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Abstract 

The process for the formal ratification of the proposed Anthropocene Epoch involves the 
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search for a Global Boundary Stratotype Section and Point (GSSP), a unique reference 

sequence that would be used to fix the start of the epoch, is in progress but none of the 

candidate sections are located in Africa.  We assessed the currently available stratigraphic 

evidence for the possible markers of the Anthropocene in southern Africa and found that, 

although most markers have been identified in the region, the robustly dated, high 

resolution records required for the GSSP are very sparse. We then assessed the extent and 

stratigraphic resolution of a range of potential natural archives and conclude that a small 

number of permanent lakes, as well as marine sediments, corals and peats from selected 

locations in southern Africa could provide the temporal resolution required.  With sufficient 

chronological control and multi-proxy analyses, one of these archives could provide a useful 

auxiliary stratotype thereby helping to confirm the global reach, and extending the utility, of 

the selected Anthropocene GSSP.  

 

Introduction 

The scale and extent of human impacts on our planet has resulted in the proposal that they 

should be reflected in a new geological time period - the Anthropocene Epoch. The inclusion 

of this within the formal International Chronostratigraphic Chart, would thereby end the 

current Holocene (Zalasiewicz et al, 2015; Waters et al 2016). Although the term is widely 

used, the Anthropocene has yet to be formally recognised, and considerable debate 

continues regarding its recognition and the date at which it may have started. The 

Anthropocene Working Group (AWG), the task group established by the Subcommission on 

Quaternary Stratigraphy (SQS) to consider the evidence for the new epoch, currently 

favours the mid-20th century for a starting point (Zalasiewicz et al, 2015) and this is the 

definition we use here. 
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One criterion for the formal recognition of the Anthropocene is for a defined, globally 

isochronous signal that may be used to identify its starting point. A marker for this will be 

fixed within a unique reference stratigraphic succession known as a Global Boundary 

Stratotype Section and Point (GSSP), widely known as a ‘golden spike’. For the 

Anthropocene, a range of contemporary natural archives may be considered, including lake 

and marine sediments, ice cores, peat sequences, corals, speleothems and tree rings. 

Furthermore, because of the sharp increase in a range of socioeconomic indicators and 

Earth system responses starting from the mid-20th century (Steffen et al 2015), a vast array 

of potential markers also exists. For example, changes in sediment transport (Fontanier et al 

2018; Owens 2020), trace metals, nuclear fall-out and stable isotopes (Waters et al 2018), 

persistent organic pollutants (Gałuszka et al 2020), microplastics (Bancone et al 2020; Ivar 

do Sul and Labrenz, 2021), anthropogenic deposits (Ford et al 2014) and various industrially 

derived components of the black carbon continuum (Rose 2015; Han et al 2017) have all 

been suggested. 

 

Currently, the AWG are exploring the stratigraphic signals of a broad selection of markers in 

natural archives. These have been selected to include sites with robust chronological 

constraints over at least approximately the last 100 years, a high stratigraphic resolution 

(annual or better) and from which considerable data already exist. Lake sediments from 

China and North America, marine sediment cores from California and the Baltic Sea, peats 

and speleothems from Europe, corals in Australia and the Caribbean, and Antarctic ice cores 

are all under consideration. However, only two of these potential sequences are located in 

the Southern Hemisphere and none on the African continent (Head, 2019). 
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In Africa, as elsewhere, the concept of the Anthropocene has been considered within a 

variety of contexts and across a number of disciplines (Zalasiewicz et al., 2021). Hoag and 

Svenning (2017) discussed the Anthropocene in Africa against a backdrop of long-term 

environmental change (e.g., desertification, megafauna loss) and their drivers, not only 

climate and increasing population, but also changing agricultural practices, colonialism and 

capitalism. Hecht (2018) used the frame of the Anthropocene to consider the political and 

ethical implications for uranium mining in Gabon while also highlighting the inequalities of 

the impact caused by such resource exploitation. From a more biophysical perspective, 

Odada et al (2020), suggest that marked increases in sedimentation, degradation of water 

and terrestrial ecosystem quality, and associated biodiversity loss have occurred in East 

Africa since the mid-20th century, thereby supporting this start date for the proposed epoch. 

 

In southern Africa (here defined as south of 17° S), a rapidly developing industrial sector and 

a rising population have resulted in an increasing range of stressors to ecosystems. 

Expanding urbanisation, the release of pollutants from industrial emissions (Monna et al., 

2006; Josipovic et al., 2011) including a continued reliance on fossil-fuels (Marais et al., 

2019), the continued use of DDT to control vector-borne diseases (Sereda and Meinhardt, 

2005; Humphries, 2013) and inputs to waters from acid mine drainage (McCarthy, 2011) are 

all widely reported, while Turton (2018) adds contamination from urban sewage to this list. 

Furthermore, the effects of a range of pollutants on southern African environments is well 

recognised. Riverine and lacustrine plants, fish, sediments and aquatic birds have been 

shown to contain a contaminant burden that includes elevated accumulations of trace 

metals (Kotze et al., 1999) and organohalogens (Bouwman et al., 2008; Nakayama et al., 
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2010; Wepener et al., 2012) resulting in detrimental effects to growth and development 

including endocrine disruption (Barnhoorn et al 2004). The transfer of these pollutants to 

rural communities reliant on fish consumption and the associated risk to human health has 

also been reported (Volschenk et al., 2019). Despite this, in southern Africa there has been 

little consideration of the recent historical records for these contaminants or other potential 

indicators that might be considered markers for the Anthropocene. Indeed, stratigraphic 

data for these are relatively scarce (Rose et al., 2020), as they are in many regions of the 

southern hemisphere. Therefore, the aims of this paper are to assess the currently available 

evidence for Anthropocene stratigraphic markers within southern Africa and then to 

consider how natural archives in the region could be used to contribute to the global debate 

on its chronostratigraphic definition.   

