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C O G N I T I V E  N E U R O S C I E N C E

How usefulness shapes neural representations during 
goal-directed behavior
G. Castegnetti1*†, M. Zurita1†, B. De Martino1,2*

Value is often associated with reward, emphasizing its hedonic aspects. However, when circumstances change, 
value must also change (a compass outvalues gold, if you are lost). How are value representations in the brain re-
shaped under different behavioral goals? To answer this question, we devised a new task that decouples usefulness 
from its hedonic attributes, allowing us to study flexible goal-dependent mapping. Here, we show that, unlike 
sensory cortices, regions in the prefrontal cortex (PFC)—usually associated with value computation—remap their 
representation of perceptually identical items according to how useful the item has been to achieve a specific goal. 
Furthermore, we identify a coding scheme in the PFC that represents value regardless of the goal, thus supporting 
generalization across contexts. Our work questions the dominant view that equates value with reward, showing 
how a change in goals triggers a reorganization of the neural representation of value, enabling flexible behavior.

INTRODUCTION
Imagine being stranded on a deserted island after crashing a cargo 
aircraft. You need to choose between a metal chair and a wooden chair to 
light a fire to keep yourself warm. This goal is very different from that 
which you would normally have when choosing between chairs (i.e., 
sitting down comfortably or with style). The wooden chair would be 
very good for burning but might be uncomfortable, and the metal 
chair would be useless for burning and might not be stylish. They 
share the conceptual space of “furniture for sitting,” but they widely 
differ in other conceptual subspaces (e.g., material and style).

Despite all these differences, our brains can readily provide an 
answer to these conundrums—presumably by mapping the options’ 
value into a common currency under which a meaningful compar-
ison can take place (1, 2). In the past two decades, our understand-
ing of the neural circuitry underpinning these value-based decisions 
has greatly increased. This established a primary role for the ventro-
medial prefrontal cortex [vmPFC; (1, 3–5)], although the algorith-
mic implementation of this value computation has, so far, remained 
elusive. Furthermore, in most of these previous studies, the goal was 
not directly manipulated, and the stimuli were always evaluated in 
terms of monetary value (1, 6, 7) or subjective pleasantness (1, 8–10). 
Notably, several studies have investigated context-dependent value, 
focusing on how contexts affect value construction and deployment 
during evaluation (11, 12), choice (13–15), or learning (16). However, 
in most of these studies, the context manipulation was clearly de-
fined and required an explicit evaluation or revaluation of the op-
tions. Other studies have shown that change in state (e.g., satiety 
and mood induction) provides a powerful contextual manipulation 
that affects the construction of value behaviorally (17) and neurally 
(18, 19) but was always associated with the hedonic evaluation of 
the options. Nonetheless, in most real-life situations, the value of an 
action is strongly tied to the behavioral goal that an agent seeks to 
achieve (20). This should be independent from the hedonic nature 
of value, and it has to rapidly change when the goal changes. In this 

study, we test whether changing a goal triggers a reorganization of 
perceptual information even in the absence of an explicit evaluation 
or choice. Furthermore, we show that this remapping happens on a 
rapid time scale (i.e., the goal switches repeatedly during the task), 
under a top-down control (i.e., participants actively switch goals), 
and that humans can perform this flexibly for very abstract scenar-
ios never encountered before (e.g., imagine using a pair of shoes to 
light a fire). To do so, we devised an experiment in which human 
volunteers underwent functional neuroimaging while imagining 
using different items to achieve two distinct goals. In short, partici-
pants were asked to picture themselves as pilots of a cargo aircraft 
flying over the ocean at night. A sudden engine failure required an 
emergency landing on a deserted island. The final objective of the 
task was to flee the island: To do so, participants could use each of 
the items retrieved from the aircraft wreck. We proposed two possi-
ble escape strategies, each requiring the achievement of a separate 
goal: either starting a fire to be detected by a rescue team (hereafter 
referred to as burning goal) or keeping a boat anchored ashore until 
morning (anchoring goal).

To test the effect of goal manipulations on brain activity, we an-
alyzed functional magnetic resonance imaging (fMRI) data with a 
univariate approach and with representational similarity analysis 
(RSA), a multivariate technique suited for the study of the represen-
tational content of brain activity patterns (21, 22). To build these 
representations, participants had to consider the consequences of 
their actions rather than applying fixed stimulus-action maps, the 
hallmark of model-based computations (23). This required perceptu-
ally identical stimuli to flexibly rearrange into new, goal-dependent 
representations that emphasize goal-relevant features (24). Since 
value-based decisions build on internal estimations of goal-dependent 
value (termed “usefulness” here), as well as confidence in these esti-
mations (10, 25–27), we tested the hypothesis that item valuations 
are supported by brain representations that organize elements ac-
cording to these abstract attributes. We then sought to extend the 
common currency hypothesis by proposing that such currency is 
common not only across item categories (1,  2,  4) but also across 
goals. In line with a previous approach (28), we tested this with a 
classification algorithm, showing that the vmPFC encodes a distrib-
uted code for usefulness that is independent of the decision-maker’s 
current goal.
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RESULTS
Behavioral results
On day 1, we acquired subjective valuations of a set of 120 items 
(Fig. 1A) in three different sessions. During the first session, partic-
ipants (n = 30) indicated how familiar they were with each item and 
estimated its monetary value. During the second and third sessions, 
participants evaluated the usefulness of each item to achieve two 
goals—starting a fire (burning goal) and anchoring a boat (anchor-
ing goal)—and reported their confidence in such valuation (Fig. 1, 
B to D). Shared correlations between these estimations are listed in 
Table 1. The usefulness and confidence assigned to the same items 
in the context of different goals shared little variance [value: 1.44%, 
correlation coefficient (r) = 0.12; confidence: 0.16%, r = 0.04; see 
Fig. 1E for usefulness and confidence and the ensuing dissimilarity 
matrices from a sample subject]. Moreover, we found a quadratic 
relationship ( = 0.03, P  <  0.001) between goal-dependent confi-
dence and usefulness in line with previous reports of confidence in 
value-based decision-making (10, 26). The variance between mone-
tary value and usefulness for burning (0.36%, r = −0.06) or anchor-
ing (2.89%, r = 0.17) was also small. Obtaining a weak correlation 
between these scores was critical to clearly differentiate their signa-
ture effect on behavior and brain activity.

