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Abstract 
Background: Conventionally, searching for eligible articles to include 
in systematic reviews and maps of research has relied primarily on 
information specialists conducting Boolean searches of multiple 
databases and manually processing the results, including 
deduplication between these multiple sources. Searching one, 
comprehensive source, rather than multiple databases, could save 
time and resources. Microsoft Academic Graph (MAG) is potentially 
such a source, containing a network graph structure which provides 
metadata that can be exploited in machine learning processes. 
Research is needed to establish the relative advantage of using MAG 
as a single source, compared with conventional searches of multiple 
databases. This study sought to establish whether: (a) MAG is 
sufficiently comprehensive to maintain our living map of coronavirus 
disease 2019 (COVID-19) research; and (b) eligible records can be 
identified with an acceptably high level of specificity. 
Methods: We conducted a pragmatic, eight-arm cost-effectiveness 
analysis (simulation study) to assess the costs, recall and precision of 
our semi-automated MAG-enabled workflow versus conventional 
searches of MEDLINE and Embase (with and without machine learning 
classifiers, active learning and/or fixed screening targets) for 
maintaining a living map of COVID-19 research. Resource use data 
(time use) were collected from information specialists and other 
researchers involved in map production. 
Results: MAG-enabled workflows dominated MEDLINE-Embase 
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workflows in both the base case and sensitivity analyses. At one 
month (base case analysis) our MAG-enabled workflow with machine 
learning, active learning and fixed screening targets identified n=469 
more new, eligible articles for inclusion in our living map – and cost 
£3,179 GBP ($5,691 AUD) less – than conventional MEDLINE-Embase 
searches without any automation or fixed screening targets. 
Conclusions: MAG-enabled continuous surveillance workflows have 
potential to revolutionise study identification methods for living maps, 
specialised registers, databases of research studies and/or collections 
of systematic reviews, by increasing their recall and coverage, whilst 
reducing production costs.
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Introduction
Improving the efficiency of evidence synthesis production 
workflows is an important catalyst to enabling better health  
decisions and outcomes. Globally, the research sector spends 
billions of dollars each year on identifying newly published  
empirical research articles for indexing in living maps, special-
ised registers, and tertiary databases on various topics – resources 
which facilitate the discovery, use and reuse of research,  
including prioritisation, specification, production and (con-
tinuous) updating of (living) systematic reviews. Therefore,  
finding sufficiently reliable, but also less costly, semi-automated  
ways to identify and classify studies at scale has become an 
active area of methods research and methodological develop-
ment, with the potential to help reduce waste in research and  
reduce research costs worldwide.

Study identification comprises searching and selection (screen-
ing) tasks. While an array of ‘human-in-the-loop’ automation  
tools has been developed to support these tasks, uptake has 
so far been limited1. Previous research has highlighted that  
automation tools need to have a relative advantage when  
compared with conventional tools and methods if they are to  
become widely diffused and adopted into practice2,3. For screen-
ing, a critical issue is demonstrating that semi-automated  
workflows will maintain or improve upon the recall (sensi-
tivity) of current practice. Researchers undertaking evidence 
synthesis are justifiably averse to ‘missing’ eligible studies  
(i.e. decreased recall), especially when this might reduce the  
credibility, reliability and/or certainty of the published findings.

Automating search tasks
To date, searching for eligible articles has relied primarily on  
information specialists conducting updated Boolean searches  
across several secondary databases, and then manually process-
ing the retrieved bibliographic records, including deduplication  
between those multiple sources. This is partly because  
bibliographic records have, up until recently, largely been  
reposited in closed-access, proprietary databases. However, the  
idea that bibliographic records should be treated as ‘commercial  
property’ in this way is starting to erode, since it runs contrary  
to the principles of open science and undermines the value 
and impact of (publicly and privately funded) research. This  
erosion can be seen in recent, currently ongoing efforts to 
index all of the world’s research in Microsoft Academic  
and Google Scholar databases, alongside the increasing avail-
ability of records that were once ‘closed’ in the open-access  
CrossRefand ‘OpenCitation’ repositories. Increasing openness of  
bibliographic data, combined with ‘web scale’ datasets of vast 
numbers of records, opens up new, transformational opportuni-
ties for locating research at scale. If most research is available in 
a single, comprehensive dataset, then the focus of information  
specialists’ work could shift towards developing and curat-
ing highly precise, automated searches of that dataset, with the  
potential for large overall efficiency gains at scale.

Microsoft Academic Graph (MAG) is a large open-access data-
set and repository that currently comprises over 250 million  
bibliographic records of scientific research articles4. Microsoft  
makes the entire MAG dataset available for third-party use 

under a creative commons license. During the early part of the  
coronavirus disease 2019 (COVID-19) pandemic, until November 
2020, an updated version of the MAG dataset was released 
every 7 to 10 days; since then, it is updated every 14 days.  
A key feature of the MAG dataset is that its bibliographic 
records are all connected in a large network graph of concep-
tual, citation and other relationships. This provides an oppor-
tunity to develop tools that exploit network graph features,  
alongside text features, of records, to help expedite the search-
ing process. Microsoft has recently announced the closure 
of Microsoft Academic. Fortunately, the organisation Our 
Research has announced a successor called ‘OpenAlex’ and is  
liaising with Microsoft to ensure it has comparable cover-
age. The Allen Institute for AI is also planning to expand its 
open access dataset in Semantic Scholar, so while Microsoft 
Academic is a major loss to open science, the move towards  
increasing availability of open access bibliographic information 
seems set to continue.

