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Probing the interaction between Rydberg-dressed atoms through interference
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We study the dynamics of an atomic Bose-Einstein condensate in an optical lattice in which the electronic
ground state of each atom is weakly coupled to a highly excited Rydberg state by a far off-resonant laser. This
dressing induces a switchable effective soft-core interaction between ground-state atoms which, in the lattice,
gives rise to on-site as well as long-range interaction terms. Upon switching on the dressing laser the coherence
properties of the atomic superfluid undergo a nontrivial collapse and revival dynamics which can be observed
in the interference pattern that is created after a release of the atoms from the optical lattice. This interference
signal strongly depends on the strength and the duration of the dressing laser pulse and can be used to probe and
characterize the effective interaction between Rydberg-dressed atoms.
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I. INTRODUCTION

Ultracold atoms trapped in optical lattices provide a highly
versatile toolbox for the exploration of the statics and dynamics
of many-body quantum systems [1]. One important experi-
mental demonstration is the paradigmatic Bose-Hubbard (BH)
model [2], in which bosonic atoms undergo the superfluid-Mott
insulator quantum phase transition. This quantum phase transi-
tion is driven by the competition of atomic tunneling between
lattice sites and short-range (on-site) two-body interactions.
Recently, there has been a growing interest in the study of
extended BH models, in which the two-body interaction is
long-range in the sense that it extends over several lattice sites.
Extended BH models exhibit a host of quantum phases, among
them supersolid and checkerboard phases [3,4]. Many studies
employ dipolar atoms [5] or polar molecules [6] to establish
many-body quantum systems with long-range interactions. A
review about recent progress along this direction can be found
in Ref. [4].

Extraordinarily strong and long-range multipolar interac-
tions are also present between atoms excited to Rydberg
states. Here the interaction strength can exceed that between
ground-state atoms by more than ten orders of magnitude. The
coherent excitation of Rydberg atoms by lasers has recently
been demonstrated in a series of experiments (for a review
see Ref. [7] and references therein) and many theoretical
and experimental groups have studied the strongly correlated
many-body dynamics of Rydberg gases [8–12] and Rydberg
atoms confined to optical lattices [13–21].

The long-range interaction between Rydberg atoms is
usually not of direct use in the context of extended BH
models as the atomic motion due to coherent tunneling
between the sites usually takes place on a time scale that
is a hundred to a thousand times longer than the lifetime
of the Rydberg states. This limitation can be overcome by
using Rydberg dressing (i.e., a weak admixture of a Rydberg
state to the electonic ground state) rather than directly exciting
Rydberg states resonantly. Such Rydberg-dressed ground-state
atoms exhibit long-range interactions that are comparable with
typical ultracold energy scales [22–24]. A number of recent
studies have addressed the dynamics in Rydberg-dressed
atomic gases, such as the formation of supersolids [23–26],
solitons [27], and collective many-body excitations [22] as
well as excitation transport [28].

Here we consider the far off-resonant laser dressing of
the electronic ground state with a Rydberg nS state, where
n is the principal quantum number and S corresponds to
the electronic angular momentum quantum number l = 0.
The laser excitation is achieved by a two-photon process,
as illustrated in Fig. 1(a). In the regime where the effective
Rabi frequency � is much smaller than the detuning � the
laser admixes merely a fraction of the Rydberg nS state to
the ground state. As shown in Refs. [22–24] this induces an
effective interaction potential between atoms which is sketched
in Fig. 1(b). The hallmark of this potential is the characteristic
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FIG. 1. (Color online) (a) Schematics of the two-photon coupling
between the ground state and Rydberg state. The laser which couples
the state |g〉 to the intermediate |P 〉 state is far detuned from resonance
such that the ground state |g〉 and the Rydberg |nS〉 state form an
effective two-level system. Here � is the effective Rabi frequency
and � the (two-photon) detuning of the excitation laser frequencies
with respect to the atomic transition. (b) Effective interaction potential
between dressed atoms and its length scales in relation to the optical
lattice. At short distances (R � Rc) the interaction potential is
constant and at large distances (R � Rc) it is of van der Waals type.
(c,d,e) Envisioned experimental sequence and timings. First (c), a
BEC is prepared in an optical lattice. Second (d), an off-resonant laser
coupling the ground state to the Rydberg state is applied for a certain
time. After the excitation laser pulse, the optical lattice is switched
off immediately and the dressed ground-state atoms expand freely.
Finally (e), interference patterns are recorded by taking absorption
images of the expanded atomic cloud.
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change of its behavior in the vicinity of the distance Rc,
which, depending on laser detuning and the Rydberg state,
typically ranges from 1 μm to a few μm: At large interatomic
distance R � Rc, the potential decreases proportional to 1/R6,
originating from the van der Waals (vdW) interaction between
Rydberg atoms in the nS state. At short distances R � Rc,
the interaction potential levels off to a constant value. This
soft-core behavior is a consequence of the Rydberg blockade
effect [29], which inhibits the simultaneous excitation of
nearby atoms to Rydberg states.

