 is connected
to the wire called D5 in Fig. 4 which then becomes U5 = y;7 after XOR with bit g4.
Then P(1) = 25 means that input 25 is connected as v1 or the 2nd input of Z; cf. Fig. 4.

! This requires some complex technical conditions on the cipher wiring [14]
2 This wiring is also called LZS or Langzeitschliissel which means a long-term key.

In one round 9 new bits are created and 36 —9 = 27 bits are shifted by one position. The
cipher uses 4 identical Boolean functions of 6 bits which are denoted by Z,2,,73,2Z4
and sometimes also by 1-letter notations Z(),Y (),X (), W() respectively. Below we give
a set of closed formulas to compute the output bits y;_34 in each round from the input
bits x;_36.

vir1 = x; for any i # 4k (with 1 <i<36) (r0)
y33 = F +xp(o9) (r)
ZldéfZ(LaxP(l) me XP(5)) (z1)
y29 = F +Z1 +xp(s) (r2)
y25 = F +Z1 +xp(e) +xp(7) (r3)
Y Y(xp(7),---5%p(12)) (z2)
y21 =F +Z1 +xpe) + 2o+ XD(6) (r4)
yir =F+Zi+xpe)+ 2o+ Xp(13) T XD(5) (r5)
Z3défx(xp(14)7 co2Xp(19)) (z3)
yi3 =F +Zi +xp) + 2o+ Xp(13) + L4253 +xp(a) (r6)
yo =F +Z +xp) + 2o+ Xp(13) + L+Z3 +xp(20) +Xp(3) (r7)
zY W (xp(a1s - - Xp(26)) (z4)

Vs =F +Zi +xp) + 2o+ Xp(13) + L+Z3 +xp(20)+Za+xp(2) (r8)
i =F+Zi+xpe) + 2o+ xp(13) + L+Z3 + xpoy+Zatxparytxpay - (19)
X0 © g (s1)

F € {0,1} is around constant depending on a (public) IV (1)
K = Spmmod 120, 1 (in encryption round m=0,1,2,...) (k1)
L = S mod 120, 2 (in encryption round m=0,1,2,...) (k2)

Fig. 2. The specification of one round of T-310

Notation. In order for our polynomials to be short and compact we sometimes replace
the 36 bits x; — x3¢ by single letters, cf. Fig. 3. We avoid certain letters like F used else-
where. We study polynomial invariants for one round with 36 variables, and variables
x; and y; are treated “alike” and can be called by the SAME letter, for example x35 = a
and then y3¢ = a also. If we want to avoid ambiguity, we will distinguish between the
variable a at input denoted by @’ or just a, and the same variable at output denoted by
a° or a® where ¢ is a short notation for one round of encryption.

'S
%0

Numbers

910 (1112|1314 [15|16 |17 |18 | 19|20 (21 (22|23 |24 |25 |26 |27 (28|29 (30 |31|32|33|34(35|36

Letters

-«
-
©
=

PlOIN|M|z|y|[x|w|v|u|t|s|r|a|p|lo|n|m|1|k|j|i|lb|g|t]e|ld]|ec]|D

Fig. 3. Variable naming conventions

3 The Original Boolean Function

Our Boolean function which we denote in short by a single letter Z, is used 4 times
inside one encryption round. It was first specified in [21] dated 1973, and it is the same
as for an earlier SKS cipher in page 39 of [26], and the same as in page 113 in [24] and
page 256 in [25], except that the constant 1 was omitted (by mistake). We have:

Z(a,b,c,d,e,f)=1®a®edfDad DbcDbeDdeDef ®

acd®acf ®adeDbcf Dbdf Dcef B
abcd ® abce B abef G bed f ® abede acde f

3.1 Design Criteria for our Boolean Function Z from 1970s

We refer to Sections 3.3 to 3.6 in [16] for a detailed discussion of the original design
criteria which were used when this Boolean function was chosen in the 1970s. We
recall these criteria briefly here, with some rewriting and re-interpretation, using a more
contemporary vocabulary. In [21] dated 1973, we read that:

(73.1) X = (X1,X2,...,X6) €{0,1}°|Z(X) = 0} = 23

(73.2) {X€{0,1}°12(X) = 0,HW (X) = r}| = (©) - 1, r=0..6
(73.3) {X €{0,1}°1Z(X1,...X;, ... Xg) = Z(X1,..,. X; ©1,..,X6)}| = 25, i=1..6
(73.4) Z is not symmetric

A later document [1] from 1976 specifies another set of properties, which frankly
looks less like requirements, and much more as an evaluation of a Boolean function
already chosen at the time, probably? between 1973 and 1975.