Research is needed to investigate the extent to which using 
the MAG dataset as a single source can improve the efficiency 
of study identification for living maps, registers, systematic  
reviews and tertiary databases of research. We have therefore 
been actively developing a suite of tools to enable automated  
searching of a local copy of the MAG dataset in EPPI-Reviewer, 
systematic review software that is hosted by UCL and runs 
in a web browser1. These tools include a novel machine  
learning-based recommender model for continuous evidence 
surveillance (the ‘AutoUpdate’ model)5, developed in collabora-
tion with Microsoft™ to support the Human Behaviour-Change  
Project6 and evidence surveillance activities across the EPPI-
Centre. The AutoUpdate model is trained to infer the relevance  
of newly published MAG records to existing living maps,  
registers, systematic reviews and databases of research articles  
that subscribe to it. This is based on a supervised dataset,  
comprising graph and text features from MAG records  
previously selected for inclusion in those resources. A ‘custom  
search’ feature is also available, enabling semi-automated 
searches of the updated MAG dataset using more conventional  
Boolean-type search strategies. This suite of tools is being 
used to support a portfolio of methods research projects inves-
tigating use of the MAG dataset as a single source for study  
identification in systematic reviews and related use scenarios.

Automating study selection tasks when updating maps 
and reviews
Selecting eligible articles has conventionally relied on manual 
screening of all unique bibliographic records, retrieved from 
updated searches, against pre-specified criteria. Two potential  
approaches to automating the study selection task involve:  
(1) Identifying and discarding ineligible records prior to  
manual screening, while retaining eligible records; and (2) Pri-
oritising (retained) eligible records for manual screening, while  

1 There are two publicly available versions of EPPI-Reviewer. An older 
version, that requires the Silverlight browser plugin to run, and a newer 
one, that runs in any modern web browser. We refer throughout to the  
newer version, though the same functions are available in both.

Page 3 of 14

Wellcome Open Research 2021, 6:210 Last updated: 19 AUG 2021

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://eppi.ioe.ac.uk/CMS/Default.aspx?alias=eppi.ioe.ac.uk/cms/er4&


deprioritising (retained) ineligible records. These two approaches 
can be applied individually or in sequence. Machine learning  
(ML) tools that enable both approaches have been under 
active development and made available in select systematic 
review softwares, including EPPI Reviewer7,8. For (1), binary  
ML classifiers can be trained to discriminate between text  
features of eligible and ineligible records, calibrated to a thresh-
old score that ensures an acceptably high recall (proportion  
of eligible records are retained). Once calibrated, the ML  
classifier can then be prospectively tested and applied to update 
search results to score and then retain or discard records.  
For (2), a rank-ordered list of (retained) records can be  
continuously reprioritised for manual screening by the same  
underlying ML classifier, incorporating ‘feedback’ from the  
growing corpus of manual screening decisions already made 
about eligible and ineligible records (known as ‘active learn-
ing’). Published evaluations of automation tools targeting study 
selection tasks have typically highlighted a trade-off between  
marginally higher recall and lower screening workload8.

The urgent ‘case’ of COVID-19 research
The explosion, during early 2020, in the volume and rate 
of publication of new primary and secondary research on  
COVID-19 prompted various efforts to filter and organise this 
evidence into living maps, specialised registers, or tertiary data-
bases. One example is a ‘living map’, commissioned by the  
UK Department of Health and Social Care, which we have 
been maintaining and re-publishing on a weekly basis since  
February 2020. Up to the end of April 2021, the living map 
included 52,355 bibliographic records of research articles 
reporting empirical primary research, modelling studies or 
systematic reviews on COVID-19, organised into 11 topic  
codes (based on the main focus of the study). Pre-prints, records 
of articles not reporting primary data, not relevant to/ not 
focused on humans, and/or not on the topic of COVID-19, are  
excluded. From its inception until late October 2020, the map 
was kept up-to-date using an entirely manual process (detailed 
further in ‘Methods’). However, it became clear, as publica-
tion volume increased, that we would eventually be unable  
to maintain the map using conventional methods, within  
available resources. For example, during the first few weeks 
of producing the map, the information specialist spent  
3–4 hours of time-on-task (and up to one day of elapsed time) 
each week on searching and deduplication tasks. During  
subsequent months, this increased to 1–2 days of time-on-task  
(and up to three days of elapsed time), thereby reduc-
ing the time available to screen and code records prior to 
the scheduled publication of each updated version of our  
living map, at the end of each week. Given these threats to 
sustainability, we started to consider how automation tech-
nologies could be used to make search and screening-coding  
procedures more efficient.

Although there is now a sizeable evidence base for the effi-
cacy of using automation tools in health evidence synthesis,  
overall uptake remains limited and fragmented. One dimen-
sion of the evidence base that is currently lacking is a clearer  
understanding of any trade-offs between the relative advantages 

of using automation – potential cost and resource savings – and  
any impacts on evidence quality. Also, more generally, meth-
ods and tools designed to increase the efficiency of evidence  
synthesis production processes should more routinely be  
evaluated in terms of their relative efficiency, compared with 
current standard methods, i.e. in terms of both their costs and 
effects. In this context, we developed an economic evalu-
ation to assess the costs and effectiveness of automated  
study identification in our living map of COVID-19 research.

Methods
Objective
This cost-effectiveness analysis (CEA) is reported in line with 
consolidated reporting standards for economic evaluations9.  
Our main objective was to investigate the effectiveness and 
efficiency of using semi-automated, versus manual, study  
identification methods to identify eligible study reports for our 
living map of COVID-19 research. The main purpose was to 
inform an operational decision about whether we should switch 
from using conventional Boolean searches of MEDLINE and  
Embase databases to using automated searches of the MAG 
dataset, to identify eligible study reports for the living map.  
The study was carried out between June 2020 and October 2020.