In this work we will investigate the effect of the Rydberg-
induced interaction on a lattice gas of ground-state atoms
that is prepared in a superfluid state. In particular we are
interested in studying the collapse and revival dynamics of
the interference pattern that emerges upon the release of the
atoms from the lattice. It has been demonstrated that the
collapses and revivals of a superfluid state released from an
optical lattice provide important information on two-body
interactions [30,31]. For example, complete and periodic
revivals are expected if atoms interact through short-range
interactions [30]. In this work, we find that the peculiar
shape of the interaction potential between Rydberg-dressed
atoms gives rise to characteristic features in the collapse and
revival dynamics of the interference pattern which originate
from the competition of short-range and long-range parts of
the interaction. Interference experiments therefore provide a
way to probe the presence and to characterize the effective
interaction between Rydberg-dressed atoms.

The paper is organized as follows. In Sec. II, we derive
an effective extended BH model that governs the dynamics
of Rydberg-dressed atoms in an optical lattice. In Sec. III we
study the evolution of a superfluid state under the influence of
the dressing, using the superfluid order parameter. In Sec. IV
we analyze the interference pattern of dressed atoms released
from a one- and two-dimensional optical lattice. We conclude
and provide experimental parameters in Sec. V.

II. EFFECTIVE HAMILTONIAN

The system we consider here consists of N bosonic atoms
distributed over LD lattice sites, where D is the spatial
dimension. In our treatment, the Hamiltonian of the dressed
ground-state atoms is obtained in two steps. First, we calculate
the Born-Oppenheimer many-body interaction potential by
a perturbative diagonalization of the electronic Hamiltonian.
With this interaction potential, we then derive an extended BH
Hamiltonian that governs the external dynamics of the dressed
ground-state atoms in the optical lattice.

The internal level structure of the atoms is modeled by two
states, the electronic ground state |g〉 and the Rydberg |nS〉
state. These two electronic states are coupled by a two-photon
transition with an effective Rabi frequency � as shown in
Fig. 1(a). The Hamiltonian for the internal (electronic) degrees
of freedom of the atomic ensemble is given by (using h̄ = 1
and the rotating-wave approximation)

He =
∑

j

Hj + 1

2

∑
j �=k

VvdW(rj ,rk)|nS〉j 〈nS| ⊗ |nS〉k〈nS|,

where Hj = �(|g〉j 〈nS| + H.c.) + �|nS〉j 〈nS| is the single
atom Hamiltonian. Here VvdW(rj ,rk) = C6/|rj − rk|6 is the

vdW interaction that is present between two Rydberg atoms at
positions rj and rk . Typical values for the dispersion coefficient
C6 in the case of rubidium-87 can be found in Refs. [32,33].
We do not consider the two-body contact interaction between
ground-state atoms. This interaction can be switched off, for
instance, by a Feshbach resonance [34].

In our system, the electronic dynamics (Rydberg excitation
and van der Waals interaction) takes place on a time scale
(∼μs) that is orders of magnitude faster than the typical
time scales (related to interaction strength, tunneling rate, or
phase evolution) encountered in ultracold atomic experiments
(∼ms). The huge difference of these time scales permits the
use of the Born-Oppenheimer approximation for treating the
electronic parts of the Hamiltonian. Rydberg dressing implies
a far off-resonant excitation (i.e., |�/�| � 1) which allows
to adiabatically eliminate the atomic Rydberg states. Using
� > 0 we obtain in fourth-order perturbation theory (in the
small parameter �/�) a Born-Oppenheimer surface which can
be written as a constant plus a sum of two-body interactions
[23,24]

VBO = N

(
�4

�3
− �2

�

)
+ 1

2

∑
j �=k

V (rj ,rk) (1)

with

V (rj ,rk) = g R6
c

|rj − rk|6 + R6
c

.

