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Abstract
A key statistic describing climate change impacts is the ‘social cost of carbon dioxide’ (SCCO2), the
projected cost to society of releasing an additional tonne of CO2. Cost-benefit integrated
assessment models that estimate the SCCO2 lack robust representations of climate feedbacks,
economy feedbacks, and climate extremes. We compare the PAGE-ICE model with the decade
older PAGE09 and find that PAGE-ICE yields SCCO2 values about two times higher, because of its
climate and economic updates. Climate feedbacks only account for a relatively minor increase
compared to other updates. Extending PAGE-ICE with economy feedbacks demonstrates a
manifold increase in the SCCO2 resulting from an empirically derived estimate of partially
persistent economic damages. Both the economy feedbacks and other increases since PAGE09 are
almost entirely due to higher damages in the Global South. Including an estimate of interannual
temperature variability increases the width of the SCCO2 distribution, with particularly strong
effects in the tails and a slight increase in the mean SCCO2. Our results highlight the large impacts
of climate change if future adaptation does not exceed historical trends. Robust quantification of
climate-economy feedbacks and climate extremes are demonstrated to be essential for estimating
the SCCO2 and its uncertainty.

1. Introduction

One crucial indicator of the level of urgency for tak-
ing climate action is the social cost of carbon diox-
ide (SCCO2), which represents the total welfare lost
across the globe due to an extra emitted tonne of
CO2, usually expressed in US dollars per tonne of
CO2. The SCCO2 has been calculated under a range of
climatic and socioeconomic assumptions (Havranek
et al 2015, Howard and Sterner 2017, Tol 2018), giv-
ing a wide range of best estimates. These contempor-
ary estimates are often higher than values that have
been used in policies or the economy-wide average

price on CO2 emissions (Dolphin et al 2020), in part
due to underestimates of impacts and strong dis-
counting assumptions of future damages in policy-
making (Carleton and Greenstone 2021, Wagner
et al 2021). Current policy recommendations range
from US$51 (Interagency Working Group 2013) to
US$202 (Umwelt Bundesamt 2019), while a recent
expert elicitation among economists and climate sci-
entists yielded mean values of US$171 and US$310,
respectively (Pindyck 2019). Other central estimates
are even higher (Moore and Diaz 2015, Ricke et al
2018). Many challenges remain to improve estim-
ates of the SCCO2 estimates as well as the related
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uncertainty range (National Academies of Sciences
Engineering and Medicine 2017, Stern and Stiglitz
2021, Wagner et al 2021), which is of critical value
for designing comprehensive climate mitigation and
adaptation policies (Smith and Stern 2011, Hope
2015, Metcalf and Stock 2017).

Cost-benefit integrated assessment models
(CB-IAMs) representing climate-economy interac-
tions in a highly aggregated manner and have been
key tools to estimating the SCCO2. Unfortunately,
these models lag behind both natural and social sci-
ence understanding, often undervaluing the impacts
of climate change (Diaz and Moore 2017, Howard
and Sterner 2017, Rose et al 2017, Carleton and
Greenstone 2021). In particular, CB-IAMs have only
simple representations of climate and economy feed-
backs, which are key determinants of climate change
risks (Otto et al 2013, Calvin et al 2019). Many
authors thus argue that rigorous inclusion of the
feedbacks is crucial in calculating the SCCO2 (Burke
et al 2016, Cai et al 2016, National Academies of Sci-
ences Engineering and Medicine 2017, Stiglitz et al
2017, Piontek et al 2021).

As for climate feedbacks, previous research has
calculated the mean discounted economic effect of
climate change with selected state-dependent climate
feedbacks, but provided no breakdown of regional
or distributional implications of marginal damages
of CO2 emissions (Cai et al 2016, Yumashev et al
2019). Here, we compare the PAGE-ICE CB-IAM
which also introduced permafrost thawing and sur-
face albedo climate feedbacks (Yumashev et al 2019)
with PAGE09 (Hope 2013) and attribute the changes
in the SCCO2 to the specific model changes.

How temperature rises affect long-run economic
output is an important open question (Piontek et al
2021). Climate impacts could either trigger addi-
tional GDP growth due to increased agricultural
productivity and rebuilding activities (Stern 2007,
Hallegatte and Dumas 2009, Hsiang 2010, National
Academies of Sciences Engineering and Medicine
2017) or inhibit growth due to damaged capital
stocks (Pindyck 2013), lower savings (Fankhauser and
Tol 2005) and inefficient factor reallocation (Piontek
et al 2019). Existing studies have identified substan-
tial impacts of economic growth feedbacks (Moyer
et al 2014, Dietz and Stern 2015, Estrada et al 2015,
Moore and Diaz 2015), but have not yet quantified
the uncertainties involved based on empirical distri-
butions. One particular example is Kalkuhl andWenz
(2020), who incorporate short-term economic per-
sistence into a recent version of DICE (Nordhaus
2017), approximately tripling the resulting SCCO2
($37–$132). For fairly comparable economic assump-
tions, the effect of long-term persistence is shown to
increase the outcome evenmore ($220–$417) (Moore
and Diaz 2015, Ricke et al 2018). We further expand
on this work by deriving an empirical distribution
of the persistence of climate impacts on economic

growth based on recent developments (Burke et al
2015, Bastien-Olvera and Moore 2021) which we use
to moderate GDP growth through persistent market
damages. This partial persistence model builds upon
recent empirical insights that not all contemporary
economic damages due to climate change might be
recovered in the long run (Dell et al 2012, Burke
et al 2015, Kahn et al 2019, Bastien-Olvera andMoore
2021). Investigating how the SCCO2 varies as a func-
tion of the extent of persistence reveals a sensitivity
that is on par with the heavily discussed role of dis-
counting (Anthoff et al 2009b).

Climatic extremes are another particularly
important driver of climate change-induced dam-
ages (Field et al 2012, Kotz et al 2021). The impact
of interannual climate variability on the SCCO2 has,
however, not been analyzed previously, despite its
clear economic implications (Burke et al 2015, Kahn
et al 2019, Kumar and Khanna 2019) and an appar-
ent relation to weather extremes such as daily min-
ima and maxima (Seneviratne et al 2012), extreme
rainfall (Jones et al 2013), and floods (Marsh et al
2016). Omission of such features in climate-economy
models risks underestimation of the SCCO2 because
if convex regional temperature damage functions
(Burke et al 2015) and an expected earlier cross-
ing of potential climate and social thresholds in
the climate-economy system (Tol 2019, Glanemann
et al 2020). Here, we include climate variability by
coupling the empirical temperature-damage func-
tion with variable, autoregressive interannual tem-
peratures. Increasing the amount of uncertainty by
adding variable elements naturally leads to a less con-
strained estimate for climate-driven impacts. How-
ever, it is important to explore the range of possible
futures, including the consideration of extremes in
the climate-economy system (Otto et al 2020).

In summary, we extend the PAGE-ICE CB-IAM
(Yumashev et al 2019) to quantify the effect on
the SCCO2 of including possible long-term tem-
perature growth feedback on economic trajectories,
mean annual temperature anomalies, and the already
modeled permafrost carbon and surface albedo feed-
backs. Together, these provide an indication of the
magnitude and uncertainties of the contribution of
climate and economy feedbacks and interannual vari-
ability to the SCCO2.

2. Methods

The PAGE-ICE model (Yumashev et al 2019)
simulates climatic and economic developments
between 2020 and 2300 in eight aggregated regions
(appendix A.1) and extends PAGE09, building on a
decade of scientific progress through improved rep-
resentations of climatic processes and economic dam-
ages (figure 1). In particular, PAGE-ICE implements
detailedmodels of Arctic feedbacks, consisting of per-
mafrost thawing, and sea ice and land snow albedo
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Figure 1. Illustrative sketch of changes and extensions to PAGE-ICE presented in this paper. (a) Changes in the climate
representation. PAGE-ICE includes a more detailed representation of CO2 and CH4 sinks, permafrost carbon feedback, the effect
of sea ice and land snow decline on surface albedo, and a fat-tailed distribution of sea level rise. Here we also include interannual
temperature variability with a temperature feedback through annual auto-correlation. (b) Changes in the damage module. The
PAGE-ICE discontinuity damage component was reduced to correspond with updates to climate tipping points and sea-level rise
risk, and market damages were recalibrated to an empirical estimate based on temperatures. Thus, while the discontinuity and
non-economic damages continue to be calculated based on the separation between tolerable and excess temperature, the market
damages are now calculated based on absolute temperature. Here we also extend PAGE-ICE with the possibility of persistent
climate-induced damages, which in turn affects GDP pathways and scales emissions accordingly (feedback loop in the figure).

changes. It also updates the climate representation
to conform to parameters in the IPCC AR5 (Stocker
et al 2013), and offers a wide range of consistent
combined emissions and socioeconomic pathways.
PAGE-ICE models temperature responses and green-
house gas cycles including feedbacks for six emis-
sions classes (CO2, CH4, N2O, linear gases, sulph-
ates, and a residual group for other greenhouse gas
emissions). Global temperatures are scaled to the
eight represented regions, before considering eco-
nomic impacts (more detail in model documenta-
tion and supplementary information of Yumashev
et al 2019). Economic damages due to rising tem-
peratures are calibrated based on historic data and
capture the heterogeneous response of countries to
warming (Burke et al 2015), but the original PAGE-
ICE does not simulate damage persistence. Thus, the
economy always returns to the exogenous economic
growth path, no matter how high the contemporary
damages.

2.1. Model setup
Our setup recognizes that deterministic assessments
of the SCCO2 carry only very limited information.
PAGE-ICE uses Monte Carlo sampling of over 150
parameter distributions (Yumashev et al 2019) to
provide distributions of the results. All results presen-
ted use 50 000 Monte Carlo draws (and 100 000 for
PAGE09, using @RISK within Excel), with draws
taken from the same superset to be able to compare
SCCO2 distributions across models. The PAGE-ICE
model has been translated into the Mimi mod-
eling framework, using the same validation pro-
cess as for Mimi-PAGE (Moore et al 2018). Model
code and documentation are available from the

GitHub repository, https://github.com/openmodels/
MimiPAGE2020.jl.

To estimate the marginal damage of an additional
tonne of CO2, PAGE-ICE is run twice, with one run
following the exogenously specified emission pathway
and the second run adding a CO2 pulse. The SCCO2
is then calculated as the difference in global equity-
weighted damages between those two runs divided
by the pulse size, discounted to the base year (2015).
Equity weighting of damages follows the approach
by Anthoff et al (2009a) using a mean (minimum,
maximum) elasticity of marginal utility of consump-
tion of 1.17 (0.1–2.0), and equity-weighted damages
are discounted using a pure time preference rate of
1.03% (0.5%, 2.0%). For all our results, we rely on
a 75Gt pulse size in the first time period of PAGE-
ICE (mid-2017–2025), representing an annual pulse
size of 10 Gt CO2. In this setup, we found that
the choice of pulse size can have an effect on the
SCCO2 estimates, and we explore these sensitivities in
appendix A.2, alongside a general sensitivity analysis
of PAGE-ICE’s model parameters in appendix A.3.