Comparisons
We simulated the incremental costs and effects of using  
eight-variant manual (comparator) or semi-automated (interven-
tion) study identification workflows to maintain our living map 
for one month between 22nd June and 23rd July 2020 (Search  
16 to Search 19). This period was selected because it imme-
diately preceded the use of any automation tools in our ‘live’ 
study identification workflow, thereby providing usable data to  
measure or simulate the performance of the comparator  
(manual) workflows. Semi-automation of our ‘live’ workflow 
aimed to make the process of maintaining our living map both  
more efficient and more sustainable within the available  
resources.

Components of the eight study-identification workflows (study 
arms) that we compared are shown in Table 1. Each study  
arm is described below.

Variations between study arms reflect our primary decision  
point – namely, whether or not to switch to using the MAG 
dataset as a single source – and the different scenarios in  
which this decision could be implemented:

1.  MAG versus MEDLINE-Embase.

2.  Binary machine learning classifier versus none.

3.  Priority screening mode versus none.

4.  Fixed screening target (n = 1,500) versus none.

5.  Target recall = 1.0 versus target recall = 0.95.

‘Comparator A’ (arm 1) corresponds to the baseline workflow 
that we originally used to create and update our living map;  
we added two further comparators (arms 2 and 3) into the 
analysis to enable fair comparisons of workflow performance  
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on each of the five decision points listed above. The ‘interven-
tion’ workflows (arms 4 to 8) also reflect pragmatic, real-time 
decisions made by our living map team, regarding which tools  
we wanted to adopt into our ‘live’ workflow, and when.

MAG versus MEDLINE and Embase
MAG. Since it lacks a Boolean search engine, each sequen-
tial update of the MAG dataset is automatically searched by  
deploying our AutoUpdate model. All new records published in 
each MAG update are scored using the model, and top-scoring  
records are imported into EPPI-Reviewer, where they are semi-
automatically deduplicated against records already included 
in, or excluded from, the living map using ’manage duplicates’ 
tools. (Note that a new deduplication tool was implemented 
in EPPI-Reviewer during this study; see ‘Study Limitations’  
in the Discussion.)

To simulate the use of the MAG dataset for study arms  
6 to 8, we screened (using priority screening mode in EPPI-
Reviewer – see below) the records uniquely identified in the  
MAG dataset during the evaluation period. To construct this set 
for screening, we used EPPI-Reviewer (Versions 4.11.4.0 to 
4.12.1.0) to semi-automatically match records identified from  
MEDLINE-Embase searches during the evaluation period 
against those identified in MAG during the same period. This 
time period was extended by three days to account for the 7- to  
10-day lag to the release of the MAG dataset.

In practice, we switched to using MAG as a single source  
(replacing MEDLINE-Embase searches) from 9th November  
2020 (Version 35) onwards. This was the third step of  
automating our ‘live’ workflow (Figure 1). 

MEDLINE-Embase. We searched for potentially eligible  
records using conventional Boolean searches of MEDLINE 
(Ovid) and Embase (Ovid) databases each week after their 
weekly updates. Search strategies are available as extended 
data10. Retrieved records were downloaded into an EndNote  
library (version X9) for deduplication between the two 
sources, followed by deduplication against records retrieved 
in all previous weeks. Both stages were assisted by  
EndNote’s semi-automated deduplication tool. The latter tasks 
were all undertaken by an information specialist. Next, all 
unique records were uploaded to EPPI-reviewer and manu-
ally screened and coded by our team of researchers, with  
one researcher assessing each record.

In practice, weekly searches of MEDLINE and Embase were 
used to identify records for potential inclusion in the Map from 
its inception (Search 1 – 4th March 2020 until Search 34 – 26th  
October 2020 (Figure 1)). We used screening data, collected 
from the ‘live’ workflow (using EPPI-Reviewer), cover-
ing the period from 22nd June to 23rd July 2020 (Search 16 to  
Search 19) to simulate study arms 1 to 5.

Binary Machine Learning Classifier versus None
A binary ML classifier11, designed to distinguish between  
eligible title-abstract records included in (positive class) and  
ineligible records excluded from (negative class) our COVID-19  
living map, was deployed to score new records identified 
from either the MAG dataset or MEDLINE-Embase data-
bases. Records scoring above a specific threshold score were 
retained for screening; those scoring below the threshold  
were discarded. This classifier was calibrated to achieve at  
least 0.95 recall among MEDLINE-Embase records included 

Table 1. Characteristics of study arms included in the cost-effectiveness analysis.

Study 
arm

Intervention / 
Comparator Search

Deduplication 
between 
sources

Deduplication 
against known 

includes / 
excludes

Binary 
machine 
learning 
Classifier

Priority 
screening

Fixed 
screen 
Target

Target 
recall

M
an

ua
l w

or
kfl

ow
s

1 Comparator A MEDLINE & 
Embase

● ● 1.0

2 Comparator B MEDLINE & 
Embase

● ● 0.95

3 Comparator C MEDLINE & 
Embase

● ● ● 0.95

Se
m

i-a
ut

om
at

ed
 

w
or

kfl
ow

s

4 Intervention A MEDLINE & 
Embase

● ● ● 0.95

5 Intervention B MEDLINE & 
Embase

● ● ● ● ● 0.95

6 Intervention C MAG ● 1.0

7 Intervention D MAG ● ● 0.95

8 Intervention E MAG ● ● ● ● 0.95
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in the map, producing a corollary workload reduction of ~30%  
(compared with screening all MEDLINE-Embase records). 
This target threshold of 0.95 recall of was set in consultation  
with members of the map team, reflecting our collective willing-
ness to accept a 0.05 reduction in recall among eligible records  
(i.e., ‘losing’ 5% of eligible studies from the map), com-
pared with screening all search results from MEDLINE and 
Embase. The classifier used in this simulation study was built 
in EPPI-Reviewer using MAG records that we had already 
matched against MEDLINE-Embase records screened until  
15th June 2020 (Search 15). It was then deployed on MAG 
and/or MEDLINE-Embase records covering the evaluation 
period (Search 16 to Search 19), to simulate study arms 4, 5, 7  
and 8 (Table 1).