 

Markers  

A wide range of anthropogenic markers are under consideration for the onset of the 

Anthropocene (Table 1). These include markers for which the epoch is their first occurrence 

in the stratigraphic record (e.g., plutonium isotopes) while for others it is a dramatic change 

in their abundance due to unprecedented human activity. Southern Africa has a wealth of 

palaeoenvironmental evidence recording long-term human evolution, occupation and 

environmental change. However, fewer data and studies are available on historical 

successions of potential Anthropocene markers from environmental archives at a sufficient 

resolution to record changes from the early to mid-20th century and up to the present day.  

  

Radionuclides 
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A key element for identifying the mid-twentieth century is the stratigraphic presence and 

succession of isotopes from atmospheric nuclear weapons testing that occurred after 1945 

CE.  Isotopes of caesium (137Cs, 134Cs), americium (241Am) and plutonium (238Pu, 239-240Pu) are 

commonly used to determine chronologies of archives accumulating over the last 70 years. 

Generated during thermonuclear detonations, these isotopes record the onset of 

atmospheric testing (c. 1952), as well as their increase, peak (c. 1964), and decrease 

following the Limited Test-Ban Treaty. Plutonium isotopes have been recorded in southern 

African soil samples (Hardy et al., 1973; Salmani-Ghabeshi et al., 2018) as well as peat 

deposits in Madagascar (Rääf et al., 2017) recording global fallout from testing. The 

accidental break-up of the SNAP-9A satellite in 1964 also contributed a unique signature of 

Pu isotopes over the region (Chamizo et al., 2020; Holm et al., 2015) (Figure 1), although its 

coincidence with peak fallout from the nuclear testing period makes it difficult to resolve in 

profiles (Rääf et al. 2017). Other examples of Pu isotopes in environmental archives in the 

region have not been reported. 

 

Atmospheric fallout of caesium (137Cs) has been used across southern Africa in studies of 

soil/sediment erosion and accumulation (Foster et al., 2007; Mighall et al., 2012; Owens and 

Walling, 1996; Quine et al., 1999). Lower historical deposition rates of 137Cs in the region 

have been identified due to its latitude and climate, as rainfall patterns govern the fall-out 

of both natural and artificial radionuclides and control the quality of radiometric records 

(Appleby et al., 2001). As a chronological marker, 137Cs can be affected by factors that blur 

the timing of both its onset and peak. However, its effectiveness as a dating marker has 

been confirmed in the region by independent chronologies (Foster et al., 2007; Humphries 
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et al., 2010; Walling et al., 2003) and by comparisons with historical flood event deposits 

(Foster et al., 2007; van der Waal et al., 2015).  

 

Although a naturally occurring, albeit short-lived (T½ = 22.3 years), radionuclide, the use of 

210Pb along with artificial radionuclides is an essential verification process for the correct age 

to be attributed to Anthropocene successions. Lead-210 has been used in the region 

independently (Kading et al., 2009; Orani et al., 2019; Tabares et al., 2020), to provide both 

a check for down-core changes (Das et al., 2008a; Rääf et al., 2017; Rose et al., 2020) as well 

as to extend 14C dating to the present (du Plessis et al., 2020; Fontanier et al., 2018; 

Haberzettl et al., 2019; Stager et al., 2013; Wündsch et al., 2016). 

  

SCPs 

There are only two published records of spheroidal carbonaceous fly-ash particles (SCPs) 

from southern Africa. However, these datasets show the potential for SCPs to record 

regional and local atmospheric deposition of contaminants from fossil fuel combustion. A 

mid-twentieth century increase in local power production is shown in North End Lake, Port 

Elizabeth, South Africa, with SCP sediment concentrations rising from less than 1,000 to 

almost 8,000 per gram dry mass (gDM-1) in the mid-20th century (García-Rodríguez et al., 

2007). In Lesotho, SCPs were detected in co-located lake sediment and wetland cores post-

1970 and 1980 respectively (Rose et al., 2020). Concentrations in Lesotho are an order of 

magnitude lower than at Port Elizabeth, due to the absence of local sources. 

  

Microplastics 
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There is a deficit of studies on the origin, transport and depositional fate of plastics in 

southern Africa (Khan et al., 2018). As elsewhere, plastic has been released into natural 

environments for decades due to mis-managed waste streams. South Africa releases 0.09 –

0.25 million tonnes of plastic waste a year into marine settings, making it one of the highest 

in the world, while other coastal nations of southern Africa release less, equivalent to 

‘global North’ industrialised countries (Jambeck et al., 2015).  A considerable amount of 

research has attempted to monitor, quantify and determine the fate of macro- and 

microplastics in South African coastal and marine settings as well as their impacts on 

ecosystems (Cefas Marine Litter Team, 2020; Naidoo et al., 2015; Ryan, 2020; Verster et al., 

2017).  Quantification of its land-based origins, its release due to ineffective waste 

management and transfer to coasts is, however, limited (Dahms et al., 2020; Weideman et 

al., 2019). Stratigraphic evidence of increasing and diversified polymers accumulating in the 

coastal environment in southern Africa comes from a solitary study of microplastics in an 

undated core collected in 2012 from Durban harbour (Matsuguma et al., 2017).  