2.2. Scenarios
We provide results for a selection of scenarios across
climate outcomes and socioeconomic developments,
based on the Tier 1 scenarios of ScenarioMIP (O’Neill
et al 2016). SSP1-1.9 and SSP1-2.6 are generally well
aligned with the Paris Agreement (IPCC 2018, Rogelj
et al 2018), while SSP5-8.5 features very high radiative
forcing and rapid GDP growth. The ‘middle-of-the-
road’ socioeconomic pathway SSP2 is combined with
the emission pathway RCP4.5 scenario for the central
values presented in this analysis. Since reference SSP
scenarios are provided until 2100, we extend these by
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making the assumption that regional GDP per capita
and population growth rates in the different model
regions converge toward the global mean. We imple-
ment this by defining a region’s post-2100 growth rate
as gr,t = (1−DR−CR) · gr,t−1+CR · ḡt−1, where CR
and DR are the respective universal rates of conver-
gence and decay, and ḡ is the global mean growth rate.
The subscripts r, t represent region and time period,
respectively. We fit the convergence and decay rates
based on SSP growth rates up to 2100 using Stan, a
Bayesian MCMC system (appendix A.5).

2.3. Persistence of damages
We implement the persistence parameter following
Estrada et al (2015) into the growth system of Burke
et al (2015) such that: GDPr,t = GDPr,t−1 · (1+ gr,t −
ρ · γr,t−1), where g is the growth rate, γ represents
the contemporary economic damages in % of GDP
returned by the market damage function and ρ spe-
cifies the share of economic damages that persist and
thus alter the growth trajectory in the long run. Note
that this approach nests the extreme assumptions
of zero persistence usually made in CB-IAMs and
the assumption of full persistence from the empir-
ical literature (Burke et al 2015, Ricke et al 2018) for
ρ= 0 and ρ= 1, respectively. For consistency with the
underlying RCP-SSP scenarios, we also rescale green-
house gas emissions proportionally to the change in
GDP, such that emission intensities of economic out-
put remain unchanged. To estimate the distribution
of ρ, we calculate the ratio of the long-run marginal
impact of temperature on economic growth to the
immediatemarginal impact using the historical panel
data by Burke et al (2015) (appendix B.3). For estim-
ating the long-run marginal impact, we follow the
literature in estimating regression models featuring
temperature lags (Dell et al 2012, Burke et al 2015),
and we additionally apply a more recent approach
using low-pass filtering by Bastien-Olvera andMoore
(2021) for robustness checks (appendix B.4).

For our aggregated analysis, we do not include
any sectoral distinction for the persistence para-
meter ρ since PAGE-ICE models economic dam-
ages on the aggregated macro level using the dam-
age function by Burke et al (2015). By taking one
global value distribution for the ρ parameter, we
assume that the persistence of damages is similar
in each region modeled. Reduced significance for
non-global estimates of partial persistence hinders
the use of region-specific parameters. For all cent-
ral results, damage persistence also remains con-
stant over time following from the limited evidence
for successful adaptation to date (Burke et al 2015,
Burke and Emerick 2016). We explore these simpli-
fications in detail in appendix B.5, where we con-
sider a case that sees economically persistent damages
only in lower-income regions, following suggestive
evidence for regional heterogeneity, for instance due
to higher climate vulnerability and reduced adaptive

capacity (Byers et al 2018, Andrijevic et al 2020). Fur-
thermore, we discuss the impacts of possible future
adaptation reducing the persistence of temperature
impacts on GDP (see also appendix B.6).

2.4. PAGE with annual temperature variability
To allow formodeling annual temperature anomalies,
the inputs to the temperature and GDP modules of
PAGE are annualized by a combination of exponential
interpolation for population, sea-level rise, and abate-
ment costs, and linear interpolation for GDP growth
rates. Annualized temperatures are subsequently used
for calculating the damages on an annual basis for
the non-market, market, and discontinuity modules.
Sea-level rise and consequent damages are modelled
to depend on the global climatic mean temperatures
modeled in PAGE-ICE, rather than annual on mean
temperatures.

There is no strong evidence for the increase or
decrease in global annual temperature variability
with global mean temperature increases (Hunting-
ford et al 2013, Sippel et al 2015). Therefore, wemodel
the magnitude of interannual temperature variabil-
ity to be constant over time, based on the analysis of
regional means in a recent spatially complete dataset
(Ilyas et al 2017) that is suitable for the analysis of
temperature variability because its underlying statist-
ical simulation approach allows for a more adequate
approximation of the expected local variability and its
uncertainty (Beguería et al 2016). We model global
(1a) and regional (1b) temperature variability as fol-
lows:

Tg,t+1 ∼N (αg +βgΘgt + γgTt, σ
2
g ) (1a)

Tr,t+1 ∼N (αr +βrTrt + γgTg,t+1, σ
2
r ) (1b)

here, T is the realized annual temperature, Θ is
the mean temperature realized in the PAGE cli-
mate module prior to variability, σ is the standard
deviation of internal variability, and the subscripts
g, r, t represent global, regional, and time (in years).
In the absence of auto-regressive feedback, αg =
αr = γg = γr = 0, βg = 1, and βr = AFr, the regional
amplification factor from PAGE-ICE. The temporal
standard deviations σ are derived from annual spa-
tially aggregated regional mean temperatures. These
regional temperatures are derived from median grid-
ded observations of 10 000 statistical ensemble mem-
bers (Ilyas et al 2017), which are area-weighted and
linearly detrended for a 30 year climatic period.
Further information including uncertainties in these
observations are found in appendix C.1. With auto-
regression, we fit all parameters to historical temper-
atures using least-squares regression, and applying a
LOESS of global temperatures asΘgt (appendix C.2).
As a robustness check, we include a simple alternative
implementation of variability (appendix C.3).
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Figure 2. Estimates of the SCCO2 for the model updates from PAGE09 to PAGE-ICE. Bars show the mean SCCO2 or the mean
difference across Monte Carlo runs. Mean differences are calculated for each draw of the Monte Carlo, so that uncertain
parameters are consistent wherever possible. Error bars show the interquartile range with the median shown as a point.
Description of the changes provided in the text. The ‘AR5 Updates’ bar is not represented as a difference, since these are calculated
across modifications of PAGE-ICE, and the AR5 Updates bar represents the nearest equivalent to PAGE09. Note that due to
interaction effects, changing the order in which changes are introduced can lead to minor changes in the values presented here.

3. Results

3.1. Climate feedbacks and SCCO2 changes in
PAGE-ICE
Assuming the SSP2-4.5 scenario, the mean value
of the SCCO2 in 2020 (expressed in $2015 USD
throughout) from the previous version of the model,
PAGE09, is $158 (figure 2). We note this is greater
than the SCCO2mean value of $106 previously repor-
ted for PAGE09 (Hope 2013) due to the use of
the SSP2-4.5 scenario instead of SRES A1B (22%
increase) and the change in monetary units (23%
increase from inflation). We break down the remain-
ing changes from PAGE09 to PAGE-ICE into a series
of key steps (figure 2). (a) Updating the CO2 model,
climate sensitivity, and other climate parameters to
conform to IPCC AR5, increases the mean SCCO2
to $217. (b) Applying a fat-tailed (Gamma) distribu-
tion to sea-level rise increases mean SCCO2 to $228.
(c) The permafrost feedback, represented in PAGE-
ICE through both CO2 and CH4 cycles, increases it
to $244. (d) Modeling non-linear transitions in the
sea ice and land snow albedo feedback slightly reduces
the SCCO2 to $239. (e) We reduce the size, threshold,
and lag of discontinuity impacts, since Arctic feed-
backs and catastrophic sea level rise are now explicitly
modeled, reducing the mean SCCO2 slightly to $213.
(f) PAGE-ICE has a longer simulation period (until
2300), which further increases the mean SCCO2 to
$239. (g) The baseline income levels, used for calib-
rating vulnerability, are updated to those observed in
2015, increasing mean SCCO2 to $245. (h) Adjusting
the vulnerability of regions in PAGE-ICE to market
and non-market damages to be common and equal
to the vulnerability of the European Union region

increases the mean SCCO2 to $281. Finally, (i) by
changing damages to empirical estimates (Burke et al
2015) imposed as non-persistent changes to GDP, the
finalmean SCCO2 for PAGE-ICE is calculated as $307
per tonne.

The uncertainty range is considerable, with an
interquartile range of $147–$349, and a 5%–95%
range of $82–$831, based on 50 000Monte Carlo sim-
ulations. Nevertheless, for the SSP2-4.5 scenario a
clear increase in the SCCO2 is shown, with PAGE-
ICE having a mean SCCO2 that is double the value
for PAGE09. Strikingly, this increase can be attrib-
uted almost entirely to increased social costs in the
Global South. The mean SCCO2 attributed to the
Global North sees no notable change, mainly due to
the regional empirical damage estimates in PAGE-
ICE, which allows for benefits of global warming in
cooler regions and comes with higher damages in
warmer regions compared to the temperature dam-
age function in PAGE09.

3.2. Persistence of economic damages
Based on panel regression analysis using histor-
ical temperature and GDP data (Burke et al 2015),
we estimate that on average 50.1% (34.5%–69.0%,
interquartile range) of GDP damages persist as
impacts on growth (appendix B.3). Introducing this
empirically derived level of damage persistence affects
both the size of global GDP and its regional dis-
tribution by vast amounts, dominating the effect of
any other modeling choice. This impact is a result
of deteriorating growth trajectories, particularly in
Africa, South Asia, and Latin America. In contrast,
cooler regions such as Eastern Europe and North-
ern Asia (‘Russia+’) and the European Union (EU)
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Figure 3. The results of incorporating growth effects into PAGE-ICE, calculated for SSP2-RCP4.5. (a), (b) Mean gross domestic
product (GDP) in 2100 and 2200 of the world (black line) and selected regions (colored lines) across fixed values of damage
persistence (0%–100%). (c) Mean GDP growth rates of the world (black line) and selected regions (colored lines) for zero
persistence and our empirical persistence distribution derived from Burke et al (2015) (see appendix B). The grey area indicates
the global 5th–95th percentile. (d) Share of Monte Carlo simulations for which a given region reaches the lower bound for GDP
per capita during 2100–2200 for our empirical persistence distribution. The subsistence level is derived from the World Bank’s
international poverty line (see appendix B). Regions that are not displayed (EU, Russia+, and Other OECD) do not reach the
subsistence level in any Monte Carlo simulation during this period. (e) SCCO2 of an incremental CO2 pulse in 2020 across fixed
values of damage persistence (0%–100%), with PAGE-ICE’s cap for total climate change damages in place or removed (red or blue
line, respectively). The shaded areas indicate the 5th–95th SCCO2 percentile. The green bars illustrate our empirical persistence
distribution, with frequencies rescaled for illustrative purposes.

experience additional growth. Through the growth
rate feedback, these GDP impacts accumulate over
time and thus the introduction of damage persist-
ence leads to a considerable redistribution of income
to the detriment of poorer regions, an effect which
is exacerbated over time. To identify the implications
of different levels of persistence on GDP outcomes,
we present results both for various fixed degrees of
persistence from 0% to 100% (figures 3(a) and (b))
and for our empirically derived persistence distribu-
tion (figures 3(c) and (d)).

For this persistence distribution, mean global
GDP in 2100 is 30% lower than the SSP2-4.5 growth
path without persistence10. By 2200, themean growth
loss due to the persistence of climate impacts under
SSP2-4.5 exceeds the GDP growth rate in the whole
Global South, causing economic contraction. How-
ever, the share of runs of negative growth on a
global scale as early as 2100 exceeds 8%. By 2200,
the ‘India+’, ‘Africa+’ and ‘Latin America’ regions

10 Note that for Monte Carlo means of absolute GDP, we omit one
outlier run with a persistence draw of−6406%, for which temper-
ature increases push most regions on extremely high growth tra-
jectories, severely distorting the Monte Carlo mean. We only do
this for absolute GDP values since trimming this run would have
a negligible impact on mean global GDP growth and the SCCO2,
reducing the former by 0.003 percentage points or less across years
and increasing the latter by $0.07.

reach income levels associated with extreme poverty
in 12%, 11% and 4% of Monte Carlo simulations,
respectively. In contrast, mean economic output in
the ‘Russia+’ region is 52%higherwith the possibility
of Russia+ dominating the global economy near the
end of the model horizon for high persistence levels.