In practice, an updated version of this classifier was deployed 
in our ‘live’ study-identification workflow from 20th July 
2020 (Search 20) onwards. This was part of the first step of  
automating our ‘live’ workflow (Figure 1).

Priority Screening versus None
In EPPI-Reviewer’s priority screening mode, retained records 
were manually screened for potential inclusion in our living 
map in prioritised rank order (highest to lowest) based on their  
scores assigned by the binary ML classifier, described above. 
The rank order of records awaiting screening was periodically 
automatically reprioritised based on all preceding eligibility  
decisions. This approach is known as active learning12. In 
this study, we simulated the use of priority screening mode 
on MEDLINE-Embase and MAG records, identified during  
the Search 16 to Search 19 evaluation period.

In practice, priority screening mode was used to prioritise 
the retained MEDLINE-Embase or MAG records for manual 
screening from 28th September 2020 (Search 30) onwards. This 
was part of the second step of automating our ‘live’ workflow  
(Figure 1).

Fixed Screening Target versus None
When applying a fixed screening target, manual screening 
of records in priority screening mode was truncated after a 

specified target number of records had been screened. In this  
study and in practice, we specified an overall weekly screening  
target of 1,500 records. This target reflected the overall  
quantity of resource (researcher time-on-task) that we decided 
to expend on manual screening for our living map going  
forward. In this study, we simulated fixed screening targets 
in study arms 3, 5 and 8 (Table 1), using Search 16 to Search  
19 data. Without fixed screening targets, manual screening 
of records continued until the specified target level of recall 
(see below) was attained among eligible records in the work-
flow (study arms 1, 2, 4, 6 and 7). For example, when target  
recall = 1.0, we continued until all records had been screened.

In practice, we introduced this fixed weekly screening target 
from 28th September 2020 (Search 30) onwards, in conjunc-
tion with starting to use priority screening mode. This was,  
therefore, also part of the second step of automating our ‘live’  
workflow (Figure 1).

Target Recall = 1.0 versus Target Recall = 0.95
When target recall = 1.0 (study arms 1 and 6 – Table 1), the 
objective of the screening workflow is to identify 100% of new 
eligible records that have been retained from either MEDLINE- 
Embase (study arm 1) searches or the MAG dataset (study arm 
6), to be added to the living map. When target recall = 0.95  
(study arms 2 through 5, 7 and 8), this objective is relaxed, and 
we are willing to ‘lose’ 5% of new eligible records from the 
living map. In this study, we simulated the specified target  
recall in each study arm, using Search 16 to Search 19 data.

In practice, we implicitly adopted target recall of 0.95 when 
implementing the binary ML classifier from 20th July 2020 
(Search 20) onwards. As such, this was also part of the first  
step of automating our ‘live’ workflow (Figure 1).

Analytic framework
We conducted this cost-effectiveness analysis (CEA) by using 
a simple decision modelling framework to simulate the incre-
mental costs (resource use) and effects (workflow performance)  
of using each of the eight variant workflows (Table 1) to  

Figure 1. Timeline of automation adoption decisions.
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maintain our living map of COVID-19 research. We have previ-
ously applied the same, transferable model-based economic 
evaluation framework to assess the cost-effectiveness of using  
different screening methods in a ‘case study’ systematic review  
of the effects of undergraduate medical education13.

Analytic perspective and time horizon
This CEA adopted a single payer perspective, because all costs 
associated with maintaining our living map were incurred by 
university employers (with income derived from a research 
grant). The time horizon was four weeks and, therefore, no  
discount rates were applied to estimated costs or effects.

Measurement of effectiveness
The outcome measure of benefit was the number of eligible 
records ‘saved’ from inappropriate exclusion from our living  
map13. We estimated the recall of each workflow (study arm) 
against a ‘gold standard’ dataset of eligible (‘include’) records 
assembled by combining (i) the total number of ‘includes’ 
identified from screening 100% of MEDLINE-Embase 
records (Search 16 to Search 19); and (ii) the total number of  
includes identified from screening the further set of 1,500  
MAG records (out of 4,917 total) identified by our ‘custom 
search’ of the MAG dataset (available as extended data10). 
In addition to the recall of each workflow, we also estimated 
its precision and corollary impact on screening workload 
(number of records screened). This analysis was carried out in  
Microsoft Excel, version 16.51.

Estimating resources and costs
Resource use was measured as the total time (hours) spent by 
our information specialists and screen-coding team on com-
pleting the manual tasks in each workflow (study arm). For  
workflows (study arms) that included Boolean searches of 
MEDLINE and Embase databases, we estimated the time-
on-task spent each week by conducting interviews with the  
information specialists who alternately completed these 
tasks in our ‘live’ workflow. For workflows that used MAG 
searches, we recorded the time-on-task spent on deduplication  
each week after implementing the ‘switch’ to MAG as a  
single source in our ‘live workflow’. For all workflows, research-
ers recorded time-on-task spent screening records in our  
‘live’ workflow using a simple data collection form (avail-
able as extended data10). We then used the collected data to  
estimate the time-on-task needed to screen 100 records in 
each specific workflow (base-case analysis) and applied these  
estimates to the total number of records screened in each  
simulated workflow, to estimate total time-on-task in hours (total  
resource use).

An illustrative UK unit cost was obtained from 2020–21 sal-
ary scales, published by University College London14. We 
selected the hourly rate, including London allowance, August  
2020 for Spine Point 46, Grade 9 on the UCL non-clinical  
grade structure. This study was partly funded by a joint  
UCL-Monash PhD Studentship, and therefore an equiva-
lent illustrative Australian unit cost was selected from Monash  
University 2020-21 salary scale15, specifically, the mid-point 

(salary step 4) of academic level B. All cost estimates are,  
therefore, reported using both 2020 UK GBP (£) and 2020  
AUD ($). The total cost of running each workflow was then 
calculated by multiplying the estimates of total time-on-task  
(hours) by the UK and Australian unit costs (per hour).