(76.1) All derivations of Z were computed as Zhegalkin polynomials, which is the same

as Algebraic Normal Form (ANF), and also was computed as truth tables.

(76.2) Frequency of the function result being 1 with k fixed inputs was computed for

(k=1,2,3).

(76.3) The statistic structure which means the full table of linear characteristics of this

Boolean function Z was computed. Original documents do not describe any full
attack such as Linear Cryptanalysis, cf. [16, 28]. Instead they say that this was stud-
ied in order to see if some (presumably cryptanalytic) “advantage” could be gained
from an approximation of our function Z by other Boolean functions.

(76.4) Z is not symmetric, for example when arguments are permuted, and arguments are

negated, or a combination of both.

3 Some earlier documents about these questions, about cipher designs called ALPHA, SKS and
OPERATION cited in [1] are not available to us, cf. also [15].

3.2 Relevance to Our Attack and Modern Theory of Boolean Functions

These old criteria can be studied again in relation to the attack we present in this article
and to the contemporary theory of Boolean functions. The main idea is that the output of
our Boolean function Z is expected to behave randomly and should not remain constant
after different types of transformations. In point (76.4) it is required that Z should not
be constant when we permute or negate some inputs. The point (76.2) is more precise
about the balanced-ness of Z when k inputs are fixed. In this article, cf. Section 4.1
below, we study whet happens when some 3 affine functions of the 6 variables are fixed,
for example when (a+d)(b+c¢)(f+e) = 1, and the attacker would like Z to be constant
over such (affine) spaces. We get a more refined notion of balanced-ness or rather lack
of it, on smaller affine spaces. This is more general, and closely related to the question
of 3-normal Boolean functions, proposed and studied by Dobbertin and Charpin, cf.
[20,4]. A good Boolean function should not be constant on spaces of this type which
are not too small (in cardinality). Then if we further replace the word “constant” by
“affine”, we obtain the question of 3-weakly-normal Boolean functions first introduced
by Charpin in [4].

3.3 What Is Wrong with the Original Boolean Function

As far as we can see there is nothing wrong with this Boolean function. We could of
course mandate stricter requirements such as in DES, cf. [11], however in our opinion
these requirements for DES, are too strict, and many of them are not even necessary for
designing a secure cipher.

3.4 Is the Original Boolean Function Secure?

In our opinion most Boolean functions, are equivalent in terms of security which can
be obtained, for any given block cipher. For example for some 90 % of Boolean func-
tions chosen completely at random, we expect similar attacks to exist. Weak cases do
certainly exist, but in our opinion no Boolean function or S-box is really particularly
strong, see for example [8] for stream ciphers or [18] for a block cipher. Several papers
show the importance od cipher wiring, cf. [3] and [9] for DES, and [18] for GOST, etc.

This suggests that an opportunistic approach to cryptanalysis will work: design
many different attacks which work with a large probability for a random Boolean func-
tion, and eventually one of them will break T-310 in a real-life setting. The problem
however is that this approach is expensive and obscure and tedious: it requires to gen-
erate vast databases of possible attacks, for example following the general framework
of [19], and we have not implemented it yet, and it might require some substantial
computing power (and storage). Moreover we would obtain plenty of attacks but little
understanding, of why some attacks exist and how to construct more attacks.

Therefore it is useful to try to work from the prescribed Boolean function and see
what makes that a certain attack might work. We also hope that this approach is more
illuminating. This is why we also wish to construct an attack by formal polynomial
algebra, and by paper and pencil. This rather than working with some (more obscure)
sets of constraints or with partitioning of some spaces or with complex formal algebra
(or logic) software tools.