On day 2, participants underwent fMRI scanning while engaging 
with two kinds of trials: imagination and choice trials (Fig. 1C). In 
imagination trials (71.4% of the trials), they were asked to vividly 
imagine how to use an item to achieve the proposed goal. Since we 
could not control the degree of imagination vividness that partici-
pants experienced in the task, they were specifically instructed to 
imagine using each item as vividly as possible, even if objects had a 
very low usefulness (see the instructions delivered to the partici-
pants in the Supplementary Materials). In choice trials (28.6% of the 
trials), they had to indicate which of two proposed items best served 
the current goal. The average reaction time for choice was 1.47 s, 
and it was not affected by goal manipulation (t29 = −0.41, P = 0.69), 
demonstrating that the two goals were approximately balanced in 
terms of difficulty. A logistic regression at the group level revealed 
that choices were predicted by the difference between usefulness 
(U = UR − UL) assigned on day 1 for the congruent goal ( = 4.71, 
P < 0.001; Fig. 1F), even when considering participants excluded 
from the rest of the analyses because of their inconsistent choices 
( = 4.02, P < 0.001; see Methods). Choices were not predicted by 
the usefulness assigned for the incongruent goal ( = −0.11, P = 0.34; 
Fig. 1F) nor by monetary value ( = −4.0 × 10−8, P = 0.99). Participants’ 
choices were also affected by the difference in confidence between 
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Fig. 1. Task and behavioral measures. (A) Sample (7 of 120) of the items presented in the task. (B) The task involved two separate goals: lighting a fire (burning goal: 
orange flame) and anchoring a boat (anchoring goal: teal anchor). In the remainder of the paper, these goals are associated with the presented icons and colors. (C) On 
day 1, subjects evaluated each item’s usefulness for each goal and reported their confidence in the evaluation (evaluation trials). On day 2, we acquired fMRI data while 
participants experienced the items of day 1 either in isolation (imagination trials) or in pairs (choice trials). During imagination trials, they were tasked to imagine using 
the item for the current goal. During choice trials, they were tasked to choose the item they deemed more valuable for the current goal; a yellow star under the chosen 
item confirmed the selection. (D) Subjective valuations depended on the decision-maker’s goal, as exemplified here. A wooden chair is useful for burning, unlike a metal 
chair (although perceptually similar) or a safe box. In contrast, the safe box and, to some extent, the metal chair, might be useful for anchoring, unlike the wooden chair. 
(E) Dissimilarity matrices between items under the two goals, built on estimations of a sample participant. Each entry of the matrices indicates the absolute difference in 
subjective usefulness (plotted below the matrices in orange and teal) between a pair of items. (F) Top: We separately tested the relation between choice and the useful-
ness reported by participants for the same goal (congruent case; black arrow) or the alternative goal (incongruent case; gray arrow). Bottom: On day 2, choices were 
predicted by the usefulness assigned on day 1 for the congruent goal but were unrelated to the incongruent goal (graphs for illustration; subjects’ performances are 
presented in fig. S1).
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the items (C = CR − CL,  = −0.64, P = 0.001). No significant inter-
action was found between U and C ( = 0.69, P = 0.22).

Neuroimaging: Univariate analyses
Behavioral data demonstrated that participants’ choices were guid-
ed by the items’ usefulness toward the current goal (i.e., congruent 
usefulness) but not the value assigned under alternative goals (i.e., 
incongruent usefulness and monetary value; Fig. 1F). We therefore 
hypothesized that activity in the vmPFC—a brain region routinely 
associated with value computation and choice (26, 29, 30)—would 
be also modulated by the congruent usefulness only. To test this 
hypothesis, we regressed the blood oxygen level–dependent (BOLD) 
signal observed during choice (Fig. 1C) against the signed dif-
ference between chosen and unchosen usefulness (U), computed 
using estimates for congruent and incongruent goals. We also 
regressed the choice BOLD signal against the signed difference be-
tween the monetary value subjectively estimated for the chosen and 
unchosen value. All the reported activation clusters were identified 
with an uncorrected threshold of P < 0.001 and corrected for 
family-wise error (FWE) at the cluster level at P < 0.05. We found 
that vmPFC activity positively correlated with congruent U {peak 
voxel in Montreal Neurologic Institute (MNI) space: [−8, 54, −8], 
t29 = 4.91, P < 0.001; Fig. 2} but was unrelated to incongruent use-
fulness or monetary value, even at a liberal threshold (P < 0.01 un-
corrected; fig. S2). We found no signal proportional to incongruent 
or monetary value even after restricting the search to a region of 
interest (ROI) defined within a 10-mm radius around the peak of 
the vmPFC activation related to congruent usefulness or around the 
vmPFC peak activation from a previous independent study {[−3, 
47, −8]; (30)}. These results suggest that the value signal in the vmPFC 
activity is not an absolute property of the item related to subjective 
preferences but is determined by the item’s usefulness toward the 
decision-maker’s current goal.

Next, we analyzed imagination trials (Fig. 1C). We found a para-
metric response to the item’s usefulness in a large cluster including 
the lingual and fusiform gyrus (FWE-corrected at the cluster level: 
[32, −44, −8], t29 = 7.85, P < 0.001; Fig. 2) and bilaterally in the mid-
dle occipital gyrus extending into the superior occipital gyrus (left: 
[−30, −86, 24], t29 = 7.65, P < 0.001; right: [32, −78, 24], t29 = 6.33, 
P < 0.001). Intriguingly, the activity in these areas correlated also 
with incongruent usefulness (right: [30, −50, −6], t29  =  8.24, P  < 

0.001; left: [32, −82, −18], t29 = 7.84, P < 0.001; fig. S2) and monetary 
value (right: [16, −90, 2], t29 = 5.78, P < 0.001; left: [−24, −82, −8], 
t29 = 5.27, P < 0.001; fig. S2), even if these three definitions of value 
were largely uncorrelated (Table 1). Since participants were aware 
of all of the all goals involved in the task (due to valuations on day 1), 
this result is consistent with a value-driven attentional capture by 
goal-irrelevant values (30). No activity was found in the vmPFC or 
posterior cingulate cortex nor in other prefrontal areas, even 
at liberal thresholds (P < 0.01 uncorrected), suggesting that the 
involvement of these regions is limited to situations in which 
usefulness triggers a behavioral response (e.g., choice or explicit 
evaluation).

Neuroimaging: Multivariate analyses (RSAs)
From behavior and neuroimaging data, we showed that both choice 
and brain activity are modulated by the decision-maker’s goal. We 
then sought to investigate in more detail this flexible mapping 
of stimuli into behavior. We predicted that visual areas support 
goal-independent item representations that are determined by the 
item’s perceptual features but are insensitive to behavioral goal. On 
the contrary, we hypothesized that higher-level association areas, 
such as the vmPFC, would represent items in a novel abstract space 
that integrates item and goal, such as the degree of usefulness of the 
item and the associated confidence level. We tested these hypothe-
ses with RSA (21, 22). This is a multivariate analysis approach suit-
ed for testing the representational content of brain activity patterns. 
In the RSA, we first compute the dissimilarity between the multi-
voxel brain activity elicited by the different stimuli. The metric used 
to evaluate the dissimilarity between stimuli is d = 1 − Pearson’s r 
(21, 22). These dissimilarities are then organized in a representa-
tional dissimilarity matrix (RDM), which is then tested against 

Table 1. Correlation between behavioral measures. Correlation 
coefficients (Pearson’s r) between congruent and incongruent usefulness 
and confidence and monetary value. Data are presented as means ± SD 
and the range [minimum, maximum]. 