Here g = 2�4/�3 and Rc = (C6/2�)1/6 represents the char-
acteristic length scale of the soft-core interaction potential
sketched in Fig. 1(b). In the following, we will neglect the
constant terms in Eq. (1) which correspond to the second- and
fourth-order light shift.

Let us now turn to the discussion of the external (motional)
degrees of freedom. The Rydberg-dressed atoms are trapped in
a D-dimensional optical lattice potential VL(r) (lattice spacing
d) which is experimentally created by an optical standing
wave [30]. For D < 3 we assume that there is a tight transverse
confining potential with respect to which the atoms are in
the motional ground state. We furthermore neglect differential
dephasing of the electronic ground state with respect to the
Rydberg state which would be caused by different effective
trapping frequencies due to varying ac polarizabilities of the
two states. Such dephasing of the motional degrees of freedom
can be minimized by choosing a particular frequency of the
standing wave light field that produces the optical potential
in conjunction with an appropriate choice of the Rydberg
state [19]. With these approximations the second quantized
Hamiltonian for the external motion of the dressed atoms reads

H =
∫

dr�†(r)

[
− h̄2

2m
∇2 + VL(r)

]
�(r)

+ 1

2

∫
drdr′�†(r)�†(r′)V (r,r′)�(r′)�(r), (2)

where �(r) is the bosonic field operator of the dressed atoms.
We expand the field operator �(r) in terms of Wannier
states w(r) in the lowest Bloch band of VL(r) such that
�(r) = ∑

j bjw(r − rj ) where bj is the annihilation operator
of a dressed atom at site j and rj is the spatial position
around which the Wannier states are centered. We consider
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the case of a deep optical lattice where these Wannier states
are strongly localized on a single lattice site (i.e., the variance
of the Wannier wave function is much smaller than the lattice
spacing d). Here the Hamiltonian becomes that of an extended
BH model

H = −J
∑
〈j,k〉

b
†
j bk + γ (0)

2

∑
j

nj (nj − 1)

+ 1

2

∑
〈j,k〉

γ (j − k)njnk, (3)

where J is the tunneling matrix element and 〈j,k〉 indicates
the summation over neighboring lattice sites and nj = b

†
j bj .

In the case we consider here the interaction between atoms
located on site j and k exclusively arises from the Rydberg
dressing and the coefficients have the form

γ (m) = g R6
c

|m|6d6 + R6
c

.

From this equation we also find the on-site interaction strength
γ (0) = g. Note that in general the index j is a vector for
D > 1. For example, j = (jx,jy,jz) in a three-dimensional
optical lattice.

III. COLLAPSE AND REVIVAL OF THE SUPERFLUID
ORDER PARAMETER

In this section, we study the effect that the Rydberg dressing
has on the coherence properties of the atoms. The situation we
have in mind is depicted in Figs. 1(c) through 1(e). At first
[Fig. 1(c)] one prepares, in the absence of the dressing laser, a
superfluid state which is the ground state of Hamiltonian (3)
with g = 0. In the second step [Fig. 1(d)] one applies the
dressing laser for a time t . Here we consider a regime in
which the parameters are chosen such that |J | � |g|,|γ (m)|
(i.e., the atomic tunneling can be neglected during the time
the dressing laser is switched on). The system then evolves
approximately under the Hamiltonian (3) with J = 0. We are
interested in the coherence properties of the superfluid state
after this procedure. To this end we will study the superfluid
order parameter in this section, while in the next section
the probing of the coherence properties via an interference
experiment [Fig. 1(e)] is discussed.

The initial superfluid state of the atoms is given in terms of
many-body Fock states

|SF〉 = 1√
N !