If a mere 10% of economic damages were to per-
sist via reduced growth, we find a fifteenfold increase
in the mean SCCO2 (figure 3(e)). For higher levels of
persistence, however, model estimates of the SCCO2
are found to decrease. This effect is caused by the total
climate damages in PAGE being capped to the exo-
genous statistical value of society ($6.13 × 1016 fol-
lowing Yumashev et al 2019). For high levels of dam-
age persistence, the projected damages go beyond this
predefined limit of the model, such that an additional
tonne of CO2 leads to no increase in overall damages
and the SCCO2 becomes zero, while the effects of cli-
mate change are actually catastrophic in these runs
(Weitzman 2014).

Although this is the case in more than half of the
Monte Carlo simulations under our empirical per-
sistence distribution, we still estimate a mean SCCO2
of [Line:91 Col:11763372 which exceeds the estim-
ate without damage persistence by an order of mag-
nitude. Performing a sensitivity analysis shows that
this estimate is highly sensitive to equity weighting
parameters and also varies across methodologies to
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Figure 4. The effect of adaptation reducing the damage persistence over time, calculated for SSP2-RCP4.5. SCCO2 of an
incremental CO2 pulse in 2020 for our empirical persistence distribution, with PAGE-ICE’s cap for total climate change damages
in place. For all parameter combinations above the dotted, dashed and solid black line, Monte Carlo runs that reach the damage
cap and produce SCCO2 estimates of zero account for less than 5%, 25% and 50% of the total 50 000 runs, respectively. Model
results are calculated for 10% and 0.5% steps in the persistence and adaptation rate respectively, and then interpolated for plotting
purposes. The bottom-right corner is greyed out to highlight that SCCO2 results are primarily driven by the effects of the damage
cap.

estimate persistence (appendices B.2 and B.4). The
substantial increase in the SCCO2 is primarily driven
by the adverse implications for the Global South.
Therefore, the resulting SCCO2 is very similar if only
lower-income regions are assumed to suffer from per-
sistent economic damages (appendix B.5).

Both current temperature-induced economic
damages and the persistence of damages are derived
from historical data which do not show an increase
in resilience to temperature shocks over time (Burke
et al 2015, Burke and Emerick 2016). As a result,
our approach implicitly assumes that future adapt-
ation will remain at the levels observed hitherto for
economic damages. Yet, while there is no clear evid-
ence for adaptation to the market impacts of climate
change, it seems unlikely that countries would not
invest considerable resources in reducing the lasting
effects of temperature increases if actual damages in
the (far) futurewere as big as simulated. Therefore, we
further explore the effects of adaptation reducing the
damage persistence by a constant annual rate, similar
to Moore and Diaz (2015). As figure 4 shows, if cur-
rent persistence is around 50% (as suggested by the
mean of our empirical distribution), then the level of
persistence would need to decrease by more than 2%
per year via adaptation efforts to reduce the model’s
SCCO2 to below $2500. As discussed above, the com-
bination of high persistence and low to no adapta-
tion leads to a substantial share of the Monte Carlo
runs producing SCCO2 estimates of zero, meaning
that the methodological decision behind PAGE-ICE’s
damage cap increasingly dominates the model results

in the lower-right corner of figure 4. Yet, even if cur-
rent persistence is only 20% and decreases by an
annual 0.5%, more than 5% of Monte Carlo reach
PAGE-ICE’s damage cap and the SCCO2 exceeds
$5000. For our empirical persistence distribution,
we find that a reduction by at minimum 3% per year
would be needed to see a SCCO2 of less than $600
(appendix B.6). In other words, this would require
lowering the persistence of temperature-related eco-
nomic impacts by half within less than 25 years.

3.3. Annual temperature variability
We first implement stochastic annual regional tem-
peratures to the base PAGE-ICE model, and then
extend this to the versionwith persistent climate dam-
ages. Variability produces small changes in the means
and medians of SCCO2 distributions for all RCP-
SSP scenario combinations (figures 5 and 6), with a
mean increase of $21 (6.5%) for SSP2-4.5. Account-
ing for temperature anomalies in model runs leads to
a widening of realized temperature ranges, leading to
more extreme annual temperatures occurring more
frequently, both in the near term and in the long run
(figures 5(a) and (b)). This captures better the com-
bination of model uncertainty and internal variabil-
ity of the climate system for annual global mean tem-
peratures. These wider ranges result in higher mean
damages from the non-linearmarket and non-market
damage functions and a greater likelihood of discon-
tinuity damages.

Adding variability also widens the SCCO2 uncer-
tainty ranges. Most of the additional spread of the

7
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Figure 5. The effects of interannual temperature variability on climate damages for the SSP2-4.5 scenario, assuming no
persistence of damages. (a) The modeled temperature distribution in PAGE with (red) and without (blue) variability effects,
compared to a density kernel estimate based on historical, linearly detrended global annual mean temperatures for 2006–2015
(dashed, black). Draws with temperatures higher than the 95th historical percentile (dashed, red) are shaded. (b) A histogram of
the realized temperature above pre-industrial for the model year 2100, and a relative frequency plot showing the number of PAGE
model runs with variability that reach a certain temperature in 2100, divided by the sum of model runs for both model versions
that reach that temperature. (c) The effect of variability on projected current damages in 2100 expressed as a percentage of GDP
in that year, separately for the three damage modules affected by temperature anomalies. (d) SCCO2 distributions with and
without interannual temperature variability. Boxplot error bars indicate the 5th–95th quantile of the distributions, whereas the
lines in the box indicate the 25th, median, and 75th quantiles. Means of distributions are shown by a point inside the boxplot.

Figure 6. Boxplots of SCCO2 values based on 50 000 Monte Carlo runs of five PAGE model configurations using selected climate
and socioeconomic scenario combinations. SCCO2 results for (a) PAGE09, PAGE-ICE, and PAGE with interannual temperature
variability, and for (b) PAGE-ICE with growth effects, and PAGE with both growth effects and interannual variability. The
whiskers of the boxplots show the 5th and 95th percentile, while the box indicates the interquartile range. Medians are indicated
by a white bar, while mean values are indicated by a black diamond. Results reported here are based on data within the 99
percentile range from the 0.5th to the 99.5th percentile. For all SCC values, see appendix table A4.

SCCO2 distributions is explained by the interaction
of temperature variability with the convex empir-
ical temperature-damage function used for market

damages. The introduction of this symmetric temper-
ature variationwidens tails at both ends of the SCCO2
distributions, with the possibility of SCCO2 values
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being negative due to regionally beneficial temperat-
ure draws in the short term. Introducing the temper-
ature anomalies to an annual version of PAGE with
constant damage persistence does not result in an
increase in the mean SCCO2 because of the damage
cap.

3.4. Alternative climate and socioeconomic
scenarios
For the SSP1-1.9 scenario, all model specifications
without growth effects produce lower values of the
mean SCCO2 compared to SSP1-2.6 and SSP2-4.5.
This scenario features the same socioeconomic pro-
jections as SSP1-2.6, but with stronger emissions
abatement. PAGE with annual variability shows most
clearly howmore stringent climatemitigation leads to
reduced tail risks. For all scenarios, except SSP1-1.9,
including the possibility of warm and cold years and
periods disproportionately pushes the 75th percentile
further from the median than it affects the 25th per-
centile, while the 5th and 95th percentile are affected
more symmetrically. Thus, the consideration of tem-
perature variability increases extremes on both ends,
as well as correcting the most likely values upward
(figure 6).

For all the PAGE-ICE-basedmodel specifications,
we find higher mean values for SSP2-4.5 than for
SSP5-8.5. While the projected climate forcing and
subsequent impacts are higher for the RCP8.5 scen-
ario, SSP5 projects higher GDP projections than
SSP2, leading to a stronger discounting of future
damages, producing lower SCCO2 values in PAGE-
ICE. Moreover, because radiative forcing is logar-
ithmic in concentration (Shine et al 1990), marginal
impacts are reduced for higher emission trajectories.
For SSP1-2.6, climate change-induced damages are
much lower compared to SSP2-4.5, leading to signi-
ficantly lower SCCO2 values if no damage persistence
is considered. The SCCO2 values for model versions
with growth effects for different scenarios are driven
by model runs reaching the damage cap, explaining
the lower values for pathways with higher emissions
when damages are likely to be higher.

4. Discussion and conclusions

Our results show that determining the level of per-
sistence of economic damages is one of the most
important factors in calculating the SCCO2, and our
empirical estimate illustrates the urgency of increas-
ing adaptive capacity, while suggesting that the mean
estimate for the SCCO2 may have been strongly
underestimated. It further indicates that considering
annual temperature anomalies leads to large increases
in uncertainty about the risks of climate change.
Differences between PAGE09 and PAGE-ICE show

that the previous SCCO2 results have also decidedly
underestimated damages in the Global South.

The implemented climate feedbacks and annual
mean temperature variability do not have large effects
on the mean SCCO2. The inclusion of permafrost
thawing and surface albedo feedbacks is shown to lead
to a relatively small increase in the SCCO2 for SSP2-
4.5, withmodest distributional effects. Consideration
of temperature anomalies shows that internal vari-
ability in the climate system can lead to increases in
SCCO2 estimates, and is key to understanding uncer-
tainties in the climate-economy system, stressing the
need for a better representation of variability and
extremes in CB-IAMs.

Including an empirical estimate of damage per-
sistence demonstrates that even minor departures
from the assumption that climate shocks do not affect
GDP growth have major economic implications and
eclipse most other modeling decisions. It suggests
the need for a strong increase in adaptation to per-
sistent damages if the long-term social cost of emis-
sions is to be limited. Our findings corroborate that
economic uncertainty is larger than climate science
uncertainty in climate-economy system analysis (Van
Vuuren et al 2020), and provide a strong argument
that the assumption of zero persistence in CB-IAMs
should be subject to increased scrutiny in order to
avoid considerable bias in SCCO2 estimates. A bet-
ter understanding of the persistence of damages and
potential adaptation mechanisms is key for deriv-
ing more accurate SCCO2 estimates, and the issue of
damage persistence should receive similar attention as
other key SCCO2 determinants, like the discount rate
or climate sensitivity.

Due to data limitations, this study used a global
model of damage persistence with no regional dis-
aggregation. Therefore, its main results do not see
heterogeneous responses to warming, which risks
the omission of potentially substantial inequalit-
ies caused by the altered long-run growth path-
ways. Further research and process-based model-
ing assessments are required to quantify climate-
driven growth effects along sectoral, spatial and tem-
poral dimensions. Given that our results are mainly
driven by persistence effects on warmer regions with
lower income levels, future research should in par-
ticular focus on advancing the understanding of
growth effects in the Global South and on tackling
them.