Combining costs and effects
Cost-effectiveness was defined as the incremental cost per eligi-
ble study report (record) ‘saved’ from inappropriate exclusion 
from our living map, compared with current practice, i.e. study 
arm 1 (comparator A) (i.e. an incremental cost-effectiveness 
ratio, or ICER13). ICERs could, therefore, in principle, be  
calculated for any workflow (study arm) that had both higher 
costs and higher recall, or lower costs and lower recall, com-
pared with current practice (arm 1). If a workflow had both 
lower costs and higher recall compared with current practice, 
then this workflow would ‘dominate’ current practice (arm 1) in  
cost-effectiveness terms, and no ICER would be calculated.

Analytic assumptions
Our decision to conduct a CEA reflected our interest in achiev-
ing a specified unit of output (namely, an eligible study report 
(record) ‘saved’ from inappropriate exclusion) at the lowest  
cost, in terms of the resource use associated with this unit of 
output (effect). Our CEA (base-case analysis) incorporated the  
following assumptions:

•  The inclusion rate (precision) in the study arm 3 (com-
parator C) workflow, with a fixed screening target, 
was equal to the overall inclusion rate (precision)  
observed, in practice, in the study arm 1 (compara-
tor) workflow. The implicit assumption here is that eli-
gible records are distributed at random among a set of 
bibliographic records screened-coded at quasi-random  
(i.e. alphabetical order).

•  The inclusion rate (precision) in study arms 6 to 8  
(interventions C, D and E) workflows, with respect 
to eligible MAG records also indexed in MEDLINE- 
Embase, was 0.5. This level of precision is equal to 
the overall inclusion rate (precision) observed in prac-
tice when screening the further set of 1,500 MAG  
records from the evaluation period identified by our 
‘custom search’ of the MAG dataset. This pragmatic  
assumption contributed to the simulated overall preci-
sion of the arm 6, 7 and 8 workflows in our base-case 
analysis; and we investigated the impact of varying 
overall precision, between plausible values, using a  
sensitivity analysis on arm 8 (described below).

•  In study arms 7 and 8 (interventions D and E), the 
% distribution of hypothetical extra ineligible MAG 
records between those 'retained' and those ‘dis-
carded’ after deployment of the binary ML classi-
fier was the same as the % distribution of all ineligible  
MAG records between 'retained' and 'discarded' 
with respect to Searches 16, 17, 18 and 19 screen-
ing data. Again, this pragmatic assumption contrib-
uted to the simulated overall precision of the arm 6, 7 
and 8 (interventions C, D and E) workflows, in our 
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base-case analysis. The impact of varying precision 
was investigated using a sensitivity analysis on arm 8  
(described below).

Sensitivity analyses
We conducted two simple, deterministic univariate sensitivity  
analyses. In the first sensitivity analysis, time-on-task needed 
to screen 100 records was held constant between the com-
pared workflows. This pre-specified sensitivity analysis was  
conducted because we judged that variation between study 
arms, in this measure of resource use, could feasibly be influ-
enced by factors other than the impact of the specified com-
ponents of each workflow under investigation. In the second 
sensitivity analysis, we investigated the impact of varying the  
estimated precision of the study arm 8 workflow (interven-
tion) between plausible lower- and upper-limit values. This  
post-hoc sensitivity analysis was conducted based on the fluc-
tuating pattern of precision that we observed in practice in our 
‘live’ study identification workflow after switching to use of 
the MAG dataset as a single source (see ‘Results’ and ‘Dis-
cussion’). It was conducted on arm 8 because this simulated 
workflow was closest to the final MAG-enabled workflow that  
we deployed in practice.

Results
Our full study dataset, including input data for all parameters, 
computational formulae and results (summarised below), is  
available as underlying data10.

Effectiveness
Table 2 shows the recall (versus gold standard), precision and 
incremental effectiveness of each simulated workflow (study 
arms 1-8) (base-case analysis). Compared with workflows  
incorporating conventional searches of MEDLINE and Embase 
(arms 1-5), those workflows using MAG as a single source 

(arms 6-8) had both higher recall and higher precision, saving  
up to 678 eligible records (arm 6) from inappropriate exclu-
sion from our living map during the four-week study period, 
as compared with current standard practice (arm 1). These  
results also show that the use of automation technologies in 
workflows without MAG increased precision at the cost of  
reduced recall.

Costs
Table 3 shows the resource use, total costs and incremental costs 
of each simulated workflow (arms 1-8) (base-case analysis).  
Incorporating use of automation technologies (arms 4-8), fixed 
screening targets (arms 3, 5 and 8) and relaxed target recall 
(arms 2-5, 7 and 8) all resulted in lower screening workloads,  
and therefore, lower total costs, compared with workflows not 
using these tools and targets. Lower total costs associated with  
workflows using MAG as a single source (arms 6-8) were 
primarily driven by eliminating time spent on searching  
MEDLINE and Embase and deduplication between these two 
sources, alongside changes in screening-coding workload. 
In addition, researcher time on task was decreased in semi- 
automated workflows compared with baseline, demonstrating 
efficiency gains when using the automation tools of interest. 
These were not, however, the primary drivers of cost savings  
(see Sensitivity analyses).

Cost-effectiveness
Cost-effectiveness results (base-case analysis) are plotted on 
the cost-effectiveness plane shown in Figure 2. Comparator  
A (arm 1), our original (comparator) workflow, comprising con-
ventional searches of MEDLINE and Embase with no auto-
mation or fixed screening targets is plotted at the origin of the  
cost-effectiveness plane (Figure 2). The incremental costs and 
effectiveness of the other workflows are plotted in comparison  
to Comparator A (arm 1).