  

Persistent organic pollutants and polycyclic aromatic hydrocarbons 

Persistent organic pollutants (POPs) are present in southern African ecosystems, soils and 

sediments derived from industrial and agricultural sources (Quinn et al., 2009). 

Organochlorine pesticides, along with polychlorinated biphenyls (PCBs), dioxins and furans 

(PCDD/Fs) and brominated flame retardants (BFRs) have all been reported in southern 

African aquatic ecosystems (Berg et al., 1992; Gerber et al., 2016; Greichus et al., 1977; 

Verhaert et al., 2017; Viljoen et al., 2016). Organochlorine pesticides (principally DDT) were 

first introduced to the region in the 1940s-1950s for malaria control but were restricted 

later after recognition of their harmful ecological effects (Tren and Bate, 2001). In South 
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Africa, the pervasiveness of organochlorine pesticides has led to aquatic ecosystems and 

sediments having some of the highest organochlorine residues reported anywhere in the 

world (Buah-Kwofie and Humphries, 2017). Although also introduced anachronistically, the 

widespread use and persistence of these chemicals in environmental matrices, indicate a 

high potential as markers of the Anthropocene in southern Africa. However, only two 

studies that have a 20th century stratigraphic dimension exist in the region. First, a record of 

polycyclic aromatic hydrocarbons (PAHs) from urban run-off in Zeekoevlei in the Western 

Cape (Das et al., 2008a) and second, sediment archives of very low PAH and POPs 

concentrations derived from long-range transported atmospheric deposition in the upland 

lake Letšeng-la Letsie, Lesotho (Rose et al., 2020). 

 

Stable carbon and nitrogen isotopes 

Significant changes in the composition of organic matter in environmental archives are 

marked by preserved variations of stable carbon and nitrogen isotope ratios (δ13C and δ15N). 

Natural differences in these variables occur in archives due to landscape evolution of 

ecosystems, while human activities may also be recorded. In the Anthropocene, stable 

isotope variations are usually more abrupt, unprecedented and coincide with other human 

impact indicators. In southern Africa there are numerous sites (lakes and wetlands) where 

recent eutrophication, fossil fuel emissions and vegetation changes can be recorded by 

stable carbon and nitrogen isotopes, in conjunction with other paleoenvironmental proxies 

(Das et al., 2008a, 2008b; Ekblom and Gillson, 2010; Gordon et al., 2012; Kunz et al., 2011; 

Rose et al., 2020; Tabares et al., 2020). However, due to the combination of organic 

materials and sources that contribute carbon and nitrogen to environmental archives, it is 
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essential that stable carbon and nitrogen records are interpreted within multi-proxy studies 

(e.g., McFadden et al., 2005) 

  

Sedimentary and geochemical markers 

Direct industrial disturbance to sedimentary archives and the formation of new 

anthropogenic deposits have occurred in parallel to the long history of sub-surface mining in 

the region; including extensive alluvial, dune, and offshore deposit placer mining (Asabonga 

et al., 2017; Rogers and Li, 2002). Although human-induced vegetation changes, cultivation, 

soil erosion, and deposition are not unique to the Anthropocene in southern Africa, soil 

erosion events that occurred in the 20th century are recorded in dam deposits (see below) 

and an increase in erosion and sediment transport is observed post-1950 in marine and 

terrestrial records from Madagascar (Fontanier et al., 2018; Rabesiranana et al., 2016) and 

East Africa (Odana et al. 2020).  

 

Elevated concentrations of trace elements often associated with industrial activity (e.g. Zn, 

Cu, Pb, Hg, As) may be found due to naturally rich and diverse metalliferous deposits in the 

region that have been exploited for centuries. However, Anthropocene chemostratigraphy is 

predicated on the identification of elements in environmental matrices that are elevated far 

above background concentrations and spread widely due to industrial extraction, refining, 

tailings waste, and combustion of fossil fuels (Podolský et al., 2015). Toxic concentrations of 

metals are found in wetland sediments downstream of South African gold mining areas, due 

to the abundance in mine tailings of ore-associated metals and acid mine drainage 

(Humphries et al., 2017; McCarthy and Venter, 2006). Dated core profiles of trace elements 

associated with industrial and urban waste, and fossil fuel combustion are also found in 
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South African wetland and Namibian coastal sediments and show a post-1945 increase in 

metals (Orani et al., 2019)., including mercury, where accumulation rates increase from less 

than 20 µg m-2 yr-1 in pre-Anthropocene sediments to a peak of more than 150 µg m-2 yr-1 in 

the 1990s/2000s (Kading et al., 2009).  

 

Accumulations of metals in sediments of reservoirs constructed in the 20th century have 

been a focus of various studies due to their potential for uptake into ecosystems that are 

important for aquatic food resources (Håkan Berg et al., 1995; Franchi et al., 2020; Greichus 

et al., 1977; Tendaupenyu and Magadza, 2019). However, only a few examples of trace 

metal profiles from well-resolved lake sediments spanning the onset of the Anthropocene 

exist in the region in two shallow, eutrophic lakes affected by urbanisation (Das et al., 

2008b; 2008c; García-Rodríguez et al., 2007) and a remote upland site in Lesotho with 

evidence of long-range atmospheric deposition of metals from fossil fuel emissions (Rose et 

al., 2020) (Figure 1).  

  

Ecological markers 

Intensification of human pressures through land-use change for cultivation, hunting, and 

introduction of invasive species has led to widespread loss of native species and degraded 

biodiversity. This process has accelerated with population growth and intensity of 

cultivation, but has been a long-term process with, for example, significant extinctions 

occurring in the 19th century and earlier with European colonisation (Grab and Nash, 2020). 