[
1√
L

L∑
j

b
†
j

]N

|0,0, . . .〉, (4)

where |0,0, . . .〉 is the product of vacuum states of sites j =
1,2, . . . . We work in the limit of a large atom number N where
we can replace the exact superfluid state by

|SF〉 ≈
∏
j

|αj 〉, (5)

with |αj 〉 being a coherent state of atoms in a single lattice site
defined as

|αj 〉 = e− |αj |2
2

∞∑
n=0

αn
j√
n!

|n〉. (6)

We will use this representation as the initial state for the
following calculations and will moreover exclusively consider
a homogeneous system where the average atom number in
each lattice site is constant (i.e., αj = α with |α|2 = N/L).

When the Rydberg excitation laser is applied, the superfluid
state evolves according to |SF(t)〉 = exp[−iH t]|SF(t = 0)〉.
We will now discuss the effect of the dressing on the superfluid
order parameter defined as

φ(D)(t) = 〈SF(t)|bj |SF(t)〉 = 〈bj 〉 = α exp[|α|2FD(t)].

We consider D-dimensional optical lattices with linear
(D = 1), square (D = 2), and cubic (D = 3) geometry. We
will focus our analysis on the “phase factor” FD(t) as it encodes
the full dynamics of the order parameter φ(D)(t) and has the
advantage that it is independent of the particle density. For the
following discussion we will furthermore consider a parameter
regime in which the interactions between distant atoms (i.e.,
atoms whose position labels obey |j − k| > 2) is negligible.
This is the situation depicted in Fig. 1(b). However, our results
can straightforwardly be generalized. Let us now study FD(t)
for lattices with different spatial dimension D.

(i) One-dimensional lattice. Taking into account the on-
site, nearest-neighbor γ (1) and next-nearest-neighbor γ (2)
interaction we find

F1(t) = −[5 − e−igt − 2e−iγ (1)t − 2e−iγ (2)t ]. (7)

In general we expect the two-body interactions to result in
a collapse and revival of the superfluid order [30,35]. The
collapse dynamics can be obtained by analyzing the real part
of F1(t) in the vicinity of t = 0. A Taylor expansion up to
second order in t yields

Re[F1(t)] ≈ −
[
g2

2
+ γ 2(1) + γ 2(2)

]
t2 = −1

2

(
t

τ1

)2

, (8)

where τ1 is the collapse time, given as

τ1 ≈ 1√
g2 + 2γ 2(1) + 2γ 2(2)

.

This expression clearly indicates that the collapse is faster the
stronger the two-body interaction. The possibility of revivals of
the initial state is strongly determined by the long-range part of
the interaction. Complete revivals occur when all phase factors
appearing in exponential terms of F1(t) are simultaneously
multiples of 2π . As the ratios between the various possible
interaction strengths are in general irrational, complete revivals
are unlikely and one can rather expect partial revivals at a finite
time. Before discussing this aspect in more detail let us briefly
provide the results for two- and three-dimensional lattices.

(ii) Two-dimensional lattice. In two dimensions the trunca-
tion of the interaction to atoms whose indices obey |j − k| � 2
means that we have to take into account at most next-next-
nearest neighbor interactions. This yields

F2(t) = −[13 − e−igt − 4e−iγ (1)t − 4e−iγ (
√

2)t − 4e−iγ (2)t ]

and a collapse time

τ2 ≈ 1√
g2 + 4γ 2(1) + 4γ 2(

√
2) + 4γ 2(2)

.
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FIG. 2. (Color online) (a) Dynamical evolution of F2(t) for
various values of d/Rc. (b, c) Dotted curves show calculations merely
taking into account the on-site and nearest-neighbor interactions.
Solid lines show calculations including all interactions up to next-
next-nearest neighbors.

(iii) Three-dimensional lattice. In this case one obtains

F3(t) = −[33 − e−igt − 6e−iγ (1)t − 12e−iγ (
√

2)t

− 8e−iγ (
√

3)t − 6e−iγ (2)t ],

with a corresponding collapse time

τ3 ≈ 1√
g2 + 6γ 2(1) + 12γ 2(

√
2) + 8γ 2(

√
3) + 6γ 2(2)

.

Generally the collapse time becomes shorter for higher-
dimensional systems since the number of contributing interac-
tion terms grows with increasing dimensions (as a consequence
of the increasing coordination number). For the purpose of
illustration let us now analyze the case D = 2 in more detail.
In particular, we intend to study F2(t) as a function of the ratio
between the lattice spacing d and the length scale Rc which
demarcates the soft core of the effective interaction potential
among Rydberg-dressed atoms.