4 On the Annihilation Complexity of Z

One of the main vulnerabilities of Boolean functions, which lead to attacks on block
and stream ciphers alike, cf. [12, 6] are annihilation vulnerabilities. Here also we have
the 90 % question as above. Numerous attacks based on annihilation specifically, on
block and stream ciphers alike were shown to work for a large proportion of Boolean
functions or S-boxes, cf. [17] or for all Boolean functions [12, 8]. We need therefore to
see what kind of annihilation events exist with our Boolean function, and in general.

4.1 On Algebraic Immunity and Annihilation Complexity of Z

The space of annihilators for Z has dimension 32, cf. Thm. C.2. in Appendix C of [17].
Inside there exist 10 linearly independent annihilators of degree 3 which are listed in
[13]. Accordingly the so called Algebraic Immunity is 3. One of these 10 is particularly
simple and is ac + bc + ace + bce, which can be factored as:
(a+b)c(l1+e)Z2=0

Is this unusual? Yes and no, we know that (cf. Thm 6.1. in [17] based on earlier Thm
6.0.1. in [12]) for any Boolean function either Z or Z+ 1 has at least one annihilator of
degree 3. A stronger result is that either Z or Z + 1 will have an annihilator of degree
being a product of 3 affine factors, which is in fact a direct consequence of a normality
property reported in [4], based on earlier work of [22]. Therefore we are definitely not
surprised that equations such as (a+b)c(1 4+ €)Z = 0 exist.

4.2 Additional Annihilation Properties of Z

What is surprising, and we are not aware of any theoretical estimation which would
confirm that, is that multiple solutions exist for both Z and Z + 1 when Z is a balanced
function. This is indirectly what makes the present work possible: if one annihilation
property would not work for specific technical reasons, another might eventually work.
The current construction in this article is such that it requires three disjoint sets of 2 vari-
ables. However we expect that there exist many other non-linear invariant attacks [19].
There exist vast quantities of annihilation properties for this (and any other) Boolean
function. For example we have observed that:

(Z+e)(c+e)(d+e)(a+b)=0
and
(Z+b)adf =0
We have however paid particular attention to properties which would look like the
property required in [17] which was Z(a+b)(c+d)(e+ f) = 0 modulo a re-ordering a
variables. We found for example that:
2)(f+d+1)(a+c)(b+d)=0.

Finally we tried to relax our requirement of annihilating Z or Z + 1 itself, as there
are too few ways to annihilate Z. For this reason we allow the addition of arbitrary
affine functions to Z, which corresponds to our more general attack in framework in
[19], which works with a more general notion of weak normality for Boolean functions
in [4]. We then found that we also have:

(Z+f+c)a+d)(b+c)(f+e) =0

This equation (and only this one) is exploited in the present paper. We believe that a
similar attack could be designed for many other ways to annihilate Z. Many other ways
to annihilate Z exist and we expect that some are more suitable for being exploited
inside an attack. We should also note that it is not exactly the so called Algebraic Im-
munity, but rather the more appropriate notions of normality and weak normality of [4],
which are relevant here. Some important additional ways to annihilate Z specifically
chosen for further applications in cryptanalytic attacks in mind are studied in Appendix
A and in [13].

5 Constructing A Non-Linear Invariant Attack On T-310

In this paper we present one particularly strong attack on T-310 which is inspired by a
similar attack described in [17]. However the objectives in the present article are very
different than previously and we will need a number of additional technical constraints
on the cipher wiring. We deﬁne the following 8 basic polynomials:

A (g+e) whichis bits 20,32
B (r+f) whichis bits 19,31
C™ (s+g) whichis bits 18,30
D (1+h) which s bits 17,29
E™ (S+u) whichis bits 4,16
F (T +v) whichis bits 3,15
G (U +w) whichis bits 2, 14

H™ (v +x) whichis bits 1,13

and we observe that we have a pseudo-cycle, also shown in Fig. 5:

H—-G—~F—FE—->?D—-C—>B—~A—"H

where H — G is a trivial transition, and we also write G = H?, which is due to the
internal wiring: these bits are just shifted inside this cipher, cf. rule (10) in Fig. 2. Two
transitions however, are problematic and marked with question marks. These are not
quite correct and they are in fact simply rather impossible to achieve. They would be
true if certain complex Boolean functions namely W +c+ f and Y + ¢+ f were equal
to zero for every input. This is not the case, however some multiples of these functions
will be zero. Here W + ¢ + f denotes a Boolean function shifted by the addition of 3rd
and 6th variable to the output.