Uanchoring Cburning Canchoring Vmonetary

0.12 ± 0.22 
[−0.23, 0.54]

0.11 ± 0.21 
[−0.17, 0.58]

−0.02 ± 0.14 
[−0.40, 0.23]

−0.06 ± 0.09 
[−0.21, 0.16]

Uburning
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Fig. 2. Results of the univariate analysis. For choice, the displayed clusters indi-
cate activity that positively correlated with the signed difference between the val-
ue of the chosen and unchosen item. For imagination, the clusters indicate activity 
positively correlated with the congruent value of the presented item. All clusters 
were identified with an uncorrected threshold of P < 0.001 and then FWE-corrected 
at P < 0.05.
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model RDMs that encode the representational distances expected 
under different candidate metrics (e.g., difference in usefulness).

Goal-independent representations
We reasoned that a purely perceptual representation (including 
high-level object identity) would be unaffected by the goal manipu-
lation and thus exhibit high similarity across presentations of the 
same item during imagination trials regardless of the context in 
which such presentation occurred and low similarity between dif-
ferent items (i.e., dij = 1 − ij, where  is the Kronecker delta and 
i and j are item labels; Fig. 3A). To topologically localize these rep-
resentations, we used a volumetric searchlight in which the correla-
tion between model- and brain-based RDMs was computed within 
a 9-mm-radius spherical region centered in each voxel of the 
subjective gray matter mask. The obtained correlation coefficient 
(Spearman’s ⍴) was then assigned to the central voxel, yielding sub-
jective correlation maps on which we lastly computed group-level 
statistics with a nonparametric permutation test at the cluster level: 
All the reported clusters were identified with a cluster detection cri-
terion of P < 0.001 and FWE-corrected at P < 0.05 (31). Activity 
consistent with a perceptual representation was found in a single 
large cluster (peak voxel in MNI space: [28, −54, −12]; t29 = 16.1, 

P < 0.001; Fig. 3B) encompassing portions of the occipital lobe and 
extending into the temporal lobe, including primary visual areas 
and higher-level structures of the ventral stream like the fusiform 
and the inferotemporal gyrus, known to be involved in the concep-
tual processing of pictures of real objects (32).

Next, we reasoned that for both the burning and the anchoring 
goal, an intermediate step of this valuation process could be the as-
sessment of material composition. We thus asked an independent 
set of participants to evaluate the relative content of wood, metal, 
plastic, and fabric of all the items. Distances in this four-dimensional 
compositional space were used to define a new model RDM, which 
reflected the pairwise difference in material composition between 
the two items (Fig. 3A). We found material composition represen-
tation during imagination trials in the inferior temporal gyrus (ITG; 
[8, −78, −8]; t29 = 8.43, P < 0.001; Fig. 3B), in agreement with previ-
ous studies reporting that material textures could be decoded in this 
brain area (33). Our results add to these findings by showing that 
material composition can be extracted by pictures of real-life items 
(instead of pure textures) and that representational similarity is 
proportional to the continuous difference in composition and not 
just a binary representation of whether items belong to the same 
material category.
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Fig. 3. Results from the RSA searchlights. (A) Schematic representation of the representations of item identity, material, and usefulness. Blue and red lines indicate 
positive and negative correlations, respectively. In the central panel, the lines connecting the same item across goals are absent as the corresponding elements were re-
moved from the RDM to ensure independence between item material and identity (see Methods). (B) Brain regions whose activity follows the above representations, as 
identified with a volumetric searchlight. All the displayed clusters were detected with a cluster definition threshold of P < 0.001 and FWE-corrected with a permutation 
test at P < 0.05. Brain image templates, copyright 137 (C) 1993–2004 Louis Collins, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University.
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Goal-dependent representations
We then performed a series of multivariate analyses to specifically 
test the hypothesis that goal-dependent valuation (i.e., usefulness) 
is supported by the construction of flexible representations, where 
items that are similarly useful are represented similarly. For exam-
ple, if the decision-maker’s goal is lighting a fire, then a metal- and 
a wood-made chair, while perceptually similar, are dissimilar in the 
usefulness space (Fig. 1D). In the brain, this would entail a repre-
sentation in which distances between activity patterns scale with 
the difference in usefulness. In particular, we hypothesize that the 
vmPFC—because of its role in value computation (34, 35) and in 
the deployment of goal-relevant associative networks (often termed 
schemas) (36)—supports these goal-dependent deformations of the 
neural representations. We investigated this with a searchlight pro-
cedure on data collected during imagination trials, aimed at de-
tecting brain representations encoding the absolute differences in 
subjective rating of usefulness collected on day 1 (i.e., dij = ∣DV∣ij = 
∣Vi − Vj∣, with Vi and Vj value of items i and j, respectively). We 
found representations meeting this criterion in a number of pre-
frontal subregions, including the vmPFC (peak voxel in MNI space: 
[−10, 54, 2]; t29 = 5.04, P = 0.036) and the orbitofrontal cortex (OFC; 
[−32, 38, −14], t29 = 5.75, P = 0.004; Fig. 3B). The OFC is another 
central node of the valuation circuit (34, 35) and is implicated in 
inferring value on the fly from mental simulation (37, 38). We de-
tected a similar representation also in the dorsolateral PFC (dlPFC) 
extending into the left insula ([−40, 50, 12], t29 = 5.69, P = 0.006), 
previously implicated in context-dependent valuation (13). Last, 
representations of usefulness were also found in the lingual and 
fusiform gyrus ([−24, −48, −6], t29 = 7.51, P < 0.001) extending into 
the parahippocampal gyrus and the hippocampus and in the infero-
temporal cortex ([52, −52, −16], t29 = 7.51, P < 0.001). We found no 
evidence of brain representations correlating with the representa-
tions of incongruent usefulness or monetary value. Crucially, these 
analyses were restricted to imagination trials, during which partici-
pants produced no overt responses, suggesting that goal-relevant 
representations emerge even in the absence of an explicit behavior-
al output. Moreover, we found no univariate signal in prefrontal 
areas during imagination trials (Fig. 2), suggesting that the activa-
tion pattern in these regions changes in shape—as a function of the 
usefulness of the imagined item—without substantially altering the 
overall average activation level.

The OFC displays an integrative code of value 
and confidence
Our behavioral data show that confidence on the usefulness estima-
tions also affects behavior, adding to mounting evidence showing 
that confidence is intimately linked with value in guiding decisions 
in both animals (39) and humans (10, 25, 26). This implies that, at 
some step of the transformation of input stimuli into behavior, use-
fulness and confidence are integrated. Therefore, we sought evi-
dence of neural activity underpinning this integrative code. To this 
end, we conducted an RSA within the prefrontal areas that dis-
played usefulness representations in the vmPFC, OFC, and dlPFC 
(Fig. 4A), as resulted from the searchlight analysis (see previous sec-
tion). This analysis was restricted to these brain regions because a 
representation of a common value currency has been reported pre-
dominantly in prefrontal regions (1, 40). However, we believe that 
goal-dependent abstractions are likely to be supported by a distrib-
uted network, and therefore, they might not be localized exclusively 

in these regions but extend to other brain areas that do not display 
goal-dependent usefulness representation and are therefore not 
considered here. See table S2 for more details about the areas that 
showed goal-dependent value representations.