Data availability statement
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Model code and documentation is available from the
GitHub repository, https://github.com/openmodels/
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Appendix A. Model choices, model
information, summary statistics, and
sensitivities in calculating the SCCO2 for
PAGE

A.1. Model regions
A.2. CO2 pulse size to calculate the SCCO2
To estimate the marginal damage of an additional
tonne of CO2, PAGE is run twice, with one run based
on the exogenous emission scenario and the second
run adding a CO2 pulse in the first model time step
in 2020, which ranges from mid-2017 to 2025. This
requires a decision regarding the time and the size
of the said pulse. While a pulse of merely one tonne
of CO2 captures a truly marginal effect, larger pulse
sizes are typically used (Otto et al 2013, Rose et al
2017). The results displayed in figure A2 show that
the SCCO2 is more stable for pulses that are not truly
marginal. While small pulses are too variable and
sensitive for the specific model and pulse size setting,
larger pulse sizes do not accurately capture marginal
damages and could see unexpected slight increases

in the SCCO2 as seen for PAGE-ICE around 100 Gt.
This increase, which is still well within the confidence
interval, might be attributed to the triggering of a dis-
continuity effect. To strike a balance, all our SCCO2
estimates are based on an annual pulse size of 10 Gt of
CO2 in model year 2020, totalling a 75 Gt CO2 pulse
over the period modeled.

A.3. Sensitivity analysis of the SCCO2
A.4. Extending the SSP timeseries
To estimate population and income levels past 2100,
we fit a model to the available SSP data and extra-
polate it. Both population and income use the same
model, defined in terms of growth rates. The model
postulates that the changes in growth rates are
explained by a rate of convergence and a rate of decay.

The model is as follows:

Growthi,t = (1−β− δ)Growthi,t−1

+ δMeanGrowtht−1

where i indexes the region, t indexes years, and

MeanGrowtht−1 =
∑

i
Populationi,0∑
i Populationi,0

Growthi,t−1.

Above, δ is the rate of convergence, and β is the decay
rate.

As SSP data are not available for every year, fit-
ting the exact expression above requires a model with
dynamics. We use a two-step approach, fitting the
model using Stan, a computational Bayes system. The
first step uses the available data directly, fitting the
following

Growthi,s ∼N (Growthi,s−1(1−∆t(β+ δ))

+MeanGrowths−1∆tδ,σi)

where s indexes time-steps,∆t is the number of years
between time-steps, and country i has uncertainty σi.
We apply a prior that both β and δ are between 0
and 0.5.

Next, we fit the full model, using the results of the
simplifiedmodel to improve the Bayesianmodel con-
vergence. In this case, for a given MCMC draw of β
and δ, we calculate the entire time series:

Ĝrowthi,t ∼N
(
Ĝrowthi,t−1(1−β− δ)

+(Ĝrowthi,t−1 ·wi)δ,σi

)
starting with Ĝrowthi,0 as known from the SSP
dataset.

The probability evaluation is over both the per-
formance of the fit and the priors:

Growthis ∼N
(
Ĝrowthi,t(s),σi

)
β ∼N (µβ ,σβ)

δ ∼N (µδ,σδ)

logσi ∼N (µσ,i,σσ,i)
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Figure A1. Regions as modelled in PAGE-ICE, based on information from Yumashev et al (2019).

Figure A2. The mean with confidence intervals for the SCCO2 based on 50 000 Monte Carlo runs for selected model variants
PAGE-ICE, PAGE with only annual temperatures but no variability, and PAGE with annual temperatures and annual variability,
for varying pulse sizes (total shock in Gt) for SSP2-4.5.

where µ· is the mean estimate for the correspond-
ing parameter, and σ· is the standard deviation across
its uncertainty. The prior for σi is defined as a
log-normal, centered on the mean of the estimates of
log σi.

The estimates for each SSP are shown below
(table A3), with visualizations of time series data for
SSP2 and SSP5 in figure A5.

A.5. Additional SCCO2 results
In addition to the results presented in the main text,
we have run all different model versions for four sep-
arate scenarios (table A4).

A.6. Annualization of a modular framework
The PAGE model is composed of several modules
for increased functionality and increased flexibil-
ity for future development and specific applications,

and is based on Mimi-PAGE (Moore et al 2018)
and PAGE-ICE (Yumashev et al 2019). To intro-
duce annual temperature variability, an annual tem-
perature model is required, and hence all down-
stream and related upstreammodules involved in the
climate-economy feedback were annualized. This was
done by exponentially interpolating between PAGE-
ICE time steps for population, sea level, and abate-
ment costs, and linearly interpolating GDP and emis-
sions growth rates. These choices are made to stay
as close to the original design as possible. An annual
model comes with reduced modeling artefacts that
plague models with multi-year time steps. In non-
annual models, rather than having smooth damage
distributions, one findsmultimodal damage distribu-
tions for binary damage elements, for instance in dis-
continuity damagesmodules where damages can only
be triggered in the chosen model years, rather than

11
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Figure A3. Impact of a parameter increase by one standard deviation on the 2020 SCCO2 based on the default PAGE-ICE model
for SSP2-4.5 (deterministic run). The SCCO2 impact is calculated as the difference between the SCCO2 for the mean of the
respective parameter’s Monte Carlo distribution, and the SCCO2 for a parameter value equal to the mean value increased by one
standard deviation, while all other parameters remain at their default value. Only parameters with an absolute SCCO2 impact of
at least $10 are displayed here.

Figure A4. Impact of a parameter decrease by one standard deviation on the 2020 SCCO2 based on the default PAGE-ICE model
for SSP2-4.5 (deterministic run). The SCCO2 impact is calculated as the difference between the SCCO2 for the mean of the
respective parameter’s Monte Carlo distribution, and the SCCO2 for a parameter value equal to the mean value increased by one
standard deviation, while all other parameters remain at their default value. Only parameters with an absolute SCCO2 impact of
at least $10 are displayed here. Note that a one standard deviation decrease in the tolerable temperature before a discontinuity
occurs triggers the discontinuity in this particular case, thus leading to a substantial increase in the SCCO2.

any year modeled. Our annual model reports SCCO2
distributions that differ from the original model.
This is due to changes in the discontinuity sector

and the model design of PAGE09 where each time
step year covers half of the time to the next analysis
year.
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Table A1. Impact of a parameter increase by one standard deviation on the 2020 SCCO2 based on the default PAGE-ICE model for
SSP2-4.5 (deterministic run). The SCCO2 impact is calculated as the difference between the SCCO2 for the mean of the respective
parameter’s Monte Carlo distribution and the SCCO2 for a parameter value equal to the mean value decreased by one standard
deviation, while all other parameters remain at their default value. Only parameters with an absolute SCCO2 impact of at least $2 are
displayed here.

Model parameter Impact on the SCCO2 in 2020 ($2015)

1 tcr_transientresponse 100.88
2 ptp_timepreference −63.29
3 frt_warminghalflife 35.77
4 impf_coeff_lin −31.06
5 a1_percentco2oceanlong 26.78
6 pow_NonMarketExponent 23.51
7 emuc_utilityconvexity −22.63
8 w_NonImpactsatCalibrationTemp 21.84
9 ampf_amplification_Africa 13.68
10 tcal_CalibrationTemp −12.15
11 iben_NonMarketInitialBenefit 9.21
12 stay_fractionCO2emissionsinatm 8.84
13 ampf_amplification_SEAsia 6.61
14 ipow_NonMarketIncomeFxnExponent 5.91
15 sltau_SLresponsetime −4.32
16 W_SatCalibrationSLR 4.16
17 pow_SLRImpactFxnExponent 4.12
18 sltemp_SLtemprise 4.05
19 rtl_abs_0_realizedabstemperature_Africa 3.73
20 ind_slopeSEforcing_indirect 2.77
21 ipow_MarketIncomeFxnExponent 2.71
22 t2_timeco2oceanshort 2.67
23 rtl_abs_0_realizedabstemperature_SEAsia 2.16

Table A2. Impact of a parameter decrease by one standard deviation on the 2020 SCCO2 based on the default PAGE-ICE model for
SSP2-4.5 (deterministic run). The SCCO2 impact is calculated as the difference between the SCCO2 for the mean of the respective
parameter’s Monte Carlo distribution and the SCCO2 for a parameter value equal to the mean value decreased by one standard
deviation, while all other parameters remain at their default value. Only parameters with an absolute SCCO2 impact of at least $2 are
displayed here. Note that a one standard deviation decrease in the tolerable temperature before a discontinuity occurs triggers the
discontinuity in this particular case, thus leading to a substantial increase in the SCCO2.

Model parameter Impact on the SCCO2 in 2020 ($2015)

1 tdis_tolerabilitydisc 617.53
2 ptp_timepreference 104.61
3 tcr_transientresponse −82.96
4 emuc_utilityconvexity 52.43
5 frt_warminghalflife −34.02
6 impf_coeff_lin 31.19
7 a1_percentco2oceanlong −27.95
8 w_NonImpactsatCalibrationTemp −21.64
9 pow_NonMarketExponent −20.11
10 tcal_CalibrationTemp 14.99
11 ampf_amplification_Africa −12.77
12 iben_NonMarketInitialBenefit −9.19
13 stay_fractionCO2emissionsinatm −9.04
14 ampf_amplification_SEAsia −6.30
15 sltemp_SLtemprise −5.88
16 ipow_NonMarketIncomeFxnExponent −5.01
17 W_SatCalibrationSLR −4.14
18 sltau_SLresponsetime 3.93
19 rtl_abs_0_realizedabstemperature_Africa −3.73
20 pow_SLRImpactFxnExponent −3.58
21 ind_slopeSEforcing_indirect −3.13
22 t2_timeco2oceanshort −2.81
23 rtl_abs_0_realizedabstemperature_SEAsia −2.15
24 ipow_MarketIncomeFxnExponent −2.07
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Table A3. Population and income extension model parameters.

SSP Variable δ β

1 GDP per capita 0.006205028 0.005930520
1 Population 0.008967453 0.005215835
2 GDP per capita 0.004190444 0.007228942
2 Population 0.001276993 0.011064426
3 GDP per capita 0.006273030 0.009597363
3 Population 0.001064697 0.007688331
4 GDP per capita 0.006895296 0.009651277
4 Population 0.001867587 0.003461600
5 GDP per capita 0.007766807 0.003843256
5 Population 0.003470952 0.004305310

Figure A5. Extended SSP population and per capita GDP for SSP 2 and SSP 5. Shaded areas show 95% credible intervals.

14



Environ. Res. Lett. 16 (2021) 094037 J S Kikstra et al

Table A4.Mean (25th–75th [5th–95th] percentile) SCCO2 values based on 50000 Monte Carlo runs. The alternative variability model
features regional temperatures that vary independently (no autoregression) and includes observational uncertainties on the standard
deviations in the Monte Carlo simulations, as described in appendix section C3. Marked (∗) values represent statistical values of
distributions that include SCCO2 values of zero caused by damages being outside of the predefined scope of the model. Note that for
some of the (∗) values, extreme Monte Carlo draws for persistence also cause numerical issues in a handful of model runs, which
reduces the effective underlying Monte Carlo sample size by less than 0.1%. However, this does not affect our main results for SSP2-4.5.
Double marked (∗∗) indicates that in PAGE09 we ran an alternative emissions pathway aligned with staying below 1.5◦C rather than
using RCP1.9, meaning a slightly higher SCCO2 estimates.

SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP5-8.5

PAGE09 48 (14–50 [5–121])∗∗ 51 (14–51 [5–126]) 129 (31–115 [13–323]) 140 (35–138
[14–430])

PAGE-ICE 185 (89–192
[51–383])

202 (97–215
[56–469])

306 (148–347 [83–823]) 190 (92–217
[51–503])

PAGE with growth
effects

11787 (76–14675
[0–54689])∗

9760 (66–12373
[0–43722])∗

3372 (0–1781 [0–19370])∗ 1662 (0–426
[0–9704])∗

PAGE (annual
temperatures) no
variability

178 (80–189
[45–382])

214 (107–245
[63–482])

326 (177–400 [97–748]) 202 (104–247
[55–488])

PAGE with annual
variability

179 (33–250
[−142–643])

221 (67–304
[−105–742])

347 (105–517 [−149–1082]) 216 (34–342
[−175–754])

PAGE with alternative
annual variability
model

176 (61–207
[−22–519])

216 (89–259
[−2–619])

328 (137–449 [−10–902]) 202 (72–285
[−40–582])

PAGE (annual) with
growth effects

10849 (85–15909
[0–39242])∗

9487 (95–14103
[0–31807])∗

4439 (0–6871 [0–21093])∗ 2754 (0–2956
[0–14081])∗

PAGE with annual
variability and growth
effects

10780 (62–15414
[−33–46514])∗

9491 (41–13641
[−102–39545])∗

4377 (0–4336 [0–24481])∗ 2675 (0–1647
[0–16109])∗

Appendix B. Persistence of damages

As the exact distribution of persistence is unknown,
it has been specified in various ways. Dietz and Stern
(2015) set it to 0.05 to allow for minimal growth
effects only whereasMoore andDiaz (2015) paramet-
rize it based on the relative magnitude between the
immediate marginal impact of temperature on GDP
growth to the cumulative effect over time, defined as
the sum over all lag coefficients. While their estim-
ate relies on Dell et al (2012), we apply this meth-
odology to the data by Burke et al (2015) but limit
ourselves to one lag as introducing further temperat-
ure lags primarily adds noise (see appendix B.3).

Since high persistence of damages might cause
economic collapse of some regions, equity-weighted
damages in utility terms approach infinity if con-
sumption goes to zero. Therefore, we introduce a
subsistence bound at a per capita consumption level
which equals the current World Bank threshold for
extreme poverty (converted to 2015 dollars). As
GDP losses compared to a baseline scenario without
climate change might still exceed the consump-
tion level actually realized, we further limit equity-
weighting to damages less or equal to 99% of con-
sumption. Damages exceeding this threshold are still
taken into account but are not subject to equity
weights. To avoid the two aforementioned bound-
aries causing discontinuities in the SCC results, we
use a convergence system in the proximity of the
thresholds.

B.1. Incorporating growth effects
In PAGE-ICE, economic growth is exogenously spe-
cified by:

GDPr,t = GDPr,t−1 · (1+ gr,t) (B1)

where gr,t is the SSP-specific growth rate for region r
at time step t. Previous work has introduced growth
effects as a share of damages affecting capital stocks
or total factor productivity, but as such factors are not
explicitly modeled in PAGE, we implement a persist-
ence parameter (Estrada et al 2015) into the paramet-
erized growth system (Burke et al 2015) such that:

GDPr,t = GDPr,t−1 · (1+ gr,t − ρ · γr,t−1) (B2)

where ρ specifies the share of economic damages γ
that affect the growth rate. If, for instance, market
damages equal 2% of GDP, then for ρ= 0.5, eco-
nomic growth decreases by one percentage point.
This approach has three advantages. Firstly, it intro-
duces only one additional parameter thus facilit-
ating the specification of its Monte Carlo distri-
bution. Nonetheless, it can easily be adjusted to
new research about region-specific vulnerabilities or
hypotheses about future developments by differen-
tiating ρ over regions and time. Secondly, it nests
both level effects and the growth system by Burke
et al (2015) for ρ= 0 and ρ= 1, respectively, and
hence covers a range of approaches applied in pre-
vious studies. Thirdly, it mirrors the share of dam-
ages inflicted upon productivity or capital stocks in
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previous papers (Moyer et al 2014, Dietz and Stern
2015, Moore and Diaz 2015) which facilitates com-
parisons. It is important to note, however, that the
γ returned by the damage function in Burke et al
(2015) is expressed in % of GDP per capita, not in
% of GDP. By applying γ directly to the GDP growth
rate and leaving population exogenous, we assume
that the adverse GDP per capita impact of a temperat-
ure stems only from a reduced GDP and not from an
increase in population, in line with indications that a
temperature shock would result in a minor decrease
in population (Carleton et al 2020).

B.2. Boundaries for economic collapse and
equity-weighting
Damage persistence can have catastrophic impacts
on the welfare of regions, to the extent that some
regions approach zero consumption. Even if this is
not the case, counterfactual GDP losses, defined as
the difference between counterfactual GDP levels in
the absence of climate change and GDP levels actu-
ally realized, might still exceed a region’s consump-
tion. Both outcomes would lead to infinite equity-
weighted damages in utility terms in PAGE. To see
this, note that damages are equity-weighted based on
a region’s consumption level (Anthoff et al 2009a) rel-
ative to the EU in 2015 such that:

D̃r,t =
Cη
EU,2015

(1− η)
·
[
C1−η
r,t − (Cr,t −Dr,t)

1−η
]

(B3)

where D̃r,t is equity-weighted damages per capita,Cr,t

and Dr,t are unweighted consumption and damages
per capita and η is the elasticity of marginal utility
of consumption of the underlying iso-elastic welfare
function. IfDr,t approachesCr,t, this expression yields
infinitely large values for D̃r,t and becomes numeric-
ally infeasible once Dr,t exceeds Cr,t.

We therefore introduce two boundaries. First, we
assume that a region’s per capita consumption can-
not fall below the World Bank’s current threshold for
extreme poverty of $1.90 (2011 PP) per day, conver-
ted to $2015 (PAGE-ICE’s monetary unit) using the
World Development Indicators’ GDP deflator time
series. As a result, per capita consumption in the
model cannot drop below $740.65 (per year) which
equals about 17% of the 2015 per capita consump-
tion for the poorest region in PAGE-ICE, India+. Fur-
thermore, we assume that only damages which equal
up to 99% of a region’s per capita consumption are
subject to equity-weighting, following Dietz (2011).
Damages that exceed this threshold are still taken into
consideration but receive no equity weights. Overall
damage estimates are highly sensitive to the level of
such a threshold (Dietz 2011), a finding corroborated
by our sensitivity analysis (see figure B1). In general,
total damages increase with increased levels of equity
weighting. However, the SCCO2 Monte Carlo mean
actually decreases because for higher total damages,

Figure B1.Mean SCCO2 based on 50 000 Monte Carlo
under different equity-weighting thresholds for SSP2-4.5.
The blue bar marks our default setting.

more Monte Carlo runs reach PAGE-ICE’s upper
bound for overall damages and thus produce SCCO2
estimates of zero.

The two boundaries explained above are likely
to cause considerable discontinuities in results. For
example, the marginal damages of CO2 will abruptly
decrease once a region reaches the subsistence level of
per capita consumption because additional temper-
ature rises cannot depress economic growth further.
Similarly, the equity-weighted marginal damages of
an additional tonne of CO2 will be extremely high for
a region with damages just below the 99% threshold
but will fall abruptly once the threshold is reached. To
smooth out these effects, we introduce these bound-
aries as logistic paths such that the consumption
and equity-weighted damages converge against the
threshold without fully reaching it. This convergence
system is expressed by the following equation:

ỹ=

y if y⩾ ϵ

−θ+
2(θ− ϵ) · exp(b(y− ϵ))

1+ exp(b(y− ϵ))
if y< ϵ

where y is the original variable subject to threshold θ
and ỹ is the adjusted variable converging asymptotic-
ally against θ. ϵ is a value close to θ which triggers the

converging process, and b is defined as b=
2

θ− ϵ
.

This system ensures both that ỹ converges against
θ as y goes to infinity and that the derivative of ỹ with
respect to y equals 1 at y= ϵ, thus avoiding breaks.
Figure B2 illustrates the convergence system for the
equity-weighting threshold discussed above, which,
in our default settings, has an upper bound at θ= 0.99
and convergence starting at a neighborhood value of
ε= 0.9. For the per capita consumption threshold, ε
equals 1.5 times the subsistence level.
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Figure B2. Illustration of the implemented convergence
system.

Figure B3.Mean SCCO2 based on 50 000 Monte Carlo
under different implementations of the boundary
conditions for SSP2-4.5. The blue bar marks our default
setting.

Figure B3 shows the impact of the convergence
system on the SCCO2 results. In general, the intro-
duction of the convergence system decreases the
SCCO2, but the effect is modest compared to other
model parameter settings (see for instance figure B1).

B.3. Calibrating the persistence of damages
The previous literature provides two general
approaches to determining a point estimate for the
persistence of market damages. In some studies, per-
sistence is set to a low, but somewhat arbitrary value
to explore growth effects without making strong
assumptions regarding the magnitude of persistence
(Dietz 2011, Moyer et al 2014). The more empirical

approach relies on fixed effects regressions of eco-
nomic growth on various variables, including tem-
perature (Dell et al 2012, Burke et al 2015). A generic
equation for such a model would be

gi,t = βTemperaturei,t + γ ·Xi,t +αi + δt + ϵi,t
(B4)

where gi,t denotes the growth rate of country i at time
t and Xi,t denotes a vector of additional independent
variables with the vector of coefficients γ. If not all of
the damages indicated by β persist over time and the
economy eventually returns to its original growth tra-
jectory, then a negative GDP impact at time t is fol-
lowed by a compensating impact in the subsequent
years. This can be conceptualized by introducing a lag
into the model equation:

gi,t = β1Temperaturei,t +β2Temperaturei,t−1

+ γ ·Xi,t +αi + δt + ϵi,t. (B5)

If damages are not fully persistent over time, then
signs of β2 will be positive. If, on the other hand,
damages only reach their full extent over time (e.g.
because some damages to infrastructure is exacer-
bated over time), the sign of β2 will be negative
as well. Of course, there is no imminent reason to
assume that the full effects of a temperature shock
are realized after only one year. Therefore, research-
ers typically include further lags into the equation
and estimate the long-run marginal impact of tem-
perature on growth (Dell et al 2012, Moore and Diaz
2015), which can identify damage persistence ρ based
on its ratio to the immediate marginal impact. Note
that for a model with k lags, such a ratio is defined
as follows:

ρ=

k∑
j=1

βj

β1
. (B6)

In the case of pure level effects, all immedi-
ate impacts of temperature shocks are compensated
for over time and the numerator of ρ= 0 becomes
zero. If, however, after k years, the long-run marginal
impact is only half the immediate impact of a tem-
perature shock, we can conclude that only 50% of
economic damages persist over time. Yet, unlike the
simple model given in equation (B4), the regression
model by Burke et al (2015) which informs PAGE’s
market damage function is quadratic in temperature:

gi,t = β1,0 ·Temperaturei,t +β2,0 ·Temperature2i,t
+ γ ·Xi,t +αi + δt + ϵi,t. (B7)

Thismeans that themarginal impact of temperat-
ure depends on the initial temperature. Hence, there
is no universal ratio of long-run to immediate impacts
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Figure B4. Ratio of long-run to immediate marginal impact
using the Burke et al (2015) regression with one
temperature lag.

for all regions but for a model with k lags, ρ is defined
as follows:

ρ=

k∑
j=0

β1,j + 2β2,j ·Temperaturei,t

β1,0+ 2β2,0 ·Temperaturei,t
. (B8)

However, the variation of ρ can be understood
as a numerical, rather than theoretical, issue. To see
this, note that in the case of a quadratic regression
model, both the long-run and the immediate mar-
ginal impacts are linear functions of temperature. The
immediate marginal impact, which is the denomin-
ator of ρ, approaches zero around 13◦C for the coef-
ficients from Burke et al (2015), leading to a damage
persistence of ±∞ in the proximity of this temper-
ature (see figure B4). Therefore, there is little use in
aggregating the ratio of marginal impacts for differ-
ent temperatures, e.g. by using population weights.
Asymptotically, however, the ratio becomes numeric-
ally stable, as illustrated by figure B4. For this reason,
we estimate the damage persistence as the ratio of
long-run to immediate marginal impacts as the tem-
perature goes to (minus) infinity, as indicated by the
lagged regression model by Burke et al (2015).