5.1 An Invariant Attack with the Original Boolean Function

We now present our main result. For simplicity it fixes the order of bits for the two
Boolean functions and used colour coding and one example mapping of inputs for bet-
ter readability. More generally inputs our two Boolean functions W and Y could be
permuted if this is done in a consistent way for both. An example of a full cipher wiring
which works will be given in page 11.

Theorem 5.2 (Invariant Attack using the Original Boolean Function).
Given the eight polynomials A — H defined as above and reproduced also in Fig. 5,
AND for each cipher wiring for T-310 s.t.

{D(1),D(4),P(20),P(27)} ={5-4,8-4,P(23),P(26)}
{D(5),D(8),P(6),P(13)} ={1-4,4-4 P(9),P(12)}

AND if the Boolean function (used twice as W and as Y for different sets of inputs)

is such that we have:
(Z+f+c)(a+d)(b+c)(f+e)=0

AND for any mapping of any 3 out of 6 polynomials B,C,D,F,G,H into 6 inputs
of W defined by integers P(21),...,P(26) connected* in a way which preserves’ the
partitioning in three sets or pairs in (¢ +d)(b+ ¢)(f + ¢), for example:

17,30,18,29,31,19

AND for any mapping of the remaining 3 pairs of inputs to® the 6 inputs of ¥ defined
by integers P(7),...,P(12) of Y (), which also are connected preserving the three sets
of pairs, for example

13,2,14,1,3,15
THEN for any short term key of 240 bits, and for any initial state on 36 bits, we

have the non-linear invariant
Y = ABCDEFGH

holding with probability 1.0 for any number of rounds and for any F, K, L.

v21(v22|v23|v24|v25 | v26

Fig. 4. The internal structure of one round of T-310 block cipher

4 For example we connect 2 -3 inputs of D,C, B to the 6 inputs of W.
3 For example if one input A is b the other must be c.
6 For example we connect 2 -3 inputs of H, G, F to the 6 inputs of Y.

Proof:
We start by observing that, following the path from output 13 to 1 in Fig. 4, or
adding together the equations (r6) and (r9) in Fig. 2 we get:

H? =y13+y1 =Xp(a) +xp0) + W () +xp7) +xp1) = (W () +Xp(23) +Xp(26)) + (X32+X20) =

=W+ f+c)()+A
which is true knowing that {D(1),D(4),P(20),P(27)} = {5-4,8-4,P(23),P(26)}.

round inputs 17,29 18,30

O_
D =t+h O» C=stg

D{5)=4 P(6}= P(12)=15 P(9)=14
+C+ are inputs of Y(abcdef) O
D(8)=16 P(13)=14 =round inputs 14,15

E=u+S 16,4 19,31 B =r+f

Tz 0

F=v+T™" 0% A = g+e

P(23)=19 P(26)=18 2)=20 P(27}=19
O are inputs of W(abcdef) +C+f
=round inputs 18,19 {4)=32 P(20)=18
G=w+U [P H = x+V
e =0 1

Fig. 5. Our attack can be studied in terms of a cycle of size 8 with on 8 basic polynomials A
to H which are expected to be transformed into each other in a closed loop in every 8 consec-
utive applications of our cipher. The invariant polynomial is actually the product of all these
& = ABCDEFGH. Some transitions are trivial. Other are only true if the assumptions of our
attack are satisfied which makes that two polynomials namely (Y +c+ f) and (W +c+ f) are
simultaneously annihilated inside our attack.

Then following the path from output 29 to 17 in Fig. 4, or adding together the
equations (r2) and (r5) in Fig. 2 we get:

D’ =y29+y17 =Xp(8) +Xpe) +Y () +xp13) +xp(s) = (Y () +Xpo) +xp(12)) + (x16+x4) =

=Y +f+c)()+E
which in turn works knowing that {D(5),D(8),P(6),P(13)} ={1-4,4-4,P(9),P(12)}.