Vegetation changes are recorded by changes in pollen types and abundance, with the 

appearance of non-native and cultivated species, such as maize, and co-occurrence of 

charcoal indicating clearance for agriculture (du Plessis et al., 2020; Ekblom and Gillson, 
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2010; Neumann et al., 2011; Tabares et al., 2020). Mid-twentieth century vegetation 

changes, e.g., plantations of Eucalyptus used for timber, can be observed in well-resolved 

pollen chronologies (Tabares et al., 2020) or where planting dates for silviculture are 

recognised (Turner and Plater, 2004). Both long-term and more recent impacts of human 

activity are also recorded by diatom frustules preserved in aquatic sediment successions. An 

intriguing prospect of potential Anthropocene research comes from a combination of 

diatom and stable nitrogen isotope records from laminated and 210Pb-dated Namibian 

offshore sediments where multiple core records reveal a deterioration in denitrification and 

oxygen balance over the last 50 years (Emeis et al., 2009). 

 

Natural archives 

Although the distribution of published data on possible Anthropocene markers within 

robustly dated natural archives is limited within southern Africa (Figure 1), there is 

considerable potential for further exploration and analysis of sequences from a range of 

archive-types across the region.  

 

Lacustrine sediments 

Lake sediments have been widely used around the world to show historical trends of 

potential Anthropocene markers and many have sediment accumulation rates appropriate 

for high resolution studies (Rose et al., 2011). While GIS modelling, confirmed by satellite 

imagery, identified 973 lakes in Madagascar alone (Bamford et al., 2017), in other countries 

of southern Africa the number of permanent water bodies potentially providing an 

uninterrupted, continuously accumulating sediment record is limited. Magadza (1992) noted 

that the general southernmost limit of permanent, natural lakes in southern Africa is a line 
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between Lake Mweru and Lake Malawi (c. 10° South), with only three lakes in Botswana, 

one in Namibia, several coastal lakes in Mozambique and South Africa, and none in Lesotho, 

Swaziland (now eSwatini) and Zimbabwe. However, more detailed national studies have 

identified additional lakes. For example, in South Africa, the National Biodiversity 

Assessment (Van Deventer et al., 2019) lists eight permanent natural freshwater systems 

with a depth of more than 2m while other published studies indicate additional lakes 

especially in northern KwaZulu Natal. These include Bhangazi North and South (Hart and 

Appleton, 1997), Lakes Shazibe and Mgobozeleni (Bate et al., 2016), the Richards Bay lakes 

(Cyrus and Martin, 1988) and the Mpumalanga Lake District (MLD; e.g. Wellington, 1943).  

Furthermore, in the Afromontane region of the Drakensberg-Maloti mountains that form 

the border between South Africa and Lesotho, there are hundreds of small water bodies, 

locally known as tarns, although only a few are semi-permanent (Dunnink et al., 2016). 

Elsewhere in Lesotho, Rose et al (2020) obtained a sediment core from Letšeng-la Letsie in 

the southern Drakensberg-Maloti, a dammed water body on the site of a smaller pre-

existing lake.  

 

Uncertainties around the precise number of lakes notwithstanding, there is a limited 

number of lake sites in South Africa and Lesotho that could be used for Anthropocene 

studies in the region, mostly clustered in specific coastal regions or the MLD. By contrast, 

Mozambique has c.1,300 lakes, of which 20 have an area of more than 10 km2 (AUDA-

NEPAD, 2019). In southern Mozambique, there are many lakes and lagoons among the dune 

systems of the coastal plain (Allanson et al., 1990), a number of which have been used in 

palaeolimnological studies. Permanent lakes are scarcer in other countries. In Namibia, 

Etosha Pan, which has been considered perennial in the past (Hipondoka et al., 2006) may 
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locally reach 10m depth in wetter years (Mendelson et al., 2013), but is now largely a dry or 

very shallow saline pan, as are the nearby Omadhiya Lakes (Mendelson et al., 2013). The 

only true Namibian lakes are associated with collapsed sinkholes in karstveld geology with 

two striking examples near the mining town of Tsumeb; Lake Otjikoto, with a diameter of 

only c. 100m, but a depth in excess of 75m (Tabares et al. 2020), and the larger Lake Guinas, 

with a diameter of 140m and a depth of 153m (Goudie and Viles, 2015). Elsewhere, a few 

small permanent spring-fed waterholes lie on the gravel plains of the Namib-Naukluft Park 

(Kok and Grobbelaar 1985) while in the extreme north-east, the wetlands of the Linyanti 

swamps in the Caprivi region along the Botswana border include oxbows and lagoons on the 

Kwando and Linyanti Rivers. Botswana itself also has oxbows and lagoons on the rivers 

feeding the Okavango Delta which may offer potential for palaeolimnological studies. 

Zimbabwe has no natural lakes (Sanyanga and Mhlanga, 2004; Nduku and Robarts 1977), 

only pans and vleis (see below), as well as a number of large dams, while eSwatini has no 

natural lakes, but several dams. 