A significant correlation between confidence and neural activ-
ity was found in the OFC (one-sided Wilcoxon signed-rank test, 
P = 0.003; Fig. 4B). On the contrary, both the vmPFC (P = 0.36) and 
the dlPFC (P = 0.61) did not show a significant correlation between 
BOLD signal and confidence (Fig. 4B). However, since we did not 
detect a significant region main effect [one-way analysis of variance 
(ANOVA), P = 0.109], the difference among these regions needs to 
be interpreted with caution. Here, we only tested for confidence 
representation and thus make no statistical claims about usefulness, 
meaning that the inference is not circular. Furthermore, the subjec-
tive estimates of usefulness and confidence shared only 0.49% of the 
variance (r = −0.07 across goals; within-goal correlations are pre-
sented in Table 1), suggesting that this code is unlikely to reflect the 
behavioral correlation between the two scores.

It has been suggested that, during decision-making, confidence 
and the related decision accuracy are inherently valuable and might 
be automatically integrated in the value signal (10). Therefore, we 
then asked whether these representations were supported by the 
same neural population or by distinct populations, which would 
provide an indication of whether these quantities are integrated in 
the OFC or are encoded as separate independent variables by two 
distinct populations in the OFC. To do so, we adapted an analytic 
approach previously used to analyze multiunit firing patterns in ro-
dents (Fig. 4C) (41, 42). Specifically, we computed “voxel participa-
tion vectors,” which indicated the extent to which each voxel in an 
ROI is involved in representing usefulness or confidence; a positive 
correlation between the two vectors would be suggestive of a shared 
neural code. Since the distribution underlying this correlation was 
unknown, we drew our statistical inference using a permutation test 
by repeating the analysis 10,000 times after randomly permuting 
the voxel labels, in line with previous approaches (41–43). We 
found that voxel participation vectors from usefulness and confi-
dence in the OFC were positively correlated ( = 0.053; two-sided 
permutation test, P = 0.004). When applied to vectors of voxels 
instead of neural populations, this analysis is not conclusive, as a 
positive correlation might still reflect the activity of distinct popula-
tions within the same voxels. However, it provides some evidence in 
support of the hypothesis that neural populations that support the 
representations of value and confidence in the OFC might at least 
partly coincide (10) and that is consistent with the theoretical pro-
posal that confidence naturally emerges as a balance of evidence 
during a comparison process itself (26).

The vmPFC encodes a common currency for usefulness
Our results show that the vmPFC represents items according to 
their goal-dependent usefulness. In the vmPFC, values have been 
suggested to be represented on a common scale (or “currency”) that 
allows different item values to be mapped on a common scale and 
compared. This was suggested in most previous studies by demon-
strating that the vmPFC showed a similar activation as a function of 
value even across different categories of items [e.g., food or noncon-
sumable items; (1, 4)]. This appears to be true not only when look-
ing at the average vmPFC activity but also for the multivoxel 
activation pattern (28). Crucially, however, humans are also able to 
compare usefulness across different goals. For example, we are able 



Castegnetti et al., Sci. Adv. 2021; 7 : eabd5363     7 April 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 12

to determine whether a wooden chair would be more useful for 
burning than a metal chair for anchoring. To do so, the brain must 
first compute the usefulness of the two chairs—the first chair for 
burning and the second for anchoring, respectively—and then 
bring this usefulness to a common scale for comparison. This re-
quires the vmPFC to encode a distributed usefulness code that is 
independent of item category and goal. For example, an item with 
usefulness X for goal A would be represented similarly to another 
item with usefulness X for goal B. Given our operational definition 
of usefulness in terms of goal-dependent value, we thus expected 
that if the vmPFC is critical to support a common currency for sub-
jective preferences (1, 28, 29, 44), then it might also support a repre-
sentation of usefulness that is independent of the current goal (i.e., 

whether the goal is burning or anchoring). To test this hypothesis, 
we used a cross-classification procedure.

Specifically, for each of the two goals, we trained pattern classifi-
ers to categorize the multivoxel activity into low- or high-usefulness 
items and then computed the classification accuracy on data either 
from the same goal (within-goal classification) or from the alterna-
tive goal (cross-goal classification; Fig.  5A). Similar within- and 
cross-classification accuracies would indicate that, although items’ 
usefulness changes with goal as we saw above, the neural code sup-
porting its representation is conserved across goals. As in the previ-
ous section, we performed this analysis in the prefrontal ROIs where 
usefulness representation was strongest, namely the vmPFC, OFC, 
and dlPFC (Fig. 4A). For each participant, we built six classifiers, 
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Fig. 4. Confidence analyses. (A) ROIs used for confidence analyses. These ROIs were defined in correspondence with the statistically significant clusters obtained from the 
correlation map for usefulness (vmPFC, OFC, and dlPFC) drawn by the searchlight. (B) Correlation between the confidence representation and the brain activity in the 
three prefrontal areas that represented usefulness. **P < 0.01. (C) Analysis pipeline for the ROI-based analysis to quantify the overlap between the neural schemes of 
usefulness and confidence. The matrix in the center of the figure represents the activity vector (vertical dimension) of the N voxels in the ROI over T trials (horizontal 
dimension). The trial-by-trial activity of each voxel (i.e., each row of the matrix, which has length T) was then linearly regressed against the vectors of subjective estimates 
of usefulness and confidence in each trial. Each of these regressions resulted in a coefficient for each voxel; since we did two regressions per voxel—one for usefulness 
and one for confidence—this resulted in two coefficients for each voxel, describing the linear relation between the voxel activity with usefulness and confidence (BiU and 
BiC, respectively, with i = 1,…,N). The absolute values of these coefficients were interpreted as the degree to which the corresponding voxel participates in the represen-
tation of usefulness and confidence and were grouped in two participation vectors, which summarized the extent to which the voxels in the ROI took part in the repre-
sentation of usefulness and confidence. The correlation between the two participation vectors was then taken as an indication of whether the representations of 
usefulness and confidence were supported by the same neural code or by overlapping but distinct codes (42, 43).
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one for each goal and ROI. Not unexpectedly, since the analysis was 
performed in correspondence of the usefulness representations de-
tected with the RSA, within-goal classification accuracy was above 
chance in all three ROIs (vmPFC: 51.8%, one-sided Wilcoxon 
signed-rank test, P < 0.01; OFC: 52.4%, P < 0.001; dlPFC: 54.3%, 
P < 0.001; Fig. 5B). In contrast, cross-classification accuracy was 
above chance in the vmPFC (52.0%, P < 0.01) and OFC (51.1%, 
P < 0.05) but not in the dlPFC (50.0%, P = 0.35; Fig. 5B).