We also have 6 trivial transitions such as A° = B’ due to shifting of bits by one
position, cf. (r0) in Fig. 2.
We now put this all together.

inputs 17,30,18,29,31,19 of W

N{

(Z+f+c)(/a+d) bFe)(f+e) =0

inputs 13,2,14,1,3715 of Y

Fig. 6. Example of how we map inputs of W and Y to 3 sets with 2 variables out of 6 in a way
consistent with our annihilation property

At the input side &2 is equal to 2! = ABCDEF GH and at the output of our cipher
we have:

e@o :A()B()C()D()E()FUG()H() :Blchl((Y+f+c)(>+E1)F1GZH1((W+f+C)() +Al) —

at this moment only input variables are left and we can drop the exponents such as
A" and we get a pure expression which depends only on the input variables:

P° =BCD(Y(.)+E)FGH(W(.) +A) =

Now we observe that the inputs of W () are 17,30, 18,29,31,19 , and our assumption
was (Z+ f+c¢)(a+d)(b+c)(f +¢) =0 which means that

W+ f+)(B)(C) (D) =0.

and this equation allows us to erase (W + f +¢)(BCD) because any multiple of it is
equal to 0 and we get:

P° =BCD((Y + f+c)()+E)FGHA =

Likewise the inputs of Y () are 13,2, 14, 1,3, 15, and our assumption was (Z+ f +
c)(a+d)(b+c)(f +e) = 0 which means that

(Y+7f+¢)(F)(G)H)=0.
and this equation allows us to erase any multiple of (Y + f 4 ¢)(FGH) leading to:
2° = BCDEFGHA = &'

which ends our proof.

5.3 Application Notes and Observations

One long term key which works is LZS 515 given below. It has a bijective round func-
tion which is not strictly required (except that T-310 would then be under threat of
powerful attacks, [14]). It was generated with some trial and error using CryptoMiniSat
to find collisions automatically and thus exclude keys which are not bijective.

515: P=9,5,7,34,33,15,13,2,14,1,3,15,14,11,26,16,6,5,
23,19,17,30,18,29,31,19,18 D=20,36,12,32,4,8,24,16,28

Notes. Remark: in our example we mapped inputs of W to B,C, D which are con-
secutive states on one half of our cycle in Fig. 5. This is NOT necessary, and we can use
any 3 out of 6 polynomials B,C,D, F,G,H for W and the other 3 for Y. These 6 polyno-
mials are such that they are mapped to another polynomial from the 8 basic polynomials
A,B,C,D,E F,G,H by a “trivial” transition which does not impose any conditions or
one marked with O in Fig. 5. Such polynomials are sometimes called “transformable
polynomials” using the terminology of [19] which name means that they belong to our
set of 8 polynomials after transformation by the round function ¢, for example we write
G = H® which shows that H is a “transformable” polynomial. An interesting research
question is to design a better attack which reuses these polynomials, cf. Appendix A.

Open Problems. One referee of this paper have asked what would be the percent-
age of long term keys which would satisfy the official KT1/KT2 criteria approved for
government communications [25]. The answer is most likely 0 % with the current at-
tack. In this paper we worked with paper and pencil and the attack is very simple. The
next step is to search for further more complicated attacks for example following the
methodology of [19] (and again subject to questions of polynomial reuse, cf. Appendix
A). It appears that the space of possible attacks is extremely large and has not yet been
studied in full. Therefore in our opinion an improved attack with a more complex in-
variant configuration which works with fully compliant KT1 or KT2 keys is likely to
exist.

6 Conclusion

In this article we showed that it is possible to design a nonlinear invariant attack on
T-310 on-demand, with the exact original Boolean function which was used to encrypt
government communications in the 1980s. This was not achieved before, as far as we
can see. We worked by formal algebra from a well-chosen annihilation property.

Our cipher wiring is very special, however such modifications are officially allowed,
in the sense of being 100 % compatible with the original T-310 encryption hardware.
Therefore we obtain a quasi-realistic attack scenario. This explains why it is important
to be able to test cryptographic algorithms for defects when they are used in practice.