 

While permanent natural water bodies are scarce, there are vast numbers of ephemeral 

water bodies variously known as pans, vleis or dambos, included within the various 

classification systems proposed for wetlands (e.g. Tooth and McCarthy, 2007; Ollis et al., 

2015; de Klerk et al, 2016). Any seasonally flooded depression which holds water after rain 

is generally referred to as a pan in southern Africa (Lancaster, 1978). The seasonal or 

ephemeral nature of most pans indicates a potential loss of surface material during periods 

of desiccation, suggesting that a continuous stratigraphic record may be unlikely. However, 

as the dominant wetland type across much of southern Africa, their potential for 

Anthropocene palaeoenvironmental studies remains largely unexplored. 
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Dams (used here in the local context to include the dammed water body) may offer 

opportunities for palaeolimnological studies on the Anthropocene. Their utility is 

determined by their construction date, while stratigraphic integrity is affected by 

management regimes linked to water level changes or interventions such as dredging. Some 

of the older, large dams in South Africa were studied as early as the 1920s and 1930s, (e.g., 

Hartbeespoort Dam; Allanson, 1988), while Schuurman (1932) and Weintroub (1933) 

described the flora and fauna of pans and dams such as Wemmer Pan, Brakpan and Florida 

Lake dam in Johannesburg during the 1920s. The South African national register of dams 

(wall height >5m) shows that large dam construction started in the 1800s, with a major 

acceleration in the 20th century. Of 5,636 registered dams (to November 2019), 25 were 

built pre-1900 and 339 pre-1950. Small farm dams are more abundant, but their ages are 

generally unknown. Mantel et al. (2017) estimated that there are 165,000 in South Africa 

alone, while in Zimbabwe, Marshall and Maes (1995) counted 10,747 reservoirs from small 

farm dams to those greater than 100 ha and with the oldest dating back to c. 1900 

(Magadza, 1992; Sanyanga and Mhlanga, 2004) (Table 2). There is limited information on 

the distribution of small dams in other countries of the region, but larger dams are included 

in the UN FAO AQUASTAT database (AQUASTAT, 2021). The numbers and ages of the oldest 

recorded dams for countries in southern Africa are shown in Table 2, but these figures are 

only estimates as they include some empty/breached dams as well as some under 

construction at the time of the inventory. While the date of construction is not recorded for 

many dams, older ones undoubtedly exist in some or all countries and may provide useable 

palaeolimnological records.  
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Peatlands 

Peatlands, mires, and bogs are relatively rare in the southern African landscape although 

broad definitions of these environments vary between countries. Joosten (2009) lists 

peatland areas as shown in Table 2 although other estimates differ. There are 635 peatland 

points in the South African National Peatland Database, with most located near the wetter 

east and south coasts and more than half on the coastal plains of northern KwaZulu Natal 

(Van Deventer et al., 2019). Some of the most extensive are found in Maputaland, e.g., the 

Mfabeni Mire, reported to be the oldest peatland in the world (45,000 years) and Mkuze 

Mire, the largest in South Africa (7,265 ha) (Grundling and Grundling, 2019). While some 

pristine examples of peatlands still occur in southern Africa many, like the Vasi North 

peatland, are degraded or have been destroyed by a range of pressures. These include 

drainage for agriculture or forestry, removal by opencast mining, desiccation and burning, 

and even damage by invasive small mammals like ice rats and gerbils (Grundling and 

Grundling, 2019). Most inland wetlands are also in a poor ecological condition with 68% of 

the total spatial extent categorised as ecological category ‘D/E/F’ (meaning heavily to 

severely/critically modified) while less than 15% are in a natural to near-natural ecological 

condition (category A/B) (Van Deventer et al., 2019). 

 

Palaeoenvironmental studies using peat sequences from southern Africa have focussed on 

climate, archaeology, hydrological, and vegetational changes at low temporal resolution 

over the Holocene and longer timescales (e.g., Wright et al., 1999; Finch and Hill, 2008; 

Neumann et al., 2008; 2010; Baker et al., 2017; Backwell et al ,2014). Fitchett et al. (2016a) 

reviewed multiproxy palaeoenvironmental and archaeological studies in Lesotho including 

southern Africa’s highest altitude wetland at Mafadi (defined as a “bog” with peat 
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inclusions) (Fitchett et al., 2016b). Few palaeoenvironmental studies using peats have 

focussed on the Anthropocene timescale despite the increasing intensity of a range of direct 

and indirect human induced pressures. Pollen from exotic plantation species has been used 

to determine peat accumulation rates (1-2 cm yr-1; Thamm et al., 1996) and maize pollen 

has been identified in 20th century sections of long cores from Lake Sibaya (Neumann et al., 

2008). McCarthy and Venter (2006) found evidence of increasing concentrations of trace 

metals (including lead and uranium) and phosphorus attributed to the establishment of the 

Witwatersrand (Johannesburg) conurbation in the late-19th century, and gold mining using 

carbon-dated peat cores from the Klip River wetland (the top 1m represented 120 years), 

concluding that the peat record provided a “useful barometer of anthropogenic activity in 

the catchment”.  

 

Marine sediments 

Marine sediment cores have been taken from both the eastern and western coasts of 

southern Africa, as well as off Madagascar. Along the west coast, most marine sediment 

records have been used to interpret changes over millennia, although at least one provides 

a record through to the 1990s (Schneider et al., 1995; Dupont and Wyputta, 2003; Gasse et 

al., 2008). In areas of the western continental margin where terrestrial inputs from the 

Orange River combine with highly productive oceanic waters, organic-rich sediment 

accumulation rates on the Namibian or Namaqualand ‘mud-shelf’ have been reported 

between 0.25 and 2.4 mm yr-1 (Herbert and Compton 2007) or 0.6 – 6 mm yr-1 (Meadows et 

al., 2002) indicating potential for a high-resolution archive. Similarly, off the coast of 

northwest Madagascar, a high-resolution sediment core provided a detailed record from 

almost 20,000 yr BP to the present day documenting post-1950 increased soil erosion 
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(Fontanier et al., 2018) while along the eastern coast of South Africa, Holocene deposits in 

areas sheltered from the Agulhas Current provide a youngest age of 42 cal yr BP in the 

upper 1 cm (Hahn et al., 2018). By contrast, a sediment core from the Mozambique Channel 

(which separates Mozambique from Madagascar), had an average age accumulation of 

1,000 years in the uppermost 1 cm (Fallet et al., 2012) and so would be unsuitable for 

studying recent, high resolution change required for Anthropocene studies.   