While cross-classification in the OFC was above chance but still 
lower than within-goal accuracy (P < 0.05), cross-classification 
in the vmPFC was indistinguishable from within-goal accuracy 
(P = 0.55; Fig. 4). Note, however, that the ANOVA analysis over the 
results showed that there is no significant region by cross/within 
interaction (P = 0.386). Therefore, further analyses would be needed 
to assess whether there is a difference between these areas. This 
would be consistent with a previous study reporting that the vmPFC, 
but not the OFC, uses a common scheme to represent item from 
different categories (28) and suggests that the neural code support-
ing usefulness representation in the vmPFC is maintained across 
goals and might be critical to enable comparison and choice be-
tween incommensurable behavioral options. Note that from the 
searchlight analysis, we found that representations in the vmPFC 
are more similar for items with similar usefulness. This can be 
because of similarity within goals: Items with similar usefulness for 
burning are represented similarly, but their representation might 
differ from items that have comparable usefulness for anchoring. 
With this analysis, instead, we explicitly addressed the similarity 
across goals, testing to what extent items with similar usefulness 
across goals are represented similarly. In summary, while usefulness 
is clearly goal dependent, here we found evidence that the represen-
tation of, for instance, “high usefulness,” is conserved across goals 
in the vmPFC, while we found no evidence of this being the case in 
the OFC and dlPFC. While the cross-classification performance in 
the vmPFC suggests the presence of universal usefulness coding, the 
negative results in the OFC and dlPFC could also be affected by the 
precise definition of the ROIs, which might include goal-dependent 
components lowering the cross-correlation performance without 
ruling out some universal coding within the ROI. This analysis was 

restricted to the prefrontal ROIs where we found usefulness encod-
ing from the RSA analysis and therefore does not exclude the pres-
ence of universal encoding elsewhere in the brain.

DISCUSSION
Here, we studied how the human brain flexibly adapts its neural 
representation of usefulness—defined as goal-dependent value—of 
everyday-life items in response to changes in the decision-maker’s 
goal. From behavioral data, we showed that participants’ choices 
were exclusively predicted by the subjective value that they assigned 
to the options in the context of a congruent goal. With neuroimag-
ing, we found that activity in the vmPFC correlated with the degree 
of usefulness to achieve the current goal but was unrelated to the 
value for alternative goals. Previous work has shown that activity in 
the vmPFC tracks the value of the available options or actions 
(1, 4, 10, 26, 30). However, in most studies, value was defined in 
monetary terms (e.g., willingness to pay) or in terms of subjective 
pleasantness (e.g., liking rate), overlooking the fact that the value of 
an action is critically dependent on the decision-maker’s goal. This 
left unanswered the question of whether value signals in the brain 
reflect expected reward or an operational construct such as goal- 
directed usefulness. If value does indeed depend on goal, then the 
mapping of sensorial inputs into behavioral outputs must be flexi-
ble. Since nature does not provide explicit labels, the criteria used to 
build value in a given context can become obsolete as soon as the 
context changes. This implies that a change of context generally en-
tails a change in the goal-dependent value. If your car speeds toward 
a cliff, then breaking your bones to jump out alive becomes a desir-
able option, while no amount of money would be of any use. We 
thus propose the following interpretation of value and its associated 
neural computations: The value of an action is defined by the extent 
to which it fulfills the current goal. To this end, the representations 
of the available options must emphasize the features that are relevant 
for the goal and de-emphasize the others. To Abraham Maslow’s 
famous quote, “If all you have is a hammer, everything looks like 
a nail,” we might thus add that if your goal is hammering a nail, 
everything looks like a hammer.

n.s.
n.s.

A B

Fig. 5. Cross-classification. (A) Schematics of the cross-classification procedure. Goal-specific classifiers were trained to classify multivoxel brain activity into either high- 
or low-value categories. Next, we computed the accuracy of these classifiers in classifying the brain data acquired either during the same goal (within-goal classification) 
or the alternative goal (cross-goal classification). (B) Average classifier accuracy in categorizing multivoxel brain activity into high- or low-value trials, for activity acquired 
under the same goal or the alternative goal. *P < 0.05; **P < 0.01; ***P < 0.001. n.s., not significant.
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To test these hypotheses, our design decouples value from its 
hedonic or rewarding attributes. From the univariate analysis, we 
first showed that vmPFC average activation during choice cor-
relates with the usefulness of the chosen item for the congruent goal 
only. With the RSA, we found that the vmPFC represents items in 
an abstract space where distances between elements were propor-
tional to the difference in their usefulness but only relative to the 
participants’ goal. Critically, such space would enable comparison 
across behavioral options, as other studies have evidenced in the 
context of food and nonfood consumables (1, 28, 29). However, hu-
mans can not only compare items according to how well they fulfill 
a specific goal but can also express preferences between items serv-
ing different purposes. Going back to our initial example, when 
asked to choose between a pair of trekking shoes and a pair of head-
phones, humans would answer after evaluating the shoes for how 
comfortable they are and the headphones for the sound quality. To 
carry out these decisions, the brain must maintain a metric in which 
options are made commensurable even if they fulfill different goals. 
With the cross-classification analysis, we found evidence that the 
vmPFC (and possibly the OFC), unlike other prefrontal regions, 
can support this function. This means that the vmPFC represents 
goal-dependent usefulness with a goal-independent currency. The 
computation of usefulness is goal-dependent: A wooden chair is 
great for burning and useless for anchoring, but the way such use-
fulness is represented is instead conserved across goals. For in-
stance, an item with low usefulness for burning and another item 
with low usefulness for anchoring would be represented similarly, 
even though their uselessness is computed with respect to two dif-
ferent goals. This result is in accordance with a previous work by 
McNamee and colleagues (28) and suggests that the vmPFC fulfills 
the unique role of organizing categories of items under different 
goals using a common code. This analysis was limited to the pre-
frontal regions that showed evidence of a goal-dependent useful-
ness code from the searchlight. These results might therefore not be 
unique to the vmPFC and extend to other areas that were not con-
sidered here. A previous study using univariate fMRI had suggested 
a distributed representation for general hedonic rewards, which in-
clude the anterior cingulate cortex, ventral striatum, and anterior 
insula (40). Unlike this study, however, we suggest here that the 
vmPFC encodes value or usefulness that is computed in the context 
of a specific goal and is independent from hedonic attributes like 
monetary value (Table 1 and fig. S2).