There are numerous ways in which a non-linear invariant attack could be exploited
in cryptanalysis in order to actually decrypt some communications, cf. for example
Section 6 in [5]. This is a complex technical and combinatorial optimization question
which we consider to be outside the scope of this article.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Arbeitsgebiet 113: Sachstandbericht zur Arbeit am Chiffrieralgorithmus des Geridtes T

310/50, MfS-020-X1/674/76, 51 pages, Berlin, 31 December 1976, also known as MfS-Abt-
XI-532

. Arnaud Bannier, Nicolas Bodin, and Eric Filiol: Partition-Based Trapdoor Ciphers, https:

//ia.cr/2016/493.

. Lawrence Brown, Jennifer Seberry, On the design of permutation P in DES type cryptosys-

tems. In Eurocrypt 89, LNCS 434, pp. 696-705. Springer, 1990.

. Pascale Charpin: Normal Boolean functions, Journal of Complexity, vol. 20, Issues 2-3, pp

245-265, 2004.

. Nicolas T. Courtois, Marios Georgiou: Variable elimination strategies and construction of

nonlinear polynomial invariant attacks on T-310, In Cryptologia, vol. 44, Iss. 1, pp. 20-38.
Athttps://doi.org/10.1080/01611194.2019.1650845

. Nicolas T. Courtois: On the Existence of Non-Linear Invariants and Algebraic Polynomial

Constructive Approach to Backdoors in Block Ciphers, https://ia.cr/2018/807, last
revised 27 Mar 2019.

. Nicolas T. Courtois: Structural Nonlinear Invariant Attacks on T-310: Attacking Arbitrary

Boolean Functions, https://ia.cr/2018/1242, revised 12 Sep 2019.

. Nicolas Courtois: Algebraic Attacks on Combiners with Memory and Several Outputs,

ICISC 2004, LNCS 3506, pp. 3—20, Springer 2005. Extended version available on https:
//ia.cr/2003/125/.

. Nicolas Courtois: Feistel Schemes and Bi-Linear Cryptanalysis, in Crypto 2004, LNCS

3152, pp. 2340, Springer, 2004.

Nicolas Courtois: The Inverse S-box, Non-linear Polynomial Relations and Cryptanalysis
of Block Ciphers, in AES 4 Conference, Bonn May 10-12 2004, LNCS 3373, pp. 170-188,
Springer, 2005.
https://www.researchgate.net/publication/221005723/_The_Inverse
_S-Box_Non-linear_Polynomial_Relations_and_Cryptanalysis_of\
_Block_Ciphers

Nicolas Courtois, Guilhem Castagnos and Louis Goubin: What do DES S-boxes Say to Each
Other ? Available on https://ia.cr/2003/184/.

Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear Feed-
back, Eurocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345-359, Springer. Extended ver-
sion: www.nicolascourtois.com/toyolili.pdf.

Nicolas T. Courtois, Klaus Schmeh, Jorg Drobick, Jacques Patarin, Maria-Bristena Oprisanu,
Matteo Scarlata, Om Bhallamudi: Cryptographic Security Analysis of T-310, Monography
study on the T-310 block cipher, 132 pages, received 20 May 2017, last revised 29 June 2018,
https://ia.cr/2017/440.pdf

Nicolas T. Courtois, Maria-Bristena Oprisanu: Ciphertext-only attacks and weak long-term
keys in T-310, in Cryptologia, vol 42, iss. 4, pp. 316-336, May 2018. http://www.
tandfonline.com/doi/full/10.1080/01611194.2017.1362065.

Nicolas Courtois, Jorg Drobick and Klaus Schmeh: Feistel ciphers in East Germany in the
communist era, In Cryptologia, vol. 42, Iss. 6, 2018, pp. 427-444.

Nicolas Courtois, Maria-Bristena Oprisanu and Klaus Schmeh: Linear cryptanalysis and
block cipher design in East Germany in the 1970s, in Cryptologia, 05 Dec 2018, https:
//www.tandfonline.com/doi/abs/10.1080/01611194.2018.1483981

Nicolas T. Courtois: Structural Nonlinear Invariant Attacks on T-310: Attacking Arbitrary
Boolean Functions, https://ia.cr/2018/1242, revised 12 Sep 2019.

18. Nicolas T. Courtois, Theodosis Mourouzis, Michat Misztal, Jean-Jacques Quisquater,
Guangyan Song: Can GOST Be Made Secure Against Differential Cryptanalysis?, In Cryp-
tologia, vol. 39, Iss. 2, 2015, pp. 145-156.