The question remains as to how many temperat-
ure lags one should include in the regression model.
Ideally, we would include as many lags as possible to
avoid a bias in our ρ estimate due to omitted future
rebounds or, conversely, intensification of damages.
In practice, however, every lag added to the model
comes with a considerable amount of variance, such
that the ρ estimate loses its meaning if too many
imprecisely estimated lag coefficients are included.
For this reason, we rely on the specification with only

one lag, for which the quadratic lag coefficient is sig-
nificant at the 5%-level, while the linear lag coefficient
is not (see table B1). As the signs of the first temper-
ature lag are opposite to the immediate temperature
impact, the resulting damage persistence equals only
52.8% of the immediate impact.

The numerator and denominator of ρ are lin-
ear combinations of asymptotically Gaussian random
variables and thus asymptotically Gaussian them-
selves. As the ratio of two dependent, asymptotically
Gaussian variables, ρ does not, however, have a Gaus-
sian distribution. To derive a parameter distribution,
we randomly sample the regression coefficients dis-
played in table B1 fromaMultivariateGaussian distri-
bution based on their variance-covariancematrix and
compute our persistence estimate for each of them.
We then use this empirical distribution of the persist-
ence parameter (N= 1× 1006) for Monte Carlo sim-
ulations in PAGE.

While we choose a model with only one lag
because of the aforementioned bias-variance trade-
off, it is important to note that including a second
lag would strongly reduce a point estimate to 27.8%.
A model with four lags even suggests a persistence
of only 10.3%. Such lower values might be explained
by two effects. Either the economy takes several years
after a temperature shock to rebound, implying that
our persistence estimate has an upward bias, or the
reduced persistence only mirrors the additional noise
introduced by further lags. Confidence intervals in
table B1 show that with each additional lag, the estim-
ate’s distribution shifts towards zero and widens con-
siderably. Including a second lag would extend the
90% confidence interval for ρ to−41%, implying that
current climate damages could push the economy to
a trajectory of considerably increased growth in the
longrun, which seems at odds with the literature on
climate change impacts. However, there is, as of yet,
no definitive answer as to how many lags one should
include. Therefore, we explore the robustness of our
approach by adopting another methodology in the
following section.

B.4. Estimating persistence based on low-pass
filtering
Given the uncertainties outlined in the previous
section, we explore the results under a differentmeth-
odological approach to estimate persistence following
Bastien-Olvera and Moore (2021). Their approach,
similar to Burke et al (2015), regresses GDP per cap-
ita growth on temperature and precipitation, but it
also applies a Butterworth low-pass filter to the cli-
mate variables. By doing this, the authors argue that
the estimated impact on economic growth is identi-
fied only via long-term temperature variation. This
leads to near-zero estimates if the temperature-based
damages to GDP are in fact non-persistent. Filtering
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Table B1. Results for the baseline regression model by Burke et al (2015) for various numbers of temperature lags. Each regression
model further contains precipitation, country, and year fixed effects as well as country-specific time trends. Following Burke et al
(2015), the regression model containing k temperature lags also features k precipitation lags. Here we only report the coefficients for
temperature variables that factor into our estimates of damage persistence.

(1) (2) (3) (4) (5) (6)
GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

Temperature 0.0127∗∗∗ 0.0136∗∗∗ 0.0106∗∗ 0.00 949∗∗ 0.00 933∗ 0.00 920∗

(3.36) (3.64) (3.00) (2.65) (2.49) (2.50)
Temperature
squared

−0.000 487∗∗∗
(−4.11)

−0.000 517∗∗∗
(−4.33)

−0.000 456∗∗∗
(−3.97)

−0.000 441∗∗∗
(−3.75)

−0.000 446∗∗∗
(−3.62)

−0.000 459∗∗∗
(−3.87)

L.Temperature −0.00 674 −0.00 413 −0.00 549 −0.00 578 −0.00 459
(−1.56) (−1.10) (−1.35) (−1.43) (−1.36)

L2.Temperature −0.00 613 −0.00 638 −0.00 681 −0.00 698
(−1.63) (−1.76) (−1.86) (−1.95)

L3.Temperature −0.00 143 −0.000 885 −0.000 993
(−0.57) (−0.31) (−0.38)

L4.Temperature −0.00 111 −0.00 214
(−0.42) (−0.82)

L5.Temperature 0.00 176
(0.37)

L.Temperature
squared

0.000 244∗

(2.01)
0.000 206
(1.81)

0.000 240
(1.95)

0.000 245
(1.97)

0.000 228∗

(2.03)
L2.Temperature
squared

0.000 123
(1.14)

0.000 126
(1.22)

0.000 133
(1.28)

0.000 146
(1.43)

L3.Temperature
squared

−0.0000 509
(−0.59)

−0.0000 779
(−0.78)

−0.0000 882
(−0.92)

L4.Temperature
squared

0.000 101
(1.01)

0.000 143
(1.35)

L5.Temperature
squared

−0.0000 658
(−0.43)

Resulting ρ 100% 52.81% 27.82% 28.36% 10.25% 20.81%
5th Monte
Carlo
percentile

— 0.55% −73.40% −101.57% −143.72% −94.44%

95th Monte
Carlo
percentile

— 91.34% 87.77% 106.52% 94.79% 93.10%

N 6584 6519 6398 6277 6155 6031
bic −19 806.5 −19 677.9 −19 377.4 −19 125.8 −18 744.0 −18 400.4
ll 10 127.4 10 080.4 9942.9 9829.6 9655.6 9500.5

t statistics in parentheses. Standard errors are clustered at the country level.
∗ p< 0.05, ∗∗ p< 0.01, ∗∗∗ p< 0.001.

out high frequencies in temperature and precipit-
ation is statistically beneficial because it does not
require additional lag coefficients to be estimated
and is therefore less susceptible to noise and multi-
collinearity if longer time horizons are considered.
Therefore, Bastien-Olvera and Moore suggest com-
paring the estimated marginal impacts for different
minimum periodicities to explore if growth impacts
of temperature shocks intensify, remain constant, or
converge over time.

To derive an estimate of persistence which we can
compare with our results, we apply such a low-pass
filter to the temperature and precipitation observa-
tions in the data by Burke et al (2015) for a minimum

periodicity of 3, 5, and 10 years, respectively. Fol-
lowing Bastien-Olvera and Moore (2021), we discard
countries with less than twice the minimum period-
icity (2× 10= 20) of subsequent temperature/pre-
cipitation observations for the filtering to work. This
reduces the overall number of country-year records in
the data only slightly, from 6584 to 6535. Figure B6
illustrates the effect of the low-pass filter for selec-
ted countries that are closely aligned with the model
regions of PAGE-ICE. We then regress GDP per cap-
ita growth on the low-pass filtered climate variables
using the main specification by Burke et al (2015)
and, similar to the lag-based procedure, calculate the
implied persistence for the 3 year, 5, year and 10 year
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Figure B5. The effects of the damage persistence parameter ρ on regional GDP levels for different model years for SSP2-4.5 runs.
Lines represent the Monte Carlo mean values, while the shaded areas represent the 5th–95th percentile.

filter by dividing the asymptotic marginal impact
of the respective regression by the marginal impact
of the model without filtering. Note that as this
involves comparing the estimates returned by two dif-
ferent regression models (based on either unfiltered

or filtered climate variables) the empirical persistence
distribution cannot be derived from the variance-
covariance matrix of a single regression. To overcome
this, we draw with replacement from country clusters
to create 5000 bootstrap samples following Burke et al
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Figure B6. Illustrates effect of a 3, 5, or 10 year low-pass Butterworth filter on temperature and precipitation for selected countries
in the data by Burke et al (2015).

(2015) and estimate the implied persistence for each
bootstrap sample. The results of the regression mod-
els for different filter settings and the resulting per-
sistence distribution are displayed in table B2, where
the resulting persistence ρ for each filter period is cal-
culated as the asymptotic marginal impact of temper-
ature in the respective column, divided by the asymp-
totic marginal impact according to the coefficients in
column (1).

Table B2 shows that similar to the results under
the lag-based approach used in this manuscript, the
implied persistence ρ decreases and confidence inter-
vals (or technically, the interval between bootstrap
percentiles) widen. For the 3 year filter, the point
estimate for ρ is 89.00% which reduces to 52.72% for
the 10 year filter. Still, for the 5 year filter, the coef-
ficients for linear and squared temperature remain
statistically significant at the 10% level (since the
respective t-statistics exceed 1.7). With 9.36%, the
5th bootstrap percentile is well above zero and only
3.6% of the 5000 bootstrap samples yield a non-
positive estimate for persistence. For the 10 year filter,
temperature coefficients are not significantly differ-
ent from zero and the 90% bootstrap interval ranges
from −60.29% to 118.25%. The point estimate hap-
pens to be relatively close to the 52.81% based on
the first temperature lag we have used in model runs
(see previous section). This exploration indicates that
for the data used in this study, the newly proposed
method (considering longer time horizons for per-
sistence via low-pass filtering climate variables) does
not produce results that show substantially different
damage persistence behaviour from the insights in
ourmain approach (assessing persistence via lag coef-
ficients).

We also explore how an empirical persistence dis-
tribution based on low-pass filtering would affect our

findings with respect to the SCCO2. To this end, we
use the bootstrap distribution of ρ by comparing the
marginal impacts of unfiltered and 5 year filtered tem-
perature, for which temperature coefficients remain
statistically significant at the 10% level. The low-
pass filtering approach yields higher persistence levels
and hence higher damages. However, as figure B7
illustrates, the Monte Carlo mean SCCO2 decreases
from $3372 under the lag-based approach to $3025
for the distribution using low-pass filtering. The
primary reason is that the latter on average yields
a higher persistence and hence more Monte Carlo
runs in which the maximum amount of damages
in the model is reached and the SCCO2 becomes
zero. More specifically, the share of Monte Carlo runs
with a SCCO2 of zero increases from 62% under
the lag-based approach to 69% based on low-pass
filtering.

B.5. Regional heterogeneity of damage persistence
In our main model, we implement persistence as a
global parameter. We recognize that this is a very
strong assumption and does not represent heterogen-
eity across climate zones or income levels. Research
on adaptive capacity research has identified many
potential barriers to adaptation, which differ strongly
depending on the context (Eisenack et al 2014). Thus,
one might expect differences in the persistence para-
meter across countries (and thus across PAGE-ICE
regions) due to, for instance, income differences or
other social and geographic contexts.

To explore the empirical evidence for this, we
repeat the persistence estimation procedure for two
groups of countries: rich and poor countries. We
follow Burke et al (2015) by assigning each country in
the data to one of two subsamples based on whether
its 1980 GDP per capita, with conversion based on
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Table B2. Regressing GDP per capita growth in the Burke et al (2015) data on low-pass filtered climate variables.

(1) (2) (3) (4)
Unfiltered 3 year filter 5 year filter 10 year filter

Temperature 0.012 933∗∗∗ 0.012 211∗∗ 0.009 065 0.009 761
(3.41) (2.79) (1.71) (0.90)

Temperature2 −0.000 490∗∗∗ −0.000 436∗∗ −0.000 299 −0.000 258
(−4.11) (−3.24) (−1.88) (−0.95)

Resulting ρ 100.00% 89.00% 61.09% 52.72%
5th percentile — 69.33% 9.36% −60.29%
95th percentile — 102.40% 91.38% 118.25%
N 6535 6535 6535 6535
BIC −19 634.1 −19 632.5 −19 620.8 −19 615.5
ll 10 045.5 10 040.3 10 034.4 10 031.8

t statistics in parentheses. Standard errors are clustered at the country level.