 

Speleothems  

Speleothems have been identified as a possible target for a GSSP due to their potential to 

capture atmospheric signals (Waters et al., 2018) and southern Africa contains one of the 

four largest karst regions identified on the continent. South Africa, in particular, has a long 

history of research on speleothems as palaeoclimate archives (Braun et al., 2019). In a 

recent review, 12 of the 49 speleothem records in southern Africa, contained data more 

recent than 1950: five from South Africa, four from Madagascar, two from Namibia, and one 

from Botswana (Braun et al., 2019). This included at least three local climate records which 

specifically focussed on the period between 1950 and 1995-2000 (Holmgren et al., 1999; 

2003; Brook et al., 1999), while at least two studies discussed the record in the context of 

global temperature rise over the last 100 years (Talma and Vogel, 1992; Railsback et al., 

2018). However, none of these southern African speleothem records have been analysed 

specifically for Anthropocene markers, and potential lags between the atmospheric signal 

and that in the speleothem record could be problematic for accurately identifying the onset 

of the Anthropocene (Waters et al., 2018).    

 

Corals 
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Cold water corals dominate on the western coast and southernmost tip of southern Africa, 

while warm water corals dominate along the eastern coast and around Madagascar (Waters 

et al., 2018). Like speleothems, corals may be analysed at annual resolution although the 

growth bands within deep-water corals may have a lower temporal resolution and some 

stratigraphic markers have displayed a 25-year time-lag when compared to those in shallow 

waters (Lee et al., 2017; Waters et al., 2018). A 336-year annually resolved record produced 

from the Ifaty coral south-west of Madagascar, used oxygen isotopes to reconstruct past sea 

surface temperature (SST) up to 1995 (Zinke et al., 2004), while another coral with seasonal 

resolution collected from the Mozambique channel, used trace elements to reconstruct SST 

back to 1970 (although the record potentially extends back to the early-1900s; Zinke et al., 

2019). Otherwise, the examination of coral records from the region appears limited and 

suggested Anthropocene markers have not been examined to date.   

 

Anthrosols 

Extensive mining for gold, platinum and coal in South Africa has led to the widespread 

distribution of anthropogenically modified or created “anthrosols”, especially in mining 

regions such as Gauteng, North West Province and Mpumalanga, and presumably in 

neighbouring countries, where few data are available. Six categories of anthropic soils are 

defined in South Africa: technic, cultic, chemic, hydric, hortic, and urbic (Fey, 2010). Of 

these, technic soils, created by the rehabilitation of mined land, are most widely distributed, 

especially in the Mpumalanga coal fields, areas of diamond and gypsum mining in 

Namaqualand and sand mining areas on both the east and west coasts (Fey, 2010). 

Weiersbye et al. (2006) summarised other studies showing that the direct footprint of gold 

mining (contaminated soil and residual slimes) in the Witwatersrand alone covers 400 km2, 
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with more than 270 storage facilities containing 6 billion tonnes of gold and uranium 

tailings, 430,000 tonnes of uranium and 30 million tonnes of sulphur. While such deposits 

are a clear and unambiguous marker of anthropogenic activity through the Anthropocene, 

questions regarding their asynchronicity or diachronicity and hence usefulness as an archive 

continue to be debated (Edgeworth et al., 2015).  

 

Tree rings 

As with other natural archives, tree rings in southern Africa have been largely used to assess 

climatic change. Gebrekirstos et al (2014) suggest that the widespread use of 

dendroclimatology in the region is due to the lack of long-term instrumental climate data 

and that these records may be used to ‘fill the knowledge gap’ by reconstructing climate 

variability and atmospheric circulation patterns. Ring widths of Pterocarpus angolensis (also 

known as teak or bloodwood) have been used to reconstruct rainfall over a 200-year period 

in Zimbabwe (Therrell et al 2006), while in Namibia, Dichrostachys cinerea (Sickle bush) and 

Senegalia mellifera (Blackthorn) have been used to reconstruct rainfall (Shikangalah et al 

2021), and those of P. angolensis and Burkea africana (wild syringa) for El Niño-Southern 

Oscillation (ENSO) indices over 150 years (Fichtler et al 2004). Tree rings also allow the long-

term, high resolution measurement of stable isotopes.  February and Stock (1999) showed 

that 13C/12C ratios in Widdringtonia cedarbergensis (Clanwilliam cedar) from the Cedarberg 

Mountains, South Africa correlated with similar data from ice cores and tree rings from both 

hemispheres, becoming increasingly negative after 1949 thereby demonstrating an 

increasing industrial influence. Woodborne et al. (2015) reconstructed rainfall over a 1,000-

year period using the δ13C signal from four African baobabs (Adansonia digitata) in 

northeastern South Africa and found that, over most of the record, wetter conditions were 
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predominantly associated with El Niño events although this relationship altered after c.1970 

when wetter periods became associated with La Niña. 