19. Nicolas T. Courtois, Matteo Abbondati, Hamy Ratoanina, and Marek Grajek: Systematic
Construction of Nonlinear Product Attacks on Block Ciphers, In ICISC 2019, LNCS 11975,
pp 20-51, Springer, 2020.

20. Hans Dobbertin: Construction of bent functions and balanced Boolean functions with high
nonlinearity, in: FSE’94, LNCS 1008, Springer, Berlin, pp. 61-74, 1994.

21. Document MfS-Abt-XI-183, which is a documentation of SKS V/1 and contains a selection
of pages extracted from a larger document known as MfS-020-Nr. 747/73, 1973.

22. S. Dubuc: Etude des propriétés de dégénérescence et de normalité des fonctions booléennes
et construction de fonctions q-aires parfaitement non-linéaires, Ph.D. Thesis, Université de
Caen, 2001.

23. C. Harpes, G. Kramer, and J. Massey: A Generalization of Linear Cryptanalysis and the
Applicability of Matsui’s Piling-up Lemma, Eurocrypt’95, LNCS 921, Springer, pp. 24-38.

24. Referat 11: Kryptologische Analyse des Chiffriergerites T-310/50. Central Cipher Organ,
Ministry of State Security of the GDR, document referenced as ‘ZCO 402/80°, a.k.a. MtS-
Abt-X1-594, 123 pages, Berlin, 1980.

25. Klaus Schmeh: The East German Encryption Machine T-310 and the Algorithm It Used, In
Cryptologia, vol. 30, iss. 3, pp. 251-257, 2006.

26. VEB Steremat “Hermann Schlimme”, Geritesystem SKS V/1, Gerit DE1Zeichnungs-Nr.
310017, Band 2, also known as MfS-Abt-X1-415, and a.k.a. B 86/1-31/77, Berlin, 1976.

27. Yosuke Todo, Gregor Leander, and Yu Sasaki: Nonlinear invariant attack: Practical attack on
full SCREAM, iSCREAM and Midori64, In Journal of Cryptology, pp. 1-40, April 2018.

28. ZCO: Charakterisierung der Booleschen Funktion Z, handwritten document, MfS-020-
X1/493/76, 24 pages, 1976.

A Future Attacks: Shared Factors and Fewer Variables

This article is the first successful attempt, to construct a realistic non-linear attack “on
demand”, given one fixed specific real-life Boolean function. We needed to adapt our
attack to the Boolean function. It is obvious that a lot more can be done in this direction.
Current research on invariant attacks on T-310 privileges annihilation equations of low
degree which corresponds to the notion of k-normality in Boolean functions [4]. There
is another major approach to this problem. To look at ways to annihilate Z with less than
6 variables (but maybe more factors). We have already see that with (Z + b)adf = 0.
We list some more such solutions below which use only 4 active variables. With less
variables it is easer to find an invariant attack, some variables are already eliminated (!).

In addition, if we want to apply the general attack framework of [19], it is clear that
we need to re-use affine factors. This in order to optimize the total degree of the product
attack, and also avoid product of polynomials & to become zero itself, compromising
the hopes for a valid invariant attack. For this reason, it is particularly interesting to
study cases when certain affine factors in 6 variables are repeated within a larger number
of annihilation conditions. This leads to new very specific optimization problems. For
example given k linear factors, maximize the number of affine shifts of Z which can be
annihilated simultaneously. An example is worth a thousands words, therefore we give
here an example of such a configuration with a shared factor of d.

(Z+1)x(1+a+b)x(d)*(1+a+f)=0

(Z+Db)x(d)*(1+b+e)x(f)=0

Them main idea is that in one single attack where the invariant will impose that
(among others) d = 1 at each round, the polynomials (Z+ 1) and (Z+ b) would be
annihilated simultaneously for 2 different reasons. This example is incomplete, in the
sense that it does not list numerous other related polynomials with some shared factors
and with the same original Boolean function. The number of possibilities is simply very
large. The reuse of annihilating factors is expected to increase the probability that some
invariant property % would work on T-310. One method to construct such attacks could
be the general cyclic product attack construction of [19].