From the univariate analysis during choice, we detected a signal 
in a set of brain regions commonly associated with value-based 
decision-making (Fig. 2) (29, 34, 35). We did not find a similar uni-
variate signal during imagination trials, when choice was not required 
(Fig. 2). Notably, a handful of studies have shown value univariate 
signals in the absence of choice (4, 30, 45). In many of these studies 
[e.g., (4)], participants, while not performing an overt choice or val-
uation, were still required to think about how much it was worth to 
them in monetary terms. In other studies, perceptual and value es-
timations were interleaved in the same task [e.g., (44)]. Here, in-
stead, we asked the participants to imagine how the item could be 
used toward a goal, without being explicitly asked to think about a 
scalar value. In line with this, asking participants to engage in a dis-
tracting task while viewing items and not instructing them to con-
struct a value estimate produced a substantial weaker response in 
the value regions compared to when a value-based decision is re-
quired (30). Together, these results suggest that for a univariate 

signal to arise in the brain network commonly associated to value in 
the absence of choice, subjects must be required to perform an im-
plicit mental valuation.

Beyond the vmPFC, the OFC and dlPFC also exhibit a neural 
representation compatible with a usefulness coding. The OFC 
is a central element of the value circuit in the brain (2, 34, 35) and 
is implicated in computing action outcomes during decisions 
(42, 46, 47). This raises the intriguing hypothesis that the represen-
tational similarity in the OFC reflects a similarity across imagined 
outcomes, which could then be read out by downstream regions for 
evaluation or choice (e.g., vmPFC). The dlPFC, on the other hand, 
represents the expected rewards (48) and the task rules (49). For 
instance, Wallis et al. (49) found a higher incidence of rule-selective 
neurons in the dlPFC compared with other prefrontal areas. This is 
consistent with our results (Fig. 5B), which indicate that item use-
fulness in the dlPFC uses different codes for different goals.

Using RSA combined with an approach previously used for mul-
ticell recordings in rodents (42), we showed that the OFC supports 
an integrative code of value and confidence. However, the low 
spatial resolution of fMRI data limits the interpretations of these 
findings. While our results strengthen the emerging results on the 
interplay between confidence and value for behavioral control 
(10, 25, 26, 39, 50), additional work is required to provide a conclu-
sive answer.

While goal-dependent usefulness representations must ac-
count for the current goal, an item’s sensorial representation is 
presumably driven by its goal-independent perceptual features. 
We found representations fulfilling this criterion across the ven-
tral stream in the occipital and temporal lobe—known to encode 
item identity and certain stimulus categorizations (32). In addi-
tion to a perceptual representation, visual areas like the fusiform 
gyrus and the ITG also encode usefulness representations of the 
items (Fig. 3B). A correlation between usefulness and brain ac-
tivity in the occipitotemporal cortex was also evident in the uni-
variate analysis (Fig.  2B). This activity correlated not only with 
congruent usefulness but also with the goal-irrelevant incongru-
ent usefulness and monetary value (fig. S2). Since participants had 
already been exposed to the items in the three contexts before the 
fMRI session, these results can be explained with a stimulus-driven 
attention capture by items that are valuable in any of the proposed 
contexts (51) and are in line with previous findings showing 
occipitotemporal activation stimulus-driven attention orientation 
(52) and when attention is captured by value during choice even 
when value is task-irrelevant (30). This additionally resonates with 
growing evidence of an engagement of sensory areas in higher- 
level cognition (53–55).

In conclusion, our work provides new empirical evidence for 
how the brain adjusts neural representations in response to changes 
in behavioral goals. We believe that our findings nuance the com-
monly held view that equates value with reward or pleasantness; 
instead, they emphasize a role of goal-dependent usefulness repre-
sentations in guiding choice and constructing value. Unlike the 
gamified settings in which artificial agents are usually tested (56), 
the real world does not provide easily calculable rewards akin to 
points on a score sheet. Humans must instead construct value on 
the fly, in response to changing behavioral contexts. Mapping how 
the brain can achieve this computational feat can provide essen-
tial clues for understanding or perhaps even designing flexible 
cognitive architectures.
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METHODS
Participants
We recruited 41 volunteers from the general population (age: 
means ± 2 = 24.1 ± 3.2 years; 19 females). All participants were 
right-handed, fluent in English, and had normal or corrected- 
to-normal vision. We excluded two participants because of anatom-
ical anomalies that caused artifacts in the functional brain images 
and four participants because of excessive head motion (more than 
2 mm for more than 2% of the trials). We excluded five additional 
participants because their behavior on days 1 and 2 was inconsistent 
(fig. S1). Specifically, following a criterion set in previous studies 
(9, 26) to make sure participants were consistent and engaged with 
the task, participants were excluded if the logistic regression be-
tween choice and value difference on single-subject data had a slope 
smaller than 0.025 (see the “Experimental paradigm” section). 
Therefore, a total of 30 participants were included in the final anal-
ysis. The study was conducted in accordance with the Declaration 
of Helsinki and was approved by the Research Ethics Committee of 
the University College London. Before starting the experiment, all 
participants gave written consent. After the experiment, they were 
compensated for their participation.

Experimental paradigm
The experiment took place over 2 days. On day 1, participants were 
shown high-resolution photos of 120 items from everyday life 
(Fig. 1A) on a computer screen and were asked to indicate their famil-
iarity with each item and an estimation of its market retail price. Next, 
they familiarized themselves with the cover story that contextualized 
the upcoming task (see the Supplementary Materials). Participants 
were asked to picture themselves as pilots of a cargo aircraft flying over 
the ocean at night. A sudden engine failure required an emergency 
landing on a deserted island. The task was to flee the island. We de-
vised two possible escape plans, each requiring the achievement of a 
separate goal. The first goal (hereafter referred to as burning; Fig. 1B) 
was to start a fire to be detected by a rescue team. At this point, partic-
ipants were shown again the initial set of items (which, as it turns out, 
was the content of the cargo) and were asked to evaluate each item’s 
usefulness (i.e., goal-directed value) for this first goal and the confi-
dence in such evaluation. Usefulness and confidence were indicated 
independently by positioning a cursor on two continuous scales dis-
played simultaneously on the screen under the item picture (Fig. 1C). 
The range of the value slider was between “not valuable” and “very 
valuable” whereas for confidence was between “just guessing” and “to-
tally sure”; no number appeared on either slider. The current goal was 
reminded by an icon at the top left corner of the screen (Fig. 1C). The 
second escape plan involved using a little boat found floating near the 
coast. However, taking to the high seas at night was unadvisable. 
Therefore, the second goal was to keep the boat anchored ashore until 
morning (anchoring goal; Fig. 1B). Participants then saw each item 
once more and estimated the item usefulness and the associated con-
fidence toward this second goal. Participants could not choose which 
escape plan to follow but had to evaluate the items for both goals.