Percentiles are estimated via 5000 cluster bootstrap samples.
∗ p< 0.05, ∗∗ p< 0.01, ∗∗∗ p< 0.001.

Author’s calculations based on the data provided by Burke et al (2015).

Figure B7.Mean SCCO2 based on 50 000 Monte Carlo
under different methodologies to estimate the persistence
distribution for SSP2-4.5. The blue bar marks our default
setting.

purchasing power parity (PPP), was above or below
the sample median. We then repeat our main lag-
based approach to estimate persistence separately for
each of these income-based subsamples and display
the results in tables B3 and B4.

Since subsampling approximately halves the
sample size, overall statistical power is diminished.
Standard errors increase considerably for all numbers
of lags under consideration. In particular, the coef-
ficients on the first temperature lag are no longer
statistically significant for either of the two sub-
samples. For both income groups, the signs of the

1st lag is opposite to the sign of the immediate tem-
perature impact, suggesting less than full persistence.
The point estimates for the persistence parameter
ρ in the poorer and richer subsample are 42.48%
and 61.97%, respectively. When two or more lags are
used, the persistence estimate for the below-median
sample becomes negative while the estimate for the
richer subsample remains positive ,but much closer
to zero. However, Monte Carlo experiments show
that estimates for ρ vary considerably and even when
using one lag only, the 5th Monte Carlo percentiles
ranges below zero for the lower- and higher-income
subsamples (at −146.71% and −95.71%, respect-
ively). Regression tables B3 and B4 thus remain
largely inconclusive with respect to whether spatially
heterogeneity should be implemented in the ρ para-
meter. Therefore, we conclude that while there might
very well be regional differences in the actual per-
sistence of climate damages, we do not find clear
evidence in this data set for applying heterogen-
eous persistence under the lag-based approach in our
model.

To explore the possibilities of regional hetero-
geneity in persistence further, we also apply the
low-pass filtering approach outlined above separ-
ately to the income-based subsample of the Burke
et al (2015) data and display the results in tables B5
and B6. Note that we remove countries with less
than 20 temperature-precipitation observations for
the low-pass filtering to work which reduces the
initial sample size slightly. Similar to the lag-based
approach, confidence intervals for the two sub-
samples are considerably wider compared to the full
sample in table B2, reducing t statistics for the indi-
vidual temperature coefficients and increasing the
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Table B3. Results for the baseline regression model by Burke et al (2015) for countries with GDPpc below the median and various
numbers of temperature lags. Each regression model further contains precipitation, country and year fixed effects as well as
country-specific time trends. Following Burke et al (2015), the regression model containing k temperature lags also features k
precipitation lags. Here we only report the coefficients for temperature variables that factor into our estimates of damage persistence.

(1) (2) (3) (4) (5) (6)
GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

Temperature 0.0236 0.0246 0.0096 0.0048 0.0029 −0.0040
(1.34) (1.48) (0.60) (0.32) (0.19) (−0.28)

Temperature
squared

−0.0007
(−1.89)

−0.0007∗
(−2.08)

−0.0004
(−1.25)

−0.0003
(−0.99)

−0.0003
(−0.87)

−0.0002
(−0.51)

L.Temperature −0.0150
(−0.88)

−0.0035
(−0.33)

−0.0049
(−0.46)

−0.0043
(−0.43)

0.0009
(0.10)

L2.Temperature −0.0165
(−0.95)

−0.0180
(−1.01)

−0.0206
(−1.10)

−0.0240
(−1.32)

L3.Temperature 0.0061
(0.65)

0.0049
(0.44)

0.0046
(0.44)

L4.Temperature 0.0021
(0.17)

−0.0020
(−0.18)

L5.Temperature 0.0083
(1.18)

L.Temperature
squared

0.0004
(1.18)

0.0002
(0.93)

0.0003
(1.09)

0.0002
(1.06)

0.0001
(0.69)

L2.Temperature
squared

0.0003
(0.77)

0.0003
(0.82)

0.0004
(0.94)

0.0004
(1.16)

L3.Temperature
squared

−0.0002
(−0.85)

−0.0002
(−0.81)

−0.0002
(−0.83)

L4.Temperature
squared

0.0001
(0.31)

0.0002
(0.77)

L5.Temperature
squared

−0.0003
(−1.59)

Resulting ρ 100.00% 42.48% −16.29% −15.89% −69.83% −94.29%
5th Monte
Carlo
percentile

— −146.71% −894.45% −923.95% −1246.10% −1081.44%

95th Monte
Carlo
percentile

— 135.33% 905.03% 1022.92% 1345.78% 1332.94%

N 3429 3391 3332 3273 3214 3154
bic −9681.9 −9564.9 −9420.3 −9264.0 −9086.2 −8911.6
ll 5048.5 5006.0 4945.4 4882.9 4805.6 4729.7

t statistics in parentheses.
∗ p< 0.05, ∗∗ p< 0.01, ∗∗∗ p< 0.001.

Author’s calculations based on the data provided by Burke et al (2015).

uncertainty about the persistence level ρ. However,
we see different behavior in filters with larger period-
icity. Point estimates for the higher-income countries
decrease for a larger filter periodicity (from 69.76%
for the 3 year filter to −2.91% for the 10 year fil-
ter in table B6) and even for the 3 year filter, the
bootstrap interval is almost symmetric around zero,
indicating low evidence for persistence. In contrast,
the point estimates for the lower-income subsample
range between 73.29% and 112.45% for different fil-
ter periods (see table B5). Notably, the poorer sub-
set’s 95% bootstrap interval does not include zero
for the 3 year filter and even for the 5 year filter,

88.8% of the 5000 bootstrap samples yield a per-
sistence estimate above zero. Therefore, we conclude
that unlike the lag-based approach, estimating per-
sistence via low-pass filters provides some suggest-
ive evidence that poorer regions might be more vul-
nerable to persistent growth impacts of temperature
shocks.

To illustrate the implications of regional differ-
entiation for the SCCO2, we carry out an additional
robustness check by applying our main persistence
distribution (derived via temperature lag coefficients)
only to the four PAGE-ICE model regions with the
lowest initial GDP per capita in the 2015 base year,
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Table B4. Results for the baseline regression model by Burke et al (2015) for countries with GDPpc above the median and various
numbers of temperature lags. Each regression model further contains precipitation, country and year fixed effects as well as
country-specific time trends. Following Burke et al (2015), the regression model containing k temperature lags also features k
precipitation lags. Here we only report the coefficients for temperature variables that factor into our estimates of damage persistence.

(1) (2) (3) (4) (5) (6)
GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

GDPpc
Growth

Temperature 0.0085∗ 0.0092∗ 0.0084∗ 0.0077 0.0074 0.0082∗

(2.22) (2.42) (2.22) (1.97) (1.77) (2.04)
Temperature
squared

−0.0003∗
(−2.16)

−0.0004∗
(−2.24)

−0.0004∗
(−2.23)

−0.0004∗
(−2.18)

−0.0004∗
(−2.11)

−0.0004∗
(−2.43)

L.Temperature −0.0044 −0.0032 −0.0045 −0.0053 −0.0051
(−0.89) (−0.66) (−0.87) (−0.98) (−1.16)

L2.Temperature −0.0067 −0.0065 −0.0062 −0.0069∗
(−1.83) (−1.85) (−1.80) (−2.06)

L3.Temperature −0.0024 −0.0026 −0.0018
(−0.82) (−0.79) (−0.58)

L4.Temperature −0.0006 −0.0008
(−0.23) (−0.27)

L5.Temperature −0.0015
(−0.27)

L.Temperature
squared

0.0001
(0.82)

0.0001
(0.69)

0.0002
(0.84)

0.0002
(0.94)

0.0002
(1.07)

L2.Temperature
squared

0.0002
(1.69)

0.0002
(1.60)

0.0002
(1.40)

0.0002
(1.73)

L3.Temperature
squared

−0.0001
(−0.38)

−0.0000
(−0.13)

−0.0001
(−0.44)

L4.Temperature
squared

−0.0000
(−0.22)

0.0000
(0.00)

L5.Temperature
squared

0.0001
(0.36)

Resulting ρ 100.00% 61.97% 1.21% 12.90% 18.08% 0.22%
5th Monte
Carlo
percentile

— −95.71% −323.86% −391.63% −370.90% −229.34%

95th Monte
Carlo
percentile

— 147.38% 117.18% 148.72% 159.32% 109.67%

N 3155 3128 3066 3004 2941 2877
bic −9923.1 −9894.5 −9721.7 −9606.1 −9396.5 −9228.0
ll 5167.0 5168.6 5093.7 5047.3 4953.8 4880.8

t statistics in parentheses.
∗ p< 0.05, ∗∗ p< 0.01, ∗∗∗ p< 0.001.

Author’s calculations based on the data provided by Burke et al (2015).

namely China+, India+, Africa+ and Latin America.
Simultaneously we thus assume for this run that
the EU, Russia+, USA and Other OECD regions do
not face alterations from their scenario-based long-
term growth trajectory, though they will still suffer
from contemporary market damages. Figure B8 illus-
trates the relatively small effect of this change, in part
becauseGlobalNorth regions can see opposing effects
of temperature increases. Due to generally slightly

lower damages, the overall mean SCCO2 would be
slightly higher because fewer Monte Carlo runs reach
the maximum amount of overall damages in the
model. The share of runs with an SCCO2 of zero
decreases from 62.3% to 61.7%. Overall, our findings
are primarily driven by persistence in regions with
lower GDP per capita and do not change strongly if
richer regions were less vulnerable to damage persist-
ence (or much quicker to adapt).
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Table B5. Regressing GDP per capita growth in the Burke et al (2015) data on low-pass filtered climate variables—below GDPpc median.

(1) (2) (3) (4)
Unfiltered 3 year filter 5 year filter 10 year filter

Temperature 0.025 169 0.031 177 0.019 792 0.034 540
(1.43) (1.75) (0.75) (0.60)

Temperature2 −0.000 749 −0.000 842∗ −0.000 549 −0.000 806
(−1.97) (−2.19) (−0.98) (−0.67)

Resulting ρ 100.00% 112.45% 73.29% 107.71%
5th percentile — 84.12% −62.78% −296.33%
95th percentile — 164.32% 155.72% 340.61%
N 3391 3391 3391 3391
BIC −9556.7 −9552.6 −9542.3 −9541.1
ll 4985.6 4983.6 4978.4 4977.8

t statistics in parentheses. Standard errors are clustered at the country level.

Percentiles are estimated via 5000 cluster bootstrap samples.
∗ p< 0.05, ∗∗ p< 0.01, ∗∗∗ p< 0.001.

Author’s calculations based on the data provided by Burke et al (2015).

Table B6. Regressing GDP per capita growth in the Burke et al (2015) data on low-pass filtered climate variables—above GDPpc median.

(1) (2) (3) (4)
Unfiltered 3 year filter 5 year filter 10 year filter

Temperature 0.008 412∗ 0.006 184 0.004 519 0.000 073
(2.20) (1.30) (0.73) (0.01)

Temperature2 −0.000 330∗ −0.000 230 −0.000 135 0.000 010
(−2.13) (−1.23) (−0.58) (0.03)

Resulting ρ 100.00% 69.76% 40.96% −2.91%
5th percentile — −70.72% −248.19% −631.26%
95th percentile — 97.68% 106.27% 117.74%
N 3144 3144 3144 3144
BIC −9883.0 −9879.2 −9876.6 −9875.4
ll 5146.8 5145.0 5143.7 5143.1

t statistics in parentheses. Standard errors are clustered at the country level.