In Fig. 2 we present data for d/Rc = {0.7,1.0,1.5}. The
smaller d/Rc the more terms of the long-range tail of the
interaction actually contribute to the denominator of τ2. This
leads to a more rapid collapse of the order parameter the
smaller d/Rc becomes, which is clearly shown by the data.
In fact, all dimensions have in common that for d/Rc > 1,
the behavior of the function FD(t) is determined mainly
by the on-site and nearest-neighbor interactions. Compared
to those the other interaction terms are negligible which is
owed to the fast drop of the soft-core interaction potential
at large intersite separations. To demonstrate this explicitly,
we calculate F2(t) by neglecting interaction beyond nearest
neighbors [i.e., γ (m) = 0 for m > 1]. The results and a
comparison with the full calculation are shown in Figs. 2(b)
and 2(c). For d/Rc = 0.7 the two calculations deviate already
beyond gt = 2. However, for d/Rc = 1.5 agreement for much
longer times (here until gt = 30) is achieved. Thus, for

sufficiently short times the contribution of the long-range
interaction terms to the dynamical evolution of F2(t) is strongly
suppressed.

IV. INTERFERENCE PATTERN

The dynamical evolution of the superfluid order can be
made visible from an interference experiment as was shown by
the authors of Ref. [30]. To create the interference pattern one
simultaneously switches off the optical lattice and the Rydberg
excitation laser. After a time-of-flight period, the interference
pattern in the spatial density distribution [see Fig. 1(e)] is
formed and made visible by taking an absorption image of the
atomic cloud. This interference pattern is characterized by the
quasimomentum distribution [36,37]

S(k̃) =
L∑
mn

eik̃·(rm−rn)〈b†mbn〉. (9)

Here k̃ is the quasimomentum with components k̃ξ = νξ ×
2π/(dL) where νξ = 1,2, . . . ,L and ξ = x,y,z when D = 3.
For convenience we furthermore define the dimensionless
quantity k = d k̃.

Let us now study the effect of the Rydberg dressing on S(k).
We will consider here merely on-site and nearest-neighbor
interactions of the extended BH model. This approximation is
well justified provided that d/Rc > 1, as shown in the previous
section. We furthermore will only focus on one- and two-
dimensional lattices. To calculate S(k), we first evaluate the
matrix elements of the single particle density matrix, 〈b†j bk〉 =
〈SF(t)|b†j bk|SF(t)〉 which are given in the Appendix. Using
this data we obtain the following results.

(i) One-dimensional lattice. To be able to distinguish
contributions of the on-site and nearest-neighbor interactions,
we start with a situation where only the on-site interaction is
present. This corresponds to a scenario that was experimentally
studied by the authors of Ref. [30] and in case of the
Rydberg-dressed atoms this is realized when d/Rc � 1. The
quasimomentum distribution S(kx) changes as a function of
time as shown in Fig. 3(a). Two main features can be
identified. First, at t = 0, S(kx) is centered around kx = 0. As
the interaction time grows S(kx) collapses to flat distribution
and at an even later time (gt = 2π ) it revives to its original
value. The second feature is that the periodicity of S(kx) does
not depend on kx (although the amplitude does). This is a
direct consequence of the fact that the correlation function is
factorizable (i.e., 〈b†j bk〉 = 〈b†j 〉〈bk〉 for all j and k [38]). The
time dependence thus becomes a global factor of S(kx).

This changes in the presence of the nearest-neighbor inter-
action. Due to a nonzero γ (1), 〈b†j bk〉 is no longer factorizable
but depends on the relative distance between respective sites
(Appendix). This gives rise to strikingly different features
in the quasimomentum distribution. An example of this is
shown in Fig. 3(b) for d/Rc = 1.5 where γ (1) ≈ 0.08g. The
noteworthy feature here is that the time dependence of S(kx)
depends on the quasimomentum kx . For example, at gt = 2π ,
we find that S(kx) revives partially along kx = 0 [Fig. 3(c)],
while along kx = π it shows a clearly different oscillation
pattern [Fig. 3(d)].
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FIG. 3. (Color online) Quasimomentum distribution of N = 82
atoms released from a one-dimensional optical lattice with L = 41
sites. (a) On-site interaction only [i.e., γ (m) = 0 (corresponding
to d/Rc � 1)]. (b) On-site and nearest-neighbor interactions for
d/Rc = 1.5 (γ (1) ≈ 0.08g). (c,d) Cuts through S(kx) at different
values of the quasimomentum. The panels show cuts along (c) kx = 0
and (d) kx = π . The solid and dashed curves correspond to the
parameters of panels (a) and (b).