On day 2, participants underwent fMRI scanning. The experi-
ment took place over four sessions, each associated with one of the 
two goals in alternate order that was counterbalanced across partic-
ipants. Each session consisted of 84 trials: 60 imagination trials and 
24 choice trials. During imagination trials, the image of an item 
(from the same set of everyday-life items experienced on day 1) was 
presented for 5 s, during which participants were asked to imagine 

using it for achieving the current goal (specified at the beginning of 
the session and reminded throughout by an icon in a corner of the 
screen; Fig. 1C). No behavioral response was required during imag-
ination trials. Across the two sessions corresponding to the same 
goal, all 120 items were presented. During choice trials, participants 
were shown a randomly selected pair of items for 3.5  s and were 
tasked to indicate the item they deemed most valuable for the cur-
rent goal. Choice options were selected only among the items pre-
sented during the 10 most recent imagination trials so that choice 
trials would incentivize participants to comply during imagination 
trials, since choices could be made easier by considering the possi-
bly upcoming items in isolation during imagination trials. The 
choice was selected by pressing a button on a joypad, which trig-
gered the appearance of a yellow star below the chosen item, con-
firming the selection (Fig. 1C). All the computer tasks were created 
with the Python toolbox PsychoPy [www.psychopy.org; (57)].

Behavioral analysis
Behavioral data were analyzed using a logistic regression. The aim 
of this analysis was to estimate the impact of subjective usefulness U 
and confidence C reported on day 1 on choices of day 2. Specifically, 
we sought to estimate the degree by which choice was driven by 
each goal (burning and anchoring; Fig. 1B), difference in usefulness 
between the options (U = URight − ULeft; measured in the context of 
both goals, as well as in monetary terms), confidence difference (C = 
CRight − CLeft), and the interaction U : C. Notably, we separately 
estimated the effect of usefulness and confidence reported in the con-
text of the congruent and the incongruent goal (Fig. 1, D to F). This 
resulted in a total of eight predictors (goal, congruent and incongruent 
usefulness, congruent and incongruent confidence, congruent and 
incongruent interaction, and monetary value), which we collectively 
denote as X = x1, …, x8. The effect of the predictors on each par-
ticipant’s choice was estimated by fitting a generalized linear mixed 
model to the behavioral data. Accordingly, the probability of partic-
ipant k to choose the right option (R) was modeled as (Fig. 1F)

	​​​ P​​ k​​(​​X​)​​  = ​   1 ─ 
1 + ​e​​ −​Y​(​​X​)​​​​ k​​

 ​​​	

with

	​​ Y​(​​X​)​​  = ​ β​ 0​​ + ​b​0​ k ​ + ​(​​ ​β​ 1​​ + ​b​1​ k ​​)​​ ​x​ 1​​ + … + ​(​​ ​β​ 8​​ + ​b​8​ k ​​)​​ ​x​ 8​​​​	

where 0 is the group intercept, 1, …, 8 the group (fixed) effects, 
and ​​b​1​ k ​, … , ​b​8​ k ​​ are the subject-specific random effects, which have 
prior distribution

	​​ b​i​ 
k​~N(0, ​​b​ 2 ​)​	

This is equivalent to the Wilkinson notation

	​ Choice~1 + ​x​ 1​​, … , ​x​ 8​​ + (subject)​	

The model was estimated with MATLAB (MathWorks, Natick, 
MA, USA) using the built-in function fitglme.

fMRI data acquisition and preprocessing
Brain imaging data were acquired at the Wellcome Trust Centre 
for Human Neuroimaging using a Siemens (Erlangen, Germany) 

http://www.psychopy.org
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Prisma 3.0-T MRI scanner with a 64-channel head coil. We mea-
sured BOLD activity over four experimental sessions with T2*- 
weighted echoplanar images (EPI) that were acquired with a sequence 
optimized for brain regions near the OFC and the amygdala (voxel 
size = 3 mm by 3 mm by 3 mm; matrix size = 64 × 72; repetition 
time (TR) = 3.36 s; echo time (TE) = 30 ms; slice tilt = −30). We 
acquired 225 volumes in each session, resulting in a total session 
duration of 12.6 min. We discarded the first five volumes of each ses-
sion, during which no stimuli were presented, to allow for the stabi-
lization of the magnetic field. Forty-eight slices were acquired for 
each volume. Subjective T1-weighted MPRAGE anatomical scan 
and field maps were acquired for each subject.

Image preprocessing was carried out with the MATLAB toolbox 
Statistical Parametric Mapping (SPM12; www.fil.ion.ucl.ac.uk/spm) 
and custom code. Raw EPIs were slice time-corrected, realigned, 
and then unwarped using the data from field maps. No further pre-
processing was needed for the multivariate analyses, which were 
performed in native space. For the univariate analysis, each subject’s 
anatomical image was further mapped onto a template of tissue 
probabilities with a nonlinear deformation map and then segmented 
into gray and white matter, cerebrospinal fluid, bone, soft tissue, 
and air images. The same deformation map was then used to nor-
malize the EPIs to the MNI template, which were lastly smoothed 
with a Gaussian kernel with full width at half maximum (FWHM) 
of 8 mm.

Univariate analysis
Univariate analyses were performed with SPM12 and custom code. 
In our main general linear model (GLM), the first regressor was an 
indicator function of the onsets of the imagination trials with three 
parametric modulators: the usefulness and confidence collected on 
day 1 under the same goal (i.e., congruent usefulness and confi-
dence) and the estimated monetary value. The second regressor was 
an indicator function of the onsets of choice trials, parametrically 
modulated by the difference between the congruent usefulness esti-
mations of the chosen and unchosen item. We created an addition-
al GLM identical to the one above but using the usefulness and 
confidence estimates collected on day 1 under a different goal (i.e., 
incongruent usefulness and confidence). We have also constructed 
a third GLM that includes all the regressors from the two GLMs 
described above (table S3). Regressors were not orthogonalized but 
were left to compete for variance. In both GLMs, we also corrected 
for motion artifacts by including six subject-specific parameters 
from image realignment (corresponding to three rigid-body trans-
lations and three rotations) as covariates of no interest. All regres-
sors were then convolved with a canonical hemodynamic response 
function. A high-pass filter with a cutoff of 1/128 Hz was applied to 
the time series to remove slow drifts. All presented clusters were 
detected with a cluster-defining threshold of P < 0.001 and FWE- 
corrected for multiple comparisons at P < 0.05.

Multivariate analysis
Representational similarity analysis
RSA is a multivariate analysis technique suited to investigate the 
neural representation of brain regions. In this framework, hypothe-
ses about the neural representation are specified in terms of RDMs, 
which encode the pairwise dissimilarity (or distance) between ex-
perimental conditions predicted by a model. For instance, if we 
were testing for brain regions encoding the color of a stimulus, the 

model RDM would prescribe low distance between stimuli with 
similar color and high distance between stimuli with very different 
colors. Hypotheses are then tested by comparing model RDMs to 
brain-based RDMs that encode the pairwise distance, computed as 
1 − Pearson’s r (21, 22), between brain activity patterns elicited in a 
given ROI by the different experimental stimuli. This second-level 
similarity, which was computed in terms of Spearman’s rank cor-
relation coefficient , allowed inferring to what extent the activation 
pattern in a specified ROI correlated with a model prediction. In the 
present study, the RSA was carried out with a dedicated MATLAB 
toolbox (21) and custom code. Our task involved evaluating 120 
different items twice, once for each goal, resulting in 240 conditions 
for each of which we computed a separate -map with a dedicated 
GLM on unsmoothed data in the subjective native space. Before all 
analyses, -maps were spatially prewhitened within the considered 
ROI to maximize the reliability of our inferences (58). Since the 
RDMs encoded all pairwise distances in a set of 240 objects, they 
had dimensions of 240 × 240.