Percentiles are estimated via 5000 cluster bootstrap samples.
∗ p< 0.05, ∗∗ p< 0.01, ∗∗∗ p< 0.001.

Author’s calculations based on the data provided by Burke et al (2015).

Figure B8.Mean SCCO2 based on 50 000 Monte Carlo using persistence as a global parameter or limiting it to lower-income
regions for SSP2-4.5. The blue bar marks our default setting.
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Figure B9.Mean SCCO2 based on 50 000 Monte Carlo under different annual decay rates of damage persistence for SSP2-4.5. The
blue bar marks our default setting of zero decay, (i.e. damage persistence remains constant over time).

B.6. Adaptation to damage persistence applied to
the empirical distribution
By using historical data to calibrate our estimate of
damage persistence and extrapolating it into the dis-
tant future, we implicitly assume (in figure 3) that
future persistence will equal the persistence levels
observed over the past decades, consistent with Burke
et al (2015). It is, however, possible that the increased
economic damages due to climate change will trig-
ger a rise in adaptation efforts which might not only
reduce current damages, but also limit the vulnerab-
ility of capital stocks (both physical and human) to
climate change. If this is the case, then our assump-
tion of extrapolating previous persistence levelsmight
turn out to be too pessimistic. In the absence of
empirical evidence or mechanistic understanding of
how temperature damages might persist in future
scenarios, we explore the theoretical possibility that
damage persistence (ρ) decays exponentially over
time following a similar approach adopted by Moore
and Diaz (2015) for the DICE CB-IAM. Figure B9
illustrates the impacts of varying decay rates on our
SCCO2 estimate under SSP2-4.5.

An annual decay of 3% or higher greatly reduces
the estimated marginal damages of CO2 emissions,
especially later in the model horizon for the regions
with the highest temperatures, when the highest cli-
mate change-induced economic damages are reached,
but the degree of persistence has decayed to low
levels. If damage persistence decreases by 4%–5% per
year, the SCCO2 equals $305–312 which is virtually
identical to the SCCO2 for the default PAGE-ICE
model with no persistence.

A decay rate of 1% or 2% counterintuitively
increases the SCCO2 compared to our default with

zero decay from $3372 to $6595 or $4094 respect-
ively, because of interactions with the cap for over-
all damages in PAGE-ICE. With low decay rates,
fewer Monte Carlo simulations reach the cap, which
decreases the share of model runs with a SCCO2 of
zero and thus increases the Monte Carlo mean.

Appendix C. Temperature variability
models

C.1. Historical temperature analysis
The historical temperature dataset used is described
in Ilyas et al (2017), which is a variant of HadC
RUT4 (Morice et al 2012) and is available at https://
oasishub.co/dataset/global-monthly-temperature-en
semble-1850-to-2016. A multi-resolution lattice kri-
ging approach was used to estimate the uncertainties
related to limited spatial coverage in HadCRUT4.
10 000 ensemble members together express probabil-
istic gridded temperatures.

The current body of literature does not con-
clusively answer whether interannual variability is
increasing globally, but observation-based studies
appear to indicate little change in global annual mean
temperature variability (Alexander and Perkins 2013,
Huntingford et al 2013). After Huntingford et al
(2013), we compute interannual temperature vari-
ability in our dataset as the long-term average of
the 11 year standard deviations after detrending the
annual temperature anomaly data using a local 11
year running mean. Figure C1 shows the interannual
variability for used period 1986–2015, compared to
pre-1986 levels. We identify no clear overall posit-
ive or negative trend in interannual variabiility from
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Figure C1. Local interannual mean temperature variability. Annual standard deviations are calculated over 11 year detrended
periods. Local means of this standard deviation are plotted for the period on the record before 1986 and after 1986. The local
change between the two time periods is shown in percentages.

the Ilyas et al (2017) dataset. Contrary to Hunting-
ford et al (2013), we find strongly positive changes
over the tropics, especially over Amazonia, whilst we
see little increases in variability over Europe. Some
of this difference probably arises from the longer
records in our analysis, but the more rigorous treat-
ment of uncertainties during interpolation used in
this study may be another minor underlying differ-
ence (Beguería et al 2016). Nonetheless, even for a
longer time series analysis, we do not find global
or PAGE-ICE region-specific evidence that justifies
increasing or decreasing temperature variability with
rising global temperatures in simulations.

To find the level of interannual variability per
region, we apply a land-sea mask to the coarse Had-
CRUT4 grid, followed by multiplying with the cosine
of the latitude. Consequently, annual mean temperat-
ures are calculated for the PAGE-ICE regions by spa-
tial aggregation. A 30-year running window is used
for linear detrending to remove the global warming
signal, before the standard deviation is calculated over

that 30 year window, following, for example, Hunt-
ingford et al (2013). We use the results for the period
1986–2015, which are found in table C1. The medi-
ans of the ensemble, which are provided separately,
are used in the main model specification.

C.2. Autoregressive temperature model
Temperatures exhibit a considerable degree of auto-
correlation across years. Table C2 displays regres-
sion models of temperature, showing autocorrela-
tion levels of over 0.3. These are computed using the
regional temperature data summarized in table C1.
We use column (5) from table C2 as a basis for
decomposing annual temperature variability into
autocorrelation, smooth trends, and random vari-
ability. The smooth trend, which is represented in
the regression model with locally estimated scat-
terplot smoothing (LOESS), is equivalent to the
underlying climatic temperature computed in PAGE
(PTg). Figure C2 shows several realizations of the
autoregressive model, which roughly captures both
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Table C1. Standard deviations (in ◦C) of annual spatially aggregated mean temperature variability based on of the linearly detrended
temperatures for 1986–2015, with uncertainties (1 standard deviation) based on the full 10 000 member ensemble.

Variability of
median local
temperatures
(Std. Dev. [◦C])

Variability of
mean local
temperatures
(Std. Dev. [◦C])

Uncertainty in
observations
(Std. Dev. [◦C])

EU 0.415 0.352 0.0191
Russia+ 0.440 0.397 0.0302
USA 0.364 0.392 0.0304
China+ 0.265 0.260 0.0594
India+ 0.201 0.200 0.0399
Africa and Middle East 0.196 0.182 0.0502
Latin America 0.154 0.156 0.0542
Other OECD 0.362 0.353 0.0430
Global 0.110 0.113 0.0216

the variability and temporal structure of observed
temperatures.

The amount of autoregressivity varies by
PAGE region, from 0.012 (Other OECD) to 0.200
(India+) (see table C3). These levels of autore-
gression are low both because of the inherently
greater variability of weather at a local scale

and because the contemporaneous global tem-
perature is controlled for. We use the results of
column (5) in tables C2 and C3 in a two-step
process to add autocorrelated temperatures to
PAGE-ICE.

In this new version, we compute the global tem-
perature as

RTgt ∼

{
N

(
PTgt,σg

)
if t= 1

N (αg +βgPTgt + γg(PTgt − PTg,t−1+RTg,t−1),σg) else

where αg , βg , and γg are the constant, LOESS, and
autoregression terms frommodel (5) in table C2, and
σg is the corresponding standard error of the resid-
uals. The PTg,t−1 variable is the same as PAGE-ANN.

The term PTgt − PTg,t−1 removes the lagging of tem-
peratures that would otherwise by observed in RTgt

due to the autoregression.
Next, we compute regional temperatures as

RTLrt ∼

{
N

(
AFrRTgt,σr

)
if t= 1

N
(

AFr
βr+γr

(
αr +βrRTLrt + γr(AFr(PTgt − PTg,t−1)+RTg,t−1)

)
,σg

)

where AFr is the PAGE amplification factor.
The AFr(PTgt − PTg,t−1) term is again intro-
duced to remove lagging temperatures. The entire
regression-based expression is multiplied by AFr

βr+γr
to

scale the regional temperatures to approximate the
original PAGE results, AFrRTgt, accounting for any
mismatch between the regional temperature dataset
and PAGE’s regional calibration.

Under this model, we assume that residual tem-
perature variation is uncorrelated across regions, after
accounting for GMST and regional auto-regression.

Since the regions used in PAGE are chosen for eco-
nomic coherence, rather than climatological distinct-
ness, we test this assumption by looking at the cor-
relation in model errors across regions from our
model.

As shown in figure C3, compared to the correl-
ation across regions in the raw temperatures, con-
trolling for either a smoothed GMST predictor or
an auto-regressive term reduces average correlation
of the residuals across regions by half. The full
model, including both a smoothGMST predictor and
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Table C2.Models of annual temperature, accounting for trends and auto-correlation. Columns 1–3 represent different models of the
smooth trends behind annual temperatures, using a simple trend (1), CO2 concentrations (2), and a LOESS of observed GMST (3).
Columns (4) and (5) show combinations.

Dependent variable:

GMSTt
(1) (2) (3) (4) (5)

Year 0.006∗∗∗

(0.0003)
GMSTt−1 0.402∗∗∗ 0.315∗∗∗

(0.071) (0.074)
CO2 (ppm) 0.010∗∗∗ 0.006∗∗∗

(0.0004) (0.001)
LOESS 1.007∗∗∗ 0.693∗∗∗

(0.033) (0.080)
Constant −10.822∗∗∗ −2.867∗∗∗ −0.009 −1.732∗∗∗ −0.005

(0.628) (0.112) (0.014) (0.226) (0.014)
Observations 169 169 169 168 168
R2 0.652 0.825 0.847 0.853 0.862
Adjusted R2 0.650 0.824 0.846 0.851 0.860
Residual Std. Error 0.206 0.146 0.136 0.134 0.130
∗ p< 0.1; ∗∗ p< 0.05; ∗∗∗ p< 0.01.

Figure C2. Simulations of the autoregressive temperature model. Several simulations are shown in grey, with one highlighted in
green. The observed GMST timeseries is shown in purple, with the LOESS of this in black.

auto-regressive terms, approximately halves the cross-
region correlation again, to amedian 0.15 correlation.
The final variance of these residuals is also reduced,
from 0.22 for raw temperatures to 0.04 for the full
model.

C.3. Alternative temperature model with
independent temperature variability
As an additional result, we explore the effects of a sim-
pler specification of temperature variability that takes
into account observational uncertainties. We specify
this alternative model without autogression as fol-
lows:

Tg,t+1 =Θgt +N (0,N (µ2g ,∆
2
g)) (C1a)

Tg,t+1 =Θgt ·AFr +N (0,N (µ2r ,∆
2
r )) (C1b)

where µ represents the standard deviations on the
mean annual temperature for a geographical region,
and∆ is the standard deviation capturing the uncer-
tainty in the 10 000 member ensemble. ∆ of the two
is specified exogenously in the Monte Carlo draw for
each run, while µ is randomly drawn every year. The
impacts of this alternative model on the SCCO2 are
shown in table A4.
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Figure C3. Correlation in the model errors across regions. The four subplots represent different models, within which each row
and column describes residuals for a region, or the numerical year (‘year’), or the global GMST model (‘global’). The cells are
colored by the Pearson correlation of these residuals. Each subplot also reports the median variance of the model errors (‘Var(e)’)
across regions, and the median absolute value of the correlation of all off-diagonal correlations (‘|cor|’). The ‘Raw Temperatures’
subplot treats all variation in temperatures as model error; the ‘LOESS-only Model’ subplot regresses region temperatures on a
smoothed GMST; the ‘AR-only Model’ subplot regressions region temperatures on delayed temperatures; and the ‘Full AR Model’
includes both regressors.
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