(ii) Two-dimensional lattice. Let us now turn to the
discussion of the interference pattern that emerges in the
case in which the atoms are released from a two-dimensional
optical lattice. To have a reference we again calculate at
first the interference patterns for vanishing nearest-neighbor
interaction. The main features in the interference pattern can
be captured by analyzing time slices taken at gt = 0, π/2, and
2π . These data are shown in Figs. 4(a) through 4(c). Like
in the one-dimensional case the time evolution is periodic
showing a first revival at gt = 2π and the expected periodicity
[30]. In Figs. 4(d) through 4(f), we present the interference
pattern that is obtained in case of a finite nearest-neighbor
interaction [d/Rc = 1.45 and γ (1) ≈ 0.1g] using the same
time slices. We find that the height of the peaks of S(k) in
Fig. 4(f) is lowered compared to Fig. 4(c). The most striking

kx/π kx/π kx/π

ky

π

ky

π

(a) (b) (c)

(d) (e) (f)

FIG. 4. (Color online) Natural logarithm of the quasimomentum
distribution S(k) of atoms released from a two-dimensional 15 × 15
lattice and an average particle number in each sites of |α|2 = 2.
The figures show snapshots taken different times: (a,d) gt = 0, (b,e)
gt = π/2, and (c,f) gt = 2π . Panels (a)–(c) show data that have been
obtained by taking only on-site interactions into account. The data
shown in panels (d)–(f) include also nearest-neighbor interactions.

feature is, however, the appearance of additional interference
maxima in between the ones that occurred previously in the
case of pure on-site interactions. These peaks occur because
the nearest-neighbor interaction actually affects (indirectly)
the phase relation between atoms that are separated by
a distance

√
2 d (next-nearest neighbors) as shown in the

Appendix.

V. CONCLUSION AND OUTLOOK

In conclusion, we have shown that Rydberg-dressed atoms
in an optical lattice give rise to an extended BH model. In
particular, we have studied the dynamical evolution of an
atomic superfluid under the influence of Rydberg dressing.
The emerging long-range interactions result in a rapid collapse
of the superfluid order parameter and in general allow only
for partial revivals. Moreover, we have demonstrated that
interference experiments can directly reveal the interaction
between Rydberg-dressed atoms. The hallmark here is the
emergence of additional interference maxima. In addition, the
time dependence of the quasimomentum distribution is no
longer a global factor. This leads to a time dependence which
strongly depends on the value of the quasimomentum.

We expect that our predictions can be probed in current
experiments using Rydberg atoms in lattices (e.g., the one
presented in Ref. [13] by Viteau et al.). In this particular
experiment Rydberg D states of rubidium-87 with principal
quantum numbers in the range n = 55–80 are excited and the
lattice spacing can be tuned within 0.42 μm < d < 13 μm.
If one instead excites a Rydberg S state with n = 60 and
uses a laser with the parameters � = 2π × 15 MHz and � =
2π × 0.5 MHz one obtains Rc ≈ 4 μm as the characteristic
length scale of the soft-core potential. This leaves sufficient
freedom for tuning the ratio d/Rc. The typical revival time of
the interference signal evaluates to t0 ≈ 27 ms. This has to be
compared with the effective lifetime of dressed ground-state
atoms, τeff = |�/�|2τRyd where τRyd is the bare lifetime of
the Rydberg state. Using the above parameters we obtain
τeff = 225 ms, which leads to a coherence time that in principle
should permit the observation of the predicted dynamics.

In this work we have neglected the tunneling of the dressed
atoms in the lattice. It will, however, be very interesting
to study the interplay of coherent tunneling with the phase
evolution caused by the long-range interaction. Aspects of this
have been studied for the case of a one-dimensional lattice by
the authors of Ref. [21].
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APPENDIX: CORRELATION FUNCTIONS

Using the initial state Eq. (5) and taking into account the
on-site and nearest-neighbor interactions, 〈b†j bk〉 is calculated
analytically. The matrix elements required for calculating the
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quasimomentum distribution are presented below.