 

Beyond climate, dendrochemistry has been used to identify trends in emissions from 

smelters in both Zambia and Namibia (Mihaljevič et al. 2011; 2015; 2018) using Pinus latteri 

(Tenasserim pine) in Zambia and marula (Sclerocarya birrea) in Namibia with a focus on lead 

and copper from the Copperbelt and Tsumeb smelters, respectively. These records covered 

50–70 years and lead (206Pb/207Pb) and copper (65Cu/63Cu) isotope ratios used to confirm 

that, close to sources, tree rings reflected above-ground contamination (i.e., atmospheric 

deposition to leaf surfaces), while at more remote locations, records may be affected by soil 

chemistry and root uptake (Mihaljevič et al., 2011). In summary, a number of southern 

African tree species contain datable, annual tree rings and may reach multi-century age 

(Gebrekirstos et al., 2014; Woodborne et al., 2015). Although reported issues around radial 

translocation (Hagemeyer, 2000; Chellman et al., 2020) may make interpretation of high-

resolution records complex, studies elsewhere on mercury (Schneider et al., 2020), and 129I 

and 14C from nuclear weapons tests (Turney et al., 2018; Zhao et al., 2019) do suggest 

potential for Anthropocene records.   

 

Hyrax middens 

The use, by some species, of a habitual location for defecation results in an accumulation 

which may be used as a natural archive. In southern Africa, hyraxes (several species of 

mammal in the order Hyracoidea) produce middens in sheltered areas such as under rock 

overhangs. Due to their well-preserved and dateable nature, the analyses of hyrax middens 

for pollen and insect remains have been used in palaeobotanical and ecological studies 



 

22 
 

(Quick et al., 2011; Chase et al., 2012) producing records of vegetational and climatic change 

over millennia (Scott, 1996; Scott et al 2004). Chase et al (2012) summarise the 

requirements for hyrax midden preservation, as well as their rate of accumulation and 

temporal resolution. They show that depending on the morphology of the midden and the 

size of the colony using it, accumulation rates may range between 20 and 2,000 years cm-1 

and extend back over 40,000 years. Apart from pollen analysis, phytolith, aDNA and lipid 

biomarkers have been used to provide information on changes in diet while microcharcoal 

extractions, δ13C and δ15N have been used to assess climatic and hydrological change (Chase 

et al., 2010; 2012). While distribution and conditions appropriate for long-term preservation 

of hyrax middens are widespread across southern Africa, the low temporal resolution over 

the most recent period makes them less suitable to measure potential Anthropocene 

markers. 

 

Discussion  

If the Anthropocene Epoch is to be formally recognised, then it will require a GSSP to be 

established that marks its base in a stratigraphic sequence. Furthermore, if this is to happen 

in the next few years, then unless a new multi-proxy, high-resolution dataset becomes 

recognised soon, this GSSP is likely to be selected from one of the records currently under 

investigation by the AWG. None of these are in Africa. However, the process by which a 

GSSP is selected may also include “the selection of some auxiliary stratotypes in which the 

same level is represented by similar or other proxy signals in different parts of the world” 

(Waters et al., 2018). In order to demonstrate the global synchroneity of a marker that 

identifies the new epoch it would therefore seem appropriate for at least one auxiliary 

stratotype to be located in Africa and hence identifying potential archives and sites for 
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future studies is beneficial to this process. If these archives could also be located towards 

the south of the continent, then they would additionally contribute to the scarcity of data 

for many of these markers in the southern hemisphere.  However, although auxiliary 

stratotypes can extend the utility of a GSSP, they have no official standing and are not 

formally approved or ratified by the International Commission on Stratigraphy or by the 

International Union of Geological Sciences.   

 

There is a long history of palaeoenvironmental studies in southern Africa, but these have 

been mainly focused around long-term issues on climate change, environmental 

transformation (e.g., vegetational shifts and fire regimes) and human occupation.  Reviews 

of multiproxy palaeoenvironmental and archaeological studies across southern Africa 

(Fitchett et al., 2016b; 2017) revealed very few that were likely to provide a suitable 

temporal resolution to study Anthropocene environmental change, and to date, shorter 

term, high resolution studies over the last 70 years (i.e., since the start of the proposed 

Anthropocene) are rather scarce, which is why no GSSPs in southern Africa are currently 

under consideration. The lack of extensive data on Anthropocene markers is therefore not 

due to neglect, but rather that the big research questions in the region have not revolved 

around the Anthropocene or the dramatic changes caused by the Great Acceleration 

(Syvitski et al, 2020) observed elsewhere. Despite this, as we have shown, considerable 

potential exists. This includes extant high-resolution archives which may only require 

additional analyses to be undertaken should sufficient material remain stored in an 

appropriate way (e.g., high resolution sediment cores taken from Lake Otjikoto in Namibia; 

Tabares et al., 2020) or, more likely, from new material collected from natural archives in 

the region.  
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Although fewer than for some parts of the world (Downing et al., 2006), the number of 

standing water bodies present across the region and their potential for possessing rates of 

sediment accumulation suitable for high resolution analysis, initially makes them an 

attractive prospect as archives of information on the Anthropocene. However, in southern 

Africa few lentic waters are permanent. Most are ephemeral or seasonal, while many of the 

artificial pans and dams are not of sufficient age to be useful for an Anthropocene 

stratigraphy, or they have been disturbed through drawdown or dredging such that their 

sediment records are unlikely to be uninterrupted and continuously accumulating. However, 

a small number of permanent lakes, mainly in Mozambique, South Africa and Madagascar, 

but also less frequently in Botswana and Namibia, are certainly worthy of more detailed 

palaeolimnological investigation. Possibly more than in most other regions of the world, 

human pressures on African lakes are recognised to be increasing rapidly (Mammides, 2020) 

and so anthropogenic markers from both local stressors and the global proxy signals 

required for a GSSP might be expected to be evident.  Beyond lakes, other archive types 

across the region also possess potential. Marine sediments from the Namibian or 

Namaqualand ‘mud-shelf’ (Herbert and Compton, 2007) and off the coast of northwest 