Table 2. Effectiveness results.

Study 
arm

Comparator/ 
Intervention Recall* Precision** Incremental 

effectiveness***

M
an

ua
l 1 Comparator A 0.83 0.40 -

2 Comparator B 0.79 0.40 -180

3 Comparator C 0.55 0.40 -1243

Se
m

i-a
ut

om
at

ed 4 Intervention A 0.79 0.55 -167

5 Intervention B 0.79 0.57 -194

6 Intervention C 0.99 0.50 678

7 Intervention D 0.94 0.52 469

8 Intervention E 0.94 0.86 469
* Recall is the number of eligible records identified divided by the total eligible records 
from the constructed ‘gold standard’ recall, which included both MAG-identified and 
MEDLINE-Embase identified eligible records

** Precision is the number of records included divided by the number of records screen-
coded

***incremental effectiveness refers to the number of eligible records identified compared 
to baseline workflow
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All workflows using MAG as a single source (Interventions 
C, D, and E) are plotted in the south-east quadrant of Figure 2  
because they resulted in both higher recall and lower total 
costs compared with the arm 1 (Comparator A). MAG-enabled  
workflows, therefore, dominate the original MEDLINE-Embase 
workflow in cost-effectiveness terms. All other workflows  
(Comparators B and C, Interventions A and B) are plotted in 
the south-west quadrant of Figure 2 because they all resulted 
in lower recall, but also lower costs (due to reduced screening  
workload and/or higher precision), compared with arm 1.  

Workflows using automation without MAG (Interventions A and 
B) resulted in ~4% reduction in overall recall, compared with 
arm 1, with lower overall costs. Comparators B and C (arms 
2 and 3) resulted ~4% and ~28%, respectively, reduction in  
recall compared with arm 1, again with lower overall costs.

Sensitivity analyses
Time on task. In the deterministic univariate sensitivity analy-
sis in which time on task was held constant between study arms,  
we used the overall mean time on task among all arms. In this 

Table 3. Cost results.

Study 
arm

Comparator/
Intervention

Resource 
use (hours) Total cost Incremental 

cost

M
an

ua
l 1 Comparator A 234.08 £7,052.72 -

2 Comparator B 223.18 £6,724.53 -£328.19

3 Comparator C 158.45 £4,774.01 -£2,278.71
Se

m
i-a

ut
om

at
ed

 4 Intervention A 150.03 £4,520.48 -£2,532.25

5 Intervention B 146.71 £4,420.50 -£2,632.22

6 Intervention C 184.67 £5,564.24 -£1,488.48

7 Intervention D 168.92 £5,089.56 -£1,963.16

8 Intervention E 128.57 £3,873.71 -£3,179.01

Figure 2. Results of cost-effectiveness analysis (base case).
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scenario, the overall findings were unchanged: MAG-enabled 
workflows (Interventions C, D, and E) still dominated cur-
rent practice (Comparator A/arm 1) (south-east quadrant). 
The other workflows still resulted in lower recall and lower  
costs (south-west quadrant) compared with current prac-
tice (Comparator A/arm 1). The results of this first sensitivity  
analysis are illustrated in Figure 3.

Precision. In the post-hoc deterministic univariate sensitivity  
analysis on precision (Figure 4 and Figure 5), we used 0.55  
and 0.72 as the plausible lower and upper limit values of preci-
sion in the arm 8 (intervention E) MAG-enabled workflow.  
These values are based on the lower and upper limits of the 
95% confidence interval of precision observed in practice 
in our ‘live’ map workflow, which were 0.55 and 0.74 (see  
‘Discussion’). The upper limit value used in the sensitivity 
analysis is slightly lower than the upper limit of the 95% con-
fidence interval observed in practice, because 0.72 was the  
maximum precision that could be achieved in the simulated 
arm 8 workflow (i.e., 4,313 was the total number of eligible 
records identified by the custom search of MAG). It was not, 
however, the maximum precision observed in practice (see  
‘Discussion’). Lowering precision to 0.55 inevitably reduced 
the simulated recall of arm 8 (intervention E); in this scenario 
the workflow identified 335 fewer records, compared with  
arm 1 (current practice). This decrease in recall shifted 
the result for study arm 8 from the south-east quadrant of  
the cost-effectiveness plane (dominant) into the south-west 

quadrant (lower recall, lower costs) (Figure 4). We therefore  
estimated the threshold level of precision at which arm  
8 moved from dominant to non-dominant, versus arm 1 (current  
practice), which was 0.61.

Discussion
Given the downstream impacts of evidence outputs – e.g., 
updated best practice recommendations which impact outcomes 
for patients, populations, caregivers, and many others –  
producers of evidence synthesis understandably have rigorous 
standards for the evidence they produce and disseminate.  
Therefore, before suggesting changes to standard practice, 
there is a need to demonstrate that automation of study iden-
tification workflows have a relative advantage, compared with  
current practice for updating living maps, systematic reviews, 
specialised registers and tertiary databases of research needs. 
There is also a need to demonstrate alignment with the values  
and practices of producers of evidence synthesis1. This includes 
the high value placed on performing a systematic search 
that attempts to identify all – or more realistically the vast  
majority – of study reports that would meet the eligibility criteria.

Our simulation was designed to investigate the effectiveness 
and efficiency of using semi-automated, versus manual, meth-
ods for identifying eligible study reports for our living map of  
COVID-19 research, using a cost-effectiveness analysis frame-
work. The study was primarily undertaken to inform a deci-
sion about whether or not to switch to using automated searches 

Figure 3. Results of cost-effectiveness sensitivity analysis for time on task.
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Figure 4. Results of cost-effectiveness sensitivity analysis for precision, lower limit.