If j = k, we get 〈b†j bj 〉 = |α|2.
If |j − k| = 1,

〈b†j bk〉 = |α|2e−2|α|2{1−cos[gt−γ (1)t]}e−2(2D−1)|α|2[1−cos γ (1)t].

If |j − k| = √
2,

〈b†j bk〉 = |α|2e−2|α|2[1−cos gt]−4(D−1)|α|2[1−cos γ (1)t].

If |j − k| = 2,

〈b†j bk〉 = |α|2e−2|α|2[1−cos gt]−2(2D−1)|α|2[1−cos γ (1)t].

If |j − k| > 2,

〈b†j bk〉 = |α|2e−2|α|2[1−cos gt]e−4D|α|2[1−cos γ (1)t].
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[37] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, and
I. Bloch, Phys. Rev. A 72, 053606 (2005).

[38] J. Schachenmayer, A. J. Daley, and P. Zoller, Phys. Rev. A 83,
043614 (2011).

053615-6

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.88.170406
http://dx.doi.org/10.1103/PhysRevLett.88.170406
http://dx.doi.org/10.1088/0953-4075/44/19/193001
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/10.1126/science.1163861
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/PhysRevLett.99.163601
http://dx.doi.org/10.1103/PhysRevLett.99.163601
http://dx.doi.org/10.1103/PhysRevLett.101.250601
http://dx.doi.org/10.1103/PhysRevLett.101.250601
http://dx.doi.org/10.1103/PhysRevLett.100.253001
http://dx.doi.org/10.1103/PhysRevLett.104.043002
http://dx.doi.org/10.1103/PhysRevLett.104.043002
http://arXiv.org/abs/arXiv:1203.2884
http://dx.doi.org/10.1103/PhysRevLett.107.060402
http://dx.doi.org/10.1103/PhysRevLett.107.060402
http://dx.doi.org/10.1103/PhysRevLett.103.185302
http://dx.doi.org/10.1103/PhysRevLett.103.185302
http://dx.doi.org/10.1103/PhysRevLett.105.230403
http://dx.doi.org/10.1103/PhysRevLett.105.230403
http://dx.doi.org/10.1103/PhysRevB.84.085434
http://dx.doi.org/10.1103/PhysRevLett.107.060406
http://dx.doi.org/10.1103/PhysRevLett.107.060406
http://dx.doi.org/10.1103/PhysRevLett.106.025301
http://dx.doi.org/10.1088/0953-4075/44/18/184010
http://dx.doi.org/10.1103/PhysRevA.84.010701
http://dx.doi.org/10.1103/PhysRevA.84.010701
http://arXiv.org/abs/arXiv:1204.0413
http://dx.doi.org/10.1103/PhysRevLett.105.160404
http://dx.doi.org/10.1103/PhysRevLett.105.160404
http://dx.doi.org/10.1103/PhysRevLett.104.195302
http://dx.doi.org/10.1103/PhysRevLett.104.195302
http://dx.doi.org/10.1103/PhysRevLett.104.223002
http://dx.doi.org/10.1103/PhysRevLett.105.135301
http://arXiv.org/abs/arXiv:1111.5761
http://dx.doi.org/10.1103/PhysRevLett.106.170401
http://dx.doi.org/10.1088/1367-2630/13/7/073044
http://dx.doi.org/10.1088/1367-2630/13/7/073044
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature09036
http://dx.doi.org/10.1088/0953-4075/38/2/021
http://dx.doi.org/10.1088/0953-4075/38/2/021
http://dx.doi.org/10.1103/PhysRevA.84.041607
http://dx.doi.org/10.1103/PhysRevA.84.041607
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevLett.78.2511
http://dx.doi.org/10.1103/PhysRevLett.78.2511
http://dx.doi.org/10.1103/PhysRevA.66.031601
http://dx.doi.org/10.1103/PhysRevA.66.031601
http://dx.doi.org/10.1103/PhysRevA.72.053606
http://dx.doi.org/10.1103/PhysRevA.83.043614
http://dx.doi.org/10.1103/PhysRevA.83.043614