Madagascar (Fontanier et al., 2018), peats from the Klip River wetland that drains the 

southern flank of the Witwatersrand watershed and those from the Zululand Coastal Plain, 

(Thamm et al., 1996), as well as corals from off the south-west coast of Madagascar and 

from the Mozambique channel (Zinke et al., 2004; 2019) and some long-lived tree species all 

contain records of sufficient longevity and resolution that, elsewhere, have been used to 

identify records of the Anthropocene. Although in southern Africa published evidence is, so 

far, scarce, many of the key markers for the Anthropocene, including the proposed primary 
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one, plutonium, have been identified albeit not always as a well-dated chronological 

sequence.  

 

Atmospherically transported and globally distributed radioisotopes, mercury, stable 

nitrogen isotopes and, to a lesser extent microplastics, may all be expected to be recorded 

and identifiable in natural archives across the region (Figure 2). Furthermore, rapid 

increases in the regional use of coal since the 1950s whereby consumption in South Africa 

alone increased from around 6 million tonnes per year in the late-1940s to over 120 million 

tonnes per year in the early-21st century (Figure 2) might be expected to result in 

concomitant increases in fly-ash (SCPs) and mercury deposition to, and storage within, 

archives across the region. Mercury emissions from South African sources reflect this 

escalation with an increase from around 13 to over 200 tonnes per year over the same 

period (Figure 2). The use of organochlorine pesticides may also be expected to leave clearly 

identifiable signals of the compounds themselves, and their metabolites and derivatives, 

although to our knowledge there have been no published stratigraphies. The use of DDT to 

control vector-borne disease starting from the mid-decades of the 20th century resulted in 

an estimated increase in emissions between the latitudes of 18-30 °S from less than 10 

tonnes per year in the late-1940s to over 70 tonnes per year in the 1970s (Schenker et al., 

2008) (Figure 2) and this might also be expected to be reflected in natural records.  

 

In summary, rapid environmental change in southern Africa, coincident with the Great 

Acceleration of the second half of the 20th century, has been associated with the emission, 

deposition and/or production of most of the Anthropocene markers observed in many 

better studied parts of the world. With careful selection, there is no reason why data from 
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natural archives in the region should not contribute substantially to the debate on the global 

synchroneity of selected Anthropocene markers and to expanding the utility of a GSSP for 

the Anthropocene Epoch when it is eventually ratified. This could be through the provision 

of a robustly, chronologically constrained auxiliary section including a range of the possible 

proxies associated with the post-1950s period and from a number of possible archives. 
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Table 1: Physical, ecological and human markers associated with the Anthropocene. 

 

Chronological  Isotopes Geochemical and 
particle 

Ecological 
Indicators 

Human 
Modification 

Annual laminae (varves, 
growth banding) 
  
Radionuclides 
239Pu, 240Pu, and 241Pu 
137Cs, 134Cs 241Am 
236U, 90Sr 
  
Radiometric dating 
210Pb 

14C 

δ13C/δ15N 
206Pb/207Pb 
δ202Hg 
  
 
 
 
  

Heavy metals 
Organic compounds 
Fly Ash (SCPs)  
Black carbon 
Total Carbon/Nitrogen 
Microplastics 
Novel materials 

Pollen 
Diatoms 
Ostracods 
Foraminifera 
Invasive species 
Domestics 
Extinctions 

Sedimentation 
and erosion 
Mines 
Mine tailings 
Refuse/Landfill 
Buildings and 
infrastructure 
Urbanisation 
Agriculture 
  

 

Note: δ18O, δ11B, NO3
-, S & SO4

2-, CO2 & CH4 have also been used as markers in corals, 
speleothems and ice cores.  

 

 

 

Table 2: Peatland area (Joosten 2009) and the number of large dams (and age of oldest) 

recorded by country (AQUASTAT 2021). nd = no data 

 Peatland area (km2) Number of large dams Date of oldest 
recorded dam 

Botswana 3,000 10 1964 
eSwatini 50 9 1966 
Lesotho 20 7 1963 
Madagascar 1,900 nd nd 
Mozambique 2,000 36 1953 
Namibia 100 24 1933 
South Africa 300 552 1691 
Zimbabwe nd 198 1901 
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Figure 1. Locations of published sediment successions containing typical Anthropocene 

markers (See ‘Markers’ section); with 210Pb dating (orange dots) and without 210Pb dating or 

insufficient age/depth to verify mid-twentieth century time (purple dots). 
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Figure 2. Schematic diagram showing hypothetical historical profiles for selected 

stratigraphic markers for the Anthropocene in southern Africa (developed after Bancone et 

al., 2020). Radioisotopes (239+240Pu, 241Am, 137Cs) show a coincident peak at 1963; 

microplastics may be expected to follow that of global production (data from PlasticsEurope 

2012; 2016; 2019; 2020) although taphonomic processes may cause anachronistic records 

(Bancone et al., 2020); DDT emission data are taken from Schenker et al (2008) for southern 

latitudes 18° - 30°; mercury emission data and coal consumption data for South Africa (to 

show probable SCP trends) are taken from Rose et al. (2020). Horizontal bar indicates 1950 

+/- 5 as the likely start of the proposed Anthropocene Epoch. 
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