Figure 5. Results of cost-effectiveness analysis for precision, upper limit.
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of the MAG dataset, replacing the conventional weekly  
searches of MEDLINE and Embase databases, in our ‘live’  
study identification workflow. Our principal findings were that:

•  Automated update searches of the MAG data-
set had higher recall, compared with conventional  
MEDLINE-Embase searches;

•  Workflows using MAG with automation tools resulted 
in both higher recall and lower costs, compared 
with use of MEDLINE-Embase without automation  
tools; and

•  Automation tools alone (without MAG; with or with-
out relaxed screening targets) resulted in both lower 
recall and lower costs, highlighting the trade-off 
that is typically seen when deploying such tools to  
support study selection (screening) in evidence  
synthesis workflows.

Based on these findings, we decided to adopt a MAG-enabled  
workflow to maintain our living map of COVID-19 research  
from November 2020 onwards. The workflow initially incor-
porated: (i) automated searches of each update of the MAG 
dataset using our AutoUpdate model (see ‘Methods’); (ii) auto-
matic pre-filtering out of MAG records that are pre-prints  
or from other ‘always excluded’ sources; (iii) semi-automated  
deduplication of new, top scoring records against existing 
records already retrieved by previous searches; (iv) application 
of the binary ML classifier (calibrated to target recall = 0.95);  
(v) priority screening mode; and (vi) a weekly screening target  
of 1,500 records.

Since adopting the MAG-enabled workflow, we have contin-
ued to monitor workflow precision and the numbers of included  
records (with the fixed 1,500 record weekly target) on a weekly 
basis. These data are shown in Figure 6, which includes 
weekly figures for each version of the living map since its  
inception. As soon as we adopted the MAG-enabled workflow  

in practice (Version 36), the updating cadence of the MAG 
dataset lengthened, with a new release approximately every 
14 days (instead of the previous every 7 to 10 days). The  
fluctuating pattern of precision (and numbers of included 
records) over time that we observed in practice, shown in  
Figure 6, primarily reflects this lengthened updating cadence: 
workflow precision is typically high (sometimes extremely 
high) immediately after new records from each MAG update 
have been added into the workflow; and then precision falls  
(often sharply) in the next week(s), before increasing again 
(often sharply) once new records from the next MAG update  
have been added.

Up to Version 47 – when we extracted values of the 95%  
confidence intervals of precision for use in the sensitivity analy-
ses – cumulative precision of the deployed MAG-enabled 
workflow (with ML tools and a fixed screening target) was  
0.65 (95% CI: 0.55 to 0.74); rising to 0.68 (95% CI: 0.60 to 
0.75) by Version 52 (12 months after the inception of our living  
map). Notably, the latter figures are very close to the simulated 
precision of the arm 8 (intervention E) MAG-enabled workflow 
in our base-case analysis (0.68), and they are also just above  
the estimated threshold level of precision (0.61) at which this 
workflow moved from its dominant to non-dominant position,  
versus the baseline manual workflow.

Overall, these findings and monitoring data demonstrate the clear 
potential of our novel workflow, which combines automated  
searching of the MAG dataset with the use of ML tools, to 
improve the effectiveness and efficiency of study identification  
workflows for living maps of research and related evidence syn-
thesis. However, the development and diffusion of this novel 
approach to searching for and selecting studies is still at a  
relatively early stage. Further evaluations of the performance 
of this approach for continuous updating of living maps, spe-
cialised registers and tertiary databases of research evidence  
(as well as for individual systematic reviews), are therefore  
needed in order to build on and potentially corroborate the 

Figure 6. Weekly precision and number of newly included records.
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promising findings of this study. However, in order to achieve 
the potential of MAG-enabled workflows to produce millions  
of dollars of accrued efficiency gains across the health evi-
dence ecosystem when implemented at scale, it is essential that 
the MAG dataset, or its successor ‘OpenAlex’, can continue to  
be regularly updated with new research publications in  
perpetuity.

Future research and development priorities
The tools for searching MAG and using the AutoUpdate mod-
els are available in EPPI-Reviewer and can be accessed by  
other teams wanting to explore the potential value of auto-
mated searching. We would particularly welcome collaboration 
with organisations interested in developing and testing  
MAG-enabled workflows for efficient study identification at 
scale. For example, we are currently working with the Cochrane  
Central Executive Team and Cochrane Review Groups to inves-
tigate the potential of automated searching of the MAG data-
set as a source for: (i) maintaining the Cochrane COVID-19  
Study Register; (ii) maintaining Cochrane Specialised Regis-
ters of Controlled Trials; and (iii) updating Cochrane (living)  
systematic reviews. As well as improving the efficiency of  
Cochrane study identification systems and workflows, our 
shared aim, with Cochrane, is to reduce the current duplica-
tion of effort between our living map of COVID-19 research 
and the Cochrane COVID-19 Study Register (which, as high-
lighted in the ‘Introduction’ are two of many overlapping  
living maps, registers or databases of COVID-19 research  
evidence currently being maintained globally).

We are also currently undertaking further steps to try to 
improve the overall precision of our live MAG-enabled work-
flow, including ‘smoothing out’ the fluctuating precision that we  
have so far observed in practice (Figure 6).

One aspect we are aiming to address is the issue of fully  
non-English titles and abstracts. While screening the set of 
1,500 (out of 4,917 total) ‘Search 16 to Search 19’ MAG records  
identified by our ‘custom search’ of the MAG dataset for 
evaluation purposes, we noticed that a non-trivial propor-
tion have fully non-English titles and abstracts; many of these  
met our map inclusion criteria. We therefore conducted an 
analysis, based on further manual coding, which revealed 
that the actual prevalence of fully non-English titles and  
abstracts among this set of records was 25% (380 of 1,500). 
This may expose a geographical or language bias in stand-
ard databases and suggest that use of a more geographically  
agnostic dataset could help to overcome this limitation.  
However, in practice we have observed a much lower preva-
lence of fully non-English title-abstract records among those 
MAG records screened-coded in our ‘live’ map workflow since  
we switched to using MAG as a single source, even after 
incorporating our ‘custom search’ strategy (extended data10).  
Further investigations have revealed this is due to non-English  
language records being both discarded after scoring by the 
binary ML classifier (i.e. they fall below the calibrated thresh-
old score) and also de-prioritised in the list of records to 
be manually screened by active learning, both of which  
currently use an algorithm that is exclusively based on the 
text features (and not graph features) of candidate records. 