For the representation of item identity, the model RDM pre-
scribed low distance between presentations of the same item even 
under different goals and high distance between distinct items. The 
distance between items i and j was thus formalized as dij = 1 − ij, 
where  is the Kronecker delta; the distance is thus 0 if the indices i 
and j coincide and 1 otherwise. To test for representations based on 
subjective valuations, we defined a model in which the distance was 
the absolute value difference between pairs of stimuli (i.e., dij = 
∣DV∣ij = ∣ Vi − Vj∣). A similar representation based on subjective 
confidence instead of valuation (i.e., dij = ∣DC∣ij = ∣ Ci − Cj∣) was 
also considered. To create the model RDM of material composition, 
we asked a different set of participants to estimate, for each item, the 
compositional percentage of metal, wood, plastic, and fabric. Com-
positional distance was then defined as the average Euclidean dis-
tance in this four-dimensional space. Notably, similarly to the 
representation of item identity, this prescribed high similarity be-
tween subsequent presentations of the same item. Hence, these rep-
resentations were partially correlated. To rule out that the extent of 
material composition representation reported by the searchlight 
was inflated by the representation of item identity, we excluded the 
matrix elements corresponding to item self-similarity across goals, 
therefore making the two representations approximately orthogonal. 
Once the model representations were created, we tested them follow-
ing different pipelines for ROI-based and searchlight approaches.
Searchlight
The searchlight analysis was performed within subjective gray mat-
ter masks. In line with previous approaches (59), these masks were 
defined as the set of voxels with probability of including gray matter 
exceeding 0.3 according to the tissue segmentation step. A spherical 
ROI with a radius of 9 mm (3 voxels) was defined around each voxel 
in the gray matter mask. One brain-based RDM was built in each 
of these spherical ROIs. Model and brain-based RDMs were then 
reshaped to a vector and compared, yielding a correlation coeffi-
cient (Spearman’s ) that was assigned to the center of the sphere. 
Therefore, this procedure ultimately created a subjective correla-
tion map, which encoded the correlation between model and brain 
representation across the whole gray matter mask. The maps were 
lastly normalized to MNI space with the deformation map from the 
tissue segmentation and then smoothed with a Gaussian kernel 
with FWHM of 8 mm. Group-level statistics was performed 
with nonparametric cluster-level permutation test implemented in 

http://www.fil.ion.ucl.ac.uk/spm
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SnPM (statistical nonparametric mapping) (31), with a cluster detec-
tion threshold at P < 0.001 and no variance smoothing. Using a 
standard procedure, clusters were considered significant if they 
survived a FWE correction at P < 0.05 (60).
ROI analysis
For the ROI-based analysis of confidence, prefrontal ROIs were de-
fined within spherical masks with a radius of 10  mm around the 
peak activation of the prefrontal clusters identified by the search-
light (from the usefulness searchlight, vmPFC: [−10, 54, 2], OFC: 
[−32, 38, −14], and dlPFC: [−40, 50, 12]), which were created with 
the toolbox MarsBar. Crucially, we did not conduct multivariate 
testing for usefulness within these ROIs, as it would imply circular-
ity in the inference. Instead, we tested for confidence, which is near-
ly orthogonal to subjective value (Table 1). To determine whether 
an ROI presented a model-led representation, brain- and model- 
based RDMs were reshaped to a vector and then compared in terms 
of the Spearman rank correlation. Correlation coefficients  were 
then tested for significance at the group level with the Wilcoxon 
signed-rank test, a nonparametric statistical test that relaxes the 
normality assumption often violated by correlation coefficients.

To gather indications on whether representations of usefulness 
and confidence were supported by the same neural circuitry, we 
capitalized on an approach previously used in the study of cell en-
sembles in rodents (Fig. 4C) (42). Specifically, from the multivoxel 
activity in the ROI, we computed two “participation” vectors (42) 
containing a measure of the strength with which each voxel encod-
ed either usefulness or confidence. Each entry of the vectors was the 
unsigned coefficient of a linear regression of the activity in a voxel 
against the usefulness or the confidence of the presented item. A 
positive correlation (Spearman’s ) between the two vectors would 
suggest that voxels participate similarly in encoding value and con-
fidence, which is indicative of a shared representation rather than 
overlapping but distinct representations (42). Since we had no hy-
potheses about the distribution of these correlation coefficients, sta-
tistical inference was carried out with a nonparametric permutation 
test in which we repeated the same analysis 10,000 after permuting 
the trial labels. The probability that the observed correlations were 
extracted from the null distribution was computed as the relative 
number of permutations that presented a Wilcoxon’s z statistic 
value higher than the one obtained from the original (unpermuted) 
analysis.
Neural code generalization across goals
We sought to investigate to what extent goal manipulations affected 
the neural code of usefulness. To do so, we sought to assess whether 
a pattern classifier trained to predict usefulness from brain activity 
in the context of one goal could generalize to predict value for the 
alternative goal. Since there was a significant difference between the 
usefulness reported by subjects under different goals (higher useful-
ness for burning than for anchoring, P < 0.001), there was a poten-
tial goal bias on the models. To overcome this bias, following 
previously used methods (28), the data were split into high and low 
usefulness at a subject level, thus eliminating the correlation be-
tween goal and usefulness. The schematics of this procedure are 
detailed in Fig.  5A. Specifically, we built two support vector ma-
chines (SVMs; one for each goal) for each subject and ROI to classi-
fy the multivoxel ROI activity into low or high value. The frequent 
inconsistencies between subjective valuations (acquired on day 1) 
and choice preferences (acquired on day 2; fig. S1) suggest that the 
subjective internal estimation of value might be prone to volatility 

across the two experimental sessions. To minimize the detrimental 
effect of these inconsistencies on the classifiers’ accuracy, we thus 
retained only the items in the highest and lowest value quartile. 
To train the SVM, we used the function fitcsvm implemented in 
MATLAB. To assess whether the classifiers generalized to the alterna-
tive goal, we compared the accuracy they achieved on data from the 
same goal as the training set, computed with a 10-fold cross-validation 
procedure, with that achieved in classifying data acquired under the 
alternative goal context. Statistical testing on single-subject clas-
sifier accuracies was performed with one-sided Wilcoxon signed- 
srank tests.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/15/eabd5363/DC1

View/request a protocol for this paper from Bio-protocol.
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