We plan to address this limitation in our ‘live’ map workflow 
by automatically identifying and translating all non-English  
language records into English language before submitting them  
for scoring by the binary ML classifier.

Other current priorities for research and development of auto-
mation technologies to support study identification in the  
COVID-map include: the use of Bidirectional Encoder Repre-
sentations from Transformers (BERT) models for automated  
assignment of topic codes to eligible (and possibly ineligible) 
MAG records, and the potential reuse of eligibility decisions 
made about records screened for the Cochrane COVID-19 Study  
Register to automatically retain or discard the same records 
from our living map screening-coding workflow. The latter is 
another component of our joint initiative with Cochrane, aim-
ing to reduce duplication of effort between workflows used to  
maintain our living map and the Cochrane COVID-19 Study  
Register.

Study limitations
The main limitation of this study is that we were unable to  
precisely simulate all components of the MAG-enabled study 
identification workflow that we have subsequently imple-
mented in practice. Specifically, it was not feasible to incor-
porate use of the AutoUpdate model, which is (prospectively)  
deployed in automated update searches of the MAG data-
set in our ‘live’ workflow, into our (retrospective) simulation.  
However, this limitation is partly offset by the similar overall 
levels of performance between our ‘live’ MAG-enabled work-
flow, which was consistent with the performance predicted by  
our simulated arm 8 workflow (which was closest to the work-
flow implemented in practice). Also, the automatic pre-filter 
that we developed and implemented in our ‘live’ workflow 
(described above) was developed based on the results of this  
study, so was unavailable for use during this study.

A second limitation is that, like most model-based economic 
evaluations, we needed to make explicit analytic assump-
tions in the absence of data inputs for some model parameters  
(see ‘Methods’, ‘Analytic Assumptions’). Because this limita-
tion reduces certainty in some model parameters, it could also 
reduce overall certainty of our model outputs: estimates of  
costs and effects. However, concern due to this limitation is 
offset by the consideration that all model parameters were  
either (i) populated by data inputs collected from our ‘live’ map 
screening-coding workflow, (ii) underpinned by conservative 
assumptions, or (iii) underpinned by reasonable assumptions  
that were tested in our sensitivity analyses.

A third limitation is that, due to limited resources, we decided 
to stop after screening (for evaluation purposes) the top ranked 
(using active learning) 1,500 records out of almost 5,000  
MAG records identified by our ‘custom search’ of the MAG 
dataset (see ‘Methods’). Consequently, our analysis is likely to  
have underestimated both gold standard recall and the recall 
of the simulated MAG-enabled workflows against this gold 
standard, and to have overestimated the recall of the base-
line workflow versus the gold standard. However, this limi-
tation also means that our simulated effectiveness (and  
cost-effectiveness) results, which already show that workflows  
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featuring automated MAG searches had higher recall than 
those featuring conventional MEDLINE-Embase searches, are  
likely to be conservative.

It should also be noted that, by the time we deployed the live 
system, a new deduplication algorithm that is considerably  
more accurate than that available in EndNote had been imple-
mented in EPPI-Reviewer and was available for use in the 
live MAG workflow. This will have made the implementa-
tion of the work more efficient, as had it been available earlier,  
the deduplication task would have been less onerous. While 
this may have had a small impact on the CEA, we have not 
attempted to quantify the time differential between deduplica-
tion in the two environments. Finally, it should be noted that the  
UK and Australian unit costs that we selected as data inputs 
to the CEA are illustrative. Selection of higher (or lower) unit 
costs would have resulted in larger (or smaller) differences  
between study arms in estimated costs. However, this would 
not have altered the principal findings of our analysis. We have 
also separately reported unit costs and quantities of resource 
use (researcher time-on-task), to enable our results to be  
recalculated using unit costs applicable to different settings.

Conclusions
This study has demonstrated the promise of using automated 
searching of the MAG dataset with machine learning tools to 
improve the efficiency of evidence synthesis study identification 
workflows at scale, by increasing their recall and precision, and  
reducing production costs.

Data availability
Underlying data
Open Science Framework: Cost-effectiveness of MAG and  
automation for maintenance of a living Covid-19 map. https://doi.
org/10.17605/OSF.IO/24W5310

This project contains the following underlying data:

-  Time on task data.csv (De-identified time on task  
data collected from the screen-coders)

-  Base case analysis data.csv (All values used in cost- 
effectiveness calculations)

-  Sensitivity analysis – Precision.csv (All values used 
in calculations assessing the impact of precision on  
the cost-effectiveness analysis)

-  Sensitivity analysis – Time on task (All values used in 
the calculations assessing the impact of time on task  
on the cost-effectiveness analysis)

Extended data
Open Science Framework: Cost-effectiveness of MAG and  
automation for maintenance of a living Covid-19 map. https://doi.
org/10.17605/OSF.IO/24W5310.

This project contains the following extended data:

-  CHEERS Checklist.pdf (Completed checklist of 
Consolidated health economic evaluation reporting  
standards (CHEERS))

-  Search strategies.docx (Links to MEDLINE and  
Embase search strategies; MAG custom search strategy)

-  Time log workbook.xlsx (Workbook provided to  
screen-coders to collect time on task information)

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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